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Abstract

While typical constructions of explicit expanders work for certain sizes (i.e., number of
vertices), one can obtain construction of about the same complexity by manipulating the original
expanders. One way of doing so is detailed and analyzed below.

For any m ∈ [0.5n, n] (equiv., n ∈ [m, 2m]), given an m-vertex expander, Gm, we construct
an n-vertex expander by connecting each of the first n−m to of Gm to an (otherwise isolated)
new vertex, and adding edges arbitrarily to regain regularity. The analysis of this construction
uses the combinatorial definition of expansion.

1 The story, which can be skipped

While designers of expanders focus on optimizing various parameters, their users tend to care most
of having explicit expanders for any number of vertices (i.e., for any size).

Unfortunately, typical constructions of explicit expanders work only for certain sizes (i.e., num-
ber of vertices). Yet, fortunately, one can obtain constructions of about the same complexity
by manipulating the original expanders. One such construction was presented recently in RAN-

DOM’19 by Jack Murtagh, Omer Reingold, Aaron Sidford and Salil Vadhan (see “Deterministic
Approximation of Random Walks in Small Space”). It reminded me of a different construction,
which I heard from Noga Alon many years ago.

The starting point in both cases is a construction for a “dense” set of sizes M ; that is, for every
n ∈ N there exists m ∈ M and an explicit m-vertex expander such that m ∈ [0.5n, n] (equiv.,
n ∈ [m, 2m]). The aim is to obtain an explicit n-vertex expander, for any given n ∈ N.

The construction of Murtagh et al. takes an m-vertex graph, where m ∈ [0.5n, n], designates
n−m pairs of vertices in it, joins each such pair to a single vertex (doubling the degree), and adds
self-loops on the other m − (n − m) vertices to regain regularity. The analysis of this construction
is conducted in terms of the algebraic definition of expansion (i.e., eigenvalues), and is presented in
Appendix B of their paper. Assuming that the m-vertex graph has a second eigenvalue smaller (in
absolute value) than β < 1/3, the resulting n-vertex graph has a second eigenvalue smaller than
(1 + 3β)/2.

Noga Alon’s construction starts by picking m1 ∈ [0.5n, n]. Discarding the fortunate case of
m1 = n, note that if m1 = n/2 we are done by connecting two copies of the m1-vertex graph
by a matching. The resulting n-vertex graph is shown to be an expander using the combinatorial
definition of expansion (i.e., the expansion of vertex-sets). In general, we set r1 = n−m1 ∈ (0, 0.5n],
and proceed by picking m2 ∈ [0.5r1, r1], setting r2 = r1 − m2, and so on; that is, in iteration i we
pick mi ∈ [0.5ri−1, ri−1] and set ri = ri−1 − mi, till we get to rt = O(1). At this point we connect



the vertices of the t − 1 smaller graphs to
∑t

i=2 mi vertices of the m1-vertex graph by using a
matching (and add self-loops to maintain regularity).

The analysis of Noga’s construction is less trivial than it seems. The source of trouble is that,
when analyzing the expansion of sets, one needs to consider sets of size at most n/2 and such
sets may have more than m1/2 vertices in the large (m1-vertex) expander. This difficulty can be
resolved by using a definition that guarantees expansion also for larger sets (actually, it suffices to
guarantee expansion for sets that have density at most 3/4). Furthermore, the standard definition
of expansion does imply expansion also for larger sets (as needed above).

Thinking a little more about Noga’s suggestion, I realized that, if one does not care about
the specific parameters, then the smaller expanders play no real role. Hence, the added small
expanders can be replaced by isolated vertices; that is, wishing to have an n-vertex expander and
given an m-vertex expander such that m ∈ [0.5n, n], we connect n − m auxiliary vertices (which
are otherwise isolated) to n − m vertices of the original expander (and then add edges arbitrarily
to recover regularity). The analysis works via the combinatorial definition of expansion, with the
aforementioned cavaet.

2 The actual construction and its analysis

While typical constructions of explicit expanders work for certain sizes (i.e., number of vertices),
one can obtain construction of about the same complexity by manipulating the original expanders.
One way of doing so is detailed and analyzed below.

The construction. For m ∈ [0.5n, n] (equiv., n ∈ [m, 2m]), given an m-vertex expander, Gm,
we construct an n-vertex expander by connecting each of the first n−m to of Gm to an (otherwise
isolated) new vertex, and add edges arbitrarily to regain regularity. Hence, we obtain a construction
of expanders for all sizes, provided we are given a construction of expanders for a sufficiently dense
set of sizes (which is effectively accessible as assumed below).

Construction 1 (padding and matching with isolated vertices): Let d ∈ N and M ⊆ N be a set

such that

1. Given any m ∈ M , we can construct an m-vertex d-regular graph Gm = ([m], Em).

2. For every n ∈ N, we can determine an m ∈ M such that m ∈ [0.5n, n] (equiv., n ∈ [m, 2m]).

Then, we construct a d′-regular n-vertex graph Gn = ([n], En) by picking m ∈ M ∩ [0.5n, n],
constructing Gm = ([m], Em), and letting

En = Em ∪ {{i,m + i} : i ∈ [n − m]} ∪ Em,n,

where d′ ∈ {d+1, d+2} and Em,n is an arbitrary set of
(d′−d)·n

2 − (n−m) edges that is added so to

make Gn be d′-regular. Specifically, d′ = d+2 must be used if n is odd and d is even, and d′ = d+1
is used otherwise.

We say that a graph G = (V,E) is (ρ, c)-expanding if for every S ⊂ V such that |S| ≤ ρ · |V | it
holds that |∂(S)| ≥ c · |S|, where ∂(S) = {u ∈ V \ S : ∃v ∈ S s.t. {v, u} ∈ E} is the boundary
of S. The standard definition of expansion corresponds to (0.5,Ω(1))-expansion, but it implies
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(ρ,Ω(1))-expansion for any constant ρ < 1.1 Hence, when showing that Gn is an expander, we may
assume that Gm is (0.75,Ω(1))-expanding, rather than (0.5,Ω(1))-expanding.

Theorem 2 (analysis of Construction 1): If Gm is (0.75, c)-expanding, then Gn is (0.5, c/4)-
expanding.

The proof does not use the edges in Em,n, which makes sense given their arbitrary choice. Yet, it
is quite likely that a more careful analysis of other aspects will yield a better expansion bound.

Proof: Recall that 0 ≤ n−m ≤ m. For an arbitrary set S ⊂ [n] of size at most 0.5n, we consider
the following three disjoint subsets of [m]:

S′ def
= {i ∈ [n − m] : i∈S & m + i∈S}

S′′ def
= {i ∈ ([m] \ [n − m]) : i ∈ S}

S′′′ def
= {i ∈ [n − m] : i ∈ S if and only if m + i 6∈ S }.

We first show that |S| ≤ n/2 implies |S′ ∪S′′| ≤ 0.75 ·m. This holds because |S′′| ≤ 2m−n, which
implies

|S′| + |S′′| ≤
|S| − |S′′|

2
+ |S′′|

≤ max
s≤2m−n

{

|S| − s

2
+ s

}

=
|S| + 2m − n

2

≤
2m − 0.5n

2
≤ 0.75 · m

where the third (resp., last) inequality is due to |S| ≤ n/2 (resp., m ≤ n). Having established
|S′∪S′′| ≤ 0.75·m and using the (0.75, c)-expansion of Gm, we get |∂(S′∪S′′)∩[m]| ≥ c·(|S′|+|S′′|).
On the other hand, using the matching edges (i.e., theset {{i,m + i} : i ∈ [n − m]}), we have
|∂(S′′′)| ≥ |S′′′| > c · |S′′′|. Hence, |∂(S′∪S′′∪S′′′)| ≥ c · (|S′|+ |S′′|+ |S′′′|)/2, since each vertex may
contribute at most twice to the sum |∂(S′ ∪ S′′)|+ |∂(S′′′)|. Noting that |S′|+ |S′′|+ |S′′′| ≥ |S|/2,
the claim follows.

1Assume that the graph is (0.5, c)-expanding, and let S ⊂ V be an arbitrarty set such that 0.5 · |V | < |S| ≤ ρ · |V |.

Then, R
def
= V \ (S ∪ ∂(S)) has cardinality smaller than 0.5 · |V |, and it follows that |∂(R)| ≥ c · |R|. On the other

hand, ∂(R) ⊆ ∂(S), and so |∂(S)| ≥ c · |R| = c · (|V | − |S| − |∂(S)|). Hence, |∂(S)| ≥ c

1+c
· (|V | − |S|) ≥ c

1+c
· 1−ρ

ρ
· |S|,

and it follows that the graph is (ρ, c′)-expanding for c′ = c·(1−ρ)
(1+c)·ρ

.
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3 Postscript

It seems that Noga has mentioned the construction that I remembered (and/or variants of it) in
some old papers. Asking him about this today, he suggested a few alternative constructions, which
are aimed at better expansion parameters. My favorite one, starts with an m-vertex d-regular
graph, Gm, for n ∈ [m,m + o(m)], and obtains an n-regular d′-regular graph by connecting each of
the n − m new vertices to d′ different old vertices.

A combinatorial analysis of the resulting graph, Gn, maintains much of the expansion features
of Gm. Specifically, assume that in Gm, for some monotone non-decreasing function X : [m] → [m],
every s-subset of [m] has at least X(s) neighbors outside it (e.g., X(s) = Ω(d · s) for s < m/2d).

Consider an arbitrary set S ⊂ [n] of vertices in Gn, and let S′ def
= S ∩ [m] and S′′ = S \ S′.

If |S′′| > X(|S|)/2d′, then |∂(S)| ≥ |∂(S′′) \ S′| ≥ d′ · |S′′| − |S| > 0.5X(|S|) − |S|. Otherwise,
|∂(S)| ≥ |∂(S′) ∩ [m]| ≥ X(|S′|) ≥ X(|S| − (X(|S|)/2d′)) ≥ X(|S|/2).

Noga plans to write a note with a spectral analysis of some of these alternative construction.
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