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Abstract

Contemplating the recently announced 1-local expanders of Viola and Wigderson (ECCC,
TR16-129, 2016), one may observe that weaker constructs are well known. For example, one
may easily obtain a 4-regular N -vertex 1-local graph with spectral gap that is Ω(1/ log2 N),

and similarly a O(1)-regular N -vertex 1-local graph with spectral gap 1/Õ(log N). Starting
from a generic candidate for a 1-local expander, we formulate a natural problem regarding
“coordinated random walks” (CRW) on the corresponding “relocation” graph (which has size
that is logarithmic in the size of the candidate 1-local graph), and observe that

1. any solution to the CRW problem yields 1-local expanders, and

2. any constant-size expanding set of generators for the symmetric group yields a solution to
the CRW problem.

This yields an alternative construction and different analysis than the one used by Viola and
Wigderson. Furthermore, we show that solving the CRW problem is equivalent to constructing
1-local expanders.
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1 Introduction and preliminaries

A function f : {0, 1}n → {0, 1}n is called t-local if each bit in its output depends on at most t bits
in its input. We study the following recent result of Viola and Wigderson [6], where (throughout
this text) we view n as varying.

Theorem 1 (a construction of 1-local expanders [6]): There exists a constant d and a set of d
explicit 1-local bijections, {f1, ..., fd : {0, 1}n → {0, 1}n}n∈N, such that the 2d-regular 2n-vertex

graph that consists of the vertex set {0, 1}n and the edge multiset ∪i∈[d]{{x, fi(x)} : x ∈ {0, 1}n} is

an expander.

Since fi is a 1-local bijection, each bit of fi(x) is a bit of x offset by a fixed bit, and different
bits of fi(x) must depend on different bits in x. Hence, each fi is determined by a permutation
on the bit locations π(i) : [n] → [n], called the relocation, and an offset s(i) ∈ {0, 1}n such that
fi(x) = xπ(i)⊕s(i), where xπ(i) = xπ(i)(1) · · · xπ(i)(n); that is, fi(x) is the string obtained by relocating

the bits of x according to π(i) and offsetting the result by s(i). Indeed, by association, we refer to a
2d-regular graph with an edge multi-set that is described by 1-local bijections by the term 1-local.

We shall deconstruct the construction of 1-local expanders presented by Viola and Wigderson [6],
which relies on the construction of an expanding set of generators for the symmetric group (of
n-elements), provided by Kassabov [4]. In particular, the relocation permutations in the 1-local
expander are the permutations in the generating set constructed by Kassabov [4]. (Indeed, the level
of explicitness of the construction of the 1-local expanders is dominated by the level of explicitness
of the construction of the said generating set.) We shall show that an expanding set of generators
for the symmetric group (of n elements) yields a 1-local 2n-vertex expander by passing through an
intermediate problem that refers to “correlated random walks” on n-vertex graphs.

Recall that the (normalized) second eigenvalue of a regular graph represents the rate at which a
random walk on the graph converges to the uniform distribution (hereafter called the convergence
rate). In an expander this rate is a constant smaller than 1, whereas in a general (regular and non-
k-partite) N -vertex graph the rate is upper-bounded by 1 − 1

poly(N) . When trying to estimate the
convergence rate, denoted λ, of an N -vertex regular graph it is useful to recall the following facts,

where ∆
(p)
t denotes the distance (in norm Lp) of the uniform distribution from the distribution of

the final vertex in a t-step random walk that starts at the worst possible vertex:1

1. ∆
(1)
t ≤

√
N · ∆(2)

t ≤
√

N · λt.

2. N−1 · λt ≤ ∆
(2)
t ≤ ∆

(1)
t .

Hence, for sufficiently large t, it holds that λ ≈ (∆
(1)
t )1/t. In particular, for any functions f, g :

N → N, if ∆
(1)
t ≤ exp(−(t/f(n)) + g(n)), for sufficiently large t, then λ ≤ 1 − Ω(1/f(n)).

1The first inequality is well-known and captures the fact that the corresponding linear operator shrinks each
vector that is orthogonal to the uniform one. The second inequality can be proved by considering a random walk that
starts in a probability distribution that is described by the vector u + v2, where u = (1/N, ..., 1/N) is the uniform
distribution and v2 is a vector in the direction of the second eigenvector (such that no coordinate has value lower
than −1/N).
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2 Initial observations

Obtaining a 1-local expander requires using both the offsets (i.e., s(i)’s) and the relocation per-
mutations, because without the offsets the fi’s maintain the Hamming weight of the vertex (and
so the 2n-vertex graph is not even connected), whereas without the permutations the 2n-vertex
graph decomposes into even smaller connected components (i.e., each of size at most 2d). On the
other hand, using both offsets and relocations, it is quite easy to obtain 1-local 4-regular graphs
with polylogarithmic mixing time (equiv., the rate of convergence is bounded away from 1 by the
reciprocal of a polylogarithmic function in the size of the graph).

Observation 2 (the “shuffle exchange” graph is a 1-local weak expander):2 Let f1(x) = sh(x) and

f2(x) = x⊕0n−11 (or, alternatively, f2(x) = sh(x)⊕0n−11), where sh(x1 · · · xn) = (x2 · · · xnx1) is a

cyclic shift that corresponds to the relocation permutation π(i) = (i mod n)+1. Then, the 4-regular

2n-vertex graph that consists of the vertex set {0, 1}n and the edge multiset ∪i∈[2]{{x, fi(x)} : x ∈
{0, 1}n} has second eigenvalue 1 − Θ(1/n2).

(Indeed, in this graph, x is connected to x ⊕ 0n−11 by two parallel edges (i.e., {x, x ⊕ 0n−11} and
{x⊕0n−11, (x⊕0n−11)⊕0n−11}), and the the other pairs of edges (i.e., {x, sh(x)} and {sh−1(x), x}
for each x) may also be non-distinct.)

Proof: We claim that taking a random walk of length t = O(t′ · n2) on this graph yields a
distribution that is 2−t′-close to uniform. The claim is proved by observing that during such
a walk, with probability at least 1 − 2−t′ , each position in the original string appeared at the
rightmost position at some time during the walk (and that at the next step the corresponding value
is randomized, since at that step f2 is applied with probability one half).3

The foregoing argument refers implicitly to a random walk on the n-vertex cycle, which rep-
resents the shift relocation permutation used in the 1-local 2n-vertex graph that consists of the
relocation permutation sh and the offset 0n−11. In general, we shall be discussing two graphs:
The 2n-vertex graph with transitions that are 1-local, and an n-vertex graph that describes the
relocation permutations used in the 1-local graph.

Definition 3 (a generic 1-local graph and the corresponding relocation graph): Let π(1), ..., π(d) :
[n] → [n] be d permutations and s(1), ..., s(d) ∈ {0, 1}n.

1. The 1-local graph associated with π(1), ..., π(d) and s(1), ..., s(d) is the 2d-regular 2n-vertex graph

that consists of the vertex set {0, 1}n and the edge multi-set ∪i∈[d]{{x, xπ(i) ⊕ s(i)} : x ∈
{0, 1}n}, where xπ = xπ(1) · · · xπ(n).

2Note that when taking an n-step random walk on the 2-regular directed graph in which edges are directed from
each vertex x to the vertices sh(x) and sh(x)⊕ 0n−11 the final vertex is uniformly distributed (regardless of the start
vertex). However, there is a fundamental difference between random walks on directed graphs and random walks on
the underlying undirected graphs.

3The location of the jth bit in the original string after i steps is determined by j +
P

k∈[i] Xk mod n, where the

Xk’s are the {0,±1}-indicators of the chosen transitions (i.e., Xk = 1 (resp. Xk = −1) if the transition sh (resp.,
sh

−1) was taken in the kth step and Xk = 0 otherwise (i.e., if the offset 0n−11 was applied)). Note that each block
of O(n2) symbols has absolute value of at least 2n with probability at least 1/2. Hence, looking at t′ partial sums
that correspond to t′ such disjoint blocks, we observe that the probability that all these partial sums are in the
interval [−n, n] is at most 2−t′ . Finally, note that if any of these partials sums has value outside [−n, n], then at the
corresponding O(n2) steps each original bit position appeared in the rightmost location.
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2. The relocation graph associated with π(1), ..., π(d) is the 2d-regular n-vertex graph that consists

of the vertex set [n] and the edge multi-set ∪i∈[d]{{j, π(i)(j)} : j ∈ [n]}.

The mapping x 7→ xπ(i) ⊕ s(i) (resp., j 7→ π(i)(j)) is called a forward transition, whereas the reverse

mapping y 7→ (y ⊕ s(i))π(−i) (resp., k 7→ π(−i)(k)) is called a reverse transition, where π(−i) denotes

the inverse of π(i).

Wishing to use shorter random walks in the rate-convergence analysis, consider the case that the
n-vertex relocation graph is a O(1)-regular expander graph.4 In this case, a random walk of length
t = O(t′ · n log n) on the n-vertex graph visits all vertices with probability at least 1 − 2−t′ (since
its cover time is O(n log n) and we have t′ “covering attempts”).5 It follows that the corresponding
1-local 2n-vertex graph (in which half of the edges use the corresponding relocation permutations
and the other half use the offset 0n−11) has second eigenvalue 1 − Ω(1/n log n). This is the case
because taking a random walk of length O(t′ ·n log n) on the 1-local graph yields a distribution that
is 2−t′ -close to uniform, since (with probability 1 − 2−t′) each position in the original n-bit string
is mapped to the rightmost position at some time, and at the next step the corresponding value is
“randomized” (since the offset is applied with probability 1/2).

We observe that the foregoing analysis is essentially tight for any n-vertex relocation graph.
This is the case because the probability that a walk of length t on any regular n-vertex graph misses
a specific vertex is at least (1− O(1/n))t = exp(−Ω(t/n)).6 In that case, there exists a position in
the original n-bit string (i.e., in the label of the vertex of the 1-local 2n-vertex graph) that is not
moved to the active location where it may be randomized, where the active location refer to the
1-entry in the offset. This suggests using an offset that has many 1-entries (rather than one); in
fact, we shall use an offset with a linear number of 1-entries. Before doing so, we observe that there
is no hope of obtaining a constant-degree 2n-vertex expander when using only offsets of Hamming
weight o(n).

Observation 4 (using only light offsets can not yield an expander): Consider a 2d-regular 2n-

vertex graph as in Definition 3, and suppose that |s(i)| = o(n) for all i ∈ [d]. Then, this 1-local

2n-vertex graph is not an expander.

Proof: For starters, consider an auxiliary 4d-regular 2n-vertex graph in which, for each i ∈ [d], the
ith relocation permutation (i.e., π(i)) is coupled both with the offset s(i) and with the all-zero offset.
Now, for a t-step random walk (on this 2n-vertex graph) that starts at the vertex 0n, consider
the event this walk does not randomize position j ∈ [n] (in the initial n-bit string); that is, the
corresponding walk on the n-vertex graph that starts at vertex j ∈ [n] does not go through any

vertex in the set ∪i∈[d]{k : s
(i)
k = 1}. This event occurs with probability at least η = exp(−o(t))/n,

since a t-step random walk that starts at the uniform probability misses the said set with probability
at least (1 − o(1))t = exp(−o(t)).7

4We assume that the edges of this 2d-regular expander can be represented by d permutations, as in the foregoing
definition of a relocation graph.

5The cover time bound was established in [1, 2, 5].
6Note that here we seek a lower bound on the probability of missing a specific vertex, whereas the common focus

is on good upper bounds (which exists when the graph is an expander). This can be proved as in Footnote 7, which
deals with the more general case of missing a set of vertices.

7Note that here we seek a lower bound on the probability of missing the set S (equiv., staying in S = [n] \ S),
whereas the common focus is on good upper bounds (which exists when the graph is an expander). Letting d denote
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Note that randomized bit positions are reset to 1 with probability exactly 1/2 (by virtue of the
auxiliary construction performed upfront), whereas non-randomized positions maintain the value 0.
Considering the expected number of ones in the label of the final vertex of a t-step random walk
(on the 2n-vertex graph), observe that if some bit is not randomized with probability η, then the
expected number of ones is at most (1 − η) · 0.5n + η · 0.5(n − 1) = (n − η)/2. It follows that
the distribution of the final vertex is η/2n-far from uniform8, which implies that the convergence
rate is not bounded away from 1 (since (

√
2−n · η/2n)1/t ≈ exp(−o(1) − O(n/t)) = exp(−o(1)) for

sufficiently large t).9 Finally, since the auxiliary 4d-regular graph is not an expander, the 2d-regular
original graph (which is a subgraph of it) is also not an expander.

We note that using offsets of Hamming weight n − o(n) does not help, since this is equivalent
to adding the all-ones offset, which merely complements the vertex label in the 2n-vertex graph.10

In view of the above, we must use at least one offset that has Hamming weight in [Ω(n), n−Ω(n)].

3 A sufficient condition

We now identify a property of 1-local 2n-vertex O(1)-regular graphs that suffices for showing that
they are expanders. Let π(1), ..., π(d) : [n] → [n] and s(1), ..., s(d) ∈ {0, 1}n be as in Definiton 3 and
consider a t-step random walk on the 1-local graph associated with them. Such a random walk is
determined by a starting vertex x ∈ {0, 1}n and a sequence of t steps associated with the sequence
((σ1, τ1), ..., (σt, τt)) ∈ ([d] × {±1})t such that σi ∈ [d] indicates a choice of a bijection (associated
with the pair (π(σi), s(σi))) and τi = 1 (resp., τ1 = −1) indicates a forward (resp., backward)
transition. For simplicity, let us assume that τi = 1 for all i ∈ [t]. In such a case, letting π(σi,...,σj)

denote π(σi) ◦ · · · ◦ π(σj), we observe that the vertex reached at the end of the walk is

(· · · ((xπ(σ1) ⊕ s(σ1))π(σ2) ⊕ s(σ2))π(σ3) ⊕ s(σ3) · · ·)π(σt) ⊕ s(σt)

= xπ(σt,...,σ1) ⊕ (s(σ1))π(σt,...,σ2) ⊕ (s(σ2))π(σt,...,σ3) ⊕ (s(σ3))π(σt,...,σ4) ⊕ · · · ⊕ s(σt)

=


x ⊕

⊕

i∈[t]

(s(σi))(π(σi,...,σ1))−1




π(σt,...,σ1)

Recalling that we wish the end-vertex of the (t-step) random walk to be almost uniformly dis-
tributed, regardless of the start vertex, we need to show that, when σ1, ..., σt ∈ [d] are uni-

the degree of the n-vertex graph, we observe that there are at most d · |S| edges incident at S, and the worst case
is that their other endpoints are distributed evenly among the vertices in S (because otherwise, conditioning on not
leaving S biases the distribution towards vertices that have more neighbors in S (equiv., less neighbors in S)). Hence,

the probability that the random walk never leaves S is at least (1 − d|S|

d·|S|
)t, whereas in our case |S| = (1 − o(1)) · n.

8We use the fact that if E[X] < E[Y ] − ǫ and X, Y ∈ [0, 1], then there exists a set of values S such that
Pr[X∈S] < Pr[Y ∈S] − ǫ. This can be proved by taking S = {v : Pr[X =v] < Pr[Y =v]} ⊆ [0, 1] and using

Pr[Y ∈S] − Pr[X∈S] =
X

v∈S

(Pr[Y =v] − Pr[X =v]) ≥
X

v∈[0,1]

(Pr[Y =v] − Pr[X =v]) · v = E[Y ] − E[X] > ǫ.

9Since the convergence rate λ must satisfy
√

2n · λt ≥ η/2n.
10In that case, with similar probability, there are two positions in the original string that are not moved through

an active location (which implies that their final values are identical). To see this, follow the argument in Footnote 7,
while noting that the probability that one of the two coordinated random walks does not stay in S is only doubled
(wrt to what it is in Footnote 7). The argument is completed by considering the expected number of pairs of positions
that hold the same value.
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formly distributed, it holds that
⊕

i∈[t](s
(σi))(π(σi,...,σ1))−1 is almost uniformly distributed. Note

that (s(σi))(π(σi,...,σ1))−1 represents the offset applied in the ith step when viewed as applied to the

initial bit positions; actually, in the ith step the offset s(σi) is applied to a label whose bits were
permuted under π(σi,...,σ1). Now, assume that π(σ) = π(2⌈σ/2⌉) and that s(σ) is determined by the
least significant bit of σ such that s(σ) = s if σ is odd and s(σ) = 0n otherwise. In this case, we
have ⊕

i∈[t]

(s(σi))(π(σi,...,σ1))−1 =
⊕

i∈[t]:σ1≡1 (mod 2)

s(π(σi,...,σ1))−1

which means that, for fixed values of ⌈σ1/2⌉, ..., ⌈σt/2⌉ ∈ [d/2], random values of the least significant
bits of σ1, ..., σt yield an offset that is a random linear combination of the s(π(2⌈σi/2⌉,...,2⌈σ1/2⌉))−1 ’s.

Hence, this offset is uniformly distributed in {0, 1}n if and only if these s(π(2⌈σi/2⌉,...,2⌈σ1/2⌉))−1 ’s span

{0, 1}n. Lastly, fixing s (e.g., s = 1n/20n/2), the latter event depends only on the corresponding
relocation permutations (i.e., the π(2⌈σi/2⌉,...,2⌈σ1/2⌉)’s), which in turn can be stated as a condition
that refers to the correponding walk on the associated relocation graph. Details follow.

We now identify a property of n-vertex relocation graph that suffices for showing that coupled
with adequate offsets it yields a 1-local 2n-vertex expander. As hinted above, for simplicity, we
consider the case of using a single non-zero offset s ∈ {0, 1}n (along with the offsets that are derived
from it when considering also the reverse transitions). Actually, for each relocation permutation
π : [n] → [n], we consider the four transitions x 7→ (x ⊕ sb)π ⊕ sc, where b, c ∈ {0, 1} and s0 = 0n

(and s1 = s). (Note that such a generic transition can be viewed as x 7→ xπ ⊕ (sπ)b ⊕ sc, and
that the reverse transition has the form y 7→ (y ⊕ sc)π−1 ⊕ sb = yπ−1 ⊕ (sπ−1)c ⊕ sb.)11 In other
words, referring to Definition 3 and assuming that d is a multiple of 4, we postulate that for some
s ∈ {0, 1}n \ {0n} and every σ ∈ [d/4] and b, c ∈ {0, 1} it holds that π(4σ−2b−c) = π(4σ) and
s(4σ−2b−c) = (sπ(4σ))b ⊕ sc. Note that in this case, for every σ, taking at random one of the four
corresponding (forward) transitions has the effect of randomizing the vertex label by the offset s
(by virtue of the random value of c ∈ {0, 1}), and the same holds when taking the reverse transition
(by virtue of the random value of b ∈ {0, 1}). When taking a random walk on this 1-local graph,
we consider only the randomizing effect of this offset (i.e., of the choice of c in a forward move, and
the choice of b in a reverse move).12

To clarify the above and motivate the following property, suppose that we take t = Ω(n) random
steps on the 1-local graph, and consider the t-by-n Boolean matrix describing the activity status
of the location to which each of the initial positions is moved during the t ≥ n steps, where an
initial position is said to be active if it currently reside in location in {k : sk = 1}. That is, the
(i, j)th entry in the matrix indicates whether or not, in the ith step of the fixed random walk being
considered, the jth initial location is mapped to an active location (i.e., a 1-entry in the offset s
being used).13 Using an n-vertex expander and s of weight approximately n/2, we observe that
(w.v.h.p.) approximately half of the entries in each (t-long) column (in this random matrix) hold

11In contrast, if we were only to use the transitions x 7→ xπ ⊕ sc, then the reverse transitions would have had the
form y 7→ (y ⊕ sc)π−1 = yπ−1 ⊕ (sπ−1)c, which would have hindered the argument that follows.

12If we are currently at vertex x and take the forward transition associated with (π, b, c), then we move to vertex
xπ ⊕ (sπ)b ⊕ sc, and the foregoing randomization effect refers to the addition of the offset s (to (x ⊕ sb)π), which
occurs if and only if c = 1. Likewise, if we are currently at vertex y and take the reverse transition associated with
(π, b, c), then we move to vertex (y ⊕ sc)π−1 ⊕ sb, and the foregoing randomization effect refers to the addition of the
offset s (to (y ⊕ sc)π−1), which occurs if and only if b = 1.

13To further clarify the analysis, suppose that we place tokens in the n vertices and suppose that these tokens
are moved according to the fixed (random) walk. Consider an auxiliary t-by-n matrix such that the (i, j)th entry
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the value 1 (i.e., the colomn has approximately t/2 1-entries), but as we shall see what we need is
that (w.v.h.p.) this matrix has full rank.

Note that the foregoing Boolean matrix, which is defined based on a random walk on the 1-local
2n-vertex graph (of degree 2d), describes n coordinated walks on the n-vertex relocation graph, each
starting at a different vertex of the graph and all proceeding according to the same sequence of
(random) choices. (Recall that steps on the 1-local 2n-vertex graph are associated with tuples
(σ, τ, b, c), where σ ∈ [d/4] is the index of a permutation (of [n]) and τ ∈ {±1} indicate the of
the transition (i.e., forward or backward), whereas a step on the n-vertex relocation graph only
determines (σ, τ), leaving the choice of the corresponding bits b and c unspecified.) For t ≥ n, when
the foregoing t-by-n matrix has full rank, the t random choices of whether to apply the offset s
correspond to a random linear combination of the t rows of the matrix, which yields a uniformly
distributed n-bit long string, since the linear space of the rows of the matrix equals {0, 1}n. In this
case, the corresponding random walk on the 2n-vertex graph yields a uniform distribution (since
the latter n-bit string is added to the name/label of the initial vertex in the walk).14 This motivates
the definition of the following property.

Definition 5 (a property of coordinated random walks):15 For d = O(1), consider a d-regular

n-vertex graph such that for every σ ∈ [d] the function gσ : [n] → [n] that maps each vertex to its

σth neighbor is a bijection. For a set T ⊆ [n] and an integer t ≥ n, consider a random sequence

σ = (σ1, ..., σt) ∈ [d]t and the n corresponding coordinate random walks (CRW) such that the jth walk

starts at vertex j and moves in the ith step to the σth
i neighbor of the current vertex, and consider

a t-by-n Boolean matrix B(σ) such that its (i, j)th entry indicates whether the jth walk passed in

T in its ith step; that is, the (i, j)th is 1 if and only if gσi(· · · (gσ1(j) · · ·)) ∈ T . The desired CRW
property is that, for some t ≥ n, with probability at least 1 − exp(−n − Ω(t)) over the choice of

σ ∈ [d]t, the matrix B(σ) has full rank (over GF(2)).

We have already observed that for the CRW property to hold, the set T must have size in [Ω(n), n−
Ω(n)]. We now observe that using an arbitrary expander graph and an arbitrary set T of any
predetermined size (e.g., |T | ≈ n/2) will not do: For example, consider an n-vertex expander that
consists of two n/2-vertex expanders that are connected by a matching, and let T be the set of
vertices in one of these two expanders. Then, coordinated walks on this graph (w.r.t this T ) always
yields a Boolean matrix of rank at most two, since the coordinated walks that start at vertices in
T (resp., in [n] \T ) always move together to T or to [n] \T . Hence, the question we consider is the
following.

records the location of jth token is time i, assuming that initially the jth token was located at vertex j. Then, the
(i, j)th entry of the Boolean matrix is 1 if and only if the (i, j)th entry of the auxiliary matrix holds a value in the
set {k : sk =1}..

14That is, fixing a random walk on the n-vertex relocation graph, we observe that if the matrix that corresponds
to this walk has full rank, then the final vertex in the corresponding random walk on the 1-local 2n-vertex graph is
uniformly distributed in {0, 1}n, since it is the sum of the initial vertex (adequately permuted) and a random linear
linear combination of the rows of the matrix, which correspond to the adequately permuted offsets. We stress that
the said permutations are fixed, since they correspond to the fixed walk on the relocation graph. Hence, our analysis
does not use the randomness of the walk on the relocation graph beyond the hypothesis that (w.v.h.p.) such a walk
corresponds to a full rank matrix.

15An alternative way of defining the matrix B(σ) consists of considering a sequence of permutations over [n], denoted
π0, π1, ..., πt, such that π0 is the identity permutation, and πi(j) = gσi

(πi−1(j)). The ith row of B(σ) is then defined
as the T -indicator of πi; that is, the (i, j)th entry in the matrix is 1 if and only if πi(j) ∈ T .
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Problem 6 (the CRW problem): For which graphs and which sets T ’s does the property in Defi-

nition 5 hold?

As outlined above, any 2d-regular relocation graph that satisfies this property yields an 8d-regular
1-local 2n-vertex expander.

Theorem 7 (solutions to the CRW problem yield 1-local expanders): Let π(1), ..., π(d) : [n] →
[n] be d permutations and s ∈ {0, 1}n. If the 2d-regular n-vertex graph with the edge multi-set

∪i∈[d]{{j, π(i)(j)} : j ∈ [n]} along with the set {j ∈ [n] : sj = 1} satisfies the CRW property, then

the 8d-regular 2n-vertex graph with the edge multi-set

∪i∈[d],b,c∈{0,1}{{x, (x ⊕ sb)π(i) ⊕ sc} : x ∈ {0, 1}n}

is an expander.

Note that the foregoing (2·4d-regular) 2n-vertex graph is associated with the permutations π(1,00), ..., π(d,11) :
[n] → [n] and the offsets s(1,00), ..., s(d,11) ∈ {0, 1}n such that, for every (i, bc) ∈ [n] × {0, 1}2, it
holds that π(i,bc) = π(i) and s(i,bc) = (sb)π(i) ⊕ sc.

Proof: By the hypothesis, for some t ≥ n, the relevant t-by-n matrix has full rank with probability
at least 1 − exp(−n − Ω(t)). Fixing an arbitrary walk σ = (σ1, ..., σt) ∈ [2d]t on the n-vertex
relocation graph such that B(σ) has full rank, we consider a corresponding random walk on the 2n-
vertex graph. Specifically, having fixed σ, we consider the remaining random choices of bi, ci ∈ {0, 1}
for each i ∈ [t], and the corresponding walk (σ1b1c1, ..., σtbtct) ∈ ([2d] × {0, 1}2)t on the 2n-vertex
graph. Actually, we consider a random process that selects these 2t bits uniformly, in two steps.

• In the first step, for every i ∈ [t], if the ith transition is in the forward direction, then we
select bi at random, otherwise we select ci at random.

• In the second step, we make the remaining choices; that is, for every i ∈ [t], if the ith transition
is in the forward direction, then we select ci at random, otherwise we select bi at random.

Fixing any sequence of choices for the first step, the label of the final vertex is a random variable
that depends only on the random choices made in the second step, but such random choices have the
effect of randomizing the vertex label by adding to it a corresponding linear combination of the rows
of the matrix B(σ). Specifically, row i is taken to this linear combination if and only if the relevant
ci or bi equals 1 (where for a forward direction ci determines whether the current label is offset by s,
and for the reverse direction this choice is determined by bi).

16 Recalling that the rows of the matrix
B(σ) span {0, 1}n, it follows that the corresponding random walk on the 2n-vertex graph yields a
uniform distribution (regardless of the start vertex). Thus, the distribution of the label of the final

16Formally, denoting the initial vertex in the walk on the 1-local graph by v0, the ith vertex in the walk, denoted
vi, satisfies vi = (vi−1 ⊕ sbi)π ⊕ sci (resp., vi = (vi−1 ⊕ sci)π−1 ⊕ sbi) if σi indicates a forward (resp., reverse)
transition according to π. Denoting by πi the relocation permutation applied in the ith step of the walk (i.e.,
πi = π (resp., πi = π−1) if σi indicates a forward (resp., reverse) transition according to π), note that vi =
(vi−1)πi

⊕(sπi
)xi⊕syi , where (xi, yi) = (bi, ci) if the ith step takes a forward transition and (xi, yi) = (ci, bi) otherwise.

In both cases, the ith row in the matrix, denoted ri, equals s(πi◦···◦π1)−1 , where πi ◦ · · · ◦ π1 is the composition of the
relocation permutations applied in the i first steps. Hence, vi = (vi−1)πi

⊕ (sπi
)xi ⊕ ((ri)πi◦···◦π1)yi , which implies

(vi)(πi◦···◦π1)−1 = (vi−1)(πi−1◦···◦π1)−1 ⊕ (s(πi−1◦···◦π1)−1)xi ⊕ryi

i . It follows that (vt)(πt◦···◦π1)−1 = v0 ⊕s⊕L

i∈[t] r
yi

i ,

where s =
L

i∈[t](s(πi−1◦···◦π1)−1)xi .
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vertex is exp(−n−Ω(t))-close to the uniform distribution, which implies that the convergence rate
of the 2n-vertex graph is bounded away from 1 (i.e., this 1-local graph is an expander), since the
convergence rate of this 2n-vertex graph is upper-bounded by (2n ·exp(−n−Ω(t)))1/t = exp(−Ω(1)).

4 Known constructions that satisfy the CRW property

Recall that Kassabov’s result [4], which is used in [6], asserts that the symmetric group (over [n])
has an explicit generating set that is expanding and of constant size.17 We shall show that using
this set of permutations (i.e., as our set of relocating permutations) and letting T = [n′] such that
n′ ≈ n/2 is odd (e.g., odd n′ ∈ {⌊n/2⌋, ⌊n/2⌋ + 1}) yields an n-vertex graph (along with a set T )
that satisfies the coordinated random walks property (of Definition 5). Combined with Theorem 7,
this yields an alternative proof of Theorem 1.

Theorem 8 (a positive answer to Problem 6): Let Π = {π(i) : i ∈ [d]} be a generating set of the

symmetric group of n elements and suppose that Π is expanding.18 Then, the n-vertex graph that

consists of the vertex set [n] and the edge multi-set ∪i∈[d]{{j, π(i)(j)} : j ∈ [n]} combined with any

set of odd size n′ ≈ n/2 satisfies the coordinated random walks property of Definition 5.

(As observed by Irit Dinur and Roei Tell, the hypothesis of Theorem 8 directly implies a 1-local
expander with vertex set consisting of all n-bit long strings of fixed Hamming weight, say n/2, and
edges connecting x to xπ(i) for every i ∈ [d].)19

Proof: For a sufficiently large t, consider a random t-by-n Boolean matrix that corresponds
to coordinated random walks (from all possible start vertices) on the n-vertex graph (wrt the
foregoing set T of size n′). We shall show that, for every non-empty set J ⊆ [n], with probability
at least 1 − exp(−Ω(t) + O(n log n)), the sum of columns in positions J is non-zero. (Picking a
sufficiently large t = Ω(n log n), this establishes CRW property.)20 The probability (lower) bound
on the foregoing event is proved by observing that this event occurs if and only if the sequence of
permutations that describes the corresponding coordinated random walks on the n-vertex graph
does not hit the set of permuations π such that {j∈J : π(j) ∈ T} has odd cardinality.21

17Indeed, Kassabov’s result refers to a third graph, which is the corresponding Cayley graph with n! vertices (i.e.,
the vertices are all the possible permutations over [n]).

18That is, letting Symn denote the symmetric group of n elements, we consider the Cayley graph consisting of the
vertex set Symn and the edge multi-set ∪i∈[d]{{π, π(i) ◦ π} : π ∈ Symn}, where ◦ denote composition of pemutations.
The hypothesis postulates that this Cayley graph is an expander.

19Specifically, for any w ∈ [n], let Sw denote the set of all n-bit long strings of Hamming weight w. Then, the
2d-regular graph that consists of the vertex set Sw and the edge multi-set ∪i∈[d]{{x, xπ(i)} : x ∈ Sw} is an expander.
This is the case since a t-step random on this graph corresponds to a random sequence of permutations (and their
inverses) selected from the generating set, whereas such a sequence yields a permutation that is exp(−Ω(t))-close to
a random one. (Note that, for any fixed x ∈ Sw and a random permuation π ∈ Symn, the string xπ is uniformly
distributed in Sw.)

20We comment that the CRW property can be established by using any sufficiently large t = Ω(n); this requires
using Claim 8.2 instead of Claim 8.1.

21Specifically, we consider the auxiliary matrix that describes these coordinated random walks (see Footnote 13),
and observe that the foregoing event (reagrding the Boolean matrix) occurs if and only if each row in the auxiliary
matrix records a permutation in the set W̄ = {pi : |{j∈J : π(j) ∈ T}| ≡ 0 (mod 2)}. We then observe that W̄ has
density approximately one half, and the probability that a sequence of t permutations generated in this way (i.e.,
rows of the auxiliary matrix) misses a set of constant density is at most exp(−Ω(t) + O(n log n)).
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Claim 8.1 (the distribution of a specific linear combination of the columns): For every non-empty

set J ⊆ [n], with probability at least 1− exp(−Ω(t)+O(n log n)) over the t-step random walk on the

n-vertex graph, the sum (mod 2) of the columns in positions J in the corresponding t-by-n Boolean

matrix is non-zero.

Proof: For J = [n] this follows from the fact that n′ is odd. Otherwise (i.e., for J ⊂ [n]), we
shall prove the claim by using the correspondence between (coordinated) random walks on the n-
vertex graph and random walks on the set of all permutations where in a random step the current
permutation is composed with the selected generator.22 That is, selecting the σth neighbor in the
random walk on the n-vertex graph, a choice that determines a transition (i.e., ⌈σ/2⌉ ∈ [d]) as well
as the direction (i.e., forward or reverse) in which the transition is applied, corresponds to selecting
the ⌈σ/2⌉th generating permutation and moving by composing it or its inverse (according to the
value of σ mod 2).

In our argument, we shall refer to a set of permutations over [n], denoted Symn, and consider
the set of permutations, denoted W , consisting of permutations having an J-image that contains
an odd number of elements of T ; that is, π ∈ W if and only if |{j ∈ J : π(j) ∈ T}| is odd. The
claim will follow by showing that (1) |W | ≈ |Symn|/2, and (2) a random walk on Symn does not visit
W if and only if the corresponding (random) walk on the n-vertex graph corresponds to a matrix
with columns in positions J summing up to the all-zero vector.

We first show that W has density approximately half within the set of all n! permutations over
[n]. This can be shown by considering, w.l.o.g., the case of |J | ≤ n/2 (or else consider [n] \ J).
To estimate the probability that a random permutation is in W , consider the process of selecting
uniformly π ∈ Symn by randomly assigning distinct elements to the location in J , and ignore the
residual (random) assignment of (distinct) elements to [n]\J . Now, focus on the last assignment in
that process (i.e., the assignment of the |J |th element). Using the hypothesis that |T | = n′ ≈ n/2,
with probability 1−o(1), before this last assignment, the previous |J |−1 < n/2 ≈ n′ locations were
assigned approximately an equal number of elements from T and from [n] \ T , which means that
n′− (1± o(1)) · |J |/2 = (1± o(1)) · (n−|J |)/2 elements of each type remain for the last assignment,
where n − |J | = Ω(n). This implies that the parity of elements from T is flipped at the last step
with probability (1 ± o(1))/2 ≈ 1/2.

The key observation is that the coordinated random walks on the n-vertex graph yield a Boolean
matrix such that the sum of columns in positions J is zero (mod 2) if and only if the corresponding
walk on the set of n! permutations does not pass through states in W , where the latter walk starts
at the identity permutation. (To see this, consider the sequence, denoted π1, ..., πt, of permutations
that are selected during the random walk (as determined by the sequence σ ∈ [2d]t). Then, in
the ith step of the coordinated walks, the jth walk visits vertex k = πi(· · · (π1(j) · · ·)), whereas the
(i, j)th entry in the matrix is 1 if and only if πi(· · · (π1(j) · · ·)) ∈ T (i.e., if and only if k ∈ T ). Hence,
the sum of the entries in row i and columns in J is one (mod 2) if and only if πi ◦ · · · ◦ π1 ∈ W .)

Finally, consider a t-step random walk on the set of permutations that starts at the iden-
tity permutation. By the expansion property of the generating set for the symmetric group,
the probability that this walk does not pass through a fixed set of constant density is at most
exp(−Ω(t − O(n log n))), where the first O(n log n) steps are taken for convergence to the uniform
distribution and the remaining steps are used for hitting attempts (and are analyzed using the
“expander hitting lemma”).

22That is, we use the correspondence between (coordinated) random walks on the n-vertex graph and random
walks on the n!-vertex Cayley graph.
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Using a union bound (over all non-empty sets J), we conclude that, with probability at least
1 − (2n − 1) · exp(−Ω(t) + O(n log n)), the corresponding t-by-n Boolean matrix has full rank.
Picking a sufficiently large t = Ω(n log n), the theorem follows (since in this case 1 − (2n − 1) ·
exp(−Ω(t) + O(n log n)) ≥ 1 − exp(−n − Ω(t)), which establishes the CRW property).

Conclusion: Indeed, as stated upfront, applying Theorem 7 to the n-vertex graph (and set)
analyzed in Theorem 8 (and using [4]) yields an alternative proof of Theorem 1.

For sake of elegancy: As noted in Footnote 20, the bound of Claim 8.1 can be tightened.
This improvement is immaterial for proving Theorem 8, because, for any function g : N → N, a
probability (lower) bound of 1 − exp(−Ω(t) + g(n)), for a sufficiently large t ≥ n (i.e., t such that
Ω(t) > g(n) + 2n)), establishes the CRW property.

Claim 8.2 (the distribution of linear combinations of the columns, revisited): For every non-empty

set J ⊆ [n], with probability at least 1 − exp(−Ω(t) + O(n)) over the t-step random walk on the

n-vertex graph, the sum (mod 2) of the columns in positions J in the corresponding t-by-n Boolean

matrix is non-zero.

Proof: We proceed as in the proof of Claim 8.1, but consider random walks (on the set of all
permutations) that start at a state that is uniformly distributed in a specific set S (rather than
start at the identity permutation). The set S is the set of all permutations such that each location
in T holds an element of T ; that is, π ∈ S if and only if {i ∈ T : π(i)} = T . Using |T | = n′ ≈
n/2 ≈ n − |T |, observe that S has density n′!·(n−n′)!

n! = 2(1−o(1))·n.
Note that the Boolean matrix that represents a random walk on the n-vertex graph equals (up

to a permutation of its columns) the matrix that represents the same walk on any isomorphic copy
of that graph that leaves T invariant (i.e., rather than walking on an n-vertex graph G = ([n], E),
we walk on its isomorphic copy φ(G) = ([n], {{φ(i), φ(j)} : {i, j} ∈ E}), where φ : [n] → [n] is a
permutation such that φ(j) ∈ T for every j ∈ T ). That is, if the matrix M represents a random
walk on the original graph and φ : [n] → [n] is a permutation that leaves T invariant, then the
matrix obtained by permuting the columns of M according to φ represents a random walk on the
isomorphic copy of the original graph obtained by relabeling its vertices according to φ. (This is
the case because the jth column in M indicates whether the walk on G that starts at vertex j hits
T in each of the t steps, but this column also indicates whether the same walk on φ(G) that starts
at φ(j) hits φ(T ) = T in each of the t steps.) Now, since M is full rank if and only if permuting its
columns yields a full rank matrix, we may consider random walks on such random isomorphic copies
of the original graph (i.e., copies obtained by relabeling it using a random permutation that leaves
T invariant). Hence, we may analyze the corresponding walk (on the set of n! permutations) that
starts at a state that is uniformly distributed in S (rather than starting at the identity permutation).

Now, fixing any non-empty J ⊂ [n], we consider the corresponding set W (as defined in the proof
of Claim 8.1). By the expansion property of the generating set for the symmetric group, we have
that a t-step random walk that starts in uniformly distributed state in S passes through W with
probability at least 1− exp(−Ω(t−O(n))), where the first O(n) steps are taken for convergence to
the uniform distribution and the remaining steps are used for hitting W . (The crucial point is that
here we start the walk from a vertex that is uniformly distributed in a set of density exp(−O(n)),
whereas in the proof of Claim 8.1 the walk starts at an arbitrary vertex (which may be viewed as
a set of density 1/n! = exp(−Θ(n log n))).)
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The CRW property does not imply that the set of relocations is an expanding set of

generators for Symn. Interpreted in terms of sets of permutations over [n], the CRW property
asserts that a random walk on the corresponding Cayley graph passes a specific statistical test
(which is specified by the corresponding set T ). Theorem 8 asserts that if this Cayley graph is an
expander, then the CRW property is satisfies for any set T of odd size n′ ≈ n/2. (One may observe
that this holds for any odd n′ ∈ [Ω(n), n − Ω(n)].) This implies that if this Cayley graph is an
expander, then the CRW property is satisfies for some set T . Here we show that the converse of
the latter conditional statement does not hold.23

Theorem 9 (the converse of Theorem 8 fails): There exists a set of permutations, {π(i) : i ∈ [3d]},
over [2n] that does not generate the symmetric group of 2n elements (let alone in an expanding
manner) such that the 2n-vertex graph consisting of the vertex set [2n] and the edge multi-set

∪i∈[3d]{{j, π(i)(j)} : j ∈ [2n]} combined with some set of odd size n′ ≈ n/2 satisfies the coordinated

random walks property of Definition 5.

Proof Sketch: We start with a set of permutations Π = {π(i) : i ∈ [d]} that generates the
symmetric group of n elements and is expanding. We first extend each π(i) ∈ Π to the domain [2n]
such that π(i)(n + j) = n + π(i)(j) for every j ∈ [n] (and i ∈ [d]). Next we add d copies of the
identity permutation and d copies of the permutation that switches [n] and [2n] \ [n]; that is, for
every i ∈ [d], we have π(d+i)(b ·n+ j) = b ·n+ j and π(2d+i)(b ·n+ j) = (1−b) ·n+ j for every j ∈ [n]
and b ∈ {0, 1}. The 2n-vertex 6d-regular relocation graph G′ that corresponds to the augmented
set of permutations Π′ consists of two copies of the 2d-regular n-vertex graph G that corresponds
to Π augmented by d self-loops on each vertex (where each self-loop contributing two units to the
vertex’s degree) and 2d copies of a perfect matching that matches the two copies of each original
vertex.

Note that Π′ (i.e., the new set of permutations over [2n]) does not generate the symmetric group
of 2n elements; it rather generates a group of 2 ·(n!) ≪ (2n)! permutations. The theorem follows by
showing that the (2n-vertex) relocation graph G′ satisfies the CRW property (with any set T ⊂ [n]
of odd size n′ ≈ n/2).24 When analyzing random walks on G′, we distinguish steps in which one
of the first d permutations is employed from steps in which one of the last 2d permutations is
employed, calling the latter steps semi-idle, since they either map each vertex to itself or map each
vertex to its sibling (i.e., the other copy). The key observation is that a t-step random walk has
the following two properties:

1. With probability at least 1 − exp(−Ω(t)), at least t/2 of the steps in the walk are semi-idle,
since at each time a semi-idle step is selected with probability 2/3. Furthermore, for every

constant c, with probability at least 1 − exp(−Ω(t)), there are at most t/c2 time-intervals of

the form [(i − 1) · c + 1, i · c] that do not contain a semi-idle step.

2. Fixing a (non-empty) set J ⊆ [n] and a random walk on G′, we call a vertex good (for J) if
the sum of the columns J ∪ {n + j : j ∈ J} in the matrix that corresponds to the random

23Indeed, we leave open the possibility that the converse of Theorem 8 holds. We believe that even if the CRW
property is satisfies for any set T of odd size n′ ≈ n/2, then it does not necessarily hold that the foregoing Cayley
graph is an expander.

24We stress that T is an arbitrary subset of size n′ of [n], whereas the vertex set is [2n]. Indeed, picking T of size
n′ arbitrarily in [2n] will fail (e.g., if T = T ′∪ (n+T ′)∪{n}, for any T ′ ⊆ [n−1], then, for every non-empty J ′ ⊆ [n],
the sum of matrix’s columns with indices in J ′ ∪ (n + J ′) is exactly as in the case of T = {n}, since the contributions
of T ′ and n + T ′ cancel out).
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walk yields a vector that has at least Ω(t) ones in rows that correspond to steps that are
not semi-idle. (Recall that the (i, j)th entry in this matrix indicates whether the jth walk
hits T in its ith step, and that we consider here the parity of the entries in the columns
J ∪ {n + j : j ∈ J} restricted to rows that are not semi-idle.) The observeration is that every

non-empty set J ⊆ [n], with probability at least 1− exp(−Ω(t −O(n log n))) over the random

walks on G′, it holds that J is good.

The foregoing property of the walk on (the 2n-vertex graph) G′ is proven by considering
an analogous lazy walk on (the n-vertex) graph G such that the walk on G takes an idle
step (i.e., stays in place) if and only if the walk on G′ takes a semi-idle step. First note
that each row of the foregoing matrix (which correspons to a walk on G′) has 1-entries
either in columns in [n] or in columns in [2n] \ [n]; hence the sum of the entries in columns

J ∪ {n + j : j ∈ J} (in this row) is either due to J or to n + J
def
= {n + j : j ∈ J}. Recall

that Claim 8.1 asserts that, with probability at least 1− exp(−Ω(t−O(n log n))), at least one
row in the matrix that corresponds to a non-lazy walk on G has an odd sum of the entries
in columns J , but the argument extends to the matrix that corresponds to a lazy random
walk (on G) and to rows that do not correspond to idle steps.25 Hence, with probability at
least 1 − exp(−Ω(t − O(n log n))), at least one of the rows in a matrix that corresponds to a
randomn walk on G′ is good (for J). Furthermore, the same argument extends to showing
that the number of good (for J) rows is Ω(t), by using a “Chernoff bound” for random walks
on expanders.26

(Note that we use the correspondence between columns J ∪ (n + J) in the matrix B′ that
describes a random walk on G′ and columns J in the matrix B that describes a corresponding
lazy random walk on G. The hypothesis was used to analyze the random walks on G, and
the inference to G′ holds because each row in B appears either in the first n entries of the
corresponding row in B′ or in its last n entries (while the other n entries of this row are all
zero).)

Hence, a random walk on G′ satisfies both the foregoing properties with probability at least
1 − exp(−Ω(t − O(n log n))). Fixing such a walk on G′, note that satisfying these properties is
independent of the choices made in the semi-idle steps of this walk (i.e., whether to stay idle or
move to the sibling vertex). This fact will allow us to re-randomize these choices later.

By the choice of this walk, the corresponding matrix has t′ = Ω(t) good rows. Letting c = 10t/t′,
we infer that for at most 2c · t/c2 = 0.2t′ of the good rows i there is no semi-idle step in the time-
interval [i − c, i − 1]. Hence, there are at least t′′ = 0.8t′/c = Ω(t) good (for J) rows that are at
distance c apart from one another such that each such row i is preceded by a semi-idle step in the
time-interval [i − c, i − 1]. Calling these rows very good (for J), note that we can match each very
good row i to a semi-idle step (in [i − c, i − 1]) that precedes row i but does not precede any very
good row that precedes i. Now, if we re-randomize the choices made in all the semi-idle steps, then
with probability at least 1 − 2−t′′ one of the rows that is (very) good for J has all its (|T |) ones
in the columns [n]. In this case, the sum of the columns in J ⊆ [n] yields a non-zero vector. The
same argument applies to n + J .

25This can be seen by mapping the lazy random walk to a non-lazy random walk.
26Alternatively, we may just start with a graph G that satisfies a strong CRW property with respect to T , where

this strong property asserts that for sufficiently large t, with probability at least 1 − exp(Ω(t)), a t-step random walk

yields a matrix with columns that span an n-dimensional linear code of distance Ω(t) (whereas the CRW property
only asserts that the columns of this matrix span an n-dimensional linear space).
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Recall that in order to argue that the matrix has full rank we have to show that for every
non-empty J ′ ∪ J ′′ such that J ′ ⊆ [n] and J ′′ ⊂ [2n] \ [n] it holds that the sum of the columns
in J ′ ∪ J ′′ yields a non-zero vector. Assuming, w.l.o.g., that J ′ is non-empty, we have already
established that, with probability at least 1 − exp(−Ω(t − O(n log n))), the sum of the columns in
J ′ yields a non-zero vector. But the sum of the columns in J ′′ cannot cancel non-zero entries of
that vector, since each row of the matrix has 1-entries either in columns [n] or in columns [2n]\ [n].
Hence, with probability at least 1 − (22n − 1) · exp(−Ω(t − O(n log n))), the matrix has full rank.

5 A sufficient and necessary condition

Turning back to the relation between the CRW property (of Definition 5) and 1-local expander, we
shall show that the following generalization of Definition 5 suffices and is necessary for obtaining a
1-local expander (with 2n vertices).

Definition 10 (a relaxed property of coordinated random walks): For d, d′ = O(1), consider a

d-regular n-vertex graph as in Definition 5, and d′ sets T1, ..., Td′ ⊆ [n]. As in Definition 5, for

t = Ω(n), consider a random sequence σ = (σ1, ..., σt) ∈ [d]t and the n corresponding coordinate
random walks such that the jth walk starts at vertex j and moves in the ith step to the σth

i neighbor

of the current vertex. Now, fixing the random sequence σ, consider an arbitrary sequence τ =
(τ1, ..., τt) ∈ [d′]t, and let B(σ,τ) be the t-by-n Boolean matrix such that its (i, j)th entry indicates

whether the jth walk passed in Tτi in its ith step. The relaxed CRW property asserts that, with

probability at least 1 − exp(−Ω(t)) over the choice of σ ∈ [d]t, there exists τ ∈ [d′]t such that the

Boolean matrix B(σ,τ) has full rank.

(Indeed, Definition 5 corresponds to the special case of d′ = 1.)

Theorem 11 (constructing 1-local expanders is equivalent to constructing relocation graphs along
with sets that satisfy Definition 10): Let π(1), ..., π(d) : [n] → [n] be permutations.

1. If the 1-local 2d-regular 2n-vertex graph associated with π(1), ..., π(d) and s(1), ..., s(d) ∈ {0, 1}n

is an expander, then the corresponding 2d-regular n-vertex relocation graph along with the

sets T1, ..., T2d such that T2i = {j ∈ [n] : s
(i)
j = 1} and T2i−1 = {π(i)(j) : s

(i)
j = 1} satisfies

Definition 10.

2. Suppose that the 2d-regular n-vertex relocation graph associated with π(1), ..., π(d) along with

the sets T1, ..., Td′ satisfies Definition 10, and for every α ∈ {0, 1}d′ let s(α) ∈ {0, 1}n denote

the indicator string of the set
⊕

i:αi=1 Ti ⊆ [n]; that is, the jth bit of s(α) is 1 if and only if

|{i ∈ [d′] : αi =1 &j ∈Ti}| is odd. Then, the 22d′+1 · d-regular 2n-vertex graph with the edge

multi-set ∪i∈[d],β,γ∈{0,1}d′{{x, (x ⊕ s(β))π(i) ⊕ s(γ)} : x ∈ {0, 1}n} is an expander.

Proof: We start with the proof of Part 2, which generalizes the proof of Theorem 7. Specifically,
let σ = (σ1, ..., σt) ∈ [2d]t be a random walk on the relocation graph such that an even σi (resp.,
an odd σi) indicates a forward (resp., reverse) transition using π(⌈σi/2⌉). Then, by the hypothesis,
with probability at least 1 − exp(−Ω(t)) over the choice of σ, there exists τ = (τ1, ..., τt) such that
B(σ,τ) is full rank. When analyzing a corresponding random walk on the 1-local graph, consider
the following process of determining the sequence of auxiliary random choices of β1, ..., βt ∈ {0, 1}d′

and γ1, ..., γt ∈ {0, 1}d′ .
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1. For every i such that the ith step is a forward (resp., reverse) transition,

(a) select βi (resp., γi) uniformly in {0, 1}d′ , and,

(b) for every k ∈ [d′] \ {τi}, select the bit γi,k (resp., βi,k) uniformly in {0, 1}.

2. For every i such that the ith step is a forward (resp., reverse) transition, select γi,τi (resp.,
βi,τi) uniformly in {0, 1}.

Fixing a good σ and a corresponding good τ (i.e., choices such that B(σ,τ) is full rank), consider
an arbitrary fixing of the choices in Step 1. Then, the label of the final vertex in the corresponding
random walk on the 1-local graph is a fixed string that is offset by a random linear combination of
the rows of B(σ,τ), where the random linear combination is determined in Step 2. (Specifically, if
the ith step is a forward (resp., reverse) transition, then the ith row is included in this offset if and
only if γi,τi = 1 (resp., βi,τi = 1).) Thus, when B(σ,τ) has full rank, the label of the final vertex is
uniformly distributed in {0, 1}n, and Part 2 follows.

Turning to the proof of Part 1, we start by considering the 4d-regular 2n-vertex 1-local expander
obtained from the given 2d-regular 1-local expander by augmenting each transition of the form
x 7→ xπ ⊕ s with the transition x 7→ xπ. (The auxiliary graph is an expander because it conatins
an expander as a subgraph.) Hence, a step on this auxiliary graph is specified by a pair (σ, b) ∈
[2d] × {0, 1}, where σ specifies a step on the original 1-local graph and b specifies whether the
original offset is applied (i.e., we shall refer to the edge multi-set ∪i∈[d],b∈{0,1}{{x, xπ(i) ⊕ (s(i))b} :
x ∈ {0, 1}n}). Cosequently, a t-step random walk on the 4d-regular expander corresponds to a
sequence (σ1, b1), ..., (σt, bt) ∈ ([2d]×{0, 1})t , and the sequence σ1, ..., σt corresponds to a walk on the
n-vertex relocation graph. Determining the τi’s based on the σi’s yields a matrix as in Definition 10,
Specificallty, we shall determine the τi’s so that the fit the σi’s transition, while recalling that σi

determines both the edge used and the direction in which it is tranversed. (Suppose, again, without
loss of generality, that an even σi (resp., an odd σi) indicates a forward (resp., reverse) transition
using π(⌈σi/2⌉). Then, we let τi = σi.)

27

Now, we claim that if a t-step random walk on the 4d-regular 1-local graph yields a distribution
that is exp(−Ω(t))-close to uniform (and t = Ω(n) is large enough), then the matrix B(σ,σ) must
have full rank with probability at least 1 − exp(−Ω(t)). This claim is shown as follows.

Let η denote the probability (over the choice of σ ∈ [2d]t) that the matrix B(σ,σ) does not
have full rank. Such a choice of σ determines both the permutation πσ that relates the original
locations to the final ones (i.e., πσ = π((−1)σt ·⌈σt/2⌉) ◦ · · · ◦ π((−1)σ1 ·⌈σ1/2⌉)) and a non-trivial linear
combination Jσ of the columns of the matrix that witnesses that the matrix is not full rank. Hence,
with probability η′ ≥ η/(2n − 1) over the choice of σ, there exists a non-empty set J ⊆ [n] such
that the sum of the columns indexed by π−1

σ (J) (in the matrix B(σ,σ)) equals the all-zero vector,
whereas in the remaining choices (of σ) this sum does not equals the all-zero vector.28 Looking

27Note that if σi = 2k (resp., σ = 2k − 1), then the ith step applied the forward (resp., reverse) transition x 7→
xπ(k) ⊕ s(k) (resp., y 7→ (y⊕ s(k))π(−k) , where π(−k) denotes the inverse of π(k)). Recall that T2k = {j ∈ [n] : s

(k)
j =1}

and T2k−1 = {π(k)(j) : s
(k)
j =1} = {j : s

(k)

π(−k)(j)
=1}.

28The issue here is as follows: We know that for η fraction of the σ’s, there exists a Jσ such that the sum of these
columns is the all-zero vector. However, these columns corresponds to locations in the (label of the) initial vertex,
whereas we want to analyze locations in the end vertex. Still, there exists a non-empty J (representing locations in
final label) such that the sum of the columns in π−1

σ (J) (representing locations in initial label) equals the all-zero
vector with probability η′ > η/(2n − 1). Needless to say, for the rest of this probability space (of σ ∈ [2d]t), the sum
is not the all-zero vector.
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at the label of the final vertex vσ in a random walk σ on the 1-local 2n-vertex graph that starts
at the vertex 0n, we observe that vσ equals a random linear combination of the rows of B(σ,σ)

permuted by πσ (i.e., (vσ)π−1
σ

equals a random linear combination of the rows of B(σ,σ), where this

random linear combination is determined by the sequence (b1, ..., bt)).
29 It follows that the sum of

vσ’s bits in locations J is zero with probability exactly η′ + (1 − η′) · 0.5 = 0.5 + 0.5η′, since this
sum is 0 if the sum of the corresponding columns in B(σ,σ) is the all-zero vector (and is uniformly
distributed in {0, 1} otherwise). Hence, the distribution of the final vertex is 0.5η′-far from the
uniform distribution. The claim follows, since η′ ≤ exp(−Ω(t)) by the hypothesis, whereas this
implies η ≤ 2n · exp(−Ω(t)) = exp(−Ω(t)) for sufficiently large t = Ω(n).

Problem 12 (the CRW problem, revised): For which graphs and which sequences of sets (T1, ..., Td′ )’s
does the random matrix considered in Definition 10 have full rank with probability at least 1 −
exp(−Ω(t))?

An appealing conjecture of Benny Applebaum is that every n-vertex expander graph yield a positive
answer to Problem 12 (i.e., there exists d′ = O(1) sets T1, ..., Td′ ⊂ [n] such that this n-vertex graph
combined with these sets satisfies the relaxed CRW property of Definition 10).

6 An afterthought: Generalization to non-binary alphabets

We generalize the basic definitions to an arbitrary alphabet of prime size, which is identified with
the field GF(p). A function f : GF(p)n → GF(p)n is called t-local if each symbol in its output
depends on at most t symbol in its input. This yields to a generalized notion of a 1-local expander.

Definition 13 (1-local expanders, generalized): For a fixed d ∈ N and a fixed prime p, let

{f1, ..., fd : GF(p)n → GF(p)n}n∈N be 1-local bijections. Then, the corresponding 2d-regular pn-

vertex graph consists of the vertex set GF(p)n and the edge multiset ∪i∈[d]{{x, fi(x)} : x ∈ GF(p)n}.

Note that each fi is determined by a permutation on the bit locations π(i) : [n] → [n], called the

relocation, and n bijections denoted h
(i)
1 , ..., h

(i)
n : GF(p) → GF(p). Unlike in the binary case, where

each h
(i)
j : GF(2) → GF(2) is linear (i.e., has the form h

(i)
j (z) = z ⊕ s

(i)
j ), here these bijections are

not necesarily linear functions. Still, we shall focus on the case that they are linear. Generalizing
Theorems 7 and 8, we obtain.

Theorem 14 (a construction of generalized 1-local expanders): For every constant prime p, there

exists a set of d = O(p2) explicit 1-local bijections, {f1, ..., fd : GF(p)n → GF(p)n}n∈N, such

that the 2d-regular pn-vertex graph that consists of the vertex set GF(p)n and the edge multiset

∪i∈[d]{{x, fi(x)} : x ∈ GF(p)n} is an expander. Furthermore, the fi’s are linear mappings.

Proof: The overall plan is to use a straightforward generalization of the CRW property for rank
defined over GF(p), show that any generating set for the symmetric group of n elements that is
expanding (along with any set of size n′ ≈ n/2 such that n′ 6≡ 0 (mod p)) satisfies this property,
and that this yields a 1-local pn-vertex expander.

29This is the case since the ith row permuted by π((−1)σi ·⌈σi/2⌉) ◦ · · · ◦π((−1)σ1 ·⌈σ1/2⌉) is the offset that is potentially
added in the ith step of the walk, whereas this offset is added if and only if bi = 1.
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Definition 14.1 (a property of coordinated random walks, generalized): For a d-regular n-vertex

graph as in Definition 5, a set T ⊆ [n] and t ≥ n, consider coordinated random walks and Boolean

matrices just as in Definition 5. The generalized CRW property postulates that, with probability at

least 1 − exp(−(n log p) − Ω(t)), such a random matrix has full rank when the arithmetics is in
GF(p).

We stress that although these random matrices have entries in {0, 1}, we consider their rank over
GF(p). Also, the probability bound for the bad event (i.e., the matrix not being full rank) is set
lower so to account for the size of the 1-local graph (i.e., pn).

Claim 14.2 (Theorem 7, generalized): Let π(1), ..., π(d) : [n] → [n] be d permutations and s =
(s1, ..., sn) ∈ {0, 1}n ⊆ GF(p)n. If the 2d-regular n-vertex graph with the edge multi-set ∪i∈[d]{{j, π(i)(j)} :
j ∈ [n]} along with the set {j ∈ [n] : sj = 1} satisfies the generalized CRW property (of Defini-
tion 14.1), then the 2p2d-regular pn-vertex graph with the edge multi-set ∪i∈[d],b,c∈GF(p){{x, (x − b ·
s)π(i) + c · s} : x ∈ GF(p)n} is an expander, where b · (s1, ..., sn) = (bs1, ..., bsn).

Proof Sketch: We mimic the proof of Theorem 7, while noting that in the ith step the vertex’s
label is randomized by an offset that is a random GF(p)-multiple of the ith row in the corresponding
matrix. Hence, if the matrix has full rank over GF(p), then the label of the final vertex is uniformly
distributed in GF(p)n (since it is randomized by a random linear combination of the rows of the
matrix).

Claim 14.3 (Theorem 8, generalized): Let Π = {π(i) : i ∈ [d]} be a generating set of the symmetric

group of n elements and suppose that Π is expanding. Then, the n-vertex graph that consists of

the vertex set [n] and the edge multi-set ∪i∈[d]{{j, π(i)(j)} : j ∈ [n]} combined with any set of size

n′ ≈ n/2 such that n′ 6≡ 0 (mod p) satisfies the generalized CRW property of Definition 14.1.

Proof Sketch: Here we mimic the proof of Theorem 8. Specifically, we consider all (non-zero)
linear combinations L : [n] → GF(n) of the columns of a random matrix, and upper bound the
probability that each such linear combination yields the all-zero vector. That is, fixing an set T of
size n′, for every such linear combination L, we consider the set WL of permutations π ∈ Symn such
that

∑
i∈[n]:π(i)∈T L(i) 6≡ 0 (mod p). Once we show that each WL has constant density, the claim

follows as in the binary case (where here we use a union bound on all L’s).
The case of constant function L : [n] → GF(p) is handled by the hypothesis that n′ 6≡ 0

(mod p) (which implies that WL = Symn), and so we focus on non-constant functions L. We shall
show that, for every value v ∈ GF(p), the fraction of permutations π such that

∑
i∈[n]:π(i)∈T L(i) ≡ v

(mod p) is at most 0.5+ o(1), and infer that WL has density at least 0.5− o(1) (by upper-bounding
the density of Symn \ WL, which refers to the case of v = 0).

We first reduce the general case to the case that L has at least n/p zero entries: Given an
arbitrary (non-constant) L′ : [n] → GF(p), let w ∈ GF(p) be an element that appears at least n/p
times in L (i.e., |{j ∈ [n] : L′(j)=w}| ≥ n/p), and consider the (non-zero) function L(j) = L′(j)−w.
Next, letting J = {i ∈ [n] : L(i) 6= 0}, suppose that we generate a random permutation π by first
assigning elements to J , and consider the situation before the last assignment (i.e., after assigning
|J | − 1 elements). Using the hypothesis that |T | = n′ ≈ n/2, w.v.h.p., before this last assignment,
these |J | − 1 < n − n/p locations were assigned approximately an equal number of elements from
T and from [n] \ T , which means that n′ − (1 ± o(1)) · |J |/2 = (1 ± o(1)) · (n − |J |)/2 elements
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from each type remain for the last assignment, where n − |J | ≥ n/p = Ω(n). This means that the
value of

∑
i∈[n]:π(i)∈T L(i) mod p changes at the last assignment with probability (1±o(1))/2 ≈ 1/2

(i.e., if i|J | is the last element in J being assigned an element, then L(i|J |) is added to the current
sum with probability ≈ 1/2). The claim follows (since if the partial sum was v before the last
assignment then it changes with probability at least 0.5 − ǫ, whereas if the partial sum was not v
then it becomes v with probability at most 0.5 + o(1)).

Having shown that WL has constant density and using the hypothesis (regarding Π), we infer
that, with probability at least 1 − (pn − p) · exp(−Ω(t) + O(n log n)) over the t-step random walk
on the n-vertex graph, the corresponding t-by-n Boolean matrix has full rank over GF(p). Picking
a sufficiently large t = Ω(n log n), the claim follows.

Combining Claims 14.3 and 14.2, we get.

Corollary 14.4 (obtaining generalized 1-local expanders): Let Π = {π(i) : i ∈ [d]} be a gener-

ating set of the symmetric group of n elements and suppose that Π is expanding. Then, for any

n′ ≈ n/2 such that n′ 6≡ 0 (mod p), the 2p2d-regular pn-vertex graph with the edge multi-set

∪i∈[d],b,c∈GF(p){{x, (x − bn′
0n−n′

)π(i) + cn′
0n−n′} : x ∈ GF(p)n} is an expander.

Using Kassabov’s result [4] (which asserts that the symmetric group has an explicit generating set
that is expanding and of constant size), the theorem follows.

Comment: The foregoing generalizes to any finite field; that is, p may be a prime power. For
p = qe, where q is prime, we select n′ ≈ n/2 such that n′ 6≡ 0 (mod q), and proceed as above
(while noting that in the proof of Claim 14.3 the reductions mod p actually refer to doing the
arithmetics in GF(p)).

Acknowledgments

I wish to thank Benny Applebaum for helpful discussions and for permission to include his conjec-
ture in this text. I am also extremely grateful to Roei Tell for commenting on several drafts of this
text.

This work was partially supported by the Minerva Foundation with funds from the Federal
German Ministry for Education and Research.

References

[1] A. Broder and A. Karlin. Bounds on the cover time. J. of Theoretical Probability, Vol. 2 (1),
pages 101–120, 1989.

[2] A.K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, and P. Tiwari. The electrical
resistance of a graph, and its applications to random walks. In 21st STOC, 1989.

[3] S. Horry, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull.

(new series) of the AMS, Vol. 43 (4), pages 439–561, 2006.

[4] M. Kassabov. Symmetric groups and expander graphs. Invent. Math., Vol. 170 (2), pages
327–354, 2007.

17



[5] R. Rubinfeld. The cover time of a regular expander is O(n log n). IPL, Vol. 35, pages
49–51, 1990).

[6] E. Viola and A. Wigderson. Local Expanders. ECCC, TR16-129, 2016.

18


