BACKGROUND

- P vs NP
- NP-completeness
PROBLEM

\[x^2 + 3xy + 7yz^3 = 1 \]

\[x + y + z = 4 \]

\[xyz + 2x - y - z = -4 \]

SOLUTION

\[x = 2 \quad y = 3 \quad z = -1 \]
P vs NP: searching vs checking

- Scheduling/Assignment Problems
 - e.g., time table (courses, teachers) (times)
 - (students, rooms)
 - jobs on a single machine (release, deadline, length)
 - jigsaw puzzle
 - crossword puzzle

- Flow Problems
 - over a physical/abstract network
 - e.g., pipes, wires, roads, airlines

- Routing Problems
 - (Short) paths under various constraints
 - e.g., finding a labyrinth path

- Arithmetic/Algebraic problems
 - e.g., solving a system of equations

EASY TO CHECK CORRECTNESS OF SOLUTIONS

HARD TO FIND CORRECT SOLUTIONS
P vs NP: proving vs verifying

The notion of a PROOF presupposes that verifying validity of proofs is easier than finding them.

(Finding proofs is a search problem for which correct solutions are easy to validate.)

\[\iff P \neq NP \]

\[\text{(RE: TRAD. PROOFS...)} \]

EASY TO VERIFY VALIDITY OF PROOFS

\[\text{vs} \]

HARD TO FIND CORRECT PROOFS
Efficient vs Infeasible

- (usually) **MUST READ THE INPUT**
 \[\Rightarrow \text{MUST SPEND LINEAR TIME.} \]

 time linear in the input length

- **LINEAR TIME IS EFFICIENT**

- What about quadratic time?

 (e.g. INTEGER MULTIPLICATION via ELEMENTARY SCHOOL METHOD)

 \[\uparrow \text{POLYNOMIAL-TIME IS EFFICIENT} \]

- **EXPONENTIAL-TIME IS INFEASIBLE**

 (e.g., the naive FACTORING ALGORITHM)
EFFICIENT vs INFEASIBLE

- (usually) MUST READ THE INPUT
 \[\Rightarrow \text{MUST SPEND LINEAR TIME.} \]
 \[\text{time linear in the input length} \]

- LINEAR TIME IS EFFICIENT

- What about quadratic time?
 (e.g., INTEGER MULTIPLICATION via ELEMENTARY SCHOOL METHOD)
 \[\uparrow \]
 POLYNOMIAL-TIME IS EFFICIENT

<table>
<thead>
<tr>
<th>n</th>
<th>10</th>
<th>20</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^2)</td>
<td>100</td>
<td>400</td>
<td>10,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2^n)</th>
<th>1000</th>
<th>1M</th>
<th>1,000, \ldots, 000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 ZEROS</td>
</tr>
</tbody>
</table>

- EXPONENTIAL-TIME IS INFEASIBLE
 (e.g., the naive FACTORING ALGORITHM)
GRAPH THEORY

GRAPH = SET OF POINTS (vertices) + SET OF PAIRS OF POINTS (edges).

Points = \{1, 2, 3, 4, 5, 6\}
Edges = \{(2, 3), (4, 6), (4, 5), (5, 6)\}

Graphs represent various natural objects

e.g., - Networks (of roads, communication, pipes, etc.)
- (binary) Relations (e.g., who are related/friends)

Solving problems by considering their abstraction as graph problems.
(e.g., Matching, Hamiltonian cycle, etc.)
3-coloring
NP-completeness

Conjecture: \(P \neq NP \) (widely believed but unproven)

Phenomenon: Natural "NP Problems" have no efficient solvers (i.e., not in \(P \)).

For each \(\Pi \in NP \), we wish to show \(\Pi \notin P \) but... this would yield \(P \neq NP \)...

Instead, we can hope to show that "if \(\Pi \in P \) then \(NP = P \)."

\[\Rightarrow P \neq NP \text{ implies that } \Pi \notin P \]

Method: Show that any problem in \(NP \) can be "reduced" to \(\Pi \).

\[\text{Instance of } \Pi' \text{ (for any } \Pi' \in NP) \xrightarrow{\text{efficiently transformed}} \text{Instance of } \Pi \]

\[\Rightarrow \Pi \text{ "encodes" all problems in } NP. \]
NP-Completeness (cont.)

Solving systems of (quadratic) equations is NP-Complete

⇒ Each problem in NP

 e.g. - scheduling
 - finding short TSP
 - factoring integers

 CAN BE "ENCODED" (reduced to solving) A SYSTEM OF EQUATIONS.

- TSP ≜ (1) Dist. between pairs of cities
 (2) Need a path that visits all cities (tour)

- Scheduling over a single processor/machine
 a seq. of jobs w. release, length & deadline.

- Factoring: Composite number ⇒ prime factorization