
On the Foundations of Cryptography∗

Oded Goldreich

Department of Computer Science

Weizmann Institute of Science

Rehovot, Israel.

oded.goldreich@weizmann.ac.il

May 6, 2019

Abstract

We survey the main paradigms, approaches and techniques used to conceptualize, define and
provide solutions to natural cryptographic problems. We start by presenting some of the central
tools used in cryptography; that is, computational difficulty (in the form of one-way functions),
pseudorandomness, and zero-knowledge proofs. Based on these tools, we turn to the treatment
of basic cryptographic applications such as encryption and signature schemes as well as the
design of general secure cryptographic protocols.

Our presentation assumes basic knowledge of algorithms, probability theory and complexity
theory, but nothing beyond this.

Keywords: Cryptography, Theory of Computation.

∗This revision of the primer [59] will appear as Chapter 17 in an ACM book celebrating the work of Goldwasser
and Micali.

1

Contents

1 Introduction and Preliminaries 1
1.1 Introduction . 1
1.2 Preliminaries . 4

I Basic Tools 6

2 Computational Difficulty and One-Way Functions 6
2.1 One-Way Functions . 6
2.2 Hard-Core Predicates . 9

3 Pseudorandomness 11
3.1 Computational Indistinguishability . 11
3.2 Pseudorandom Generators . 12
3.3 Pseudorandom Functions . 14

4 Zero-Knowledge 16
4.1 The Simulation Paradigm . 16
4.2 The Actual Definition . 17
4.3 Zero-Knowledge Proofs for all NP-assertions and their applications . 18
4.4 Variants and Issues . 21

4.4.1 Computational Soundness . 22
4.4.2 Definitional variations . 22
4.4.3 Related notions: POK, NIZK, and WI . 24
4.4.4 Two basic problems: composition and black-box simulation . 27

II Basic Applications 30

5 Encryption Schemes 30
5.1 Definitions . 32
5.2 Constructions . 34
5.3 Beyond Eavesdropping Security . 35

6 Signature and Message Authentication Schemes 36
6.1 Definitions . 38
6.2 Constructions . 39
6.3 Public-Key Infrastructure . 41

7 General Cryptographic Protocols 41
7.1 The Definitional Approach and Some Models . 42

7.1.1 Some parameters used in defining security models . 43
7.1.2 Example: Multi-party protocols with honest majority . 45
7.1.3 Another example: Two-party protocols allowing abort . 46

7.2 Some Known Results . 47
7.3 Construction Paradigms . 49

7.3.1 Passively-secure computation with shares . 49
7.3.2 Compilation of passively-secure protocols into actively-secure ones 51

7.4 Concurrent execution of protocols . 52
7.5 Concluding Remarks . 55

References 56

1 Introduction and Preliminaries

It is possible to build a cabin with no foundations,
but not a lasting building.

Eng. Isidor Goldreich (1906–1995)

1.1 Introduction

The vast expansion and rigorous treatment of cryptography is one of the major achievements of
theoretical computer science. In particular, concepts such as computational indistinguishability,
pseudorandomness and zero-knowledge interactive proofs were introduced, classical notions such as
secure encryption and unforgeable signatures were placed on sound grounds, and new (unexpected)
directions and connections were uncovered. Indeed, modern cryptography is strongly linked to
complexity theory (in contrast to “classical” cryptography which is strongly related to information
theory).

Modern cryptography is concerned with the construction of information systems that are ro-
bust against malicious attempts to make these systems deviate from their prescribed functionality.
The prescribed functionality may be the private and authenticated communication of informa-
tion through the Internet, the holding of incoercible and secret electronic voting, or conducting any
“fault-resilient” multi-party computation. Indeed, the scope of modern cryptography is very broad,
and it stands in contrast to “classical” cryptography (which has focused on the single problem of
enabling secret communication over insecure communication media).

The design of cryptographic systems is a very difficult task. One cannot rely on intuitions
regarding the “typical” state of the environment in which the system operates. For sure, the
adversary attacking the system will try to manipulate the environment into “untypical” states.
Nor can one be content with counter-measures designed to withstand specific attacks, since the
adversary (which acts after the design of the system is completed) will try to attack the schemes
in ways that are different from the ones the designer had envisioned. The validity of the above
assertions seems self-evident, still some people hope that in practice ignoring these tautologies will
not result in actual damage. Experience shows that these hopes rarely come true; cryptographic
schemes based on make-believe are broken, typically sooner than later.

In view of the foregoing, we believe that it makes little sense to make assumptions regarding the
specific strategy that the adversary may use. The only assumptions that can be justified refer to
the computational abilities of the adversary. Furthermore, the design of cryptographic systems has
to be based on firm foundations; whereas ad-hoc approaches and heuristics are a very dangerous
way to go. A heuristic may make sense when the designer has a very good idea regarding the
environment in which a scheme is to operate, yet a cryptographic scheme has to operate in a
maliciously selected environment which typically transcends the designer’s view.

This survey is aimed at providing an introduction to the foundations for cryptography. The
foundations of cryptography are the paradigms, approaches and techniques used to conceptual-
ize, define and provide solutions to natural “security concerns”. We will present some of these
paradigms, approaches and techniques as well as some of the fundamental results obtained using
them. It is quite striking that doing so means focusing on research that was conducted either by
Goldwasser and Micali or was directly inspired and informed by their work.

1

Solving a cryptographic problem (or addressing a security concern) is a two-stage process con-
sisting of a definitional stage and a constructive stage. First, in the definitional stage, the function-
ality underlying the natural concern is to be identified, and an adequate cryptographic problem has
to be defined. Trying to list all undesired situations is infeasible and prone to error. Instead, one
should define the functionality in terms of operation in an imaginary ideal model, and require a
candidate solution to emulate this operation in the real, clearly defined, model (which specifies the
adversary’s abilities). Once the definitional stage is completed, one proceeds to construct a system
that satisfies the definition. Such a construction may use some simpler tools, and its security is
proved relying on the features of these tools. In practice, of course, such a scheme may need to
satisfy also some specific efficiency requirements.

The emphasis of the survey is on the clarification of fundamental concepts and on demonstrating
the feasibility of solving several central cryptographic problems. It focuses on several archetypi-
cal cryptographic problems (e.g., encryption and signature schemes) and on several central tools
(e.g., computational difficulty, pseudorandomness, and zero-knowledge proofs). For each of these
problems (resp., tools), we start by presenting the natural concern underlying it (resp., its intuitive
objective), then define the problem (resp., tool), and finally demonstrate that the problem may be
solved (resp., the tool can be constructed). In the latter step, our focus is on demonstrating the
feasibility of solving the problem, not on providing a practical solution. As a secondary concern,
we typically discuss the level of practicality (or impracticality) of the given (or known) solution.

Computational Difficulty

The aforementioned tools and applications (e.g., secure encryption) exist only if some sort of com-
putational hardness exists. Specifically, all these problems and tools require (either explicitly or
implicitly) the ability to generate instances of hard problems. Such ability is captured in the defi-
nition of one-way functions. Thus, one-way functions are the very minimum needed for doing most
natural tasks of cryptography (see [85]). (It turns out, as we shall see, that this necessary condition
is “morally” sufficient; that is, the existence of one-way functions (or augmentations and extensions
of this assumption) suffices for doing most of cryptography.)

Our current state of understanding of efficient computation does not allow us to prove that
one-way functions exist. In particular, if P = NP then no one-way functions exist. Furthermore,
the existence of one-way functions implies that NP is not contained in BPP ⊇ P (not even “on the
average”). Thus, proving that one-way functions exist is not easier than proving that P 6= NP ; in
fact, the former task seems significantly harder than the latter. Hence, we have no choice (at this
stage of history) but to assume that one-way functions exist. As justification to this assumption
we may only offer the combined beliefs of hundreds (or thousands) of researchers. Furthermore,
these beliefs concern a simply stated assumption, and their validity follows from several widely
believed conjectures which are central to various fields (e.g., the conjectured intractability of integer
factorization is central to computational number theory).

Since we need assumptions anyhow, why not just assume what we want (i.e., the existence of
a solution to some natural cryptographic problem)? Well, first we need to know what we want: as
stated above, we must first clarify what exactly we want; that is, go through the typically complex
definitional stage. But once this stage is completed, can we just assume that the definition derived
can be met? Not really: once a definition is derived, how can we know that it can at all be met? The
way to demonstrate that a definition is viable (and that the corresponding intuitive security concern
can be satisfied at all) is to construct a solution based on a better understood assumption (i.e., one

2

that is more common and widely believed). For example, looking at the definition of zero-knowledge
proofs (introduced by Goldwasser, Micali, and Rackoff [77]), it is not a priori clear that such proofs
exist at all (in a non-trivial sense). The non-triviality of the notion was first demonstrated (in [77])
by presenting a zero-knowledge proof system for statements, regarding Quadratic Residuosity, that
are believed to be hard to verify (without extra information). Furthermore, contrary to prior
beliefs, it was later shown (by Goldreich, Micali, and Wigderson [68]) that the existence of one-
way functions implies that any NP-statement can be proved in zero-knowledge. Thus, facts that
were not known at all to hold (and even believed to be false), were shown to hold by reduction to
widely believed assumptions (without which most of modern cryptography collapses anyhow). To
summarize, not all assumptions are equal, and so reducing a complex, new and doubtful assumption
to a widely-believed simple (or even merely simpler) assumption is of great value. Furthermore,
reducing the solution of a new task to the assumed security of a well-known primitive typically
means providing a construction that, using the known primitive, solves the new task. This means
that we do not only know (or assume) that the new task is solvable but we also have a solution
based on a primitive that, being well-known, typically has several candidate implementations.

Prerequisites and Structure

Our aim is to present the basic concepts, techniques and results in cryptography. As stated above,
our emphasis is on the clarification of fundamental concepts and the relationship among them. This
is done in a way independent of the particularities of some popular number theoretic examples.
These particular examples played a central role in the development of the field and still offer
the most practical implementations of all cryptographic primitives, but this does not mean that
the presentation has to be linked to them. On the contrary, we believe that concepts are best
clarified when presented at an abstract level, decoupled from specific implementations. Thus, the
most relevant background for this survey is provided by basic knowledge of algorithms (including
randomized ones), computability and elementary probability theory.

The survey is organized in two main parts, which are preceded by preliminaries (regarding
efficient and feasible computations). The two parts are Part I – Basic Tools and Part II – Basic
Applications. The basic tools consist of computational difficulty (one-way functions), pseudoran-
domness and zero-knowledge proofs. These basic tools are used for the basic applications, which
in turn consist of Encryption Schemes, Signature Schemes, and General Cryptographic Protocols.

In order to give some feeling of the flavor of the area, we have included in this survey a few
proof sketches, which some readers may find too terse. We stress that following these proof sketches
is not essential to understanding the rest of the material. In general, later sections may refer to
definitions and results in prior sections, but not to the constructions and proofs that support these
results. It may be even possible to understand later sections without reading any prior section,
but we believe that the order we chose should be preferred because it proceeds from the simplest
notions to the most complex ones.

Suggestions for Further Reading

This survey is a brief summary of the author’s two-volume work on the subject [57, 58]. Further-
more, Part I corresponds to [57], whereas Part II corresponds to [58]. Needless to say, the reader
is referred to these textbooks for further detail.

Two of the topics reviewed by this survey are zero-knowledge proofs (which are probabilistic)

3

and pseudorandom generators (and functions). A wider perspective on probabilistic proof systems
and pseudorandomness is provided in Chapter X as well as in [61, Chap. 8-9].

Needless to say, this survey (as well as [57, 58]) only provide an introduction to the foundations
of cryptography, which are still a topic of very active research. As a rule of thumb, developments
that deviate from the basic definitions presented in this survey are not even referenced in this text,
and the interested readers will have to look for them elsewhere.

Practice. The aim of this survey is to introduce the reader to the theoretical foundations of
cryptography. As argued above, such foundations are necessary for sound practice of cryptography.
Indeed, practice requires more than theoretical foundations, whereas the current survey makes no
attempt to provide anything beyond the latter. However, given a sound foundation, one can learn
and evaluate various practical suggestions that appear elsewhere (e.g., in [92]). On the other hand,
lack of sound foundations results in inability to critically evaluate practical suggestions, which in
turn leads to unsound decisions. Nothing could be more harmful to the design of schemes that
need to withstand adversarial attacks than misconceptions about such attacks.

1.2 Preliminaries

Modern Cryptography, as surveyed here, is concerned with the construction of efficient schemes for
which it is infeasible to violate the security feature. Thus, we need a notion of efficient computations
as well as a notion of infeasible ones. The computations of the legitimate users of the scheme ought
be efficient, whereas violating the security features (by an adversary) ought to be infeasible. We
stress that we do not identify feasible computations with efficient ones, but rather view the former
notion as potentially more liberal.

Efficient Computations and Infeasible ones

Efficient computations are commonly modeled by computations that are polynomial-time in the
security parameter. The polynomial bounding the running-time of the legitimate user’s strategy
is fixed and typically explicit (and small). Indeed, our aim is to have a notion of efficiency that
is as strict as possible (or, equivalently, develop strategies that are as efficient as possible). Here
(i.e., when referring to the complexity of the legitimate users) we are in the same situation as
in any algorithmic setting. Things are different when referring to our assumptions regarding the
computational resources of the adversary, where we refer to the notion of feasible that we wish to be
as wide as possible. A common approach is to postulate that feasible computations are polynomial-
time too, but here the polynomial is not a priori specified (and is to be thought of as arbitrarily
large). In other words, the adversary is restricted to the class of polynomial-time computations
and anything beyond this is considered to be infeasible.

Although many definitions explicitly refer to the convention of associating feasible computations
with polynomial-time ones, this convention is inessential to any of the results known in the area.
In all cases, a more general statement can be made by referring to a general notion of feasibility,
which should be preserved under standard algorithmic composition, yielding theories that refer to
adversaries of running-time bounded by any specific super-polynomial function (or class of func-
tions). Still, for sake of concreteness and clarity, we shall use the former convention in our formal
definitions (but our motivational discussions will refer to an unspecified notion of feasibility that
covers at least efficient computations).

4

Randomized (or probabilistic) Computations

Randomized computations play a central role in cryptography. One fundamental reason for this fact
is that randomness is essential for the existence (or rather the generation) of secrets. Thus, we must
allow the legitimate users to employ randomized computations, and certainly (since randomization
is feasible) we must consider also adversaries that employ randomized computations. This brings
up the issue of success probability: Typically, we require that legitimate users succeed (in fulfilling
their legitimate goals) with probability 1 (or negligibly close to this), whereas adversaries succeed
(in violating the security features) with negligible probability. Thus, the notion of a negligible
probability plays an important role in our exposition. One requirement of the definition of negligible
probability is to provide a robust notion of rareness: A rare event should occur rarely even if we
repeat the experiment for a feasible number of times. That is, in case we consider any polynomial-
time computation to be feasible, a function µ :N→N is called negligible if 1−(1−µ(n))p(n) < 0.01 for
every polynomial p and sufficiently big n (i.e., µ is negligible if for every positive polynomial p′ the
function µ(·) is upper-bounded by 1/p′(·)). However, if we consider the function T (n) to provide our
notion of infeasible computation then functions bounded above by 1/T (n) are considered negligible
(in n).

We will also refer to the notion of noticeable probability. Here the requirement is that events that
occur with noticeable probability, will occur almost surely (i.e., except with negligible probability)
if we repeat the experiment for a polynomial number of times. Thus, a function ν :N→N is called
noticeable if for some positive polynomial p′ the function ν(·) is lower-bounded by 1/p′(·).

5

Part I

Basic Tools

In this part we survey three basic tools used in Modern Cryptography. The most basic tool is com-
putational difficulty, which in turn is captured by the notion of one-way functions. Next, we survey
the notion of computational indistinguishability, which underlies the theory of pseudorandomness
as well as much of the rest of cryptography. In particular, pseudorandom generators and functions
are important tools that will be used in later sections. Finally, we survey zero-knowledge proofs,
and their use in the design of cryptographic protocols. For more details regarding the contents of
the current part, see our textbook [57].

2 Computational Difficulty and One-Way Functions

Modern Cryptography is concerned with the construction of systems that are easy to operate
(properly) but hard to foil. Thus, a complexity gap (between the ease of proper usage and the
difficulty of deviating from the prescribed functionality) lies at the heart of Modern Cryptography.
However, gaps as required for Modern Cryptography are not known to exist; they are only widely
believed to exist. Indeed, almost all of Modern Cryptography rises or falls with the question of
whether one-way functions exist. We mention that the existence of one-way functions implies that
NP contains search problems that are hard to solve on the average, which in turn implies that NP
is not contained in BPP (i.e., a worst-case complexity conjecture).

Loosely speaking, one-way functions are functions that are easy to evaluate but hard (on the
average) to invert. Such functions can be thought of as an efficient way of generating “puzzles”
that are infeasible to solve (i.e., the puzzle is a random image of the function and a solution is
a corresponding preimage). Furthermore, the person generating the puzzle knows a solution to it
and can efficiently verify the validity of (possibly other) solutions to the puzzle. Thus, one-way
functions have, by definition, a clear cryptographic flavor (i.e., they manifest a gap between the
ease of one task and the difficulty of a related one).

2.1 One-Way Functions

One-way functions are functions that are efficiently computable but infeasible to invert (in an
average-case sense). That is, a function f :{0, 1}∗→{0, 1}∗ is called one-way if there is an efficient
algorithm that on input x outputs f(x), whereas any feasible algorithm that tries to find a preim-
age of f(x) under f may succeed only with negligible probability (where the probability is taken
uniformly over the choices of x and the algorithm’s coin tosses). Associating feasible computations
with probabilistic polynomial-time algorithms, we obtain the following definition.

Definition 2.1 (one-way functions): A function f :{0, 1}∗→{0, 1}∗ is called one-way if the follow-
ing two conditions hold:

1. easy to evaluate: There exist a polynomial-time algorithm A such that A(x) = f(x) for every
x ∈ {0, 1}∗.

6

2. hard to invert: For every probabilistic polynomial-time algorithm A′, every polynomial p, and
all sufficiently large n,

Pr[A′(f(x), 1n) ∈ f−1(f(x))] <
1

p(n)

where the probability is taken uniformly over all the possible choices of x ∈ {0, 1}n and all the
possible outcomes of the internal coin tosses of algorithm A′.

Algorithm A′ is given the auxiliary input 1n so to allow it to run in time polynomial in the length of
x, which is important in case f drastically shrinks its input (e.g., |f(x)| = O(log |x|)). Typically, f
is length preserving, in which case the auxiliary input 1n is redundant. Note that A′ is not required
to output a specific preimage of f(x); any preimage (i.e., element in the set f−1(f(x))) will do.
(Indeed, in case f is 1-1, the string x is the only preimage of f(x) under f ; but in general there may
be other preimages.) It is required that algorithm A′ fails (to find a preimage) with overwhelming
probability, when the probability is also taken over the input distribution. That is, f is “typically”
hard to invert, not merely hard to invert in some (“rare”) cases.

Some of the most popular candidates for one-way functions are based on the conjectured in-
tractability of computational problems in number theory. One such conjecture is that it is infeasible
to factor large integers. Consequently, the function that takes as input two (equal length) primes
and outputs their product is widely believed to be a one-way function. Furthermore, factoring such
a composite is infeasible if and only if squaring modulo such a composite is a one-way function
(see [103]). For certain composites (i.e., products of two primes that are both congruent to 3 mod 4),
the latter function induces a permutation over the set of quadratic residues modulo this compos-
ite. A related permutation, which is widely believed to be one-way, is the RSA function [107]:
x 7→ xe mod N , where N = P ·Q is a composite as above, e is relatively prime to (P − 1) · (Q− 1),
and x ∈ {0, ..., N − 1}. The latter examples (as well as other popular suggestions) are better cap-
tured by the following formulation of a collection of one-way functions (which is indeed related to
Definition 2.1):

Definition 2.2 (collections of one-way functions): A collection of functions, {fi :Di → {0, 1}
∗}i∈I ,

is called one-way if there exists three probabilistic polynomial-time algorithms, I, D and F , so that
the following two conditions hold

1. easy to sample and compute: On input 1n, the output of (the index selection) algorithm I is
distributed over the set I ∩ {0, 1}n (i.e., is an n-bit long index of some function). On input
(an index of a function) i ∈ I, the output of (the domain sampling) algorithm D is distributed
over the set Di (i.e., over the domain of the function). On input i ∈ I and x ∈ Di, (the
evaluation) algorithm F always outputs fi(x).

2. hard to invert:1 For every probabilistic polynomial-time algorithm, A′, every positive polyno-
mial p(·), and all sufficiently large n’s

Pr
[

A′(i, fi(x))∈f−1
i (fi(x))

]

<
1

p(n)

where i← I(1n) and x← D(i).

1Note that this condition refers to the distributions I(1n) and D(i), which are merely required to range over
I ∩ {0, 1}n and Di, respectively. (Typically, the distributions I(1n) and D(i) are (almost) uniform over I ∩ {0, 1}n

and Di, respectively.)

7

The collection is said to be a collection of permutations if each of the fi’s is a permutation over the
corresponding Di, and D(i) is almost uniformly distributed in Di.

For example, in case of the RSA, fN,e : DN,e → DN,e satisfies fN,e(x) = xe mod N , where
DN,e = {0, ..., N − 1}. Definition 2.2 is also a good starting point for the definition of a trap-
door permutation.2 Loosely speaking, the latter is a collection of one-way permutations augmented
with an efficient algorithm that allows for inverting the permutation when given adequate auxiliary
information (called a trapdoor).

Definition 2.3 (trapdoor permutations): A collection of permutations as in Definition 2.2 is called
a trapdoor permutation if there are two auxiliary probabilistic polynomial-time algorithms I ′ and
F−1 such that (1) the distribution I ′(1n) ranges over pairs of strings so that the first string is
distributed as in I(1n), and (2) for every (i, t) in the range of I ′(1n) and every x ∈ Di it holds that
F−1(t, fi(x)) = x. (That is, t is a trapdoor that allows to invert fi.)

For example, in case of the RSA, fN,e can be inverted by raising to the power d (modulo N = P ·Q),
where d is the multiplicative inverse of e modulo (P −1) · (Q−1). Indeed, in this case, the trapdoor
information is (N, d).

Strong versus Weak One-Way Functions

Recall that the above definitions require that any feasible algorithm succeeds in inverting the
function with negligible probability. A weaker notion only requires that any feasible algorithm
fails to invert the function with noticeable probability. It turns out that the existence of such
weak one-way functions implies the existence of strong one-way functions (as defined above). The
construction itself is straightforward: The argument to the new function F is parsed into sufficiently
many equal-length blocks, and the weak one-way function f on the individual blocks. We warn
that the hardness of inverting F is not established by mere “combinatorics” (i.e., considering the
relative volume of St in U t, for S ⊂ U , where S represents the set of “easy to invert” images).
Specifically, one may not assume that the potential inverting algorithm works independently on
each block. Indeed, this assumption seems reasonable, but we should not assume that the adversary
behaves in a reasonable way (unless we can actually prove that it gains nothing by behaving in
other ways (i.e., ways that seem unreasonable to us)).

The hardness of inverting the resulting function F is proved via a so called “reducibility ar-
gument” (which is used to prove all conditional results in the area). Specifically, we show that
any algorithm that inverts F with non-negligible success probability can be used to construct an
algorithm that inverts the original function f with success probability that violates the hypothesis
(regarding f). In other words, we reduce the task of “strongly inverting” f (i.e., violating its weak
one-wayness) to the task of “weakly inverting” F (i.e., violating its strong one-wayness). We hint
that, on input y = f(x), the reduction invokes the F -inverter (polynomially) many times, each time
feeding it with a sequence of random f -images that contains y at a random location. (Indeed such
a sequence corresponds to a random image of F .) The analysis of this reduction, presented in [57,
Sec. 2.3], demonstrates that dealing with computational difficulty is much more involved than the
analogous combinatorial question. An alternative demonstration of the difficulty of reasoning about

2Indeed, a more adequate term would be a collection of trapdoor permutations, but the shorter (and less precise)
term is the commonly used one.

8

computational difficulty (in comparison to an analogous purely probabilistic situation) is provided
in the proof of Theorem 2.5.

2.2 Hard-Core Predicates

Loosely speaking, saying that a function f is one-way implies that given y (in the range of f) it
is infeasible to find a preimage of y under f . This does not mean that it is infeasible to find out
partial information about the preimage(s) of y under f . Specifically it may be easy to retrieve half
of the bits of the preimage (e.g., for any one-way function f , consider the function f ′ defined by

f ′(x, r)
def
= (f(x), r), for every |x|= |r|). As will become clear in subsequent sections, hiding partial

information (about the function’s preimage) plays an important role in more advanced constructs
(e.g., secure encryption). Thus, we will first show how to transform any one-way function into
a one-way function that hides specific partial information about its preimage, where this partial
information is easy to compute from the preimage itself. This partial information can be considered
a “hard core” of the difficulty of inverting f . Loosely speaking, a polynomial-time computable
(Boolean) predicate b, is called a hard-core of a function f if no feasible algorithm, given f(x), can
guess b(x) with success probability that is non-negligibly better than one half.

Definition 2.4 (hard-core predicates [25]): A polynomial-time computable predicate b : {0, 1}∗ →
{0, 1} is called a hard-core of a function f if for every probabilistic polynomial-time algorithm A′,
every positive polynomial p(·), and all sufficiently large n’s

Pr
[

A′(f(x))=b(x)
]

<
1

2
+

1

p(n)

where the probability is taken uniformly over all the possible choices of x ∈ {0, 1}n and all the
possible outcomes of the internal coin tosses of algorithm A′.

Note that for every b : {0, 1}∗ → {0, 1} and f : {0, 1}∗ → {0, 1}∗, there exist obvious algorithms
that guess b(x) from f(x) with success probability at least one half (e.g., the algorithm that,
obliviously of its input, outputs a uniformly chosen bit). Also, if b is a hard-core predicate (for any
function), then it follows that b is almost unbiased (i.e., for a uniformly chosen x, the difference
|Pr[b(x)=0] − Pr[b(x)=1]| must be a negligible function in n). Finally, if b is a hard-core of a 1-1
function f that is polynomial-time computable, then f is a one-way function.

Theorem 2.5 ([67], see simpler proof in [57, Sec. 2.5.2]): For any one-way function f , the inner-
product mod 2 of x and r is a hard-core of f ′(x, r) = (f(x), r).

The proof is by a so-called “reducibility argument” (which is used to prove all conditional results in
the area). Specifically, we reduce the task of inverting f to the task of predicting the hard-core of
f ′, while making sure that the reduction (when applied to input distributed as in the inverting task)
generates a distribution as in the definition of the predicting task. Thus, a contradiction to the claim
that b is a hard-core of f ′ yields a contradiction to the hypothesis that f is hard to invert. We stress
that this argument is far more complex than analyzing the corresponding “probabilistic” situation
(i.e., the distribution of the inner-product mod 2 of X and r, where r is uniformly distributed in
r ∈ {0, 1}n, and X is an independent random variable with super-logarithmic min-entropy, which
represents the “effective” knowledge of x, when given f(x)).3

3The min-entropy of X is defined as minv{log2(1/Pr[X = v])}; that is, if X has min-entropy m then maxv{Pr[X =
v]} = 2−m. The Leftover Hashing Lemma [113, 16, 84] implies that, in this case, Pr[b(X, Un) = 1|Un] = 1

2
± 2−Ω(m),

9

Proof sketch: The actual proof refers to an arbitrary algorithm B that, when given (f(x), r),
tries to guess b(x, r). Suppose that this algorithm succeeds with probability 1

2 + ǫ, where the
probability is taken over the random choices of x and r (as well as the internal coin tosses of B).
By an averaging argument, we first identify a ǫ/2 fraction of the possible coin tosses of B such that
using any of these coin sequences B succeeds with probability at least 1

2 + ǫ/2. Similarly, we can
identify a ǫ/4 fraction of the x’s such that B succeeds (in guessing b(x, r)) with probability at least
1
2 + ǫ/4, where now the probability is taken only over the r’s. We will show how to use B in order
to invert f , on input f(x), provided that x is in the good set (which has density ǫ/4).

As a warm-up, suppose for a moment that, for the aforementioned x’s, algorithm B succeeds
with probability p > 3

4 +1/poly(|x|) (rather than p ≥ 1
2 +ǫ/4). In this case, retrieving x from f(x) is

quite easy: To retrieve the ith bit of x, denoted xi, we first randomly select r ∈ {0, 1}|x|, and obtain
B(f(x), r) and B(f(x), r⊕ ei), where ei = 0i−110|x|−i and v⊕ u denotes the addition mod 2 of the
binary vectors v and u. Note that if both B(f(x), r) = b(x, r) and B(f(x), r ⊕ ei) = b(x, r ⊕ ei)
hold, then B(f(x), r)⊕B(f(x), r ⊕ ei) equals b(x, r)⊕ b(x, r ⊕ ei) = b(x, ei) = xi. The probability
that both B(f(x), r) = b(x, r) and B(f(x), r ⊕ ei) = b(x, r ⊕ ei) hold, for a random r, is at least
1 − 2 · (1 − p) > 1

2 + 1
poly(|x|) . Hence, repeating the foregoing procedure sufficiently many times

(using independent random choices of such r’s) and ruling by majority, we retrieve xi with very high
probability. (We note that the same holds if these choices are pairwise independent.) Similarly,
we can retrieve all the bits of x, and hence invert f on f(x). However, the entire analysis was
conducted under (the unjustifiable) assumption that p > 3

4 + 1
poly(|x|) , whereas we only know that

p > 1
2 + ǫ

4 (for ǫ > 1/poly(|x|)).
The problem with the foregoing procedure is that it doubles the original error probability of

algorithm B on inputs of the form (f(x), ·). Under the unrealistic assumption (made above), that
B’s average error on such inputs is non-negligibly smaller than 1

4 , the “error-doubling” phenomenon
raises no problems. However, in general (and even in the special case where B’s error is exactly
1
4) the foregoing procedure is unlikely to invert f . Note that the average error probability of B
(for a fixed f(x), when the average is taken over a random r) can not be decreased by repeating B
several times (e.g., for every x, it may be that B always answer correctly on three quarters of the
pairs (f(x), r), and always err on the remaining quarter). What is required is an alternative way
of using the algorithm B, a way that does not double the original error probability of B.

The key idea is to generate the r’s in a way that allows to apply algorithm B only once per each
r (and i), instead of twice. Specifically, we will use algorithm B to obtain a “guess” for b(x, r⊕ ei),
and obtain b(x, r) in a different way (which does not use B). The good news is that the error
probability is no longer doubled, since we only use B to get a “guess” of b(x, r⊕ ei). The bad news
is that we still need to know b(x, r), and it is not clear how we can know b(x, r) without applying
B. The answer is that we can guess b(x, r) by ourselves. This is fine if we only need to guess
b(x, r) for one r (or logarithmically in |x| many r’s), but the problem is that we need to know (and
hence guess) the value of b(x, r) for polynomially many r’s. The obvious way of guessing these
b(x, r)’s yields an exponentially small success probability. Instead, we generate these polynomially
many r’s such that, on one hand they are “sufficiently random” whereas, on the other hand, we
can guess all the b(x, r)’s with noticeable success probability.4 Specifically, generating the r’s in a
specific pairwise independent manner will satisfy both (seemingly contradictory) requirements. We
stress that in case we are successful (in our guesses for all the b(x, r)’s), we can retrieve x with high

where Un denotes the uniform distribution over {0, 1}n, and b(u, v) denotes the inner-product mod 2 of u and v.
4Alternatively, we can try all polynomially many possible guesses.

10

probability. Hence, we retrieve x with noticeable probability.
A word about the way in which the pairwise independent r’s are generated (and the correspond-

ing b(x, r)’s are guessed) is indeed in place. To generate m = poly(|x|) many r’s, we uniformly (and

independently) select ℓ
def
= log2(m + 1) strings in {0, 1}|x|. Let us denote these strings by s1, ..., sℓ.

We then guess b(x, s1) through b(x, sℓ). Let us denote these guesses, which are uniformly (and
independently) chosen in {0, 1}, by σ1 through σℓ. Hence, the probability that all our guesses for
the b(x, si)’s are correct is 2−ℓ = 1

poly(|x|) . The different r’s correspond to the different non-empty

subsets of {1, 2, ..., ℓ}. Specifically, for every such subset J , we let rJ def
= ⊕j∈Jsj. The reader can

easily verify that the rJ ’s are pairwise independent and each is uniformly distributed in {0, 1}|x|.
The key observation is that b(x, rJ) = b(x,⊕j∈Jsj) = ⊕j∈Jb(x, sj). Hence, our guess for b(x, rJ) is
⊕j∈Jσj , and with noticeable probability all our guesses are correct.

3 Pseudorandomness

In practice “pseudorandom” sequences are often used instead of truly random sequences. The
underlying belief is that if an (efficient) application performs well when using a truly random
sequence, then it will perform essentially as well when using a “pseudorandom” sequence. However,
this belief is not supported by ad-hoc notions of “pseudorandomness” such as passing the statistical
tests in [89] or having large linear-complexity (as in [79]). In contrast, the foregoing belief is an easy
corollary of defining pseudorandom distributions as ones that are computationally indistinguishable
from uniform distributions.

Loosely speaking, pseudorandom generators are efficient procedures for creating long “random-
looking” sequences based on few truly random bits (i.e., a short random seed). The relevance of
such constructs to cryptography is in the ability of legitimate users who share short random seeds
to create large objects that look random to any feasible adversary (who does not know the said
seed).

3.1 Computational Indistinguishability

Indistinguishable things are identical
(or should be considered as identical).

The Principle of Identity of Indiscernibles
G.W. Leibniz (1646–1714)

(Leibniz admits that counterexamples to this principle are conceivable, but will not occur in real
life because God is much too benevolent.)

A central notion in Modern Cryptography is that of “effective similarity” (introduced by Gold-
wasser, Micali and Yao [76, 116]). The underlying thesis is that we do not care whether or not
objects are equal, all we care about is whether or not a difference between the objects can be
observed by a feasible computation. In case the answer is negative, the two objects are equivalent
as far as any practical application is concerned. Indeed, in the sequel we will often interchange
such (computationally indistinguishable) objects. Let X = {Xn}n∈N and Y = {Yn}n∈N be proba-
bility ensembles such that each Xn and Yn is a distribution that ranges over strings of length n (or
polynomial in n). We say that X and Y are computationally indistinguishable if for every feasible

11

algorithm A the difference dA(n)
def
= |Pr[A(Xn) = 1] − Pr[A(Yn) = 1]| is a negligible function in n.

That is:

Definition 3.1 (computational indistinguishability [76, 116]): We say that X = {Xn}n∈N and Y =
{Yn}n∈N are computationally indistinguishable if for every probabilistic polynomial-time algorithm D
every polynomial p, and all sufficiently large n,

|Pr[D(Xn)=1] − Pr[D(Yn)=1]| <
1

p(n)

where the probabilities are taken over the relevant distribution (i.e., either Xn or Yn) and over the
internal coin tosses of algorithm D.

We can think of D as somebody who wishes to distinguish two distributions (based on a sample given
to it), and think of 1 as D’s verdict that the sample was drawn according to the first distribution.
Saying that the two distributions are computationally indistinguishable means that if D is a feasible
procedure, then its verdict is not really meaningful (because the verdict is almost as often 1 when the
input is drawn from the first distribution as when the input is drawn from the second distribution).

Indistinguishability by Multiple Samples

We mention that, for “efficiently constructible” distributions, indistinguishability by a single sample
(as defined above) implies indistinguishability by multiple samples (see [57, Sec. 3.2.3]). The proof
of this fact, which we briefly present next, provides a simple demonstration of a central proof
technique, originating in the work Goldwasser and Micali [76] and known as a hybrid argument.

To prove that a sequence of m independently drawn samples of one distribution is indistin-
guishable from a sequence of independently drawn samples from the other distribution, we consider
m + 1 hybrid sequences such that the ith hybrid consists of i− 1 samples taken from the first dis-
tribution and the rest taken from the second distribution. The “homogeneous” sequences (which
we wish to prove to be computational indistinguishable) are the extreme hybrids (i.e., the first and
last hybrids considered above). The key observation is that distinguishing the extreme hybrids
(towards the contradiction hypothesis) yields a procedure for distinguishing single samples of the
two distributions (contradicting the hypothesis that the two distributions are indistinguishable by
a single sample). Specifically, if D distinguishes the extreme hybrids, then it also distinguishes a
random pair of neighboring hybrids (i.e., D distinguishes the ith hybrid from the i + 1st hybrid,
for a randomly selected i ∈ [m]). Using D, we obtain a distinguisher D′ of single samples: Given
a single sample, D′ selects i ∈ [m] uniformly at random, generates i − 1 samples from the first
distribution and m− i samples from the second distribution, and invokes D with the corresponding
sequence, while placing the input sample in location i of the sequence. We stress that although the
original distinguisher D (arising from the contradiction hypothesis) was only “supposed to work”
for the extreme hybrids, we may consider D’s performance on any distribution that we please, and
draw adequate conclusions (as we have done).

3.2 Pseudorandom Generators

Loosely speaking, a pseudorandom generator is an efficient (deterministic) algorithm that on input
a short random seed outputs a (typically much) longer sequence that is computationally indistin-
guishable from a uniformly distributed sequence (of the same length). Pseudorandom generators
were introduced by Blum, Micali and Yao [25, 116], and are formally defined as follows.

12

Definition 3.2 (pseudorandom generator [25, 116]): Let ℓ :N→N satisfy ℓ(n) > n, for all n ∈ N.
A pseudorandom generator, with stretch function ℓ, is a (deterministic) polynomial-time algorithm
G satisfying the following:

1. For every s ∈ {0, 1}∗, it holds that |G(s)| = ℓ(|s|).

2. {G(Un)}n∈N and {Uℓ(n)}n∈N are computationally indistinguishable, where Um denotes the
uniform distribution over {0, 1}m.

Indeed, the probability ensemble {G(Un)}n∈N is called pseudorandom.

Thus, pseudorandom sequences can replace truly random sequences not only in “standard” algo-
rithmic applications but also in cryptographic ones. That is, any cryptographic application that is
secure when the legitimate parties use truly random sequences, is also secure when the legitimate
parties use pseudorandom sequences. The benefit in such a substitution (of random sequences by
pseudorandom ones) is that the latter sequences can be efficiently generated using much less true
randomness. Furthermore, in an interactive setting, it is possible to eliminate all random steps
from the on-line execution of a program, by replacing them with the generation of pseudorandom
bits based on a random seed selected and fixed off-line (or at set-up time).

Various cryptographic applications of pseudorandom generators will be presented in the sequel,
but first let us show a construction of pseudorandom generators based on the simpler notion of
a one-way permutation. Using Theorem 2.5, we may actually assume that such a function is
accompanied by a hard-core predicate. We start with a simple construction that suffices for the
case of 1-1 (and length-preserving) functions.

Theorem 3.3 ([25, 116], see [57, Sec. 3.4]): Let f be a 1-1 function that is length-preserving and ef-
ficiently computable, and b be a hard-core predicate of f . Then G(s) = b(s)·b(f(s)) · · · b(f ℓ(|s|)−1(s))

is a pseudorandom generator (with stretch function ℓ), where f i+1(x)
def
= f(f i(x)) and f0(x)

def
= x.

As a concrete example, consider the permutation5 x 7→ x2 mod N , where N is the product of two
primes each congruent to 3 (mod 4), and x is a quadratic residue modulo N . Then, we have

GN (s) = lsb(s) · lsb(s2 mod N) · · · lsb(s2ℓ(|s|)−1
mod N), where lsb(x) is the least significant bit of

x (which is a hard-core of the modular squaring function [2]).

Proof sketch of Theorem 3.3: We use the fundamental fact that asserts that the following two
conditions are equivalent:

1. The distribution X (in our case {G(Un)}n∈N) is pseudorandom (i.e., is computationally in-
distinguishable from a uniform distribution (on {Uℓ(n)}n∈N)).

2. The distribution X is unpredictable in polynomial-time; that is, no feasible algorithm, given
a prefix of the sequence, can guess its next bit with a non-negligible advantage over 1

2 .

Clearly, pseudorandomness implies polynomial-time unpredictability (i.e., polynomial-time pre-
dictability violates pseudorandomness). The converse is shown using a hybrid argument, which

5It is a well-known fact (see [57, Apdx. A.2.4]) that, for such N ’s, the mapping x 7→ x2 mod N is a permutation
over the set of quadratic residues modulo N .

13

refers to hybrids consisting of a prefix of X followed by truly random bits (i.e., a suffix of the
uniform distribution). Thus, we focus on proving that G′(Un) is polynomial-time unpredictable,
where G′(s) = b(f ℓ(|s|)−1(s)) · · · b(f(s)) · b(s) is the reverse of G(s).

Suppose towards the contradiction that, for some j < ℓ
def
= ℓ(n), given the j-bit long prefix of

G′(Un) an algorithm A′ can predict the j+1st bit of G′(Un). That is, given b(f ℓ−1(s)) · · · b(f ℓ−j(s)),
algorithm A′ predicts b(f ℓ−(j+1)(s)), where s is uniformly distributed in {0, 1}n. Then, for x
uniformly distributed in {0, 1}n, given y = f(x), one can predict b(x) by invoking A′ on input
b(f j−1(y)) · · · b(y) = b(f j(x)) · · · b(f(x)), which in turn is polynomial-time computable from y =
f(x). In the analysis, we use the hypothesis that f induces a permutation over {0, 1}n, and associate
x with f ℓ−(j+1)(s).

We mention that the existence of a pseudorandom generator with any stretch function (including
the very minimal stretch function ℓ(n) = n + 1) implies the existence of pseudorandom generators
for any desired stretch function. The construction is similar to the one presented in Theorem 3.3.
That is, for a pseudorandom generator G1, let F (x) (resp., B(x)) denote the first |x| bits of G1(x)
(resp., the |x|+ 1st bit of G1(x)), and consider G(s) = B(s) ·B(F (s)) · · ·B(F ℓ(|s|)−1(s)), where ℓ is
the desired stretch. Although F is not necessarily 1-1, it can be shown that G is a pseudorandom
generator [57, Sec. 3.3.2].

We conclude this section by mentioning that pseudorandom generators can be constructed from
any one-way function (rather than merely from one-way permutations, as above). On the other
hand, the existence of one-way functions is a necessary condition for the existence of pseudorandom
generators. That is:

Theorem 3.4 [82]: Pseudorandom generators exist if and only if one-way functions exist.

The necessary condition is easy to establish. Given a pseudorandom generator G that stretches by
a factor of two, consider the function f(x) = G(x) (or, to obtain a length preserving-function, let
f(x, y) = G(x), where |x| = |y|). An algorithm that inverts f with non-negligible success probability
(on the distribution f(Un) = G(Un)) yields a distinguisher of {G(Un)}n∈N from {U2n}n∈N, because
the probability that U2n is an image of f is negligible.

3.3 Pseudorandom Functions

Pseudorandom generators provide a way to efficiently generate long pseudorandom sequences from
short random seeds. Pseudorandom functions, introduced and constructed by Goldreich, Gold-
wasser and Micali [63], are even more powerful: They provide efficient direct access to bits of a huge
pseudorandom sequence (which is not feasible to scan bit-by-bit). More precisely, a pseudorandom
function is an efficient (deterministic) algorithm that given an n-bit seed, s, and an n-bit argument,
x, returns an n-bit string, denoted fs(x), so that it is infeasible to distinguish the values of fs, for
a uniformly chosen s ∈ {0, 1}n, from the values of a truly random function F : {0, 1}n → {0, 1}n.
That is, the (feasible) testing procedure is given oracle access to the function (but not its explicit
description), and cannot distinguish the case it is given oracle access to a pseudorandom function
from the case it is given oracle access to a truly random function.

One key feature of the foregoing definition is that pseudorandom functions can be generated
and shared by merely generating and sharing their seed; that is, a “random looking” function
fs : {0, 1}n → {0, 1}n, is determined by its n-bit seed s. Parties wishing to share a “random looking”
function fs (determining 2n-many values), merely need to generate and share among themselves the

14

n-bit seed s. (For example, one party may randomly select the seed s, and communicate it, via a
secure channel, to all other parties.) Sharing a pseudorandom function allows parties to determine
(by themselves and without any further communication) random-looking values depending on their
current views of the environment (which need not be known a priori). To appreciate the potential
of this tool, one should realize that sharing a pseudorandom function is essentially as good as
being able to agree, on the fly, on the association of random values to (on-line) given values, where
the latter are taken from a huge set of possible values. We stress that this agreement is achieved
without communication and synchronization: Whenever some party needs to associate a random
value to a given value, v ∈ {0, 1}n, it will associate to v the (same) random value rv ∈ {0, 1}

n (by
setting rv = fs(v), where fs is a pseudorandom function agreed upon beforehand).

Theorem 3.5 ([63], see [57, Sec. 3.6.2]): Pseudorandom functions can be constructed using any
pseudorandom generator.

Proof sketch: Let G be a pseudorandom generator that stretches its seed by a factor of two (i.e.,
ℓ(n) = 2n), and let G0(s) (resp., G1(s)) denote the first (resp., last) |s| bits in G(s). Define

Gσ|s|···σ2σ1(s)
def
= Gσ|s|

(· · ·Gσ2(Gσ1(s)) · · ·).

We consider the function ensemble {fs :{0, 1}|s|→{0, 1}|s|}s∈{0,1}∗ , where fs(x)
def
= Gx(s). Pictori-

ally, the function fs is defined by n-step walks down a full binary tree of depth n having labels at
the vertices. The root of the tree, hereafter referred to as the level 0 vertex of the tree, is labeled
by the string s. If an internal vertex is labeled r, then its left child is labeled G0(r) and its right
child is labeled G1(r). The value of fs(x) is the string residing in the leaf reachable from the root
by a path corresponding to the string x.

We claim that the function ensemble {fs}s∈{0,1}∗ is pseudorandom. The proof uses the hybrid

technique: The ith hybrid, H i
n, is a function ensemble consisting of 22i·n functions {0, 1}n→{0, 1}n,

each defined by 2i random n-bit strings, denoted s = 〈sβ〉β∈{0,1}i . The value of such function hs

at x = αβ, where |β| = i, is Gα(sβ). (Pictorially, the function hs is defined by placing the strings
in s in the corresponding vertices of level i, and labeling vertices of lower levels using the very
rule used in the definition of fs.) The extreme hybrids correspond to our indistinguishability claim
(i.e., H0

n ≡ fUn and Hn
n is a truly random function), and neighboring hybrids can be related to

our indistinguishability hypothesis (specifically, to the indistinguishability of G(Un) and U2n under
multiple samples).

Useful variants (and generalizations) of the notion of pseudorandom functions include Boolean
pseudorandom functions that are defined over all bit strings (i.e., fs : {0, 1}∗ → {0, 1}) and pseudo-
random functions that are defined for other domains and ranges (i.e., fs : {0, 1}d(|s|) → {0, 1}r(|s|),
for arbitrary polynomially bounded functions d, r : N → N). Various transformations between
these variants are known (see [57, Sec. 3.6.4] and [58, Apdx. C.2]).

Applications and a generic methodology. Pseudorandom functions are a very useful cryp-
tographic tool: One may first design a cryptographic scheme assuming that the legitimate users
have black-box access to a random function, and next implement the random function using a
pseudorandom function. The usefulness of this tool stems from the fact that having (black-box)
access to a random function gives the legitimate parties a potential advantage over the adversary

15

(which does not have free access to this function).6 The security of the resulting implementation
(which uses a pseudorandom function) is established in two steps: First, one proves the security
of an idealized scheme that uses a truly random function, and next one argues that the actual
implementation (which uses a pseudorandom function) is secure (because otherwise one obtains an
efficient oracle machine that distinguishes a pseudorandom function from a truly random one).

4 Zero-Knowledge

Zero-knowledge proofs, introduced by Goldwasser, Micali and Rackoff [77], provide a powerful
tool for the design of cryptographic protocols. Loosely speaking, zero-knowledge proofs are proofs
that yield nothing beyond the validity of the assertion. That is, a verifier obtaining such a proof
only gains conviction in the validity of the assertion (as if it was told by a trusted party that
the assertion holds). This is formulated by saying that anything that is feasibly computable from
a zero-knowledge proof is also feasibly computable from the (valid) assertion itself. The latter
formulation follows the simulation paradigm, which is discussed next.

4.1 The Simulation Paradigm

A key question regarding the modeling of security concerns is how to express the intuitive require-
ment that an adversary “gains nothing substantial” by deviating from the prescribed behavior of an
honest user. The answer provided by the simulation paradigm is that the adversary gains nothing
if whatever it can obtain by unrestricted adversarial behavior can also be obtained within essen-
tially the same computational effort by a benign behavior. The definition of the “benign behavior”
captures what we want to achieve in terms of security, and is specific to the security concern to
be addressed. For example, in the previous paragraph, we said that a proof is zero-knowledge if it
yields nothing (to the adversarial verifier) beyond the validity of the assertion, hence the benign
behavior in this case is any computation that is based (only) on the assertion itself (while assuming
that the latter is valid). Other examples are discussed in Sections 5.1 and 7.1.

A notable property of the aforementioned simulation paradigm, as well as of the entire approach
surveyed in this text, is that this approach is overly liberal with respect to its view of the abilities
of the adversary as well as to what might constitute a gain for the adversary. Thus, the approach
may be considered overly cautious, because it prohibits also “non-harmful” gains of some “far
fetched” adversaries. We warn against this impression. Firstly, there is nothing more dangerous in
cryptography than to consider “reasonable” adversaries (a notion which is almost a contradiction
in terms): Typically, the adversaries will try exactly what the system designer has discarded as
“far fetched”. Secondly, it seems impossible to come up with definitions of security that distinguish
“breaking the scheme in a harmful way” from “breaking it in a non-harmful way”: What is harmful
is application-dependent, whereas a good definition of security ought to be application-independent
(since otherwise using the scheme in any new application will require a full re-evaluation of its
security). Furthermore, even with respect to a specific application, it is typically very hard to
classify the set of “harmful breakings”.

6The foregoing methodology is sound provided that the adversary does not get the description of the pseudorandom
function (i.e., the seed) in use, but has only (possibly limited) oracle access to it. This is different from the so-called
Random Oracle Methodology formulated in [15] and criticized in [33].

16

4.2 The Actual Definition

A proof is whatever convinces me.

Shimon Even (1935–2004)

Before defining zero-knowledge proofs, we have to define proofs. The standard notion of a static
(i.e., non-interactive) proof will not do, because static zero-knowledge proofs exist only for sets that
are easy to decide (i.e, are in BPP) [70], whereas we are interested in zero-knowledge proofs for
arbitrary NP-sets. Instead, we use the notion of an interactive proof (introduced exactly for that
reason by Goldwasser, Micali, and Rackoff [77]). That is, here a proof is a (multi-round) randomized
protocol for two parties, called verifier and prover, in which the prover wishes to convince the verifier
of the validity of a given assertion. Such an interactive proof should allow the prover to convince the
verifier of the validity of any true assertion (i.e., completeness), whereas no prover strategy may
fool the verifier to accept false assertions (i.e., soundness). Both the completeness and soundness
conditions should hold with high probability (i.e., a negligible error probability is allowed). The
prescribed verifier strategy is required to be efficient. No such requirement is made with respect to
the prover strategy; yet we will be interested in “relatively efficient” prover strategies (see below).7

Zero-knowledge is a property of some prover strategies. More generally, we consider interac-
tive machines that yield no knowledge while interacting with an arbitrary feasible adversary on a
common input taken from a predetermined set (in our case the set of valid assertions). A strategy
A is zero-knowledge on (inputs from) the set S if, for every feasible strategy B∗, there exists a
feasible computation C∗ such that the following two probability ensembles are computationally
indistinguishable8:

1. {(A,B∗)(x)}x∈S
def
= the output of B∗ after interacting with A on common input x ∈ S; and

2. {C∗(x)}x∈S
def
= the output of C∗ on input x ∈ S.

We stress that the first ensemble represents an actual execution of an interactive protocol, whereas
the second ensemble represents the computation of a stand-alone procedure (called the “simulator”),
which does not interact with anybody.

The foregoing definition does not account for auxiliary information that an adversary B∗ may
have prior to entering the interaction. Accounting for such auxiliary information is essential for

7We stress that the relative efficiency of the prover strategy refers to the strategy employed in order to prove valid
assertions; that is, relative efficiency of the prover strategy is a strengthening of the completeness condition (which
is indeed required for cryptographic applications). This should not be confused with the relaxation (i.e., weakening)
of the soundness condition that restricts its scope to feasible adversarial prover strategies (rather than to all possible
prover strategies). The resulting notion of “computational soundness” is discussed in Section 4.4.1, and indeed suffices

in most cryptographic applications. Still, we believe that it is simpler to present the material in terms of interactive
proofs (rather than in terms of computationally sound proofs).

8Here we refer to a natural extension of Definition 3.1: Rather than referring to ensembles indexed by N, we refer
to ensembles indexed by a set S ⊆ {0, 1}∗. Typically, for an ensemble {Zα}α∈S, it holds that Zα ranges over strings
of length that is polynomially-related to the length of α. We say that {Xα}α∈S and {Yα}α∈S are computationally

indistinguishable if for every probabilistic polynomial-time algorithm D every polynomial p, and all sufficiently long
α ∈ S,

|Pr[D(α, Xα)=1]− Pr[D(α, Yα)=1]| <
1

p(|α|)

where the probabilities are taken over the relevant distribution (i.e., either Xα or Yα) and over the internal coin tosses
of algorithm D.

17

using zero-knowledge proofs as subprotocols inside larger protocols (see [66, 70]). This is taken care
of by a stricter notion called auxiliary-input zero-knowledge.

Definition 4.1 (zero-knowledge [77], revisited [70]): A strategy A is auxiliary-input zero-knowledge
on inputs from S if, for every probabilistic polynomial-time strategy B∗ and every polynomial p,
there exists a probabilistic polynomial-time algorithm C∗ such that the following two probability
ensembles are computationally indistinguishable:

1. {(A,B∗(z))(x)}x∈S , z∈{0,1}p(|x|)
def
= the output of B∗ when having auxiliary-input z and inter-

acting with A on common input x ∈ S; and

2. {C∗(x, z)}x∈S , z∈{0,1}p(|x|)
def
= the output of C∗ on inputs x ∈ S and z ∈ {0, 1}p(|x|).

Almost all known zero-knowledge proofs are in fact auxiliary-input zero-knowledge. As hinted
above, auxiliary-input zero-knowledge is preserved under sequential composition [70]. A simulator
for the multiple-session protocol can be constructed by iteratively invoking the single-session simu-
lator that refers to the residual strategy of the adversarial verifier in the given session (while feeding
this simulator with the transcript of previous sessions). Indeed, the residual single-session verifier
gets the transcript of the previous sessions as part of its auxiliary input (i.e., z in Definition 4.1).
(For details, see [57, Sec. 4.3.4].)

4.3 Zero-Knowledge Proofs for all NP-assertions and their applications

A question avoided so far is whether zero-knowledge proofs exist at all. Clearly, every set in P (or
rather in BPP) has a “trivial” zero-knowledge proof (in which the verifier determines membership
by itself); however, what we seek is zero-knowledge proofs for statements that the verifier cannot
decide by itself.

Assuming the existence of “commitment schemes” (see below), which in turn exist if one-way
functions exist [96, 82], there exist (auxiliary-input) zero-knowledge proofs of membership in any
NP-set (i.e., sets having efficiently verifiable static proofs of membership). These zero-knowledge
proofs, first constructed by Goldreich, Micali and Wigderson [68] and depicted in Figure 1, have
the following important property: The prescribed prover strategy is efficient, provided it is given
as auxiliary-input an NP-witness to the assertion (to be proved).9 That is:

Theorem 4.2 ([68], using [82, 96]): If (non-uniformly hard) one-way functions exist, then every set
S ∈ NP has a zero-knowledge interactive proof. Furthermore, the prescribed prover strategy can be
implemented in probabilistic polynomial-time, provided it is given as auxiliary-input an NP-witness
for membership of the common input in S.

Theorem 4.2 makes zero-knowledge a very powerful tool in the design of cryptographic schemes
and protocols (see below). We comment that the intractability assumption used in Theorem 4.2
seems essential; see [100, 115].

9The auxiliary-input given to the prescribed prover (in order to allow for an efficient implementation of its strategy)
is not to be confused with the auxiliary-input that is given to malicious verifiers (in the definition of auxiliary-input
zero-knowledge). The former is typically an NP-witness for the common input, which is available to the user that
invokes the prover strategy (see the generic application discussed below). In contrast, the auxiliary-input that is
given to malicious verifiers models arbitrary partial information that may be available to the adversary.

18

Commitment schemes are digital analogs of sealed envelopes (or, better, locked boxes). Sending a commitment
means sending a string that binds the sender to a unique value without revealing this value to the receiver
(as when getting a locked box). Decommitting to the value means sending some auxiliary information that
allows the receiver to read the uniquely committed value (as when sending the key to the lock).

Common Input: A graph G(V, E). Suppose that V ≡ {1, ..., n} for n
def
= |V |.

Auxiliary Input (to the prover): A 3-coloring φ : V → {1, 2, 3}.

The following 4 steps are repeated t · |E| many times so to obtain soundness error exp(−t).

Prover’s first step (P1): Select uniformly a permutation π over {1, 2, 3}. For i = 1 to n, send the verifier
a commitment to the value π(φ(i)).

Verifier’s first step (V1): Select uniformly an edge e ∈ E and send it to the prover.

Prover’s second step (P2): Upon receiving e = (i, j) ∈ E, decommit to the i-th and j-th values sent in
Step (P1).

Verifier’s second step (V2): Reject if either the decommitted values are not different elements of {1, 2, 3}
or the decommitments do not match the commitments received in Step (P1).

(If the verifier did not reject in any iteration, then it accepts.)

Figure 1: The zero-knowledge proof of Graph 3-Colorability (of [68]). Zero-knowledge proofs
for other NP-sets can be obtained using the standard reductions.

Analyzing the protocol of Figure 1. Let us consider a single execution of the main loop (and
rely on the preservation of zero-knowledge under sequential composition). Clearly, the prescribed
prover is implemented in probabilistic polynomial-time, and always convinces the verifier (provided
that it is given a valid 3-coloring of the common input graph). In case the graph is not 3-colorable
then, no matter how the prover behaves, the verifier will reject with probability at least 1/|E|
(because at least one of the edges must be improperly colored by the prover). We stress that the
verifier selects uniformly which edge to inspect after the prover has committed to the colors of all
vertices. Thus, Figure 1 depicts an interactive proof system for Graph 3-Colorability (with error
probability exp(−t)). As the reader might have guessed, the zero-knowledge property is the hardest
to establish, and we will confine ourselves to presenting an adequate simulator. We start with three
simplifying conventions (which are useful in general):

1. Without loss of generality, we may assume that the cheating verifier strategy is implemented
by a deterministic polynomial-time algorithm with an auxiliary input. This is justified by
fixing any outcome of the verifier’s coins (as part of the auxiliary input), and observing that
our (uniform) simulation of the various (residual) deterministic strategies yields a simulation
of the original probabilistic strategy.

2. Without loss of generality, it suffices to consider cheating verifiers that (only) output their
view of the interaction (i.e., their input, coin tosses, and the messages they received). In other
words, it suffices to simulate the view of the cheating verifier rather than its output (which
is the result of a polynomial-time post-processing of the view).

3. Without loss of generality, it suffices to construct a “weak simulator” that produces an out-
put with some noticeable probability, provided that (conditioned on producing output) the
output is computationally indistinguishable from the desired distribution (i.e., the view of the

19

cheating verifier in a real interaction). This is the case because, by repeatedly invoking this
weak simulator (polynomially) many times, we may obtain a simulator that fails to produce
an output with negligible probability. Finally, letting the simulator produce an arbitrary out-
put rather than failing, we obtain a simulator that never fails (as required by the definition),
while skewing the output distribution by at most a negligible amount.

Our simulator starts by selecting uniformly and independently a random color (i.e., element of
{1, 2, 3}) for each vertex, and feeding the verifier strategy with random commitments to these
random colors. Indeed, the simulator feeds the verifier with a distribution that is very different
from the distribution that the verifier sees in a real interaction with the prover. However, being
computationally-restricted, the verifier cannot tell these distributions apart (or else we obtain a
contradiction to the security of the commitment scheme in use). Now, if the verifier asks to inspect
an edge that is properly colored, then the simulator performs the proper decommitment action and
outputs the transcript of this interaction. Otherwise, the simulator halts proclaiming failure. We
claim that failure occurs with probability approximately 1/3 (or else we obtain a contradiction to
the security of the commitment scheme in use). Furthermore, based on the same hypothesis (but
via a more complex proof (see [57, Sec. 4.4.2.3])), conditioned on not failing, the output of the
simulator is computationally indistinguishable from the verifier’s view of the real interaction.

Commitment schemes. Loosely speaking, commitment schemes are two-stage (two-party) pro-
tocols allowing for one party to commit itself (at the first stage) to a value while keeping the value
secret. In a (second) later stage, the commitment is “opened” and it is guaranteed that the “open-
ing” can yield only a single value determined in the committing phase. Thus, the (first stage of
the) commitment scheme is both binding and hiding. A simple (uni-directional communication)
commitment scheme can be constructed based on any one-way 1-1 function f (with a corresponding
hard-core b). To commit to a bit σ, the sender uniformly selects s ∈ {0, 1}n, and sends the pair
(f(s), b(s)⊕ σ). Note that this is both binding and hiding. An alternative construction, which can
be based on any one-way function, uses a pseudorandom generator G that stretches its seed by a
factor of three. A commitment is established, via two-way communication, as follows (see [96]):
The receiver selects uniformly r ∈ {0, 1}3n and sends it to the sender, which selects uniformly
s ∈ {0, 1}n and sends r ⊕ G(s) if it wishes to commit to the value one and G(s) if it wishes to
commit to zero. To see that this is binding, observe that there are at most 22n “bad” values r
that satisfy G(s0) = r⊕G(s1) for some pair (s0, s1), and with overwhelmingly high probability the
receiver will not pick one of these bad values. The hiding property follows by the pseudorandomness
of G.

Zero-knowledge proofs for other NP-sets. By using the standard Karp-reductions to 3-
Colorability, the protocol of Figure 1 can be used for constructing zero-knowledge proofs for any
set in NP . We comment that this is probably the first time that an NP-completeness result was
used in a “positive” way (i.e., in order to construct something rather than in order to derive a
hardness result).10

10Subsequent positive uses of completeness results have appeared in the context of interactive proofs (see the
proof of [61, Thm. 9.4]), probabilistically checkable proofs (see the proof of [61, Thm. 9.16]), and statistical zero-
knowledge [110].

20

Efficiency considerations. The protocol in Figure 1 calls for invoking some constant-round
protocol for a non-constant number of times (and its analysis relies on the preservation of zero-
knowledge under sequential composition). At first glance, it seems that one can derive a constant-
round zero-knowledge proof system (of negligible soundness error) by performing these invocations
in parallel (rather than sequentially). Unfortunately, as indicated in [66], it is not clear that the
resulting interactive proof is zero-knowledge. Still, under standard intractability assumptions (e.g.,
the intractability of factoring), constant-round zero-knowledge proofs (of negligible soundness error)
do exist for every set in NP (see [65]). We comment that the number of rounds in a protocol is
commonly considered the most important efficiency criterion (or complexity measure), and typically
one desires to have it be a constant.

A generic application. As mentioned above, Theorem 4.2 makes zero-knowledge a very powerful
tool in the design of cryptographic schemes and protocols. This wide applicability is due to two
important aspects regarding Theorem 4.2: Firstly, Theorem 4.2 provides a zero-knowledge proof for
every NP-set, and secondly the prescribed prover can be implemented in probabilistic polynomial-
time when given an adequate NP-witness. We now turn to a typical application of zero-knowledge
proofs. In a typical cryptographic setting, a user U has a secret and is supposed to take some action
depending on its secret. The question is how can other users verify that U indeed took the correct
action (as determined by U ’s secret and publicly known information). Indeed, if U discloses its
secret, then anybody can verify that U took the correct action. However, U does not want to reveal
its secret. Using zero-knowledge proofs we can satisfy both conflicting requirements (i.e., having
other users verify that U took the correct action without violating U ’s interest in not revealing
its secret). That is, U can prove in zero-knowledge that it took the correct action. Note that U ’s
claim to having taken the correct action is an NP-assertion (since U ’s legal action is determined
as a polynomial-time function of its secret and the public information), and that U has an NP-
witness to its validity (i.e., the secret is an NP-witness to the claim that the action fits the public
information). Thus, by Theorem 4.2, it is possible for U to efficiently prove the correctness of its
action without yielding anything about its secret. Consequently, it is fair to ask U to prove (in
zero-knowledge) that it behaves properly, and so to force U to behave properly. Indeed, “forcing
proper behavior” is the canonical application of zero-knowledge proofs (see [69, 56]).

This paradigm (i.e., “forcing proper behavior” via zero-knowledge proofs), which in turn is
based on the fact that zero-knowledge proofs can be constructed for any NP-set, has been utilized
in numerous different settings. Indeed, this paradigm is the basis for the wide applicability of
zero-knowledge protocols in cryptography.

4.4 Variants and Issues

In this section we consider numerous variants on the notion of zero-knowledge and the underlying
model of interactive proofs. These include computational soundness (Section 4.4.1), black-box
simulation and other variants of zero-knowledge (Section 4.4.2), as well as notions such as proofs
of knowledge, non-interactive zero-knowledge, and witness indistinguishable proofs (Section 4.4.3).
We conclude this section by reviewing results regarding the composition of zero-knowledge protocols
and the power of non-black-box simulation (Section 4.4.4).

21

4.4.1 Computational Soundness

A fundamental variant on the notion of interactive proofs was introduced by Brassard, Chaum and
Crépeau [26], who relaxed the soundness condition so that it only refers to feasible ways of trying
to fool the verifier (rather than to all possible ways). Specifically, the soundness condition was
replaced by a computational soundness condition that asserts that it is infeasible to fool the verifier
into accepting false statements. We warn that although the computational-soundness error can
always be reduced by sequential repetitions, it is not true that this error can always be reduced by
parallel repetitions (see [14]).

Protocols that satisfy the computational-soundness condition are called arguments.11 We men-
tion that argument systems may be more efficient than interactive proofs (see [87] vs. [64, 73]) as
well as provide stronger zero-knowledge guarantees (see [26, 81] vs. [54, 1]). Specifically, perfect
zero-knowledge arguments for NP can be constructed (based on the same assumption used in
Theorem 4.2) [81], where perfect zero-knowledge means that the simulator’s output is distributed
identically to the verifier’s view in the real interaction (see discussion in Section 4.4.2). Note that
stronger security for the prover (as provided by perfect zero-knowledge) comes at the cost of weaker
security for the verifier (as provided by computational soundness). The answer to the question of
whether or not this trade-off is worthwhile seems to be application dependent, and one should
also take into account the complexity of the corresponding protocols and their reliability (i.e., the
assumptions that underly their security).12

4.4.2 Definitional variations

We consider several definitional issues regarding the notion of zero-knowledge (as defined in Defi-
nition 4.1).

Universal and black-box simulation. Further strengthening of Definition 4.1 is obtained by
requiring the existence of a universal simulator, denoted C, that is given the program of the verifier
(i.e., B∗) as an auxiliary-input; that is, in terms of Definition 4.1, one should replace C∗(x, z) by
C(x, z, 〈B∗〉), where 〈B∗〉 denotes the description of the program of B∗ (which may depend on x
and on z). That is, we effectively restrict the simulation by requiring that it be a uniform (feasible)
function of the verifier’s program (rather than arbitrarily depend on it). This restriction is very
natural, because it seems hard to envision an alternative way of establishing the zero-knowledge
property of a given protocol. Taking another step, one may argue that since it seems infeasible
to reverse-engineer programs, the simulator may as well just use the verifier strategy as an oracle
(or as a “black-box”). This reasoning gave rise to the notion of black-box simulation, which was
introduced and advocated in [66] and further studied in numerous works (see, e.g., [34]). The
belief was that inherent limitations regarding black-box simulation represent inherent limitations
of zero-knowledge itself. For example, it was believed that the fact that the parallel version of the
interactive proof of Figure 1 cannot be simulated in a black-box manner (unless NP is contained
in BPP [66]) implies that this version is not zero-knowledge (as per Definition 4.1 itself). However,
the (underlying) belief that any zero-knowledge protocol can be simulated in a black-box manner
was refuted by Barak [3]. For further discussion, see Section 4.4.4.

11A related notion (not discussed here) is that of CS-proofs, introduced by Micali [94].
12Still, as stated in Footnote 7, we believe that a presentation in terms of proofs should be preferred for expositional

purposes.

22

Honest verifier versus general cheating verifier. Definition 4.1 refers to all feasible verifier
strategies, which is most natural (in the cryptographic setting) because zero-knowledge is sup-
posed to capture the robustness of the prover under any feasible (i.e., adversarial) attempt to gain
something by interacting with it. A weaker and still interesting notion of zero-knowledge refers
to what can be gained by an “honest verifier” (or rather a semi-honest verifier)13 that interacts
with the prover as directed, with the exception that it may maintain (and output) a record of the
entire interaction (i.e., even when directed to erase all records of the interaction). Although such
a weaker notion is not satisfactory for standard cryptographic applications, it yields a fascinating
notion from a conceptual as well as a complexity-theoretic point of view. Furthermore, as shown
in [72, 115], every proof system that is zero-knowledge with respect to the honest-verifier can be
transformed into a standard zero-knowledge proof (without using intractability assumptions and in
case of “public-coin” proofs this is done without significantly increasing the prover’s computational
effort).

Statistical versus Computational Zero-Knowledge. Recall that Definition 4.1 postulates
that for every probability ensemble of one type (i.e., representing the verifier’s output after in-
teraction with the prover) there exists a “similar” ensemble of a second type (i.e., representing
the simulator’s output). One key parameter is the interpretation of “similarity”. Three interpreta-
tions, yielding different notions of zero-knowledge, have been commonly considered in the literature
(see [77, 54]):

1. Perfect Zero-Knowledge requires that the two probability ensembles be identical.14

2. Statistical Zero-Knowledge requires that these probability ensembles be statistically close (i.e.,
the variation distance between them is negligible).

3. Computational (or rather general) Zero-Knowledge requires that these probability ensembles be
computationally indistinguishable.

Indeed, Computational Zero-Knowledge is the most liberal notion, and is the notion considered in
Definition 4.1. We note that the class of problems having statistical zero-knowledge proofs contains
several problems that are considered intractable. The interested reader is referred to [114].

Strict versus expected probabilistic polynomial-time. So far, we did not specify what we
exactly mean by the term probabilistic polynomial-time. Two common interpretations are:

1. Strict probabilistic polynomial-time. That is, there exist a (polynomial in the length of the
input) bound on the number of steps in each possible run of the machine, regardless of the
outcome of its coin tosses.

2. Expected probabilistic polynomial-time. The standard approach is to look at the running-time
as a random variable and bound its expectation (by a polynomial in the length of the input). As

13The term “honest verifier” is more appealing when considering an alternative (equivalent) formulation of Defini-
tion 4.1. In the alternative definition (see [57, Sec. 4.3.1.3]), the simulator is “only” required to generate the verifier’s
view of the real interaction, where the verifier’s view includes its (common and auxiliary) inputs, the outcome of its
coin tosses, and all messages it has received.

14The actual definition of Perfect Zero-Knowledge allows the simulator to fail (while outputting a special symbol)
with negligible probability, and the output distribution of the simulator is conditioned on its not failing.

23

observed by Levin (see [57, Sec. 4.3.1.6] and [7]), this definitional approach is quite problematic
(e.g., it is not model-independent and is not closed under algorithmic composition), and an
alternative treatment of this random variable is preferable.

Since the notion of expected polynomial-time raises a variety of conceptual and technical problems,
whenever possible, one should prefer the more robust (and restricted) notion of strict (probabilistic)
polynomial-time. Thus, with the exception of constant-round zero-knowledge protocols, whenever
we talked of a probabilistic polynomial-time verifier (resp., simulator) we mean one in the strict
sense. In contrast, with the exception of [3, 7], all results regarding constant-round zero-knowledge
protocols refer to a strict polynomial-time verifier and an expected polynomial-time simulator,
which is indeed a small cheat. For further discussion, the reader is referred to [7, 62].

4.4.3 Related notions: POK, NIZK, and WI

We briefly discuss the notions of proofs of knowledge (POK), non-interactive zero-knowledge
(NIZK), and witness indistinguishable proofs (WI).

Proofs of Knowledge. Loosely speaking, proofs of knowledge (discussed in [77] and defined
in [13]) are interactive proofs in which the prover asserts “knowledge” of some object (e.g., a 3-
coloring of a graph), and not merely its existence (e.g., the existence of a 3-coloring of the graph,
which in turn is equivalent to the assertion that the graph is 3-colorable). Before clarifying what
we mean by saying that a machine knows something, we point out that “proofs of knowledge”, and
in particular zero-knowledge “proofs of knowledge”, have many applications to the design of cryp-
tographic schemes and cryptographic protocols. One famous application of zero-knowledge proofs
of knowledge is to the construction of identification schemes (e.g., the Fiat-Shamir scheme [53]).

What do we mean by saying that a machine knows something? Any standard dictionary
suggests several meanings for the verb to know, which are typically phrased with reference to
awareness, a notion which is certainly inapplicable in the context of machines. Instead, we must
look for a behavioristic interpretation of the verb to know. Indeed, it is reasonable to link knowledge
with ability to do something (e.g., the ability to write down whatever one knows). Hence, we will
say that a machine knows a string α if it can output the string α. But this seems as total non-sense
too: A machine has a well-defined output – either the output equals α or it does not. So what can
be meant by saying that a machine can do something? Loosely speaking, it may mean that the
machine can be easily modified so that it does whatever is claimed. More precisely, it may mean
that there exists an efficient machine that, using the original machine as a black-box (or given its
code as an input), outputs whatever is claimed.

So much for defining the “knowledge of machines”. Yet, whatever a machine knows or does
not know is “its own business”. What can be of interest and reference to the outside is whatever
can be deduced about the knowledge of a machine by interacting with it. Hence, we are interested
in proofs of knowledge (rather than in mere knowledge). For sake of simplicity let us consider a
concrete question: How can a machine prove that it knows a 3-coloring of a graph? An obvious way
is just to send the 3-coloring to the verifier. Yet, we claim that applying the protocol in Figure 1
(i.e., the zero-knowledge proof system for 3-Colorability) is an alternative way of proving knowledge
of a 3-coloring of the graph.

The definition of a verifier of knowledge of 3-coloring refers to any possible prover strategy. It
requires the existence of an efficient universal way of “extracting” a 3-coloring of a given graph by

24

using any prover strategy that convinces the verifier to accept the graph (with noticeable proba-
bility). Surely, we should no expect much of prover strategies that convince the verifier to accept
the graph with negligible probability. However, a robust definition should allow a smooth passage
from noticeable to negligible, and should allow to establish the intuitive zero-knowledge property
of a party that sends some information to another party after the other party proved that it knows
this information.

Loosely speaking, we may say that an interactive machine, V , constitutes a verifier for knowledge
of 3-coloring if, for any prover strategy P , the complexity of extracting a 3-coloring of G when
using machine P as a “black box”15 is inversely proportional to the probability that the verifier is
convinced by P (to accept the graph G). Namely, the extraction of the 3-coloring is done by an
oracle machine, called an extractor, that is given access to a function specifying the behavior P
(i.e., the messages it sends in response to particular messages it may receive). We require that the
(expected) running time of the extractor, on input G and access to an oracle specifying P ’s strategy,
be inversely related (by a factor polynomial in |G|) to the probability that P convinces V to accept
G. In case P always convinces V to accept G, the extractor runs in expected polynomial-time. The
same holds in case P convinces V to accept with noticeable probability. On the other hand, in case
P never convinces V to accept, essentially nothing is required of the extractor. (We stress that the
latter special cases do not suffice for a satisfactory definition; see discussion in [57, Sec. 4.7.1].)

Non-Interactive Zero-Knowledge. The model of non-interactive zero-knowledge proof sys-
tems, introduced in [23], consists of three entities: a prover, a verifier and a uniformly selected
reference string (which can be thought of as being selected by a trusted third party). Both the
verifier and prover can read the reference string, and each can toss additional coins. The interac-
tion consists of a single message sent from the prover to the verifier, who then is left with the final
decision (whether or not to accept). The (basic) zero-knowledge requirement refers to a simula-
tor that outputs pairs that should be computationally indistinguishable from the distribution (of
pairs consisting of a uniformly selected reference string and a random prover message) seen in the
real model.16 Non-interactive zero-knowledge proof systems have numerous applications (e.g., to
the construction of public-key encryption and signature schemes, where the reference string may
be incorporated in the public-key). Several different definitions of non-interactive zero-knowledge
proofs were considered in the literature.

• In the basic definition, one considers proving a single assertion of a priori bounded length,
where this length may be smaller than the length of the reference string.

• A natural extension, required in many applications, is the ability to prove multiple assertions
of varying length, where the total length of these assertions may exceed the length of the
reference string (as long as the total length is polynomial in the length of the reference
string). This definition is sometimes referred to as the unbounded definition, because the
total length of the assertions to be proved is not a priori bounded.

• Other natural extensions refer to the preservation of security (i.e., both soundness and zero-
knowledge) when the assertions to be proved are selected adaptively (based on the reference

15Indeed, one may consider also non-black-box extractors as done in [7].
16Note that the verifier does not affect the distribution seen in the real model, and so the basic definition of zero-

knowledge does not refer to it. The verifier (or rather a process of adaptively selecting assertions to be proved) will
be referred to in the adaptive variants of the definition.

25

string and possibly even based on previous proofs).

• Finally, we mention the notion of simulation-soundness, which is related to non-malleability.
This extension, which mixes the zero-knowledge and soundness conditions, refers to the sound-
ness of proofs presented by an adversary after it obtains proofs of assertions of its own choice
(with respect to the same reference string). This notion is important in applications of non-
interactive zero-knowledge proofs to the construction of public-key encryption schemes secure
against chosen ciphertext attacks (see [58, Sec. 5.4.4.4]).

Constructing non-interactive zero-knowledge proofs seems more difficult than constructing interac-
tive zero-knowledge proofs. Still, based on standard intractability assumptions (e.g., intractability
of factoring), it is known how to construct a non-interactive zero-knowledge proof (even in the
adaptive and non-malleable sense) for any NP-set (see [51, 44]).

Witness Indistinguishability and the FLS-Technique. The notion of witness indistinguisha-
bility was suggested in [52] as a meaningful relaxation of zero-knowledge. Loosely speaking, for
any NP-relation R, a proof (or argument) system for the corresponding NP-set is called witness
indistinguishable if no feasible verifier can distinguish the case in which the prover uses one NP-
witness to x (i.e., w1 such that (x,w1) ∈ R) from the case in which the prover is using a different
NP-witness to the same input x (i.e., w2 such that (x,w2) ∈ R). Clearly, any zero-knowledge
protocol is witness indistinguishable, but the converse does not necessarily hold. Furthermore, it
seems that witness indistinguishable protocols are easier to construct than zero-knowledge ones.
Another advantage of witness indistinguishable protocols is that they are closed under arbitrary
concurrent composition [52], whereas in general zero-knowledge protocols are not closed even under
parallel composition [66]. Witness indistinguishable protocols turned out to be an important tool
in the construction of more complex protocols, as is demonstrated next.

Feige, Lapidot and Shamir [51] introduced a technique for constructing zero-knowledge proofs
(and arguments) based on witness indistinguishable proofs (resp., arguments). Following is a
sketchy description of a special case of their technique, often referred to as the FLS-technique,
which has been used in numerous works. On common input x ∈ L, where L is the NP-set defined
by the witness relation R, the following two steps are performed:

1. The parties generate an instance x′ for an auxiliary NP-set L′, where L′ is defined by a witness
relation R′. Loosely speaking, the generation protocol in use should satisfy the following two
conditions:

(a) If the verifier follows its prescribed strategy then no matter which strategy is used by
the prover, with high probability, the protocol’s outcome is a no-instance of L′.

(b) There exists an efficient (non-interactive) procedure for producing a (random) transcript
of the generation protocol such that the corresponding outcome is a yes-instance of L′

and yet the produced transcript is computationally indistinguishable from the transcript
of a real execution of the protocol. Furthermore, this procedure also outputs an NP-
witness for the yes-instance that appears as the protocol’s outcome.

For example, L′ may consist of all possible outcomes of a pseudorandom generator that
stretches its seed by a factor of two, and the generation protocol may consist of the two
parties iteratively invoking a “coin tossing” protocol to obtain a random string. Note that

26

the outcome of a real execution will be an almost uniformly distributed string, which is most
likely a no-instance of L′, whereas it is possible to efficiently generate a (random) transcript
corresponding to any desired outcome (provided that the parties use an adequate coin tossing
protocol).

2. The parties execute a witness indistinguishable proof for the NP-set L′′ defined by the witness
relation R′′ = {((α,α′), (β, β′)) : (α, β) ∈ R ∨ (α′, β′) ∈ R′}. The sub-protocol is such that
the corresponding prover can be implemented in probabilistic polynomial-time given any NP-
witness for (α,α′) ∈ L′′. The sub-protocol is invoked on common input (x, x′), where x′ is
the outcome of Step 1, and the sub-prover is invoked with the corresponding NP-witness as
auxiliary input (i.e., with (w, 0), where w is the NP-witness for x (given to the main prover)).

The soundness of the above protocol follows by Property (a) of the generation protocol (i.e., with
high probability x′ 6∈ L′, and so x ∈ L follows by the soundness of the protocol used in Step 2).
To demonstrate the zero-knowledge property, we first generate a simulated transcript of Step 1
(with outcome x′ ∈ L′) along with an adequate NP-witness (i.e., w′ such that (x′, w′) ∈ R′), and
then emulate Step 2 by feeding the sub-prover strategy with the NP-witness (0, w′). Combining
Property (b) of the generation protocol and the witness indistinguishability property of the protocol
used in Step 2, the simulation is indistinguishable from the real execution.

4.4.4 Two basic problems: composition and black-box simulation

We conclude this section by considering two basic problems regarding zero-knowledge, which actu-
ally arise also with respect to the security of other cryptographic primitives.

Composition of protocols. The first question refers to the preservation of security (i.e., zero-
knowledge in our case) under various types of composition operations. These composition operations
represent independent executions of a protocol that are attacked by an adversary (which coordinates
its actions in the various executions). The preservation of security under such compositions (which
involve only executions of the same protocol) is a first step towards the study of the security of the
protocol when executed together with other protocols (see further discussion in Section 7.4). Turn-
ing back to zero-knowledge, we recall the main facts regarding sequential, parallel and concurrent
execution of (arbitrary and/or specific) zero-knowledge protocols:

Sequential composition: As stated above, zero-knowledge (with respect to auxiliary inputs) is
preserved under sequential composition.

Parallel composition: In general, zero-knowledge is not preserved under parallel composition [66].
Yet, some zero-knowledge proofs (for NP) preserve their security when many copies are ex-
ecuted in parallel. Furthermore, some of these protocol use a constant number of rounds
(see [60]).

Concurrent composition: One may view parallel composition as concurrent composition in a
model of strict synchronity. This leads us to consider more general models of concurrent
composition. We distinguish between a model of full asynchronicity and a model of naturally
limited asynchronicity.

27

• In the full asynchronous model, some zero-knowledge proofs (for NP) preserve their
security when many copies are executed concurrently (see [106, 88, 101]), but such a
result is not known for constant-round protocols.

• In contrast, some constant-round zero-knowledge proofs (for NP) preserve their security
in a model of limited asynchronicity (see [49, 60]), where each party holds a local clock
such that the relative clock rates are bounded by an a priori known constant and the
protocols may employ time-driven operations (i.e., time-out in-coming messages and
delay out-going messages).

The study of zero-knowledge in the concurrent setting provides a good test case for the study of
concurrent security of general protocols. In particular, the results in [66, 34] point out inherent
limitations of the “standard proof methods” (used to establish zero-knowledge) when applied to
the concurrent setting, where [66] treats the synchronous case and [34] uncovers much stronger
limitations for the asynchronous case. By “standard proof methods” we refer to the establishment
of zero-knowledge via a single simulator that obtains only oracle (or “black-box”) access to the
adversary procedure.

Black-box proofs of security. The second basic question regarding zero-knowledge refers to
the usage of the adversary’s program within the proof of security (i.e., demonstration of the zero-
knowledge property). For 15 years, all known proofs of security used the adversary’s program as
a black-box (i.e., a universal simulator was presented using the adversary’s program as an oracle).
Furthermore, it was believed that there was no advantage in having access to the code of the
adversary’s program (see [66]). Consequently, it was conjectured that negative results regarding
black-box simulation represent an inherent limitation of zero-knowledge. This belief was refuted
by Barak [3] who constructed a zero-knowledge argument (for NP) that has important properties
that are impossible to achieve by black-box simulation (unless NP ⊆ BPP). For example, this
zero-knowledge argument uses a constant number of rounds and preserves its security when an a
priori fixed (polynomial) number of copies are executed concurrently.17

Barak’s results (see [3] and also [4]) call for the re-evaluation of many common beliefs. Most
concretely, they say that results regarding black-box simulators do not reflect inherent limitations
of zero-knowledge (but rather an inherent limitation of a natural way of demonstrating the zero-
knowledge property). Most abstractly, they say that there are meaningful ways of using a program
other than merely invoking it as a black-box. Does this mean that a method was found to “reverse
engineer” programs or to “understand” them? We believe that the answer is negative. Barak [3]
is using the adversary’s program in a significant way (i.e., more significant than just invoking it),
without “understanding” it.

The key idea underlying Barak’s protocol [3] is to have the prover prove that either the original
NP-assertion is valid or that he (i.e., the prover) “knows the verifier’s residual strategy” (in the
sense that it can predict the next verifier message). Indeed, in a real interaction (with the honest
verifier), it is infeasible for the prover to predict the next verifier message, since the verifier generates
random messages, and so computational-soundness of the protocol follows. However, a simulator
that is given the code of the verifier’s strategy (and not merely oracle access to that code), can

17This result falls short of achieving a fully concurrent zero-knowledge argument, because the number of concurrent
copies must be fixed before the protocol is presented. Specifically, the protocol uses messages that are longer than
the allowed number of concurrent copies. However, even preservation of security under an a priori bounded number
of executions goes beyond the impossibility results of [66, 34] (which refers to black-box simulations).

28

produce a valid proof of the foregoing disjunction by properly executing the sub-protocol using
its knowledge of an NP-witness for the second disjunctive. The simulation is computationally
indistinguishable from the real execution, provided that one cannot distinguish an execution of the
sub-protocol in which one NP-witness (i.e., an NP-witness for the original assertion) is used from
an execution in which the second NP-witness (i.e., an NP-witness for the auxiliary assertion) is
used. That is, the sub-protocol should be a witness indistinguishable argument system, and the
entire construction uses the FLS technique (described in Section 4.4.3). We warn the reader that
the actual implementation of the foregoing idea requires overcoming several technical difficulties
(see [3, 6]).

29

Part II

Basic Applications

Encryption and signature schemes are the most basic applications of Cryptography. Their main util-
ity is in providing secret and reliable communication over insecure communication media. Loosely
speaking, encryption schemes are used to ensure the secrecy (or privacy) of the actual information
being communicated, whereas signature schemes are used to ensure its reliability (or authenticity).
In this part we survey these basic applications as well as the construction of general secure crypto-
graphic protocols. For more details regarding the contents of the current part, see our textbook [58].

5 Encryption Schemes

The problem of providing secret communication over insecure media is the traditional and most
basic problem of cryptography. The setting of this problem consists of two parties communicating
through a channel that is possibly tapped by an adversary. The parties wish to exchange infor-
mation with each other, but keep the “wire-tapper” as ignorant as possible regarding the contents
of this information. The canonical solution to the foregoing problem is obtained by the use of
encryption schemes. Loosely speaking, an encryption scheme is a protocol allowing these parties
to communicate secretly with each other. Typically, the encryption scheme consists of a pair of
algorithms. One algorithm, called encryption, is applied by the sender (i.e., the party sending a
message), while the other algorithm, called decryption, is applied by the receiver. Hence, in order
to send a message, the sender first applies the encryption algorithm to the message, and sends the
result, called the ciphertext, over the channel. Upon receiving a ciphertext, the other party (i.e.,
the receiver) applies the decryption algorithm to it, and retrieves the original message (called the
plaintext).

In order for the foregoing scheme to provide secret communication, the communicating parties
(at least the receiver) must know something that is not known to the wire-tapper. (Otherwise, the
wire-tapper can decrypt the ciphertext exactly as done by the receiver.) This extra knowledge may
take the form of the decryption algorithm itself, or some parameters and/or auxiliary inputs used
by the decryption algorithm. We call this extra knowledge the decryption-key. Note that, without
loss of generality, we may assume that the decryption algorithm is known to the wire-tapper, and
that the decryption algorithm operates on two inputs: a ciphertext and a decryption-key. We
stress that the existence of a decryption-key, not known to the wire-tapper, is merely a necessary
condition for secret communication. The foregoing description implicitly presupposes the existence
of an efficient algorithm for generating (random) keys.

Evaluating the “security” of an encryption scheme is a very tricky business. A preliminary task
is to understand what is “security” (i.e., to properly define what is meant by this intuitive term).
Two approaches to defining security are known. The first (“classical”) approach, introduced by
Shannon [112], is information theoretic. It is concerned with the “information” about the plaintext
that is “present” in the ciphertext. Loosely speaking, if the ciphertext contains information about
the plaintext, then the encryption scheme is considered insecure. It has been shown that such high
(i.e., “perfect”) level of security can be achieved only if the key in use is at least as long as the total
amount of information sent via the encryption scheme [112]. This fact (i.e., that the key has to be
longer than the information exchanged using it) is indeed a drastic limitation on the applicability

30

of such (perfectly-secure) encryption schemes.
The second (“modern”) approach, followed in the current text, is based on computational com-

plexity. This approach is based on the thesis that it does not matter whether the ciphertext contains
information about the plaintext, but rather whether this information can be efficiently extracted.
In other words, instead of asking whether it is possible for the wire-tapper to extract specific infor-
mation, we ask whether it is feasible for the wire-tapper to extract this information. It turns out
that the new (i.e., “computational complexity”) approach can offer security even when the key is
much shorter than the total length of the messages sent via the encryption scheme.

The computational complexity approach enables the introduction of concepts and primitives
that cannot exist under the information theoretic approach. A typical example is the concept of
public-key encryption schemes, introduced by Diffie and Hellman [45]. Recall that in the forego-
ing discussion we concentrated on the decryption algorithm and its key. It can be shown that
the encryption algorithm must get, in addition to the message, an auxiliary input that depends
on the decryption-key. This auxiliary input is called the encryption-key. Traditional encryption
schemes, and in particular all the encryption schemes used in the millennia until the 1980’s, oper-
ate with an encryption-key that equals the decryption-key. Hence, the wire-tapper in these schemes
must be ignorant of the encryption-key, and consequently the key distribution problem arises; that
is, how can two parties wishing to communicate over an insecure channel agree on a secret en-
cryption/decryption key. (The traditional solution is to exchange the key through an alternative
channel that is secure though (much) more expensive to use.) The computational complexity ap-
proach allows the introduction of encryption schemes in which the encryption-key may be given to
the wire-tapper without compromising the security of the scheme. Clearly, the decryption-key in
such schemes is different from the encryption-key, and furthermore infeasible to compute from the
encryption-key. Such encryption schemes, called public-key schemes, have the advantage of triv-
ially resolving the key distribution problem (because the encryption-key can be publicized). That
is, once some Party X generates a pair of keys and publicizes the encryption-key, any party can
send encrypted messages to Party X so that Party X can retrieve the actual information (i.e., the
plaintext), whereas nobody else can learn anything about the plaintext.

In contrast to public-key schemes, traditional encryption schemes in which the encryption-key
equals the description-key are called private-key schemes, because in these schemes the encryption-
key must be kept secret (rather than be public as in public-key encryption schemes). We note that a
full specification of either schemes requires the specification of the way in which keys are generated;
that is, a (randomized) key-generation algorithm that, given a security parameter, produces a
(random) pair of corresponding encryption/decryption keys (which are identical in case of private-
key schemes).

Thus, both private-key and public-key encryption schemes consist of three efficient algorithms:
A key generation algorithm denoted G, an encryption algorithm denoted E, and a decryption algo-
rithm denoted D. For every pair of encryption and decryption keys (e, d) generated by G, and for

every plaintext x, it holds that Dd(Ee(x)) = x, where Ee(x)
def
= E(e, x) and Dd(y)

def
= D(d, y). The

difference between the two types of encryption schemes is reflected in the definition of security:
The security of a public-key encryption scheme should hold also when the adversary is given the
encryption-key, whereas this is not required for a private-key encryption scheme. Below we focus
on the public-key case (and the private-key case can be obtained by omitting the encryption-key
from the sequence of inputs given to the adversary).

31

5.1 Definitions

A good disguise should not reveal the person’s height.
A good disguise should not allow a mother to distinguish her own children.

Shafi Goldwasser and Silvio Micali, 1982

For simplicity, we first consider the encryption of a single message (which, for further simplicity,
is assumed to be of length n).18 As implied by the foregoing discussion, a public-key encryption
scheme is said to be secure if it is infeasible to gain any information about the plaintext by looking
at the ciphertext (and the encryption-key). That is, whatever information about the plaintext
one may compute from the ciphertext and some a priori information, can be essentially computed
as efficiently from the a priori information alone. This fundamental definition of security (called
semantic security) turns out to be equivalent to saying that, for any two messages, it is infeasible
to distinguish the encryption of the first message from the encryption of the second message, even
when given the encryption-key. Both definitions were introduced by Goldwasser and Micali [76].

Definition 5.1 (semantic security (following [76], revisited [55])): A public-key encryption scheme
(G,E,D) is semantically secure if for every probabilistic polynomial-time algorithm, A, there exists
a probabilistic polynomial-time algorithm B so that for every two functions f, h : {0, 1}∗→{0, 1}∗

such that |h(x)| = poly(|x|), and all probability ensembles {Xn}n∈N, where Xn is a random variable
ranging over {0, 1}n, it holds that

Pr[A(e,Ee(x), h(x))=f(x)] < Pr[B(1n, h(x))=f(x)] + µ(n)

where the plaintext x is distributed according to Xn, the encryption-key e is distributed according
to G(1n), and µ is a negligible function.

That is, it is feasible to predict f(x) from h(x) as successfully as it is to predict f(x) from h(x) and
(e,Ee(x)), which means that nothing is gained by obtaining (e,Ee(x)). Note that no computational
restrictions are made regarding the functions h and f . We stress that the foregoing definition (as
well as the next one) refers to public-key encryption schemes, and in the case of private-key schemes
algorithm A is not given the encryption-key e. The following technical interpretation of security
states that it is infeasible to distinguish the encryptions of two plaintexts (of the same length).

Definition 5.2 (indistinguishability of encryptions (following [76])): A public-key encryption scheme
(G,E,D) has indistinguishable encryptions if for every probabilistic polynomial-time algorithm, A,
and all sequences of triples, (xn, yn, zn)n∈N, where |xn| = |yn| = n and |zn| = poly(n), it holds that

|Pr[A(e,Ee(xn), zn)=1]− Pr[A(e,Ee(yn), zn)=1]| = µ(n).

Again, e is distributed according to G(1n), and µ is a negligible function.

In particular, zn may equal (xn, yn). Thus, it is infeasible to distinguish the encryptions of any two
fixed messages (such as the all-zero message and the all-ones message).

Definition 5.1 is more appealing in most settings where encryption is considered the end goal.
Definition 5.2 is used to establish the security of candidate encryption schemes as well as to analyze
their application as modules inside larger cryptographic protocols. Thus, their equivalence is of
major importance.

18In the case of public-key schemes no generality is lost by these simplifying assumptions, but in the case of
private-key schemes one should consider the encryption of polynomially-many messages (as we do below).

32

Equivalence of Definitions 5.1 and 5.2 – proof ideas. Intuitively, indistinguishability of
encryptions (i.e., of the encryptions of xn and yn) is a special case of semantic security; specifically,
it corresponds to the case that Xn is uniform over {xn, yn}, f indicates one of the plaintexts
and h does not distinguish them (i.e., f(w) = 1 iff w = xn and h(xn) = h(yn) = zn, where
zn is as in Definition 5.2). The other direction is proved by considering the algorithm B that, on
input (1n, v) where v = h(x), generates (e, d)← G(1n) and outputs A(e,Ee(1

n), v), where A is as in
Definition 5.1. Indistinguishability of encryptions is used to prove that B performs as well as A (i.e.,
for every h, f and {Xn}n∈N, it holds that Pr[B(1n, h(Xn)) = f(Xn)] = Pr[A(e,Ee(1

n), h(Xn)) =
f(Xn)] approximately equals Pr[A(e,Ee(Xn), h(Xn))=f(Xn)]).

Probabilistic Encryption: It is easy to see that a secure public-key encryption scheme must
employ a probabilistic (i.e., randomized) encryption algorithm. Otherwise, given the encryption-
key as (additional) input, it is easy to distinguish the encryption of the all-zero message from the
encryption of the all-ones message.19 This explains the association of the aforementioned robust
security definitions and probabilistic encryption, an association that goes back to the title of the
pioneering work of Goldwasser and Micali [76].

Further discussion: We stress that (the equivalent) Definitions 5.1 and 5.2 go way beyond
saying that it is infeasible to recover the plaintext from the ciphertext. The latter statement is
indeed a minimal requirement from a secure encryption scheme, but is far from being a sufficient
requirement. Typically, encryption schemes are used in applications where even obtaining partial
information on the plaintext may endanger the security of the application. When designing an
application-independent encryption scheme, we do not know which partial information endangers
the application and which does not. Furthermore, even if one wants to design an encryption scheme
tailored to a specific application, it is rare (to say the least) that one has a precise characterization
of all possible partial information that endanger this application. Thus, we need to require that it
is infeasible to obtain any information about the plaintext from the ciphertext. Furthermore, in
most applications the plaintext may not be uniformly distributed and some a priori information
regarding it may be available to the adversary. We require that the secrecy of all partial information
is preserved also in such a case. That is, even in presence of a priori information on the plaintext, it
is infeasible to obtain any (new) information about the plaintext from the ciphertext (beyond what
is feasible to obtain from the a priori information on the plaintext). The definition of semantic
security postulates all of this. The equivalent definition of indistinguishability of encryptions is
useful in demonstrating the security of candidate constructions as well as for arguing about their
effect as part of larger protocols.

Security of multiple messages: Definitions 5.1 and 5.2 refer to the security of an encryption
scheme that is used to encrypt a single plaintext (per generated key). Since the plaintext may
be longer than the key20, these definitions are already non-trivial, and an encryption scheme sat-

19The same holds for (stateless) private-key encryption schemes, when considering the security of encrypting several
messages (rather than a single message as done above). For example, if one uses a deterministic encryption algorithm,
then the adversary can distinguish two encryptions of the same message from the encryptions of a pair of different
messages.

20Recall that for sake of simplicity we have considered only messages of length n, but the general definitions refer
to messages of arbitrary (polynomial in n) length. We comment that, in the general form of Definition 5.1, one should
provide the length of the message as an auxiliary input to both algorithms (A and B).

33

isfying them (even in the private-key model) implies the existence of one-way functions. Still, in
many cases, it is desirable to encrypt many plaintexts using the same encryption-key. Loosely
speaking, an encryption scheme is secure in the multiple-messages setting if analogous definitions
(to Definitions 5.1 and 5.2) hold when polynomially-many plaintexts are encrypted using the same
encryption-key (see [58, Sec. 5.2.4]). It is easy to see that in the public-key model, security in the
single-message setting implies security in the multiple-messages setting. We stress that this is not
necessarily true for the private-key model.

5.2 Constructions

It is common practice to use “pseudorandom generators” as a basis for private-key encryption
schemes. We stress that this is a very dangerous practice when the “pseudorandom generator” is
easy to predict (such as the linear congruential generator or some modifications of it that output
a constant fraction of the bits of each resulting number). However, this common practice becomes
sound provided one uses pseudorandom generators (as defined in Section 3.2). An alternative and
more flexible construction follows.

Private-Key Encryption Schemes based on Pseudorandom Functions: We present a
simple construction that uses pseudorandom functions as defined in Section 3.3. The key generation
algorithm consists of selecting a seed, denoted s, for a (pseudorandom) function, denoted fs. To
encrypt a message x ∈ {0, 1}n (using key s), the encryption algorithm uniformly selects a string
r ∈ {0, 1}n and produces the ciphertext (r, x ⊕ fs(r)), where ⊕ denotes the exclusive-or of bit
strings. To decrypt the ciphertext (r, y) (using key s), the decryption algorithm just computes
y ⊕ fs(r). The security of this encryption scheme can be proved in two steps (suggested as a
general methodology in Section 3.3):

1. Prove that an idealized version of the scheme, in which one uses a uniformly selected function
F :{0, 1}n→{0, 1}n, rather than the pseudorandom function fs, is secure.

2. Conclude that the real scheme (as presented above) is secure (because, otherwise one could
distinguish a pseudorandom function from a truly random one).

Note that we could have gotten rid of the randomization (in the encryption process) if we had
allowed the encryption algorithm to be history dependent (e.g., use a counter in the role of r).
This can be done provided that either only one party uses the key for encryption (and maintains a
counter) or that all parties that encrypt, using the same key, coordinate their actions (i.e., maintain
a joint state (e.g., counter)). Indeed, when using a private-key encryption scheme, a common
situation is that the same key is only used for communication between two specific parties, which
update a joint counter during their communication. Furthermore, if the encryption scheme is used
for fifo communication between the parties and both parties can reliably maintain the counter
value, then there is no need (for the sender) to send the counter value. (The resulting scheme is
related to “stream ciphers” that are commonly used in practice.)

We comment that the use of a counter (or any other state) in the encryption process is not rea-
sonable in the case of public-key encryption schemes, because it is incompatible with the canonical
usage of such schemes (i.e., allowing all parties to send encrypted messages to the “owner of the
encryption-key” without engaging in any type of coordination or communication). Furthermore,
as discussed before, probabilistic encryption is essential for a secure public-key encryption scheme

34

even in the case of encrypting a single message (unlike in the case of private-key schemes). Fol-
lowing Goldwasser and Micali [76], we now demonstrate the use of probabilistic encryption in the
construction of a public-key encryption scheme.

Public-Key Encryption Schemes based on Trapdoor Permutations: We present two con-
structions that employ a collection of trapdoor permutations, as defined in Definition 2.3. Let
{fi : Di → Di}i be such a collection, and let b be a corresponding hard-core predicate. The key
generation algorithm consists of selecting a permutation fi along with a corresponding trapdoor
t, and outputting (i, t) as the key-pair. To encrypt a (single) bit σ (using the encryption-key i),
the encryption algorithm uniformly selects r ∈ Di, and produces the ciphertext (fi(r), σ ⊕ b(r)).
To decrypt the ciphertext (y, τ) (using the decryption-key t), the decryption algorithm computes
τ⊕b(f−1

i (y)) (using the trapdoor t of fi). Clearly, (σ⊕b(r))⊕b(f−1
i (fi(r))) = σ. Indistinguishabil-

ity of encryptions can be easily proved using the fact that b is a hard-core of fi. We comment that
the foregoing scheme is quite wasteful in bandwidth; however, the paradigm underlying its con-
struction (i.e., applying the trapdoor permutation to a randomized version of the plaintext rather
than to the actual plaintext) is valuable in practice.

A more efficient construction of a public-key encryption scheme, which uses the same key-
generation algorithm, was suggested in [24] and proceeds as follows. To encrypt an ℓ-bit long
string x (using the encryption-key i), the encryption algorithm uniformly selects r ∈ Di, computes
s← b(r) · b(fi(r)) · · · b(f

ℓ−1
i (r)) and produces the ciphertext (f ℓ

i (r), x⊕ s). To decrypt the cipher-
text (y, v) (using the decryption-key t), the decryption algorithm first recovers r = f−ℓ

i (y) (using
the trapdoor t of fi), and then obtains v ⊕ b(r) · b(fi(r)) · · · b(f

ℓ−1
i (r)). Note the similarity to the

construction in Theorem 3.3, and the fact that the proof can be extended to establish the computa-
tional indistinguishability of (b(r) · · · b(f ℓ−1

i (r)), f ℓ
i (r)) and (u, f ℓ

i (r)), for random and independent
r ∈ Di and u ∈ {0, 1}ℓ. Indistinguishability of encryptions follows, and thus the aforementioned
scheme is secure.

5.3 Beyond Eavesdropping Security

Our treatment so far has referred only to a “passive” attack in which the adversary merely eaves-
drops the line over which ciphertexts are being sent. Stronger types of attacks, culminating in the
so-called Chosen Ciphertext Attack, may be possible in various applications. Specifically, in some
settings it is feasible for the adversary to make the sender encrypt a message of the adversary’s
choice, and in some settings the adversary may even make the receiver decrypt a ciphertext of the
adversary’s choice. This gives rise to chosen plaintext attacks and to chosen ciphertext attacks,
respectively, which are not covered by the security definitions considered in Sections 5.1 and 5.2.
In this section we briefly discuss such “active” attacks, focusing on chosen ciphertext attacks (of
the stronger type known as “a posteriori” or “CCA2”).

Loosely speaking, in a chosen ciphertext attack, the adversary may obtain the decryptions of
ciphertexts of its choice, and is deemed successful if it learns something regarding the plaintext
that corresponds to some different ciphertext (see [86, 12] and [58, Sec. 5.4.4]). That is, the
adversary is given oracle access to the decryption function corresponding to the decryption-key in
use (and, in the case of private-key schemes, it is also given oracle access to the corresponding
encryption function). The adversary is allowed to query the decryption oracle on any ciphertext
except for the “test ciphertext” (i.e., the very ciphertext for which it tries to learn something
about the corresponding plaintext). It may also make queries that do not correspond to legitimate

35

ciphertexts, and the answer will be accordingly (i.e., a special ‘failure’ symbol). Furthermore, the
adversary may effect the selection of the test ciphertext (by specifying a distribution from which
the corresponding plaintext is to be drawn).

Private-key and public-key encryption schemes secure against chosen ciphertext attacks can be
constructed under (almost) the same assumptions that suffice for the construction of the corre-
sponding passive schemes. Specifically:

Theorem 5.3 (folklore, see [58, Sec. 5.4.4.3]): Assuming the existence of one-way functions, there
exist private-key encryption schemes that are secure against chosen ciphertext attack.

Theorem 5.4 ([98, 46], using [23, 51], see [58, Sec. 5.4.4.4]): Assuming the existence of suitably en-
hanced trapdoor permutations21, there exist public-key encryption schemes that are secure against
chosen ciphertext attack.

Both theorems are proved by constructing encryption schemes in which the adversary’s gain from
a chosen ciphertext attack is eliminated by making it infeasible (for the adversary) to obtain any
useful knowledge via such an attack. In the case of private-key schemes (i.e., Theorem 5.3), this is
achieved by making it infeasible (for the adversary) to produce legitimate ciphertexts (other than
those explicitly given to it, in response to its request to encrypt plaintexts of its choice). This,
in turn, is achieved by augmenting the ciphertext with an “authentication tag” that is hard to
generate without knowledge of the encryption-key; that is, we use a message-authentication scheme
(as defined in Section 6). In the case of public-key schemes (i.e., Theorem 5.4), the adversary
can certainly generate ciphertexts by itself, and the aim is to to make it infeasible (for the adver-
sary) to produce legitimate ciphertexts without “knowing” the corresponding plaintext. This, in
turn, will be achieved by augmenting the plaintext with a non-interactive zero-knowledge “proof
of knowledge” of the corresponding plaintext.

Security against chosen ciphertext attack is related to the notion of non-malleability of the
encryption scheme (see [46]). Loosely speaking, in a non-malleable encryption scheme it is infeasible
for an adversary, given a ciphertext, to produce a valid ciphertext for a related plaintext (e.g., given
a ciphertext of a plaintext 1x, for an unknown x, it is infeasible to produce a ciphertext to the
plaintext 0x). For further discussion see [46, 12, 86].

6 Signature and Message Authentication Schemes

Both signature schemes and message authentication schemes are methods for “validating” data; that
is, verifying that the data was approved by a certain party (or set of parties). The difference between
signature schemes and message authentication schemes is that signatures should be “universally
verifiable”, whereas authentication tags are required to be verifiable only by parties that are also
able to generate them.

Signature Schemes: The need to discuss “digital signatures” [45, 102] has emerged with the
introduction of computer communication to the business environment (in which parties need to
commit themselves to proposals and/or declarations that they make). Discussions of “unforgeable

21The exact definition of the suitable enhancement has been augmented several times (see account in [71] further
corrected by [35]).

36

signatures” did take place also in previous centuries, but the objects of discussion were handwritten
signatures (and not digital ones), and the discussion was not perceived as related to “cryptography”.
Loosely speaking, a scheme for unforgeable signatures should satisfy the following:

• each user can efficiently produce its own signature on documents of its choice;

• every user can efficiently verify whether a given string is a signature of another (specific) user
on a specific document; but

• it is infeasible to produce signatures of other users to documents they did not sign.

We note that the formulation of unforgeable digital signatures provides also a clear statement of the
essential ingredients of handwritten signatures. The ingredients are each person’s ability to sign for
itself, a universally agreed verification procedure, and the belief (or assertion) that it is infeasible
(or at least hard) to forge signatures (i.e., produce some other person’s signatures to documents
that were not signed by it such that these “unauthentic” signatures are accepted by the verification
procedure). It is not clear to what extent handwritten signatures meet these requirements. In
contrast, our discussion of digital signatures provides precise statements concerning the extent
to which digital signatures meet the foregoing requirements. Furthermore, unforgeable digital
signature schemes can be constructed based on some reasonable computational assumptions (i.e.,
the existence of one-way functions).

Message authentication schemes: Message authentication is a task related to the setting
considered for encryption schemes; that is, communication over an insecure channel. This time, we
consider an active adversary that is monitoring the channel and may alter the messages sent over it.
The parties communicating through this insecure channel wish to authenticate the messages they
send so that their counterpart can tell an original message (sent by the sender) from a modified
one (i.e., modified by the adversary). Loosely speaking, a scheme for message authentication should
satisfy the following:

• each of the communicating parties can efficiently produce an authentication tag to any message
of its choice;

• each of the communicating parties can efficiently verify whether a given string is an authen-
tication tag of a given message; but

• it is infeasible for an external adversary (i.e., a party other than the communicating parties)
to produce authentication tags to messages not sent by the communicating parties.

Note that, in contrast to the specification of signature schemes, we do not require universal ver-
ification: only the designated receiver is required to be able to verify the authentication tags.
Furthermore, we do not require that the receiver can not produce authentication tags by itself (i.e.,
we only require that external parties can not do so). Thus, message authentication schemes cannot
convince a third party that the sender has indeed sent the information (rather than the receiver
having generated it by itself). In contrast, signatures can be used to convince third parties; in fact,
a signature to a document is typically sent to a second party so that in the future this party may
(by merely presenting the signed document) convince third parties that the document was indeed
generated (or sent or approved) by the signer.

37

6.1 Definitions

Formally speaking, both signature schemes and message authentication schemes consist of three
efficient algorithms: key generation, signing and verification. As in the case of encryption schemes,
the key-generation algorithm is used to generate a pair of corresponding keys, one is used for signing
and the other is used for verification. The difference between the two types of schemes is reflected in
the definition of security. In the case of signature schemes, the adversary is given the verification-key,
whereas in the case of message authentication schemes the verification-key (which may equal the
signing-key) is not given to the adversary. Thus, schemes for message authentication can be viewed
as a private-key version of signature schemes. This difference yields different functionalities (even
more than in the case of encryption): In typical use of a signature scheme, each user generates a
pair of signing and verification keys, publicizes the verification-key and keeps the signing-key secret.
Subsequently, each user may sign documents using its own signing-key, and these signatures are
universally verifiable with respect to its public verification-key. In contrast, message authentication
schemes are typically used to authenticate information sent among a set of mutually trusting parties
that agree on a secret key, which is being used both to produce and verify authentication-tags.
(Indeed, it is assumed that the mutually trusting parties have generated the key together or have
exchanged the key in a secure way, prior to the communication of information that needs to be
authenticated.)

We focus on the definition of secure signature schemes. Following Goldwasser, Micali and
Rivest [78], we consider very powerful attacks on the signature scheme as well as a very liberal
notion of breaking it. Specifically, the attacker is allowed to obtain signatures to any message of
its choice. One may argue that in many applications such a general attack is not possible (because
messages to be signed must have a specific format). Yet, our view is that it is impossible to define
a general (i.e., application-independent) notion of admissible messages, and thus a general/robust
definition of an attack seems to have to be formulated as suggested here. (Note that at worst, our
approach is overly cautious.) Likewise, the adversary is said to be successful if it can produce a valid
signature to any message for which it has not asked for a signature during its attack. Indeed, this
deems the ability to form signatures to possibly “nonsensical” messages as a breaking of the scheme.
Yet, again, we see no way to have a general (i.e., application-independent) notion of “meaningful”
messages (so that only forging signatures to them will be considered a breaking of the scheme).

Definition 6.1 (secure signature schemes – a sketch): A chosen message attack is a process that,
on input a verification-key, can obtain signatures (relative to the corresponding signing-key) to
messages of its choice. Such an attack is said to succeed (in existential forgery) if it outputs a valid
signature to a message for which it has not requested a signature during the attack. A signature
scheme is secure (or unforgeable) if every feasible chosen message attack succeeds with at most
negligible probability, where the probability is taken over the initial choice of the key-pair as well as
over the adversary’s actions.

The private-key version is defined analogously, except that in that case the attacker is given only the
security paramter as input. We stress that plain RSA (alike plain versions of Rabin’s scheme [103]
and the DSS [99]) is not secure under the foregoing definition. However, it may be secure if the
message is “randomized” before RSA (or the other schemes) is applied.

38

6.2 Constructions

Secure message authentication schemes can be constructed using pseudorandom functions [63].
Specifically, the key-generation algorithm consists of selecting a seed s ∈ {0, 1}n for such a function,
denoted fs : {0, 1}∗→{0, 1}n, and the (only valid) tag of message x with respect to the key s is
fs(x). As in the case of our private-key encryption scheme, the proof of security of the current
message authentication scheme consists of two steps:

1. Proving that an idealized version of the scheme, in which one uses a uniformly selected
function F : {0, 1}∗ → {0, 1}n, rather than the pseudorandom function fs, is secure (i.e.,
unforgeable).

2. Concluding that the real scheme (as presented above) is secure (because, otherwise one could
distinguish a pseudorandom function from a truly random one).

Note that the aforementioned message authentication scheme makes an “extensive use of pseu-
dorandom functions” (i.e., the pseudorandom function is applied directly to the message, which
requires a generalized notion of pseudorandom functions (see Section 3.3)). More efficient schemes
may be obtained either based on a more restricted use of a pseudorandom function or based on
other cryptographic primitives (see [58, Sec. 6.3]).

Constructing secure signature schemes seems more difficult than constructing message authen-
tication schemes. Nevertheless, secure signature schemes can be constructed based on any one-way
function. Furthermore:

Theorem 6.2 ([97, 109], see [58, Sec. 6.4]): The following three conditions are equivalent.

1. One-way functions exist.

2. Secure signature schemes exist.

3. Secure message authentication schemes exist.

We stress that, unlike in the case of public-key encryption schemes, the construction of signature
schemes (which may be viewed as a public-key analogue of message authentication) does not use a
trapdoor property.

How to construct secure signature schemes

Three central paradigms used in the construction of secure signature schemes are the “refreshing”
of the “effective” signing-key, the usage of an “authentication tree”, and the “hashing paradigm”
(all to be discussed in the sequel). In addition to being used in the proof of Theorem 6.2, all three
paradigms are also of independent interest.

The refreshing paradigm. Introduced in [78], the refreshing paradigm is aimed at limiting the
potential dangers of chosen message attacks. This is achieved by signing the actual document
using a newly (randomly) generated instance of the signature scheme, and authenticating (the
verification-key of) this random instance with respect to the fixed public-key. That is, consider a
basic signature scheme (G,S, V) used as follows. Suppose that the user U has generated a key-pair,
(s, v)← G(1n), and has placed the verification-key v on a public-file. When a party asks U to sign
some document α, the user U generates a new (“fresh”) key-pair, (s′, v′) ← G(1n), signs v′ using

39

the original signing-key s, signs α using the new signing-key s′, and presents (Ss(v
′), v′, Ss′(α)) as a

signature to α. An alleged signature, (β1, v
′, β2), is verified by checking whether both Vv(v

′, β1) = 1
and Vv′(α, β2) = 1 hold. Intuitively, the gain in terms of security is that a full-fledged chosen
message attack cannot be launched on a fixed instance of (G,S, V) (i.e., on the fixed verification-
key that resides in the public-file and is known to the attacker). All that an attacker may obtain
(via a chosen message attack on the new scheme) is signatures, relative to the original signing-key
s of (G,S, V), to random strings (distributed according to G(1n)) as well as additional signatures
that are each relative to a random and independently distributed signing-key.

Authentication trees. The security benefits of the refreshing paradigm are increased when
combining it with the use of authentication trees, as introduced in [93]. The idea is to use the
public verification-key in order to authenticate several (e.g., two) fresh instances of the signature
scheme, use each of these instances to authenticate several additional fresh instances, and so on. We
obtain a tree of fresh instances of the basic signature scheme, where each internal node authenticates
its children. We can now use the leaves of this tree in order to sign actual documents, where each
leaf is used at most once. Thus, a signature to an actual document consists of (1) a signature to
this document authenticated with respect to the verification-key associated with some leaf, and
(2) a sequence of verification-keys associated with the nodes along the path from the root to this
leaf, where each such verification-key is authenticated with respect to the verification-key of its
parent. We stress that (by suitable implementation)22 each instance of the signature scheme is
used to sign at most one string (i.e., a single sequence of verification-keys if the instance resides
in an internal node, and an actual document if the instance resides in a leaf). Thus, it suffices
to use a signature scheme that is secure as long as it is used to legitimately sign a single string.
Such signature schemes, called one-time signature schemes and introduced in [102], are easier to
construct than standard signature schemes, especially if one only wishes to sign strings that are
significantly shorter than the signing-key (resp., than the verification-key). For example, using a
one-way function f , we may let the signing-key consist of a sequence of n pairs of strings, let the
corresponding verification-key consist of the corresponding sequence of images of f , and sign an
n-bit long message by revealing the adequate pre-images.23

The hashing paradigm. Note, however, that in the aforementioned authentication-tree, the
instances of the signature scheme (associated with internal nodes) are used to sign a pair of
verification-keys. Thus, we need a one-time signature scheme that can be used for signing messages
that are longer than the verification-key. Here is where the hashing paradigm comes into play. This
paradigm refers to the common practice of signing documents via a two stage process: First, the
actual document is hashed to a (relatively) short bit string, and next the basic signature scheme
is applied to the resulting string. This practice (as well as other usages of the hashing paradigm)

22In order to implement the aforementioned (full-fledged) signature scheme, one needs to store in (secure) memory
all the instances of the basic (one-time) signature scheme that are generated throughout the entire signing process
(which refers to numerous documents). This can be done by extending the model so to allow for memory-dependent
signature schemes. Alternatively, we note that all that we need to store are the random-coins used for generating
each of these instances, and the former can be determined by a pseudorandom function (applied to the name of the
corresponding vertex in the tree). Indeed, the seed of this pseudorandom function will be part of the signing-key of
the resulting (full-fledged) signature scheme.

23That is, the signing-key consist of a sequence ((s0
1, s

1
1), ..., (s

0
n, s1

n)) ∈ {0, 1}2n2

, the corresponding verification-key
is (f(s0

1), f(s1
1)), ..., (f(s0

n), f(s1
n))), and the signature of the message σ1 · · · σn is (sσ1

1 , ..., sσn

n).

40

is sound provided that the hashing function belongs to a family of collision-free hashing functions
(i.e., loosely speaking, given a random hash function in the family, it is infeasible to find two differ-
ent strings that are hashed by this function to the same value; cf. [42]). (A variant of the hashing
paradigm uses the weaker notion of a family of Universal One-Way Hash Functions (cf. [97]), which
in turn can be constructed using any one-way function [97, 109].)

6.3 Public-Key Infrastructure

The standard use of public-key encryption schemes (resp., signature schemes) in real-life communi-
cation requires a mechanism for providing the sender (resp., signature verifier) with the receiver’s
authentic encryption-key (resp., signer’s authentic verification-key). Specifically, this problem arises
in large-scale systems, where typically the sender (resp., verifier) does not have a local record of
the receiver’s encryption-key (resp., signer’s verification-key), and so must obtain this key in a
“reliable” way (i.e., typically, certified by some trusted authority). In most theoretical works, one
assumes that the keys are posted on and can be retrieved from a public-file that is maintained by
a trusted party (which makes sure that each user can post only keys bearing its own identity). In
practice, maintaining such a public-file is a major problem, and mechanisms that implement this
abstraction are typically referred to by the generic term “public-key infrastructure (PKI)”. For a
discussion of the practical problems regarding PKI deployment see, e.g., [92, Chap. 13].

7 General Cryptographic Protocols

The design of secure protocols that implement arbitrary desired functionalities is a major part of
modern cryptography. Taking the opposite perspective, the design of any cryptographic scheme
may be viewed as the design of a secure protocol for implementing a suitable functionality. Still, we
believe that it makes sense to differentiate between basic cryptographic primitives (which involve
little interaction) like encryption and signature schemes on one hand, and general cryptographic
protocols on the other hand.

We survey general results concerning secure multi-party computations, where the two-party case
is an important special case. In a nutshell, these results assert that one can construct protocols
for securely computing any desirable multi-party functionality. Indeed, what is striking about
these results is their generality, and we believe that the wonder is not diminished by the (various
alternative) conditions under which these results hold.

Our focus on the general study of secure multi-party computation (rather than on protocols
for solving specific problems) is natural in the context of the theoretical treatment of the subject
matter. We wish to highlight the importance of this general study to practice. Firstly, this study
clarifies fundamental issues regarding security in a multi-party environment. Secondly, it draws the
lines between what is possible in principle and what is not. Thirdly, it develops general techniques
for designing secure protocols. And last, sometimes, it may even yield schemes (or modules) that
may be incorporated in practical systems.

A general framework for casting (m-party) cryptographic (protocol) problems consists of spec-
ifying a random process24 that maps m inputs to m outputs. The inputs to the process are to be

24That is, we consider the secure evaluation of randomized functionalities, rather than “only” the secure evaluation
of functions. Specifically, we consider an arbitrary (randomized) process F that on input (x1, ..., xm), first selects

at random (depending only on ℓ
def
=

Pm

i=1 |xi|) an m-ary function f , and then outputs the m-tuple f(x1, ..., xm) =

41

thought of as the local inputs of m parties, and the m outputs are their corresponding (desired) lo-
cal outputs. The random process describes the desired functionality. If the m parties were to trust
some (possibly external) party, then they could each send their local input to the trusted party,
who would compute the outcome of the process, and send to each party the corresponding output.
A pivotal question in the area of cryptographic protocols is to what extent can this (imaginary)
trusted party be “emulated” by the mutually distrustful parties themselves.

The results surveyed below describe a variety of models in which such an “emulation” is possible.
The models vary by the underlying assumptions regarding the communication channels, numerous
parameters relating to the extent of adversarial behavior, and the desired level of emulation of the
trusted party (i.e., level of “security”).

Organization: Section 7.1 provides a rather comprehensive survey of the various definitions used
in the area of secure multi-party computation, whereas Section 7.2 surveys the main known results.
However, some readers may prefer to first consider one concrete case of the definitional approach,
as provided in Section 7.1.2, and proceed directly to see some constructions (in Section 7.3). All
the foregoing refers to the security of stand-alone executions, and the preservation of security in
an environment in which many executions of many protocols are being attacked is considered in
Section 7.4.

7.1 The Definitional Approach and Some Models

Before describing the aforementioned results, we further discuss the notion of “emulating a trusted
party”, which underlies the definitional approach to secure multi-party computation (as initiated
and developed in [75, 95, 8, 9, 28, 29]). The approach can be traced back to the definition of
zero-knowledge (see [77]), and even to the definition of secure encryption (see [55], rephrasing [76]).
The underlying paradigm (called the simulation paradigm (see Section 4.1)) is that a scheme is
secure if whatever a feasible adversary can obtain after attacking it, is also feasibly attainable
“from scratch”. In the case of zero-knowledge this amounts to saying that whatever a (feasible)
verifier can obtain after interacting with the prover on a prescribed valid assertion, can be (feasibly)
computed from the assertion itself. In the case of multi-party computation we compare the effect
of adversaries that participate in the execution of the actual protocol to the effect of adversaries
that participate in an imaginary execution of a trivial (ideal) protocol for computing the desired
functionality with the help of a trusted party. If whatever the adversaries can feasibly obtain in
the former real setting can also be feasibly obtained in the latter ideal setting then the protocol
“emulates the ideal setting” (i.e., “emulates a trusted party”), and so is deemed secure. This
basic approach can be applied in a variety of models, and is used to define the goals of security in
these models.25 We first discuss some of the parameters used in defining various models, and next

(f1(x1, ..., xm), ..., fm(x1, ..., xm)). In other words, F (x1, ..., xm) = F ′(r, x1, ..., xm), where r is uniformly selected in

{0, 1}ℓ′ (with ℓ′ = poly(ℓ)), and F ′ is a function mapping (m + 1)-long sequences to m-long sequences.
25A few technical comments are in place. First, we assume that the inputs of all parties are of the same length. We

comment that as long as the lengths of the inputs are polynomially related, the foregoing convention can be enforced
by padding. On the other hand, some length restriction is essential for the security results, because in general it
is impossible to hide all information regarding the length of the inputs to a protocol. Second, we assume that the
desired functionality is computable in probabilistic polynomial-time, because we wish the secure protocol to run in
probabilistic polynomial-time (and a protocol cannot be more efficient than the corresponding centralized algorithm).
Clearly, the results can be extended to functionalities that are computable within any given (time-constructible) time
bound, using adequate padding.

42

demonstrate the application of this approach in two important models. For further details, see [29]
or [58, Sec. 7.2 and 7.5.1].

7.1.1 Some parameters used in defining security models

The following parameters are described in terms of the actual (or real) computation. In some cases,
the corresponding definition of security is obtained by imposing some restrictions or provisions on
the ideal model. For example, in the case of two-party computation (see below), secure computa-
tion is possible only if premature termination is not considered a breach of security. In that case,
the suitable security definition is obtained (via the simulation paradigm) by allowing (an analogue
of) premature termination in the ideal model. In all cases, the desired notion of security is defined
by requiring that for any adequate adversary in the real model, there exist a corresponding adver-
sary in the corresponding ideal model that obtains essentially the same impact (as the real-model
adversary).

The communication channels: The parameters of the model include questions like whether or
not the channels may be tapped by an adversary, whether or not they are tamper-free, and
questions referring to the network behavior (in the case of multi-party protocols).

Wire-tapping versus the private-channel model: The standard assumption in cryptography is
that the adversary may tap all communication channels (between honest parties). In contrast,
one may postulate that the adversary cannot obtain messages sent between a pair of honest
parties, yielding the so-called private-channel model (cf. [19, 37]). The latter postulate may
be justified in some settings. Furthermore, it may be viewed as a useful abstraction that
provides a clean model for the study and development of secure protocols. In this respect, it
is important to mention that, in a variety of settings of the other parameters, private channels
can be easily emulated by ordinary “tapped channels”.

Broadcast channel: In the multi-party context, one may postulate the existence of a broadcast
channel (cf. [105]), and the motivation and justifications are as in the case of the private-
channel model.

The tamper-free assumption: The standard assumption in the area is that the adversary can-
not modify, duplicate, or generate messages sent over the communication channels (between
honest parties). Again, this assumption can be justified in some settings and can be emulated
in others (cf., [11, 30]).

Network behavior: Most works in the area assume that communication is synchronous and
that point-to-point channels exist between every pair of processors (i.e., a complete network).
However, one may also consider asynchronous communication (cf. [17]) and arbitrary networks
of point-to-point channels (cf. [47]).

Set-up assumptions: Unless stated differently, we make no set-up assumptions (except for the
obvious assumption that all parties have identical copies of the protocol’s program). However,
in some cases it is assumed that each party knows a verification-key corresponding to each
of the other parties (or that a public-key infrastructure is available). Another assumption,
made more rarely, is that all parties have access to some common (trusted) random string.

43

Computational limitations: Typically, we consider computationally-bounded adversaries (e.g.,
probabilistic polynomial-time adversaries). However, the private-channel model allows for the
(meaningful) consideration of computationally-unbounded adversaries.

We stress that, also in the case of computationally-unbounded adversaries, security should
be defined by requiring that for every real adversary, whatever the adversary can compute
after participating in the execution of the actual protocol is computable within comparable
time by an imaginary adversary participating in an imaginary execution of the trivial ideal
protocol (for computing the desired functionality with the help of a trusted party). That is,
although no computational restrictions are made on the real-model adversary, it is required
that the ideal-model adversary that obtains the same impact does so within comparable time
(i.e., within time that is polynomially related to the running time of the real-model adversary
being simulated). Thus, any construction proven secure in the computationally-unbounded
adversary model is (trivially) secure with respect to computationally-bounded adversaries.

Restricted adversarial behavior: The parameters of the model include questions like whether
or not the adversary is “adaptive” and “active” (where these terms are discussed next).

Adaptive versus non-adaptive: The most general type of an adversary considered in the lit-
erature is one that may corrupt parties to the protocol while the execution goes on, and
does so based on partial information it has gathered so far (cf., [31]). A somewhat restricted
model, which seems adequate in many settings, postulates that the set of dishonest parties
is fixed (arbitrarily) before the execution starts (but this set is, of course, not known to the
honest parties). The latter model is called non-adaptive as opposed to the adaptive adversary
discussed first. Although the adaptive model is stronger, the non-adaptive model provides a
reasonable level of security in many applications.

Active versus passive: An orthogonal parameter of restriction refers to whether a dishonest
party takes active steps to disrupt the execution of the protocol (i.e., sends messages that
differ from those specified by the protocol), or merely gathers information (which it may latter
share with the other dishonest parties). The latter adversary has been given a variety of names
such as semi-honest, passive, and honest-but-curious. This restricted model may be justified
in certain settings, and certainly provides a useful methodological locus (cf., [68, 69, 56] and
Section 7.3). Below we refer to the adversary of the unrestricted model as to active; another
commonly used name is malicious.

Restricted notions of security: One important example is the willingness to tolerate “unfair”
protocols in which the execution can be suspended (at any time) by a dishonest party, provided
that it is detected doing so. We stress that in case the execution is suspended, the dishonest
party does not obtain more information than it could have obtained when not suspending the
execution. (What may happen is that the honest parties will not obtain their desired outputs,
but rather will detect that the execution was suspended.) We stress that the motivation to
this restricted model is the impossibility of obtaining general secure two-party computation
in the unrestricted model. For more details, see Section 7.1.3.

Upper bounds on the number of dishonest parties: In some models, secure multi-party com-
putation is possible only if a majority of the parties is honest (cf., [19, 39]). Sometimes even a
special majority (e.g., 2/3) is required. General “(resilient) adversarial-structures” have been
considered too (cf. [83]).

44

7.1.2 Example: Multi-party protocols with honest majority

Here we consider an active, non-adaptive, computationally-bounded adversary, and do not assume
the existence of private channels. Our aim is to define multi-party protocols that remain secure
provided that the honest parties are in majority. (The reason for requiring a honest majority will
be discussed at the end of this subsection.)

Consider any multi-party protocol. We first observe that each party may change its local input
before even entering the execution of the protocol. However, this is unavoidable also when the
parties utilize a trusted party. Consequently, such an effect of the adversary on the real execution
(i.e., modification of its own input prior to entering the actual execution) is not considered a breach
of security. In general, whatever cannot be avoided when the parties utilize a trusted party, is not
considered a breach of security. We wish secure protocols (in the real model) to suffer only from
whatever is unavoidable also when the parties utilize a trusted party. Thus, the basic paradigm
underlying the definitions of secure multi-party computations amounts to requiring that the only
situations that may occur in the real execution of a secure protocol are those that can also occur
in a corresponding ideal model (where the parties may employ a trusted party). In other words,
the “effective malfunctioning” of parties in secure protocols is restricted to what is postulated in
the corresponding ideal model.

When defining secure multi-party protocols with honest majority, we need to pin-point what
cannot be avoided in the ideal model (i.e., when the parties utilize a trusted party). This is easy,
because the ideal model is very simple. Since we are interested in executions in which the majority
of parties are honest, we consider an ideal model in which any minority group (of the parties) may
collude as follows:

1. First, this dishonest minority shares its original inputs and decides together on replaced inputs
to be sent to the trusted party. (The other parties send their respective original inputs to the
trusted party.)

2. Upon receiving inputs from all parties, the trusted party determines the corresponding outputs
and sends them to the corresponding parties. (We stress that the information sent between
the honest parties and the trusted party is not seen by the dishonest colluding minority.)

3. Upon receiving the output-message from the trusted party, each honest party outputs it
locally, whereas the dishonest colluding minority may determine their outputs based on all
they know (i.e., their initial inputs and their received outputs).

Note that the foregoing behavior of the minority group is unavoidable in any execution of any
protocol (even in presence of trusted parties). This is the reason that the ideal model was defined
as above. Now, a secure multi-party computation with honest majority is required to emulate this
ideal model. That is, the effect of any feasible adversary that controls a minority of the parties in a
real execution of the actual protocol, can be essentially simulated by a (different) feasible adversary
that controls the corresponding parties in the ideal model. That is:

Definition 7.1 (secure protocols – a sketch): Let f be an m-ary functionality and Π be an m-party
protocol operating in the real model.

• For a real-model adversary A, controlling some minority of the parties (and tapping all com-
munication channels), and an m-sequence x, we denote by realΠ,A(x) the sequence of m
outputs resulting from the execution of Π on input x under attack of the adversary A.

45

• For an ideal-model adversary A′, controlling some minority of the parties, and an m-sequence
x, we denote by idealf,A′(x) the sequence of m outputs resulting from the ideal process de-
scribed above, on input x under attack of the adversary A′.

We say that Π securely implements f with honest majority if for every feasible real-model adversary
A, controlling some minority of the parties, there exists a feasible ideal-model adversary A′, con-
trolling the same parties, so that the probability ensembles {realΠ,A(x)}x and {idealf,A′(x)}x are
computationally indistinguishable (as in Footnote 8).

Thus, security means that the effect of each minority group in a real execution of a secure protocol
is “essentially restricted” to replacing its own local inputs (independently of the local inputs of the
majority parties) before the protocol starts, and replacing its own local outputs (depending only
on its local inputs and outputs) after the protocol terminates. (We stress that in the real execution
the minority parties do obtain additional pieces of information; yet in a secure protocol they gain
nothing from these additional pieces of information, because they can actually reproduce those by
themselves.)

The fact that Definition 7.1 refers to a model without private channels is due to the fact that
our (sketchy) definition of the real-model adversary allowed it to tap the channels, which in turn
affects the set of possible ensembles {realΠ,A(x)}x. When defining security in the private-channel
model, the real-model adversary is not allowed to tap channels between honest parties, and this
again affects the possible ensembles {realΠ,A(x)}x. On the other hand, when we wish to define
security with respect to passive adversaries, both the scope of the real-model adversaries and the
scope of the ideal-model adversaries changes. In the real-model execution, all parties follow the
protocol but the adversary may alter the output of the dishonest parties arbitrarily depending on
all their intermediate internal states (during the execution). In the corresponding ideal-model, the
adversary is not allowed to modify the inputs of dishonest parties (in Step 1), but is allowed to
modify their outputs (in Step 3).

We comment that a definition analogous to Definition 7.1 can be presented also in the case
that the dishonest parties are not in minority. In fact, such a definition seems more natural, but
the problem is that such a definition cannot be satisfied. That is, most natural functionalities do
not have a protocol for computing them securely in case at least half of the parties are dishonest
and employ an adequate adversarial strategy. This follows from an impossibility result regarding
two-party computation, which essentially asserts that there is no way to prevent a party from
prematurely suspending the execution [41]. On the other hand, secure multi-party computation
with dishonest majority is possible if premature suspension of the execution is not considered a
breach of security (see next).

7.1.3 Another example: Two-party protocols allowing abort

In light of the last paragraph, we now consider multi-party computations in which premature
suspension of the execution is not considered a breach of security. For concreteness, we focus on
the special case of two-party computations.26

Intuitively, in any two-party protocol, each party may suspend the execution at any point in
time, and furthermore it may do so as soon as it learns the desired output. Thus, in many cases
(but not all [80]), it is possible for one of the parties to obtain the desired output while preventing

26As in Section 7.1.2, we consider a non-adaptive, active, computationally-bounded adversary.

46

the other party from fully determining its own output. The same phenomenon occurs even in case
the two parties just wish to generate a common random value [41]. Thus, when defining security
(w.r.t active adversaries in the two-party setting), we do not consider such premature suspension
of the execution a breach of security. Consequently, we consider an ideal model where each of the
two parties may “shut-down” the trusted (third) party at any point in time. In particular, this
may happen after the trusted party has supplied the outcome of the computation to one party but
before it has supplied it to the other. That is, an execution in the ideal model proceeds as follows:

1. Each party sends its input to the trusted party, where the dishonest party may replace its
input or send no input at all (which can be treated as sending a default value).

2. Upon receiving inputs from both parties, the trusted party determines the corresponding
outputs, and sends the first output to the first party.

3. In case the first party is dishonest, it may instruct the trusted party to halt, otherwise it
always instructs the trusted party to proceed. If instructed to proceed, the trusted party
sends the second output to the second party.

4. Upon receiving the output-message from the trusted party, an honest party outputs it locally,
whereas a dishonest party may determine its output based on all it knows (i.e., its initial
input and its received output).

A secure two-party computation allowing abort is required to emulate this ideal model. That is,
as in Definition 7.1, security is defined by requiring that for every feasible real-model adversary
A, there exists a feasible ideal-model adversary A′, controlling the same party, so that the prob-
ability ensembles representing the corresponding (real and ideal) executions are computationally
indistinguishable. This means that each party’s “effective malfunctioning” in a secure protocol is
restricted to supplying an initial input of its choice and aborting the computation at any point in
time. (Needless to say, the choice of the initial input of each party may not depend on the input
of the other party.)

We mention that an alternative way of dealing with the problem of premature suspension of ex-
ecution (i.e., abort) is to restrict our attention to single-output functionalities; that is, functionalities
in which only one party is supposed to obtain an output. The definition of secure computation of
such functionalities can be made identical to Definition 7.1, with the exception that no restriction
is made on the set of dishonest parties (and in particular one may consider a single dishonest party
in the case of two-party protocols). For further details, see [58, Sec. 7.2.3].

7.2 Some Known Results

We next list some of the models for which general secure multi-party computation is known to be
attainable (i.e., models in which one can construct secure multi-party protocols for computing any
desired functionality). We mention that the first results of this type were obtained by Goldreich,
Micali, Wigderson and Yao [68, 117, 69].

• Assuming the existence of enhanced trapdoor permutations27 , secure multi-party computation
is possible in the following models (see [68, 117, 69], with details in [56, 58]):

27See [58, Apdx. C.1].

47

1. Passive adversary, for any number of dishonest parties (see [58, Sec. 7.3]).

2. Active adversary that may control only a minority of the parties (see [58, Sec. 7.5.4]).

3. Active adversary, for any number of bad parties, provided that suspension of execution
is not considered a violation of security (i.e., as discussed in Section 7.1.3). (See [58,
Sec. 7.4 and 7.5.5].)

In all these cases, the adversary is computationally-bounded and non-adaptive.28 On the
other hand, the adversary may tap the communication lines between honest parties (i.e., we
do not assume “private channels” here). The results for active adversaries assume a broadcast
channel. Indeed, the latter can be implemented (while tolerating any number of bad parties)
using a signature scheme and assuming a public-key infrastructure (or that each party knows
the verification-key corresponding to each of the other parties).

• Making no computational assumptions and allowing computationally-unbounded adversaries,
but assuming private channels, secure multi-party computation is possible in the following
models (cf. [19, 37]):

1. Passive adversary that may control only a minority of the parties.

2. Active adversary that may control only less than one third of the parties.29

In both cases the adversary may be adaptive (cf. [19, 31]).

Results for asynchronous communication and arbitrary networks of point-to-point channels were
presented in [17, 20] and [47], respectively.

Note that the implementation of a broadcast channel can be cast as a cryptographic protocol
problem (i.e., for the functionality (v, λ, ..., λ) 7→ (v, v, ..., v), where λ denotes the empty string).
Thus, it is not surprising that the results regarding active adversaries either assume the existence
of such a channel or require a setting in which the latter can be implemented.

Secure reactive computation: The foregoing results (easily) extend to a reactive model of com-
putation in which each party interacts with a high-level process (or application). The high-level
process supplies each party with a sequence of inputs, one at a time, and expect to receive corre-
sponding outputs from the parties. That is, a reactive system goes through (a possibly unbounded
number of) iterations of the following type:

• Parties are given inputs for the current iteration.

• Depending on the current inputs, the parties are supposed to compute outputs for the current
iteration. That is, the outputs in iteration j are determined by the inputs of the jth iteration.

A more general formulation allows the outputs of each iteration to depend also on a global state,
which is possibly updated in each iteration. The global state may include all inputs and outputs
of previous iterations, and may only be partially known to individual parties. (In a secure reactive
computation such a global state may be maintained by all parties in a “secret sharing” manner.)
For further discussion, see [58, Sec. 7.7.1].

28Similar results for (active) adaptive adversaries are presented in [31, 43].
29Fault-tolerance can be increased to a regular minority if a broadcast channel exists [105].

48

Efficiency considerations: One important efficiency measure regarding protocols is the number
of communication rounds in their execution. The aforementioned results were originally obtained
using protocols that use an unbounded number of rounds. In some cases, subsequent works obtained
secure constant-round protocols (e.g., for multi-party computations with honest majority [10], and
for two-party computations allowing abort [90]). Other important efficiency considerations include
the total number of bits sent in the execution of a protocol, and the local computation time.
Improving the various efficiency measures has been the focus of considerable research.

7.3 Construction Paradigms

We briefly sketch a couple of paradigms used in the construction of secure multi-party protocols. We
focus on the construction of secure protocols for the model of computationally-bounded and non-
adaptive adversaries [68, 117, 69]. These constructions proceed in two steps (see details in [56, 58]).
First a secure protocol is presented for the model of passive adversaries (for any number of dishonest
parties), and next such a protocol is “compiled” into a protocol that is secure in one of the two
models of active adversaries (i.e., either in a model allowing the adversary to control only a minority
of the parties or in a model in which premature suspension of the execution is not considered a
violation of security). These two steps are presented in the following two corresponding subsections.

Recall that in the model of passive adversaries, all parties follow the prescribed protocol, but
at termination the adversary may alter the outputs of the dishonest parties depending on all their
intermediate internal states (during the execution). Below, we refer to protocols that are secure in
the model of passive (resp., active) adversaries by the term passively-secure (resp., actively-secure).

7.3.1 Passively-secure computation with shares

For any m ≥ 2, suppose that m parties, each having a private input, wish to obtain the value of
a predetermined m-argument Boolean function evaluated at their sequence of inputs. Below, we
outline a passively-secure protocol for achieving this goal. For simplicity, we present the passively-
secure protocol in the private-channel model. We mention that the design of passively-secure
multi-party protocol for any functionality (allowing different outputs to different parties as well as
handling also randomized computations) reduces easily to the aforementioned task.

We assume that the parties hold a circuit for computing the value of the function on inputs of
the adequate length, and that the circuit contains only and and not gates. The key idea is to have
each party “secretly share” its input with everybody else, and have the parties “secretly transform”
shares of the input wires of the circuit into shares of the output wire of the circuit, thus obtaining
shares of the output (which allows for the reconstruction of the actual output). The value of each
wire in the circuit is shared in a way such that all shares yield the value, whereas lacking even one
of the shares keeps the value totally undetermined. That is, we use a simple secret sharing scheme
(cf. [111]) such that a bit b is shared by a random sequence of m bits that sum-up to b mod 2. First,
each party shares each of its input bits with all parties (by secretly sending each party a random
value and setting its own share accordingly). Next, all parties jointly scan the circuit from its input
wires to the output wire, processing each gate as follows:

• When encountering a gate, the parties already hold shares of the values of the wires entering
the gate, and their aim is to obtain shares of the value of the wires exiting the gate.

49

• For a not-gate this is easy: The first party just flips the value of its share, and all other
parties maintain their shares.

• Since an and-gate corresponds to multiplication modulo 2, the parties need to securely com-
pute the following randomized functionality (in which the xi’s denote shares of one entry-wire,
the yi’s denote shares of the second entry-wire, the zi’s denote shares of the exit-wire, and
the shares indexed by i belongs to Party i):

((x1, y1), ..., (xm, ym)) 7→ (z1, ..., zm) (1)

where
∑m

i=1 zi = (
∑m

i=1 xi) · (
∑m

i=1 yi). (2)

That is, the zi’s are random subject to Eq. (2).

Finally, the parties broadcast their shares of the circuit-output wire, and each party reconstructs the
value of the output based on all shares it now holds. Thus, the parties have propagated shares of the
input wires into shares of the output wire, by repeatedly conducting privately-secure computation
of the m-ary functionality of Eq. (1) & (2). That is, securely evaluating the entire (arbitrary) circuit
“reduces” to securely conducting a specific (very simple) multi-party computation. But things get
even simpler: The key observation is that

(

m
∑

i=1

xi

)

·

(

m
∑

i=1

yi

)

=
m
∑

i=1

xiyi +
∑

1≤i<j≤m

(xiyj + xjyi) . (3)

Thus, the m-ary functionality of Eq. (1) & (2) can be computed as follows (where all arithmetic
operations are mod 2):

1. Each Party i locally computes zi,i
def
= xiyi.

2. Next, each pair of parties (i.e., Parties i and j) securely compute random shares of xiyj +yixj .
That is, Parties i and j (holding (xi, yi) and (xj , yj), respectively), need to securely compute
the randomized two-party functionality ((xi, yi), (xj , yj)) 7→ (zi,j , zj,i), where the z’s are ran-
dom subject to zi,j + zj,i = xiyj + yixj. Equivalently, Party j uniformly selects zj,i ∈ {0, 1},
and Parties i and j securely compute the deterministic functionality ((xi, yi), (xj , yj, zj,i)) 7→
(zj,i + xiyj + yixj , λ), where λ denotes the empty string.

The latter simple two-party computation can be securely implemented using a 1-out-of-4
Oblivious Transfer (see [74] and [58, Sec. 7.3.3]), which in turn can be implemented using
enhanced trapdoor permutations (see [50], [58, Sec. 7.3.2], and [71]). Loosely speaking, a
1-out-of-k Oblivious Transfer is a protocol enabling one party to obtain one of k secrets held
by another party, without the second party learning which secret was obtained by the first
party. That is, we refer to the two-party functionality

(i, (s1, ..., sk)) 7→ (si, λ). (4)

Note that any function f : [k] × {0, 1}∗ → {0, 1}∗ can be privately-computed by invoking a
1-out-of-k Oblivious Transfer on inputs i and (f(1, y), ..., f(k, y)), where i (resp., y) is the
initial input of the first (resp., second) party.

3. Finally, for every i = 1, ...,m, summing-up all the zi,j’s yields the desired share of Party i.

50

Hence, we have reduced the passively-secure computation of a general m-party functionality to
the passively-secure computation a specific two-party function over [4] × {0, 1}4 (i.e., 1-out-of-4
Oblivious Transfer of bit secrets). The foregoing reduction is analogous to a construction that was
briefly described in [69]. A detailed description and full proofs appear in [56, 58].

7.3.2 Compilation of passively-secure protocols into actively-secure ones

Recalling that the protocol constructed in Section 7.3.1 works in the private-channel model, we first
transform it into a protocol for the standard (wire-tapped) model (by using a public-key encryption
scheme). Now, we show how to transform any passively-secure protocol into a corresponding
actively-secure protocol. The communication model in both protocols consists of a single broadcast
channel. Note that the messages of the original protocol may be assumed to be sent over a broadcast
channel, because the adversary may see them anyhow (by tapping the point-to-point channels), and
because a broadcast channel is trivially implementable in the case of passive adversaries. As for
the resulting actively-secure protocol, the broadcast channel it uses can be implemented via an
(authenticated) Byzantine Agreement protocol [48, 91], thus providing an emulation of this model
on the standard point-to-point model (in which a broadcast channel does not exist). We mention
that authenticated Byzantine Agreement is typically implemented using a signature scheme (and
assuming that each party knows the verification-key corresponding to each of the other parties).

Turning to the transformation itself, the main idea is to use zero-knowledge proofs (as described
in Section 4.3) in order to force parties to behave in a way that is consistent with the (passively-
secure) protocol. Actually, we need to confine each party to a unique consistent behavior (i.e.,
according to some fixed local input and a sequence of coin tosses), and to guarantee that a party
cannot fix its input (and/or its coins) in a way that depends on the inputs of honest parties. Thus,
some preliminary steps have to be taken before the step-by-step emulation of the original protocol
may start. Specifically, the compiled protocol (which like the original protocol is executed over a
broadcast channel) proceeds as follows:

1. Committing to the local input: Prior to the emulation of the original protocol, each party
commits to its input (using a commitment scheme [96]). In addition, using a zero-knowledge
proof-of-knowledge [77, 13, 68], each party also proves that it knows its own input; that is,
that it can decommit to the commitment it sent. (These zero-knowledge proof-of-knowledge
are conducted sequentially to prevent dishonest parties from setting their inputs in a way
that depends on inputs of honest parties.)

2. Generation of local random tapes: Next, all parties jointly generate a sequence of random
bits for each party such that only this party knows the outcome of the random sequence
generated for it, but everybody gets a commitment to this outcome. These sequences will
be used as the random-inputs (i.e., sequence of coin tosses) for the original protocol. Each
bit in the random-sequence generated for Party X is determined as the exclusive-or of the
outcomes of instances of an (augmented) coin-tossing protocol (see [21] and [58, Sec. 7.4.3.5])
that Party X plays with each of the other parties. The latter protocol provides the other
parties with a commitment to the outcome obtained by Party X.

3. Effective prevention of premature termination: In addition, when compiling (the passively-
secure protocol to an actively-secure protocol) for the model that allows the adversary to
control only a minority of the parties, each party shares its input and random-input with all

51

other parties using a “Verifiable Secret Sharing” (VSS) protocol (see [38] and [58, Sec. 7.5.5.1]).
Loosely speaking, a VSS protocol allows to share a secret in a way that enables each partic-
ipant to verify that the share it got fits the publicly posted information, which includes (on
top of the commitments posted in Steps 1 and 2) commitments to all shares. The use of VSS
guarantees that if Party X prematurely suspends the execution, then the honest parties can
together reconstruct all Party X’s secrets and carry on the execution while playing its role.
This step effectively prevents premature termination, and is not needed in a model that does
not consider premature termination a breach of security.

4. Step-by-step emulation of the original protocol: After all the foregoing preliminary steps are
completed, we turn to the main step in which the new protocol emulates the original one. In
each step, each party augments the message determined by the original protocol with a zero-
knowledge proof that asserts that the message was indeed computed correctly. Recall that
the next message (as determined by the original protocol) is a function of the sender’s own
input, its random-input, and the messages it has received so far (where the latter are known
to everybody because they were sent over a broadcast channel). Furthermore, the sender’s
input is determined by its commitment (as sent in Step 1), and its random-input is similarly
determined (in Step 2). Thus, the next message (as determined by the original protocol) is a
function of publicly known strings (i.e., the said commitments as well as the other messages
sent over the broadcast channel). Moreover, the assertion that the next message was indeed
computed correctly is an NP-assertion, and the sender knows a corresponding NP-witness (i.e.,
its own input and random-input as well as the corresponding decommitment information).
Thus, the sender can prove in zero-knowledge (to each of the other parties) that the message
it is sending was indeed computed according to the original protocol.

The foregoing compilation was first outlined in [68, 69]. A detailed description and full proofs
appear in [56, 58].

7.4 Concurrent execution of protocols

The definitions and results surveyed so far refer to a setting in which, at each time, only a single
execution of a cryptographic protocol takes place (or only one execution may be controlled by
the adversary). In contrast, in many distributed settings (e.g., the Internet), many executions
are taking place concurrently (and several of them may be controlled by the same adversary).
Furthermore, it is undesirable (and sometimes even impossible) to coordinate these executions (so
to effectively enforce a single-execution setting). Still, the definitions and results obtained in the
single-execution setting serve as a good starting point for the study of security in the setting of
concurrent executions.

As in the case of stand-alone security, the notion of zero-knowledge provides a good test case
for the study of concurrent security. Indeed, in order to demonstrate the security issues arising
from concurrent execution of protocols, we consider the concurrent execution of zero-knowledge
protocols. Specifically, we consider a party P holding a random (or rather pseudorandom) function
f : {0, 1}2n→{0, 1}n, and willing to participate in the following protocol (with respect to security
parameter n).30 The other party, called A for adversary, is supposed to send P a binary value
v ∈ {1, 2} specifying which of the following two cases to execute:

30In fact, assuming that P shares a pseudorandom function f with its friends (as explained in Section 3.3), the
foregoing protocol is an abstraction of a natural “mutual identification” protocol. (The example is adapted from [66].)

52

For v = 1: Party P uniformly selects α ∈ {0, 1}n, and sends it to A, who is supposed to reply
with a pair of n-bit long strings, denoted (β, γ). Party P checks whether or not f(αβ) = γ.
In case equality holds, P sends A some secret information (e.g., the secret-key corresponding
to P ’s public-key).

For v = 2: Party A is supposed to uniformly select α ∈ {0, 1}n, and sends it to P , which selects
uniformly β ∈ {0, 1}n, and replies with the pair (β, f(αβ)).

Observe that P ’s strategy (in each case) is zero-knowledge (even w.r.t auxiliary-inputs as defined
in Definition 4.1): Intuitively, if the adversary A chooses the case v = 1, then it is infeasible for
A to guess a passing pair (β, γ) with respect to a random α provided by P . Thus, except with
negligible probability (when it may get secret information), A does not obtain anything from the
interaction. On the other hand, if the adversary A chooses the case v = 2, then it obtains a pair
that is indistinguishable from a uniformly selected pair of n-bit long strings (because β is selected
uniformly by P , and for any α the value f(αβ) looks random to A). In contrast, if the adversary
A can conduct two concurrent executions with P , then it may learn the desired secret information:
In one session, A sends v = 1 while in the other it sends v = 2. Upon receiving P ’s message,
denoted α, in the first session, A sends it as its own message in the second session, obtaining a pair
(β, f(αβ)) from P ’s execution of the second session. Now, A sends the pair (β, f(αβ)) to the first
session of P , and A obtains the desired secret, since this pair passes the check.

An attack of the foregoing type is called a relay attack: During such an attack the adversary
just invokes two executions of the protocol and relays messages between them (without any modifi-
cation). However, in general, the adversary in a concurrent setting is not restricted to relay attacks.
For example, consider a minor modification to the above protocol so that, in case v = 2, party
P replies with (say) the pair (β, f(αβ)), where α = α ⊕ 1|α|, rather than with (β, f(αβ)). The
modified strategy P is zero-knowledge and it also withstands a relay attack, but it can be “abused”
easily by a more general concurrent attack.

The foregoing example is merely the tip of an iceberg, but it suffices for introducing the main
lesson: An adversary attacking several concurrent executions of the same protocol may be able to
cause more damage than by attacking a single execution (or several sequential executions) of the
same protocol. One may say that a protocol is concurrently secure if whatever the adversary may
obtain by invoking and controlling parties in real concurrent executions of the protocol is also
obtainable by a corresponding adversary that controls corresponding parties making concurrent
functionality calls to a trusted party (in a corresponding ideal model).31 More generally, one may
consider concurrent executions of many sessions of several protocols, and say that a set of protocols
is concurrently secure if whatever the adversary may obtain by invoking and controlling such real
concurrent executions is also obtainable by a corresponding adversary that invokes and controls
concurrent calls to a trusted party (in a corresponding ideal model). Consequently, a protocol
is said to be secure with respect to concurrent compositions if adding this protocol to any set of
concurrently secure protocols yields a set of concurrently secure protocols.

A much more appealing approach was suggested by Canetti [30]. Loosely speaking, Canetti
suggests to consider a protocol to be secure (called environmentally-secure (or Universally Com-

31One specific concern (in such a concurrent setting) is the ability of the adversary to “non-trivially correlate
the outputs” of concurrent executions. This ability, called malleability, was first investigated by Dolev, Dwork
and Naor [46]. We comment that providing a general definition of what “correlated outputs” means (for arbitrary
functionalities) seems very challenging (if at all possible). Indeed the focus of [46] is on several important special
cases such as encryption and commitment schemes.

53

posable secure [30])) only if it remains secure when executed within any (feasible) environment.
Following the simulation paradigm, we get the following definition:

Definition 7.2 (environmentally-secure protocols [30] – a rough sketch): Let f be an m-ary func-
tionality and Π be an m-party protocol, and consider the following real and ideal models.

In the real model the adversary controls some of the parties in an execution of Π and all parties
can communicate with an arbitrary probabilistic polynomial-time process, which is called an
environment (and possibly represents other executions of various protocols that are taking place
concurrently). Honest parties only communicate with the environment before the execution
starts and when it ends; they merely obtain their inputs from the environment and pass their
outputs to it. In contrast, dishonest parties may communicate freely with the environment,
concurrently to the entire execution of Π.

In the ideal model the (simulating) adversary controls the same parties, which use an ideal (trusted-
party) that behaves according to the functionality f (as in Section 7.1.2). All parties can com-
municate with the (same) environment (as in the real model). Indeed, the dishonest parties
may communicate extensively with the environment before and after their single communica-
tion with the trusted party.

We say that Π is an environmentally-secure protocol for computing f if for every probabilistic polynomial-
time adversary A in the real model there exists a probabilistic polynomial-time adversary A′ con-
trolling the same parties in the ideal model such that no probabilistic polynomial-time environment
can distinguish the case in which it is accessed by the parties in the real execution from the case it
is accessed by parties in the ideal model.

As hinted above, the environment may account for other executions of various protocols that are
taking place concurrently to the main execution being considered. The definition requires that such
environments cannot distinguish the real execution from an ideal one. This means that anything
that the real adversary (i.e., operating in the real model) gains from the execution and some
environment, can be also obtained by an adversary operating in the ideal model and having access
to the same environment. Indeed, Canetti proves that environmentally-secure protocols are secure
with respect to concurrent compositions [30].

It is known is that environmentally-secure protocols for any functionality can be constructed
for settings in which more than two-thirds of the active parties are honest [30]. This holds un-
conditionally for the private channel model, and under standard assumptions (e.g., allowing the
construction of public-key encryption schemes) for the standard model (i.e., without private chan-
nel). The immediate consequence of this result is that general environmentally-secure multi-party
computation is possible, provided that more than two-thirds of the parties are honest.

In contrast, general environmentally-secure two-party computation is not possible (in the stan-
dard sense, see, e.g., [32]).32 Still, one can salvage general environmentally-secure two-party compu-
tation in the following reasonable model: Consider a network that contains servers that are willing
to participate (as “helpers”, possibly for a payment) in computations initiated by a set of (two or
more) users. Now, suppose that two users wishing to conduct a secure computation can agree on
a set of servers so that each user believes that more than two-thirds of the servers (in this set) are

32Of course, some specific two-party computations do have environmentally-secure protocols. See [30] for several
important examples (e.g., key exchange).

54

honest. Then, with the active participation of this set of servers, the two users can compute any
functionality in an environmentally-secure manner.

Other reasonable models where general environmentally-secure two-party computation is possi-
ble include the common random-string (CRS) model [36] and variants of the public-key infrastruc-
ture (PKI) model [5]. In the CRS model, all parties have access to a universal random string (of
length related to the security parameter). We stress that the entity trusted to post this universal
random string is not required to take part in any execution of any protocol, and that all executions
of all protocols may use the same universal random string. The PKI models considered in [5]
require that each party deposits a public-key with a trusted center, while proving knowledge of a
corresponding private-key. This proof may be conducted in zero-knowledge during special epochs
in which no other activity takes place.

7.5 Concluding Remarks

In Sections 7.1-7.2 we have mentioned a host of definitions of security and constructions for multi-
party protocols (especially for the case of more than two parties). Furthermore, some of these
definitions are incomparable to others (i.e., they neither imply the others nor are implies by them),
and there seems to be no single definition that may be crowned as the central one.

For example, in Sections 7.1.2 and 7.1.3, we have presented two alternative definitions of “secure
multi-party protocols”, one requiring an honest majority and the other allowing abort. These
definitions are incomparable and there is no generic reason to prefer one over the other. Actually,
as mentioned in Section 7.1.2, one could formulate a natural definition that implies both definitions
(i.e., waiving the bound on the number of dishonest parties in Definition 7.1). Indeed, the resulting
definition is free of the annoying restrictions that were introduced in each of the two aforementioned
definitions; the “only” problem with the resulting definition is that it cannot be satisfied (in general).
Thus, for the first time in this survey, we have reached a situation in which a natural (and general)
definition cannot be satisfied, and we are forced to choose between two weaker alternatives, where
each of these alternatives carries fundamental disadvantages.

In general, Section 7 carries a stronger flavor of compromise (i.e., recognizing inherent limitations
and settling for a restricted meaningful goal) than previous sections. In contrast to the impression
given in other parts of this survey, it is now obvious that we cannot get all that we may want (see
Section 7.4). Instead, we should study the alternatives, and go for the one that best suits our real
needs.

Indeed, as stated in Section 1.1, the fact that we can define a cryptographic goal does not mean
that we can satisfy it as defined. In case we cannot satisfy the initial definition, we should search
for relaxations that can be satisfied. These relaxations should be defined in a clear manner so that
it would be obvious what they achieve (and what they fail to achieve). Doing so will allow a sound
choice of the relaxation to be used in a specific application. This seems to be a good point to end
the current survey.

A good compromise is one in which
the most important interests

of all parties are satisfied.

Adv. Klara Goldreich-Ingwer (1912–2004)

55

References

[1] W. Aiello and J. H̊astad. Perfect Zero-Knowledge Languages can be Recognized in Two
Rounds. In 28th IEEE Symposium on Foundations of Computer Science, pages 439–448, 1987.

[2] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions: Certain Parts are
As Hard As the Whole. SIAM Journal on Computing, Vol. 17, April 1988, pages 194–209.

[3] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd IEEE Symposium
on Foundations of Computer Science, pages 106–115, 2001.

[4] B. Barak. Constant-Round Coin-Tossing with a Man in the Middle or Realizing the Shared
Random String Model. In 43th IEEE Symposium on Foundations of Computer Science, pages
345–355, 2002.

[5] B. Barak, R. Canetti and J.B. Nielsen. Universally composable protocols with relaxed set-up
assumptions. In 45th IEEE Symposium on Foundations of Computer Science, pages 186–195,
2004.

[6] B. Barak and O. Goldreich, Universal arguments and their applications. In the 17th IEEE
Conference on Computational Complexity, pages 194–203, 2002.

[7] B. Barak and Y. Lindell. Strict Polynomial-time in Simulation and Extraction. SIAM Journal
on Computing, Vol. 33 (4), pages 783–818, May 2004.

[8] D. Beaver. Foundations of Secure Interactive Computing. In Crypto91, Springer-Verlag Lecture
Notes in Computer Science (Vol. 576), pages 377–391.

[9] D. Beaver. Secure Multi-Party Protocols and Zero-Knowledge Proof Systems Tolerating a
Faulty Minority. Journal of Cryptology, Vol. 4, pages 75–122, 1991.

[10] D. Beaver, S. Micali and P. Rogaway. The Round Complexity of Secure Protocols. In 22nd
ACM Symposium on the Theory of Computing, pages 503–513, 1990. See details in [108].

[11] M. Bellare, R. Canetti and H. Krawczyk. A Modular Approach to the Design and Analysis
of Authentication and Key-Exchange Protocols. In 30th ACM Symposium on the Theory of
Computing, pages 419–428, 1998.

[12] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among notions of security
for public-key encryption schemes. In Crypto98, Springer Lecture Notes in Computer Science
(Vol. 1462), pages 26–45.

[13] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In Crypto92, Springer-Verlag
Lecture Notes in Computer Science (Vol. 740), pages 390–420.

[14] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error in Compu-
tationally Sound Protocols? In 38th IEEE Symposium on Foundations of Computer Science,
pages 374–383, 1997.

[15] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for Designing Efficient
Protocols. In 1st Conf. on Computer and Communications Security, ACM, pages 62–73, 1993.

56

[16] C.H. Bennett, G. Brassard and J.M. Robert. Privacy Amplification by Public Discussion.
SIAM Journal on Computing, Vol. 17, pages 210–229, 1988. Preliminary version in Crypto85,
titled “How to Reduce your Enemy’s Information”.

[17] M. Ben-Or, R. Canetti and O. Goldreich. Asynchronous Secure Computation. In 25th ACM
Symposium on the Theory of Computing, pages 52–61, 1993. See details in [28].

[18] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H̊astad, J. Kilian, S. Micali and P. Rogaway.
Everything Provable is Probable in Zero-Knowledge. In Crypto88, Springer-Verlag Lecture
Notes in Computer Science (Vol. 403), pages 37–56, 1990.

[19] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation. In 20th ACM Symposium on the Theory of Comput-
ing, pages 1–10, 1988.

[20] M. Ben-Or, B. Kelmer and T. Rabin. Asynchronous Secure Computations with Optimal
Resilience. In 13th ACM Symposium on Principles of Distributed Computing, pages 183–192,
1994.

[21] M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133–137, February 1982.
See also SIGACT News, Vol. 15, No. 1, 1983.

[22] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge Proof
Systems. SIAM Journal on Computing, Vol. 20, No. 6, pages 1084–1118, 1991. (Considered
the journal version of [23].)

[23] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its Applications. In
20th ACM Symposium on the Theory of Computing, pages 103–112, 1988. See [22].

[24] M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme which
hides all partial information. In Crypto84, Lecture Notes in Computer Science (Vol. 196)
Springer-Verlag, pages 289–302.

[25] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SIAM Journal on Computing, Vol. 13, pages 850–864, 1984. Preliminary
version in 23rd FOCS, 1982.

[26] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. Journal
of Computer and System Science, Vol. 37, No. 2, pages 156–189, 1988. Preliminary version by
Brassard and Crépeau in 27th FOCS, 1986.

[27] G. Brassard and C. Crépeau. Zero-Knowledge Simulation of Boolean Circuits. In Crypto86,
Springer-Verlag Lecture Notes in Computer Science (Vol. 263), pages 223–233, 1987.

[28] R. Canetti. Studies in Secure Multi-Party Computation and Applications. Ph.D. Thesis,
Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel, June 1995.
Available from http://www.wisdom.weizmann.ac.il/∼oded/PS/ran-phd.ps.

[29] R. Canetti. Security and Composition of Multi-party Cryptographic Protocols. Journal of
Cryptology, Vol. 13, No. 1, pages 143–202, 2000.

57

[30] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
In 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145, 2001. Full
version (with different title) is available from Cryptology ePrint Archive, Report 2000/067.

[31] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-party Computation.
In 28th ACM Symposium on the Theory of Computing, pages 639–648, 1996.

[32] R. Canetti and M. Fischlin. Universally Composable Commitments. In Crypto01, Springer-
Verlag Lecture Notes in Computer Science (Vol. 2139), pages 19–40, 2001.

[33] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revisited. In 30th
ACM Symposium on the Theory of Computing, pages 209–218, 1998.

[34] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge Re-
quires Ω̃(log n) Rounds. In 33rd ACM Symposium on the Theory of Computing, pages 570–579,
2001.

[35] R. Canetti and A. Lichtenberg. Certifying Trapdoor Permutations, Revisited. Cryptology
ePrint Archive, Report 2017/631, 2017.

[36] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and
Multi-Party Secure Computation. In 34th ACM Symposium on the Theory of Computing,
pages 494–503, 2002.

[37] D. Chaum, C. Crépeau and I. Damg̊ard. Multi-party unconditionally Secure Protocols. In
20th ACM Symposium on the Theory of Computing, pages 11–19, 1988.

[38] B. Chor, S. Goldwasser, S. Micali and B. Awerbuch. Verifiable Secret Sharing and Achieving
Simultaneity in the Presence of Faults. In 26th IEEE Symposium on Foundations of Computer
Science, pages 383–395, 1985.

[39] B. Chor and E. Kushilevitz. A Zero-One Law for Boolean Privacy. SIAM J. on Disc. Math.,
Vol. 4, pages 36–47, 1991.

[40] B. Chor and M.O. Rabin. Achieving independence in logarithmic number of rounds. In 6th
ACM Symposium on Principles of Distributed Computing, pages 260–268, 1987.

[41] R. Cleve. Limits on the Security of Coin Flips when Half the Processors are Faulty. In 18th
ACM Symposium on the Theory of Computing, pages 364–369, 1986.

[42] I. Damg̊ard. Collision Free Hash Functions and Public Key Signature Schemes. In EuroCrypt87,
Springer-Verlag, Lecture Notes in Computer Science (Vol. 304), pages 203–216.

[43] I. Damgard and J. B. Nielsen. Improved non-committing encryption schemes based on general
complexity assumption. In Crypto00, Springer-Verlag Lecture Notes in Computer Science
(Vol. 1880), pages 432–450.

[44] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, A. Sahai. Robust Non-interactive
Zero-Knowledge. In Crypto01, Springer Lecture Notes in Computer Science (Vol. 2139), pages
566–598.

58

[45] W. Diffie, and M.E. Hellman. New Directions in Cryptography. IEEE Trans. on Info. Theory,
IT-22 (Nov. 1976), pages 644–654.

[46] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing,
Vol. 30, No. 2, pages 391–437, 2000. Preliminary version in 23rd STOC, 1991.

[47] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. Journal
of the ACM, Vol. 40 (1), pages 17–47, 1993.

[48] D. Dolev and H.R. Strong. Authenticated Algorithms for Byzantine Agreement. SIAM Journal
on Computing, Vol. 12, pages 656–666, 1983.

[49] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th ACM Symposium on
the Theory of Computing, pages 409–418, 1998.

[50] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing Contracts. Com-
munications of the ACM, Vol. 28, No. 6, 1985, pages 637–647.

[51] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under
General Assumptions. SIAM Journal on Computing, Vol. 29 (1), pages 1–28, 1999.

[52] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In 22nd
ACM Symposium on the Theory of Computing, pages 416–426, 1990.

[53] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identification and Signa-
ture Problems. In Crypto86, Springer-Verlag Lecture Notes in Computer Science (Vol. 263),
pages 186–189, 1987.

[54] L. Fortnow, The Complexity of Perfect Zero-Knowledge. In 19th ACM Symposium on the
Theory of Computing, pages 204–209, 1987.

[55] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge. Journal
of Cryptology, Vol. 6, No. 1, pages 21–53, 1993.

[56] O. Goldreich. Secure Multi-Party Computation. Unpublished manuscript, June 1998. Available
from the author’s web-page (i.e., http://www.wisdom.weizmann.ac.il/∼oded/pp.html).

[57] O. Goldreich. Foundations of Cryptography – Basic Tools. Cambridge University Press, 2001.

[58] O. Goldreich. Foundations of Cryptography – Basic Applications. Cambridge University Press,
2004.

[59] O. Goldreich. Foundations of Cryptography – A Primer. Foundations and Trends in TCS,
Vol. 1 (1), NOW, 2005.

[60] O. Goldreich. Concurrent Zero-Knowledge With Timing, Revisited. In Theoretical Computer
Science, Essays in Memory of Shimon Even (O. Goldreich et al., eds.), Springer, 2006.

[61] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

59

[62] O. Goldreich. On Expected Probabilistic Polynomial-Time Adversaries: A Suggestion for
Restricted Definitions and Their Benefits. Journal of Cryptology, Vol. 23, No. 1, pages 1–36,
2010.

[63] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal of
the ACM, Vol. 33, No. 4, pages 792–807, 1986. Preliminary version in 25th FOCS, 1984.

[64] O. Goldreich and J. H̊astad. On the Complexity of Interactive Proofs with Bounded Commu-
nication. IPL, Vol. 67 (4), pages 205–214, 1998.

[65] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Sys-
tems for NP. Journal of Cryptology, Vol. 9, No. 2, pages 167–189, 1996.

[66] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAM
Journal on Computing, Vol. 25, No. 1, February 1996, pages 169–192.

[67] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st ACM
Symposium on the Theory of Computing, pages 25–32, 1989.

[68] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity or All
Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38, No. 1,
pages 691–729, 1991. Preliminary version in 27th FOCS, 1986.

[69] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th ACM Symposium on the Theory of
Computing, pages 218–229, 1987. See details in [56].

[70] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems.
Journal of Cryptology, Vol. 7, No. 1, pages 1–32, 1994.

[71] O. Goldreich and R. Rothblum. Enhancements of Trapdoor Permutations. Journal of Cryp-
tology, Vol. 26 (3), pages 484–512, 2013.

[72] O. Goldreich, A. Sahai, and S. Vadhan. Honest-Verifier Statistical Zero-Knowledge equals
general Statistical Zero-Knowledge. In 30th ACM Symposium on the Theory of Computing,
pages 399–408, 1998.

[73] O. Goldreich, S. Vadhan and A. Wigderson. On interactive proofs with a laconic provers.
Computational Complexity, Vol. 11, pages 1–53, 2002.

[74] O. Goldreich and R. Vainish. How to Solve any Protocol Problem – An Efficiency Improvement.
In Crypto87, Springer Verlag, Lecture Notes in Computer Science (Vol. 293), pages 73–86.

[75] S. Goldwasser and L.A. Levin. Fair Computation of General Functions in Presence of Immoral
Majority. In Crypto90, Springer-Verlag Lecture Notes in Computer Science (Vol. 537), pages
77–93.

[76] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System
Science, Vol. 28, No. 2, pages 270–299, 1984. Preliminary version in 14th STOC, 1982.

60

[77] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, Vol. 18, pages 186–208, 1989. Preliminary version in
17th STOC, 1985.

[78] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks. SIAM Journal on Computing, April 1988, pages 281–308.

[79] S.W. Golomb. Shift Register Sequences. Holden-Day, 1967. (Aegean Park Press, revised
edition, 1982.)

[80] D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete Fairness in Secure Two-Party Com-
putation. Journal of the ACM, Vol. 58(6), pages 24:1–24:37, 2011.

[81] I. Haitner, M. Nguyen, S. Ong, O. Reingold, and S. Vadhan. Statistically Hiding Commitments
and Statistical Zero-Knowledge Arguments from Any One-Way Function. SIAM Journal on
Computing, Volume 39, Number 3, pages 1153–1218, 2009.

[82] J. H̊astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from any
One-way Function. SIAM Journal on Computing, Volume 28, Number 4, pages 1364–1396,
1999.

[83] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure multi-
party computation. Journal of Cryptology, Vol. 13, No. 1, pages 31–60, 2000.

[84] R. Impagliazzo, L.A. Levin and M. Luby. Pseudorandom Generation from One-Way Functions.
In 21st ACM Symposium on the Theory of Computing, pages 12–24, 1989.

[85] R. Impagliazzo and M. Luby. One-Way Functions are Essential for Complexity Based Cryp-
tography. In 30th IEEE Symposium on Foundations of Computer Science, pages 230–235,
1989.

[86] J. Katz and M. Yung. Complete Characterization of Security Notions for Probabilistic Private-
Key Encryption. In 32nd ACM Symposium on the Theory of Computing, pages 245–254, 2000.

[87] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 24th ACM Symposium
on the Theory of Computing, pages 723–732, 1992.

[88] J. Kilian and E. Petrank Concurrent and Resettable Zero-Knowledge in Poly-logarithmic
Rounds In 33rd ACM Symposium on the Theory of Computing, pages 560–569, 2001.

[89] D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical Algorithms). Addison-
Wesley Publishing Company, Inc., 1969 (first edition) and 1981 (second edition).

[90] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. In
Crypto01, Springer Lecture Notes in Computer Science (Vol. 2139), pages 171–189, 2001.

[91] Y. Lindell, A. Lysyanskaya and T. Rabin. On the Composition of Authenticated Byzantine
Agreement. In 34th ACM Symposium on the Theory of Computing, pages 514–523, 2002.

[92] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996.

61

[93] R.C. Merkle. Protocols for public key cryptosystems. In Proc. of the 1980 Symposium on
Security and Privacy.

[94] S. Micali. Computationally Sound Proofs. SIAM Journal on Computing, Vol. 30 (4), pages
1253–1298, 2000. Preliminary version in 35th FOCS, 1994.

[95] S. Micali and P. Rogaway. Secure Computation. In Crypto91, Springer-Verlag Lecture Notes
in Computer Science (Vol. 576), pages 392–404. Ellaborated working draft available from the
authors.

[96] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology, Vol. 4,
pages 151–158, 1991.

[97] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic Applica-
tion. In 21st ACM Symposium on the Theory of Computing, 1989, pages 33–43.

[98] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen Ciphertext
Attacks. In 22nd ACM Symposium on the Theory of Computing, pages 427-437, 1990.

[99] National Institute for Standards and Technology. Digital Signature Standard (dss). Federal
Register, Vol. 56, No. 169, August 1991.

[100] R. Ostrovsky and A. Wigderson. One-Way Functions are essential for Non-Trivial Zero-
Knowledge. In 2nd Israel Symp. on Theory of Computing and Systems, IEEE Comp. Soc. Press,
pages 3–17, 1993.

[101] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge Proofs in Logarithmic
Number of Rounds. In 43rd IEEE Symposium on Foundations of Computer Science, pages
366–375, 2002.

[102] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computation (R.A. DeMillo
et. al. eds.), Academic Press, 1977.

[103] M.O. Rabin. Digitalized Signatures and Public Key Functions as Intractable as Factoring.
MIT/LCS/TR-212, 1979.

[104] M.O. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81, Aiken
Computation Laboratory, Harvard U., 1981.

[105] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols with Honest
Majority. In 21st ACM Symposium on the Theory of Computing, pages 73–85, 1989.

[106] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In
EuroCrypt99, Springer Lecture Notes in Computer Science (Vol. 1592), pages 415–413.

[107] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public
Key Cryptosystems. Communications of the ACM, Vol. 21, Feb. 1978, pages 120–126

[108] P. Rogaway. The Round Complexity of Secure Protocols. MIT Ph.D. Thesis, June 1991.
Available from http://www.cs.ucdavis.edu/∼rogaway/papers.

62

[109] J. Rompel. One-way Functions are Necessary and Sufficient for Secure Signatures. In 22nd
ACM Symposium on the Theory of Computing, 1990, pages 387–394.

[110] A. Sahai and S. Vadhan. A Complete Promise Problem for Statistical Zero-Knowledge.
Journal of the ACM, Vol. 50, No. 2, pages 1–54, April 2003.

[111] A. Shamir. How to Share a Secret. Communications of the ACM, Vol. 22, Nov. 1979, pages
612–613.

[112] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech. J., Vol. 28, pages
656–715, 1949.

[113] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th ACM Symposium on
the Theory of Computing, pages 330–335, 1983.

[114] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD Thesis, Department of
Mathematics, MIT, 1999. Available from
http://www.eecs.harvard.edu/∼salil/papers/phdthesis-abs.html.

[115] S. Vadhan. An Unconditional Study of Computational Zero Knowledge. In 45th IEEE
Symposium on Foundations of Computer Science, pages 176–185, 2004.

[116] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium on
Foundations of Computer Science, pages 80–91, 1982.

[117] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposium on Foundations
of Computer Science, pages 162–167, 1986.

63

