Nesting Hybrids

Georg Fuchsbauer (IST Austria)
Momchil Konstantinov (Oxford)
Krzysztof Pietrzak (IST Austria)
Vanishree Rao (UCLA)

Visions of Cryptography
Weizmann Institute, December 11th 2013
Adaptive vs. Selective Security

adaptive attack by A on \(\{\Pi_n\}_{n \in \mathbb{N}} \)

- A queries \(\Pi_n(.) \)
- A chooses challenge \(x^* \in \{0,1\}^n \)
- A must break \(\Pi_n(.) \) on input \(x^* \)
selective attack by A on $\{\Pi_n\}_{n \in \mathbb{N}}$

- A chooses challenge $x^* \in \{0, 1\}^n$
- A queries $\Pi_n(.)$
- A must break $\Pi_n(.)$ on input x^*
Lemma (Security Leveraging)

If A breaks adaptive security with advantage \(\epsilon \) ⇒ can use A to break selective security with advantage \(\epsilon / 2^n \).

selective attack using adaptive A

- guess random challenge \(x' \in \{0, 1\}^n \)
- A queries \(\Pi_n(.) \)
- A chooses challenge \(x^* \)
- if \(x' \neq x^* \) give up
- A must break \(\Pi_n(.) \) on input \(x^* \)
proving adaptive security via leveraging

1. adaptive $\Pi_n \rightarrow$ selective Π_n (losing factor 2^n).
2. selective $\Pi_n \rightarrow \Phi$ (hybrid argument loses poly(n)).
proving adaptive security via leveraging

1. adaptive $\Pi_n \rightarrow$ selective Π_n (losing factor 2^n).
2. selective $\Pi_n \rightarrow \Phi$ (hybrid argument looses $\text{poly}(n)$).

nesting hybrids

1. adaptive $\Pi_n \rightarrow$ adaptive* Π_n (losing small factor α)
2. adaptive* $\Pi_n \rightarrow$ adaptive $\Pi_{n/2}$ (hybrid losing factor β)
3. iterate 1 and 2 $\log(n)$ times:
 adaptive $\Pi_n \rightarrow$ adaptive Π_1 losing $(\alpha \beta)^{\log(n)}$
4. adaptive $\Pi_1 \rightarrow \Phi$ lossless.
Applications

<table>
<thead>
<tr>
<th></th>
<th>old</th>
<th>new</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGM Constrained PRF<sup>1</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>loss in reduction to PRG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = \text{input length}$, $q = # \text{queries}$</td>
<td>2^n</td>
<td>$q^{\log n}$</td>
</tr>
<tr>
<td>Generalized Selective Decryption<sup>2</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>loss in reduction to ENC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>caveat: on trees</td>
<td>2^n</td>
<td>$2^{\log^2 n}$</td>
</tr>
<tr>
<td>$n = # \text{keys}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ *Functional Signatures and Pseudorandom Functions.* Elette Boyle, Shafi Goldwasser, Ioana Ivan eprint.iacr.org/2013/401

² *Constrained Pseudorandom Functions and Their Applications.* Dan Boneh and Brent Waters *Asiacrypt 2013*

Delegatable Pseudorandom Functions and Applications. A.Kiayias, S.Papadopoulos, N.Triandopoulos, T.Zacharias. *CCS 2013*

Tackling Adaptive Corruptions in Multicast Encryption Protocols. Saurabh Panjwani *TCC 2007*
GGM PRF $F_K(x) = K_x$

- PRG $G : \{0, 1\}^n \rightarrow \{0, 1\}^{2n}$
- $K = K_\emptyset \leftarrow \{0, 1\}^n$
- $K_x\|0\|K_x\|1 = G(K_x)$
GGM Hybrid Argument

Adv(H_0, H_{qn}) = ϵ

$q = \#\text{queries}, \ n=\text{input length}$.

\Rightarrow Adv(H_i, H_{i+1}) $\geq \epsilon/qn$

\Rightarrow Adv($G(U_\lambda), U_{2\lambda}$) $\geq \epsilon/qn$
GGM Hybrid Argument

- \(\text{Adv}(H_0, H_{qn}) = \epsilon \) for \(q = \#\text{queries} \), \(n = \text{input length} \).
- \(\Rightarrow \text{Adv}(H_i, H_{i+1}) \geq \epsilon/qn \)
- \(\Rightarrow \text{Adv}(G(U_\lambda), U_{2\lambda}) \geq \epsilon/qn \)
GGM Hybrid Argument

\[\text{Adv}(H_0, H_{qn}) = \epsilon \]
\[q = \# \text{queries} , \; n = \text{input length.} \]
\[\Rightarrow \text{Adv}(H_i, H_{i+1}) \geq \epsilon / qn \]
\[\Rightarrow \text{Adv}(G(U_\lambda), U_{2\lambda}) \geq \epsilon / qn \]
GGM Hybrid Argument

Hybrid H_0 (the real game)

$\text{Adv}(H_0, H_{qn}) = \epsilon \quad q = \#\text{queries}, \ n = \text{input length}$.

$\Rightarrow \text{Adv}(H_i, H_{i+1}) \geq \frac{\epsilon}{qn}$

$\Rightarrow \text{Adv}(G(U^{\lambda}), U^{2\lambda}) \geq \frac{\epsilon}{qn}$
GGM Hybrid Argument

Hybrid H_1

- $\text{Adv}(H_0, H_{qn}) = \epsilon$
- $q = \#\text{queries}$, $n = \text{input length}$.
- $\Rightarrow \text{Adv}(H_i, H_{i+1}) \geq \epsilon/qn$
- $\Rightarrow \text{Adv}(G(U_\lambda), U_{2\lambda}) \geq \epsilon/qn$
Adv($H_0, H_{qn}) = \epsilon$

$q = \#\text{queries}, \ n=\text{input length}.$

\Rightarrow Adv(H_i, H_{i+1}) $\geq \epsilon/qn$

\Rightarrow Adv($G(U_\lambda), U_{2\lambda}$) $\geq \epsilon/qn$
Adv(H_0, H_{qn}) = ϵ
$q = \#\text{queries}$, $n=$input length.

\Rightarrow Adv(H_i, H_{i+1}) $\geq \epsilon/qn$

\Rightarrow Adv($G(U_\lambda), U_{2\lambda}$) $\geq \epsilon/qn$
Adv(H_0, H_{qn}) = ϵ

$q = \# \text{queries}$, $n = \text{input length}$.

\Rightarrow Adv(H_i, H_{i+1}) \geq ϵ/qn

\Rightarrow Adv($G(U_\lambda)$, $U_{2\lambda}$) \geq ϵ/qn
GGM Hybrid Argument

Hybrid H_5 (the random game)

- $\text{Adv}(H_0, H_{qn}) = \epsilon$
- $q = \#\text{queries}$, $n=\text{input length}$.
- $\Rightarrow \text{Adv}(H_i, H_{i+1}) \geq \epsilon/qn$
- $\Rightarrow \text{Adv}(G(U_\lambda), U_{2\lambda}) \geq \epsilon/qn$
Constrained/Delegatable/Functional GGM PRF

Functional Signatures and Pseudorandom Functions. Elette Boyle, Shafi Goldwasser, Ioana Ivan
eprint.iacr.org/2013/401

Constrained Pseudorandom Functions and Their Applications. Dan Boneh and Brent Waters Asiacrypt 2013

CCS 2013
Security game for constrained PRFs

choose x^* where no prefix of x^* was queried.
distinguish K_x^* from random.
Constrained/Delegatable/Functional GGM PRF

Security game for constrained PRFs

choose x^* where no prefix of x^* was queried.

distinguish $K \cdot x^*$ from random.
$K_x \parallel y$ trivially distinguishable from random given K_x.
$K_{x\|y}$ trivially distinguishable from random given K_x.

Security game for constrained PRFs
- choose x^* where no prefix of x^* was queried.
- distinguish K_{x^*} from random.
Proving Selective Security

Adv(H_0, H_6) = ϵ
\Rightarrow Adv(H_i, H_{i+1}) \geq $\epsilon/6$
\Rightarrow Adv($G(U_\lambda), U_{2\lambda}$) \geq $\epsilon/6$
Proving Selective Security

Choose challenge

\[
\begin{align*}
\text{Adv}(H_0, H_6) &= \epsilon \\
\Rightarrow \quad \text{Adv}(H_i, H_{i+1}) &\geq \epsilon/6 \\
\Rightarrow \quad \text{Adv}(G(U^\lambda), U^{2\lambda}) &\geq \epsilon/6
\end{align*}
\]
Proving Selective Security

Hybrid H_0 (real game)

- $\text{Adv}(H_0, H_6) = \epsilon$
- $\Rightarrow \text{Adv}(H_i, H_{i+1}) \geq \epsilon/6$
- $\Rightarrow \text{Adv}(G(U_\lambda), U_{2\lambda}) \geq \epsilon/6$
Proving Selective Security

Hybrid H_1

$Adv(H_0, H_6) = \epsilon \Rightarrow Adv(H_i, H_{i+1}) \geq \epsilon/6 \Rightarrow Adv(G(U_\lambda), U_{2\lambda}) \geq \epsilon/6$
Proving Selective Security

Hybrid H_2

$\text{Adv}(H_0, H_6) = \epsilon \Rightarrow \text{Adv}(H_i, H_{i+1}) \geq \epsilon / 6 \Rightarrow \text{Adv}(G(U_\lambda), U_{2\lambda}) \geq \epsilon / 6$
Proving Selective Security

Hybrid H_3

\[
\begin{align*}
\text{Adv}(H_0, H_6) &= \epsilon \\
\Rightarrow \quad \text{Adv}(H_i, H_{i+1}) &\geq \epsilon/6 \\
\Rightarrow \quad \text{Adv}(G(U_{\lambda}), U_{2\lambda}) &\geq \epsilon/6
\end{align*}
\]
Proving Selective Security

Hybrid H_4

$$\text{Adv}(H_0, H_6) = \epsilon$$

$$\Rightarrow \text{Adv}(H_i, H_{i+1}) \geq \epsilon/6$$

$$\Rightarrow \text{Adv}(G(U_\lambda), U_{2\lambda}) \geq \epsilon/6$$
Adv(H₀, H₆) = \epsilon \\
⇒ Adv(Hᵢ, Hᵢ₊₁) ≥ \epsilon/6 \\
⇒ Adv(G(U_λ), U₂λ) ≥ \epsilon/6
Proving Selective Security

Hybrid H_6 (random game)

- $\text{Adv}(H_0, H_6) = \epsilon$
- $\Rightarrow \text{Adv}(H_i, H_{i+1}) \geq \epsilon/6$
- $\Rightarrow \text{Adv}(G(U_\lambda), U_{2\lambda}) \geq \epsilon/6$

Krzysztof Pietrzak Nesting Hybrids
Proof

- Leveraging: Guess Challenge

\[\epsilon \rightarrow \frac{\epsilon}{2^n} \]
Proving Adaptive Security using Leveraging

Proof

- Leveraging: Guess Challenge
- Hybrid Argument

\[\epsilon \xrightarrow{2^n} \frac{\epsilon}{2^n} \xrightarrow{2^n} \epsilon \]
Proof

1. Guess first query that agrees with x^* on 4-prefix.

\[\epsilon \xrightarrow{\epsilon} q \]
Proof

1. Guess first query that agrees with x^* on 4-prefix.
2. Hybrid argument.

$$
\epsilon \rightarrow \frac{\epsilon}{q} \rightarrow \frac{\epsilon}{3q}
$$
Proving Adaptive Security by Nesting

Proof

1. Guess first query that agrees with x^* on 6-prefix.
2. Hybrid argument.

\[\epsilon \rightarrow \frac{\epsilon}{q} \rightarrow \frac{\epsilon}{3q} \rightarrow \ldots \rightarrow \]
Proof

1. Guess first query that agrees with x^* on 6-prefix.
2. Hybrid argument.

\[\epsilon \rightarrow ^q \epsilon \rightarrow ^{3q} \epsilon \rightarrow \ldots \rightarrow \]
Proof

1. Guess first query that agrees with x^* on 5-prefix.
2. Hybrid argument.

\[
\epsilon \rightarrow \frac{\epsilon}{q} \rightarrow \frac{\epsilon}{3q} \rightarrow \ldots \rightarrow
\]
Proof

1. Guess first query that agrees with x^* on 5-prefix.
2. Hybrid argument.

$$\epsilon \rightarrow \frac{\epsilon}{q} \rightarrow \frac{\epsilon}{3q} \rightarrow \ldots \rightarrow \frac{\epsilon}{(3q)^{\log n}}$$