Oded Goldreich

- Lecture notes: [WWW.WISDOM.WISZMANN.AC.IL/~odedl](http://WWW.WISDOM.WISZMANN.AC.IL/~oded/pt-lm.html)

Testing \{ Dynamic, Evolving \} Environments

- Evolving phy. environments
- Moving objects

Specific Model: d-dim. cellular automata

- $d = 1, 2, 3$
- Evolution rule $\Pi: \Sigma^d \to \Sigma$
- Viewing function $V: \Sigma \to \Sigma'$
 (fully visible state vs partially visible...)

Testing whether an evolution table is Π-legal (i.e., evolves) $E: [t] \times [n] \to \Sigma$

- If E is Π-legal, then w.h.p accept $V \circ E$
- If F is ϵ-far from any $V \circ E'$ such that E' is Π-legal, then w.h.p reject F.
What makes this different from general P.T?

1. time-conforming observer/tester
 if queries \((j, \cdot)\) after \((i, \cdot)\)
 then \(j \geq i\) must hold

2. temporal query complexity
 \[\max_{i \in [t]} \# \text{ queries to } E_i(\cdot) \equiv E(i, \cdot)\]

THM: \(\exists\) evolution rule \(\Pi: \Sigma^3 \Rightarrow \Sigma\)

st. \(\Pi\)-legal evolution requires

time-conforming tester of complexity \(n^2(1)\)

but admits a non-time-conforming tester

of query complexity \(\text{poly}(\log n)\).
\[C = \text{STILD} \]

PROPOSITION

\[x' \subseteq C(x) \]

Definition:

\[x' = x \oplus 10^k \]

Delete:

\[x' \subseteq x' \oplus 10^k \]

Notation:

\[\beta \subseteq C(y) \]

Attacks:

\[i \leftarrow F(y) \]

PPPP:

\[\beta \subseteq C(y) \]

Asserting:

\[i = c^{-1}(\beta) \]

\[n = \text{poly}(k) \]

Time:

\[t = \theta(n) \]

F is a nonadaptive extractor for bit-fixing sources.