RANDOMNESS AND COMPUTATION

- Foundations of Cryptography
 - "Secrets" → randomness
 - "publicly verifiable secrets" → intractability
 \[≈\text{compt. hardness}\]

- Pseudorandomness
 \[\Rightarrow\text{Computational Indistinguishability}\]
 \[\text{(of distant distributions)}\]

- Probabilistic Proof Systems
 = Randomized verification procedure
 \[+\text{Probability of error}!\]

- Property Testing
 = A notion of approximation for decision problems
 \[\text{focused at sublinear-time algorithms}\]
 \[\text{must be randomized}\]
Foundations of Cryptography

= Paradigms, Approaches & Techniques used to conceptualize, define & provide solutions to "natural security concerns"

- Study of existing paradigms, techniques, ...
 (e.g. conc. & reset. ZK) [ROSEN, B., L.]
- Introduction of new paradigms
 (e.g. non-black-box simulation) [BARAK]
- Identification (or rigorous treat.) of new problems
 (e.g. "passwd-based security") [LINDELL]
PSEUDORANDOMNESS \Rightarrow Comput. Indistinguishability

- "PERFECT"
 - RANDOM OBJECT
- Efficiently constructible
 - "RANDOM APPROXIMATION"

Comput. Limited Observer

General paradigm

- instabilities
 - "anti-typical"
 - generation in Poly-time
 - observer $\not\in$ Poly-time
 - "derandomization"
 - generation in exp-time
 - observer = fixed poly-time
 - vs space
 - special properties
 - k-wise indpand.
 - small bias
 - extra conditions
Probabilistic Proof Systems

= Randomized & "Interactive" Verification Procedure
+ Probability of error (bounded by a parameter).

- Interactive Proofs (vs. "written proofs")
 Allow more efficient verification (than via written proofs);
 e.g., proof of non-isomorphism.
 \[\text{THM: } \text{IP} = \text{PSPACE} \]

- Zero-Knowledge (interactive) Proofs
 \[\text{= Proving without teaching anything} \]
 \[\text{= beyond the validity of the assertion.} \]
 \[\text{THM: Anything provable is provable in zero-knowledge} \]
 \[\text{provided one-way functions.} \]

- Probabilistically Checkable Proofs
 \[\text{= Written proofs, partially read.} \]
 \[\text{(Indeed proofs are in redundant form)} \]
 \[\text{THM: } \text{NP} = \text{PCP}[\log, O(1)] \]