
Hierarchy Theorems for Testing Properties

in Size-Oblivious Query Complexity

Oded Goldreich∗

May 17, 2018

Abstract

Focusing on property testing tasks that have query complexity that is independent of the size
of the tested object (i.e., depends on the proximity parameter only), we prove the existence of
a rich hierarchy of the corresponding complexity classes. That is, for essentially any function q :
(0, 1] → N, we prove the existence of properties for which ǫ-testing has query complexity Θ(q(Θ(ǫ))).
Such results are proved in three standard domains that are often considered in property testing:
generic functions, adjacency predicates describing (dense) graphs, and incidence functions describing
bounded-degree graphs.

These results complement hierarchy theorems of Goldreich, Krivelevich, Newman, and Rozenberg
(Computational Complexity, 2012), which refer to the dependence of the query complexity on the
size of the tested object, and focus on the case that the proximity parameter is set to some small
positive constant. We actually combine both flavors and get tight results on the query complexity
of testing when allowing the query complexity to depend on both the size of the object and the
proximity parameter.

Contents

1 Introduction 1

1.1 Our results . 1
1.2 Our techniques . 2
1.3 Organization . 3

2 Properties of Generic Functions 3

3 Graph Properties in the Bounded-Degree Model 6

4 Graph Properties in the Adjacency Matrix Model 12

5 On Query Complexity that Depends on Both Parameters 17

6 Open Problems 18

Bibliography 18

∗Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. Email:
oded.goldreich@weizmann.ac.il. This research was partially supported by the Israel Science Foundation (grant
No. 671/13).

i

1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see, e.g., a
recent textbook [9]). Loosely speaking, property testing typically refers to sub-linear time probabilistic
algorithms for deciding whether a given object has a predetermined property or is far from any object
having this property. Such algorithms, called testers, obtain local views of the object by making
adequate queries; that is, the object is seen as a function and the testers get oracle access to this
function (and thus may be expected to work in time that is sub-linear in the length of the object).

Following most work in the area, we focus on the query complexity of property testing, measured
as a function of the size of the object as well as the desired proximity (parameter), denoted ǫ. In-
terestingly, many natural properties can be tested in complexity that only depends on the proximity
parameter; examples include linearity testing [6] and testing various graph properties in two natural
models (e.g., [10, 2] and [12, 5], respectively). Focusing on such properties and on the known testers,
we note that the specific dependency of the query complexity on the proximity parameter varies from
linear in 1/ǫ (e.g., [6]) to polynomial in 1/ǫ (e.g., [10, 12]) and to tower-like functions in 1/ǫ (e.g., [2]).
As for lower bounds, till recently, the only known super-polynomial lower bounds (of [1, 3]) referred to
testing problems for which the corresponding known upper bounds are tower-like functions, leaving a
huge gap between the known lower and upper bounds.

The foregoing gap has been recently addressed by Gishboliner and Shapira [8], who considered the
special case of one-sided error testers for graph properties in the dense graph model.1 In that context,
they presented a general hierarchy theorem asserting, essentially for any q : (0, 1] → N, the existence
of graph property of query complexity Θ(q(Θ(ǫ))). In this paper we present analogous results for the
general definition of property testing, which allows two-sided error probability.

1.1 Our results

The hierarchy theorem is easiest to state and prove in the generic case (treated in Section 2). Loosely
speaking, it asserts that for essentially every function q : (0, 1] → N, there exists a property of Boolean

functions that is testable using O(q(Ω(ǫ))) queries but is not testable using o(q(O(ǫ))) queries, where
ǫ denotes the proximity parameter.2 In other words, the query complexity of testing this property is

Θ(q(Θ(ǫ))). In particular, this implies the existence of property testing problems of complexities such
as exp(Θ(1/ǫc)) for any constant c > 0.

Similar hierarchy theorems are proved also for two standard models of testing graph properties: the
adjacency representation model (a.k.a. the dense graph model of [10]) and the incidence representation
model (a.k.a. the bounded-degree graph model of [12]). These results are rigorously stated and proved
in Sections 3 and 4.

The foregoing results complement hierarchy theorems of Goldreich, Krivelevich, Newman, and
Rozenberg [11], which refer to the dependence of the query complexity on the size of the tested object,
and focus on the case that the proximity parameter is set to some small positive constant. We can
actually combine both flavors and get tight results on the query complexity of testing when allowing
the query complexity to depend quite arbitrarily on both the size of the object and the proximity
parameter. These general results are stated in Section 5.

1We mention that a weaker hierarchy theorem (for one-sided testers in the dense graph model) was proved more than
a decade ago by Alon and Shapira [4]. Specifically, [4, Thm. 4] asserts that for essentially every function q there exists a
function Q and a graph property that is testable in Q(ǫ) queries but is not testable in q(ǫ) queries. We note that while
Q depends only on q, the dependence proved in [4, Thm. 4] is quite weak (i.e., Q is lower bounded by a non-constant
number of compositions of q); hence, the hierarchy obtained by setting qi = Qi−1 for i ∈ N, is very sparse.

2The lower bounds holds provided the object is large enough (i.e., larger than O(q(ǫ)/ǫ)).

1

1.2 Our techniques

Following is a very rough sketch of our proof strategy. Our starting point is the hierarchy theorems
of Goldreich, Krivelevich, Newman, and Rozenberg [11], which we re-interpret in concrete (rather
than asymptotic) terms. Essentially, for some universal constant c and every fixed natural numbers
q′ ≤ n′, these theorems state the existence of properties Π′

n′,q′ of objects of size n′ for which the query
complexity of testing with proximity 1/c is between q′/c and q′. Furthermore, the upper bound extends
to poly(1/ǫ) · q′, when testing with proximity parameter ǫ.

Now, suppose that we want to present a property such that testing it with proximity ǫ has complexity
between q′ and poly(1/ǫ) · q′. Then, we define objects of size n that consist of a “base” object from
Π′

cǫ·n,q′ padded to size n. Next, we reduce testing Π′

cǫn,q′ with proximity 1/c to testing the new property
with proximity ǫ, which establishes the desired lower bound. Lastly, we construct a tester of the desired
complexity by letting it check that the amount of padding in the object is (1 − cǫ) · n, and testing the
base object (using the tester for Π′

cǫn,q′). Indeed, this requires using a padding that is easily recognized
(e.g., elements of the base object should be easy to distinguish from elements of the padding).

The foregoing construction is tailored for a fixed value of the proximity parameter, whereas we
seek properties that exhibit the designated complexity for any value of the proximity parameter. This
is achieved by creating properties that are the union of properties defined as above for a geometric
sequence of values of the proximity parameter. Specifically, seeking to establish query complexity
q : (0, 1] → N, we use the base properties Π′

c−i·n,q(c−i)
for i = 1, ..., logc n. That is, we take the union of

these properties after padding each of them to size n.
Establishing the lower and upper bounds in this case requires more care. Specifically, for the lower

bound, we show that the properties introduced for handling the other values of the proximity parameter
do not interfere with the argument that refers to the value of the proximity parameter that is of interest
to us. For the upper bound, we first determine the size of the base object that seems to underlie the
tested object (rejecting if none fits). Next, we emulate testing the base object, while capitalizing on
the fact that the testers of [11] work for any value of the proximity parameter rather than only for a
fixed constant value.

The proofs for the different testing models differ in the result of of Goldreich et. al. [11] that is
used as a starting point and in the notion of padding that is used in each case. Specifically, in the case
of graph properties, we pad the graphs by a suitable number of easily identified vertices (i.e., vertices
of higher degree).3 Dealing with the padding when establishing the upper bound raises difficulties in
the case of the graph testing models. These difficulties arise from the fact that (unlike in the case of
generic functions) the padding does not appear in fixed locations in the (labeled) graph. In particular,
the amount of padding can only be approximated and so we may need to test a base graph with a
number of vertices that does not fit any c−i · n (but is rather close to one of these values).

We present two ways of dealing with the latter problem. The simpler way, which yields weaker
results, is to use very good approximations of the number of “padding” vertices. These approximation
are so good that one can neglect the fact that they are not accurate, but obtaining such approxima-
tions has a cost in terms of squaring the query complexity of the tester used in the upper bound.
The alternative way relies on the fact that the testers provided by [11] fit a revised model of testing
graph properties. In this model, which is of independent interest, the tester is given oracle access to
independently sampled vertices of the graph, but is not given the size of the graph (i.e., its vertex set)
as auxiliary input.

3Indeed, it is tempting to pad the graphs with isolated vertices, but this raises some technical difficulaties, which can
be solved but are avoided by the less natural choice we use.

2

1.3 Organization

In Section 2 we recall the definition of testing properties of generic functions and prove a hierarchy
theorem for that setting. This section is most detailed because the other results are obtained by
mimicking the basic strategy that is presented in Section 2. In particular, in Section 3 we prove a
hierarchy theorem for testing graph properties in the bounded-degree graph model, and in Section 4
we obtain the same for testing in the dense graph model.

In Section 5, we generalize the results of the aforementioned sections so to obtain tight results on
the query complexity of testing when allowing the query complexity to depend quite arbitrarily on
both the size of the object and the proximity parameter.

2 Properties of Generic Functions

In the generic function model, the tester is given oracle access to a function over [n], and the distance
between such functions is defined as the fraction of (the number of) arguments on which these functions
differ. In addition to the input oracle, the tester is explicitly given two parameters: a size parameter,
denoted n, and a proximity parameter, denoted ǫ.

Definition 2.1 (property testing, the case of Boolean functions): Let Π =
⋃

n∈N
Πn, where Πn con-

tains functions defined over the domain [n]
def
= {1, ..., n}. A tester for a property Π is a probabilistic

oracle machine T that satisfies the following two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every n ∈ N and f ∈ Πn

(and every ǫ > 0), it holds that Pr[T f (n, ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any f that is ǫ-far from Π, the tester rejects with probability

at least 2/3; that is, for every ǫ > 0 and n ∈ N, if f : [n] → {0, 1}∗ is ǫ-far from Πn, then

Pr[T f (n, ǫ) = 0] ≥ 2/3, where f is ǫ-far from Πn if, for every g ∈ Πn, it holds that |{i ∈ [n] :
f(i) 6= g(i)}| > ǫ · n.

We say that the tester has one-sided error if it accepts each f ∈ Π with probability 1; that is, for every

f ∈ Π and every ǫ > 0, it holds that Pr[T f (n, ǫ)=1] = 1.

When ǫ > 0 is fixed, we refer to the residual oracle machine T (·, ǫ) by the term ǫ-tester. We also use the
corresponding term ǫ-testing Π. Likewise, we may fix n (and possiblly other parameters), and consider
the task of testing Πn (resp., Πn further restricted by the other parameters). We stress that even when
we fix ǫ and n, we view them as generic.

Definition 2.1 does not specify the query complexity of the tester, and indeed an oracle machine that
queries the entire domain of the function qualifies as a tester (with zero error probability...). Needless
to say, we are interested in testers that have significantly lower query complexity. Recall that [10]
asserts that in some cases such testers do not exist; that is, there exist properties that require linear
query complexity. Building on this result, Goldreich et. al. [11] showed:

Theorem 2.2 ([11, Thm. 2], revised):4 There exists a universal constant c > 2 such that, for every

q′, n′ ∈ N that satisfy q′ ≤ n′, there exists a property Π′

n′,q′ of Boolean functions over [n′] such that the

following holds:

1. There exists an oracle machine that, on input n′, q′ and ǫ′, uses q′ + c
ǫ′ queries and constitutes an

ǫ′-tester of Π′

n′,q′ (with one-sided error).

4The original statement of [11, Thm. 2] uses asymptotic notation and does not specify the dependence of the upper
bound on ǫ. Nevertheless, the original proof explicitly establishes the result stated here.

3

2. For every q′ ≤ n′, any 1/c-tester of Π′

n′,q′ requires at least q′/c queries (even when allowing
two-sided error).

Using Theorem 2.2, we prove our first result

Theorem 2.3 (hierarchy theorem for size-oblivious query complexity, generic): For every monotoni-

cally non-increasing q : (0, 1] → N, there exists a property Π =
⋃

n∈N
Πn, where Πn is a set of Boolean

functions over [n], such that Π is ǫ-testable (with one-sided error) in q(Ω(ǫ)) + O(1/ǫ) queries, but is

not ǫ-testable in o(min(q(O(ǫ)), ǫn)) queries (even when allowing two-sided error).

The fact that the lower bound may decrease with ǫ for small n’s (e.g., when n < q(ǫ)/ǫ) is an artifact of
the proof, which can be avoided (see Remark 2.4). In any case, for sufficiently large n (e.g., n > q(ǫ)/ǫ)
we get a lower bound of Ω(q(O(ǫ))). On the other hand, typically (i.e., for q(ǫ) = Ω(1/ǫ)), the upper
bound simplifies to in O(q(Ω(ǫ))).

Proof: Using the family of properties asserted in Theorem 2.2 (and letting c be the corresponding

universal constant), we let Πn =
⋃

i∈[1+logc n] Π
(i)
n such that f ∈ Π

(i)
n if there exists f ′ ∈ Π′

c−i·n,q(c−i)

such that f(j) = f ′(j) + 1 if j ∈ [c−i · n] and f(j) = 0 otherwise.5 Hence, the functions in Π
(i)
n range

over {0, 1, 2} and assume the value 0 on points in {c−i ·n+1, ..., n}. Also note that the all-zero function

is in Πn, since it is in Π
(1+logc n)
n .

Claim 2.3.1 (upper bound): The property Πn is ǫ-testable (with one-sided error) in q(ǫ/c) + O(1/ǫ)
queries.

Proof: Assuming that the function f : [n] → {0, 1, 2} is in Πn, the tester tries to determine i ∈ [1+logc n]

such that f ∈ Π
(i)
n . Actually, letting ℓ = ⌈logc(1/ǫ)⌉, the tester tries to either find i ∈ [ℓ] such that

f ∈ Π
(i)
n or indicate that no such i exists, which may mean that f ∈ Πn \ ⋃

i∈[ℓ] Π
(i)
n . In the former

case (where such an i ∈ [ℓ] was found), the tester checks that indeed f ∈ Π
(i)
n , by invoking the tester

for Π′

c−i·n,q(c−i) as well as testing that f assumes the value 0 on {c−i · n + 1, ..., n}. In the latter

case (where no such an i ∈ [ℓ] was found), the tester merely checks that f assumes the value 0 on
{c−(ℓ+1) · n + 1, ..., n}, which implies that it is ǫ-close to the all-zero function.6 Specifically, on input
n ∈ N and ǫ > 0, and oracle access to f : [n] → {0, 1, 2}, the tester proceeds as follows.

1. For i = 1, ..., ℓ
def
= ⌈logc(1/ǫ)⌉, the tester queries f at the point c−i · n, and lets i∗ be the smallest

i ∈ [ℓ] such that f(c−i · n) ∈ {1, 2}, and i∗ = ℓ + 1 if no such i exists.

2. The tester selects uniformly and independently O(1/ǫ) random points in {c−i∗ ·n+1, .., n}, queries
f on each of these points, and rejects if any non-zero answer is obtained.

3. If i∗ ∈ [ℓ], then the tester invokes the (ci∗ · ǫ/2)-tester for Π′

c−i∗ ·n,q(c−i∗)
, and outputs its verdict.

Specifically, the (ci∗ǫ/2)-tester is invoked while emulating a function f ′ : [c−i∗ · n] → {0, 1}
defined by f ′(j) = f(j) − 1, where if during the emulation the tester enconters a point on which
f evaluates to 0, then it halts and rejects.

Otherwise (i.e., i∗ = ℓ + 1), the tester just accepts.

5We assume, for simplicity, that n is a power of c; otherwise, one may replace c−i · n by ⌊c−i · n⌋. Either way, if

c−i · n < 1, then Π
(i)
n cosists of the all-zero function. Also, while Π′

n′,q′ was defined only for q′ ≤ n′, we let Π′

n′,q′ = ∅ if
q′ > n′.

6We don’t check that f is the all-zero function in order to avoid a small error probability in case that f ∈ Π
(i)
n for

some i ∈ [ℓ + 1, logc n).

4

The query complexity of the purported ǫ-tester is upper-bounded by O(1/ǫ) + (q(c−ℓ) + 2/ǫ), where
the first term is due to Step 2 (whose complexity dominates the complxity of Step 1), and the second
term is due to the complexity of (ci∗ǫ/2)-testing Π′

c−i∗ ·n,q(c−i∗)
, when i∗ ∈ [ℓ]. (Recall that the query

complexity of ǫ′-testing Π′

n′,q′ is upper-bounded by q′ + c
ǫ′ , and that q(c−i∗) + c

ci∗ǫ/2
≤ q(c−ℓ) + 2/ǫ,

when i∗ ∈ [ℓ].) Note that c−ℓ > ǫ/c, since ℓ < logc(1/ǫ) + 1, and so q(c−ℓ) ≤ q(ǫ/c).

Next, we verify that in the case that f ∈ Πn the tester always accepts. If f ∈ Π
(i)
n for some

i ∈ [ℓ], then i∗ is set to i (in Step 1), rejection does not happen in Step 2 (since f evaluates to 0 on
{c−i∗ · n + 1, ..., n}), and in Step 3 the tester for Π′

c−i·n,q(c−i)
is invokes by providing it with access to

f ′ ∈ Π′

c−i·n,q(c−i)
(derived from f), which implies that our tester always accepts. If f ∈ Πn \⋃

i∈[ℓ] Π
(i)
n ,

then i∗ is set to ℓ + 1 (in Step 1), rejection does not happen in Step 2 (since f evaluates to 0 on
{c−i∗ · n + 1, ..., n}), and in Step 3 the tester accepts.

We now turn to the case that f is ǫ-far from Πn. Suppose that, in Step 1, i∗ is set to ℓ + 1. In this
case, the tester rejects with high probability, since f is ǫ-far from the all-zero function (which is in Πn),
whereas [c−(ℓ+1) · n] contains at most (ǫ/c) · n points, which implies that {c−i∗ · n + 1, .., n} contains
more than ǫ · n − (ǫ/c) · n > ǫn/2 > ǫ

2 · (n − c−i∗ · n) points on which f evalutes to non-zero. In this
case, the tester rejects with high probability in Step 2.

Hence, we focus on the case that i∗ ∈ [ℓ] and consider two cases. If {c−i∗ · n + 1, ..., n} contains
ǫn/2 points on which f evaluates to non-zero, then the tester rejects with high probability in Step 2.
Otherwise (as shown next), the function f ′ (as defined as in Step 3) is (ci∗ǫ/2)-far from Π′

c−i∗ ·n,q(c−i∗)
,

which cause the tester to reject with probability at least 2/3 in Step 3. Suppose, towards the contra-
diction, that f ′ is (ci∗ǫ/2)-close to some g′ ∈ Π′

c−i∗ ·n,q(c−i∗)
(and recall that by the case’s hypothesis

{c−i∗ · n + 1, ..., n} contains less than ǫn/2 points on which f evaluates to non-zero). Then, we may

obtain g ∈ Π
(i∗)
n by defining g(j) = g′(j) + 1 if j ∈ [c−i∗ · n] and g(j) = 0 otherwise. But this implies

that g differs from f on less than (ci∗ǫ/2)·(c−i∗ ·n)+ǫn/2 = ǫn points, which contradicts our hypothesis
that f is ǫ-far from Πn.

Claim 2.3.2 (lower bound): The property Πn is not ǫ-testable in less than min(q(c2 · ǫ), ǫn)/c queries

(even when allowing two-sided error).

Proof: Let F
(i)
n denote the set of all function f : [n] → {0, 1, 2} such that f(j) = 0 if and only if

j ∈ {c−i · n + 1, ..., n}, and let Γδ(Π) denote the set of all functions that are δ-far from Π. Then,
for every ǫ > 0, letting i = ⌊logc(1/cǫ)⌋, we observe that an ǫ-tester for Πn must distinguish Π(i)

from Γǫ(Πn) ∩ F
(i)
N , since Π

(i)
n ⊆ Πn and (as shown below) Γǫ(Πn) ∩ F

(i)
n ⊆ Γǫ(Πn). But the latter

distinguisher is essentially a ci · ǫ-tester for Π′

c−i·n,q(c−i), since functions in Π
(i)
n and F

(i)
n differ only on

[c−i · n] (whereas Π
(i)
n emulates Π′

c−i·n,q(c−i) and Γǫ(Πn) ∩ F
(i)
n emulates Γci·ǫ(Π

′

c−i·n,q(c−i))). Recalling

that ci · ǫ ≤ 1/c, we have reduced 1/c-testing Π′

c−i·n,q(c−i)
to ǫ-testing Πn, which means that the latter

task has complexity at least q(c−i)/c ≥ q(c2 · ǫ)/c, where the last inequality uses c−i ≤ c2ǫ.

We now turn to show that Γǫ(Πn) ∩ F
(i)
n ⊆ Γǫ(Πn). Suppose, towards the contradiction, that

f ∈ Γǫ(Πn) ∩ F
(i)
n is ǫ-close to g ∈ Π

(j)
n for some j ∈ [1 + logc n]. Clearly, j 6= i (since otherwise f is

ǫ-close to Π
(i)
n). Hence, f ∈ F

(i)
n is ǫ-close to g ∈ F

(j)
n , for some j 6= i ∈ N, and this is the only fact we

use next. The case of j < i is impossible, because then the two functions differ on c−j · n − c−i · n of
the non-zeros of g, whereas c−j − c−i > c−i > ǫ. Similarly, j > i implies that the two functions differ
on c−i · n− c−j · n of the non-zeros of f , whereas c−i − c−j > c−i−1 ≥ ǫ. This completes the proof.

From tri-valued functions to Boolean ones. The foregoing argument established the theorem, except that
the properties used are of tri-valued functions rather than of Boolean ones. This is easily fixed by
encoding each trit by two bits, which means that distances and query complexity change by a factor

5

of two. These effects can be covered by increasing some constants by a factor of two (in comparison to
their values in Claims 2.3.1 and 2.3.2).

Remark 2.4 (forcing a lower bound of Ω(1/ǫ), generic): As noted above, Theorem 2.4 asserts an

unintuitive query complexity lower bound (of the form min(q(ǫ), ǫn)); that is, this bound decreases with

ǫ when n is small, whereas we expect the lower bound to be at least Ω(1/ǫ) (or rather Ω(min(1/ǫ, n))).
We comment that such an unintuitive behavior can be eliminated by a generic transformation. More

generally, let q,Q : N× (0, 1] → N be monotonically non-increasing and let Πn be a property of Boolean

functions over [n] that is ǫ-testable in q(n, ǫ) queries, but is not ǫ-testable in less than Q(n, ǫ) queries.

Then, there exists a property of Boolean functions over [3n] that is ǫ-testable in O(q(n, ǫ)) + O(1/ǫ)
queries, but is not ǫ/3-testable in less than max(Q(n, ǫ),min(1/ǫ, n)) queries. Specifically, for each

f ∈ Πn, we introduce the function f ′ : [3n] → {0, 1} such that f ′(j) = f(j) if j ∈ [n] and f ′(j) = 1
otherwise. In addition, the new property contains the all-zero function. Hence, the new property is a

disjoint union of the original property and a fixed property for which ǫ′-testing has query complexity

min(1/ǫ′, n).

The foregoing construction is adaptable also to the testing models considered in the following sections.

3 Graph Properties in the Bounded-Degree Model

The bounded-degree graph model refers to a fixed (constant) degree bound, denoted d ≥ 2. An n-vertex
graph G = ([n], E) (of maximum degree d) is represented in this model by a function g : [n] × [d] →
{0, 1, ..., n} such that g(v, i) = u ∈ [n] if u is the ith neighbor of v and g(v, i) = 0 if v has less than i
neighbors.7 Distance between graphs is measured in terms of their aforementioned representation; that
is, as the fraction of (the number of) different array entries (over dn). Graph properties are properties
that are invariant under renaming of the vertices (i.e., they are actually properties of the underlying
unlabeled graphs).

Recall that [7] proved that, in this model, testing 3-Colorability requires a linear number of queries
(even when allowing two-sided error). Building on this result, Goldreich et. al. [11] showed:

Theorem 3.1 ([11, Thm. 3], revised):8 There exists a universal constant c > 2 such that, for every

d, q′, n′ ∈ N that satisfy d ≥ c and q′ ≤ n′, there exists a graph property Π′

d,n′,q′ of n′-vertex graphs of

degree d such that the following holds in the bounded-degree graph model:

1. There exists an oracle machine that, on input d, n′, q′ and ǫ′, makes c·dq′/ǫ′ queries and constitutes

an ǫ′-tester of Π′

d,n′,q′ (with one-sided error).

2. For every d and q′ ≤ n′, any 1/c-tester of Π′

d,n′,q′ requires at least q′/c queries (even when allowing
two-sided error).

Furthermore, Π′

d,n′,q′ is the set of n′-vertex graphs of maximum degree d/2 that are 3-colorable and

consist of connected components of size at most q′.

(Recall that d denotes the degree parameter used in the bound-degree graph model, whereas the degree
of the graphs having the property of interest may be lower. We have set the later value to d/2 in order
to facilitate the presentation in the rest of this section.) Using Theorem 3.1, we first prove a weak form
of the hierarchy theorem eluded to in the abstract and introduction.

7For simplicity, we adopt the standard convention by which the neighbors of v appear in arbitrary order in the sequence

g(v, 1), ..., g(v,deg(v)), where deg(v)
def
= |{i : g(v, i) 6= 0}|.

8Again, the original statement of [11, Thm. 3] uses asymptotic notation and does not specify the dependence of the
upper bound on ǫ. Nevertheless, the original proof explicitly establishes the result stated here. Also, the statement of [11,
Thm. 3] asserts the existence of a constant d, but the argument extends to all sufficiently large d.

6

Theorem 3.2 (hierarchy theorem for size-oblivious query complexity, a weak version for the bounded-
degree graph model): For all sufficiently large d ∈ N and every monotonically non-increasing q : (0, 1] →
N, there exists a graph property Π =

⋃
n∈N

Πn, where Πn consists of n-vertex graphs of degree at most d,
such that Π is ǫ-testable in O(q(Ω(ǫ))2/ǫ)+O(1/ǫ2) queries, but is not ǫ-testable in o(min(q(O(ǫ)), ǫn))
queries.

Both lower and upper bounds refer to two-sided error testers (in the bounded-degree graph model).

Proof: Following the strategy of the proof of Theorem 2.3, our starting point is the family of properties
asserted in Theorem 3.1, for d = c. We wish to pad the n′-vertex graphs (provided by Theorem 3.1)
to n-vertex graphs such that the added n − n′ vertices are easy to identify. The first idea that comes
to mind is to augment the “(n′-vertex) base graph” by n− n′ isolated vertices, but this presumes that
the base graph has no isolated vertices. One possible solution is to modify the properties asserted in
Theorem 3.1 so that they contain only graphs that contain no isolated vertices, while showing that
the asserted upper and lower bounds still holds. Instead, we choose the alternative solution of using
a different type of padding. Specifically, we augment the n′-vertex base graph with n−n′

d+1 isolated
(d + 1)-cliques, as detailed next.

For every n ∈ N, we let Πn =
⋃

i∈[logc n] Π
(i)
n such that an n-vertex graph of maximum degree d is

in Π
(i)
n if it consists of a graph in Π′

d,c−i·n,q(c−i)
, hereafter referred to as the base graph, and (1− c−i) ·n

vertices of degree d that reside in isolated (d + 1)-vertex cliques.9 (Actually, to avoid integrality
problems, one may postulate that the vertices of degree d are arranged in connected components that
are each of size at most 2d (which implies that they have diameter at most 2); but, for sake of simplicity,
we mandate that each of these connected components is of size d + 1 (i.e., is a clique).) We stress that
the vertices of the base graph have degree at most d/2, which makes them easy to distinguish from the
“padding” vertices, which have degree d. Hence, we relate to the latter vertices as high-degree vertices,
whereas the vertices of the base graph will be referred to as low-degree vertices.

Claim 3.2.1 (upper bound): The property Πn is ǫ-testable in O(q(ǫ/c)2/ǫ) + O(1/ǫ2) queries.

Proof: Wishing to follow the strategy used in the proof of Claim 2.3.1, we note that in the current
setting we cannot directly sample vertices in the base graph (nor can we directly sample the high-

degree vertices used to augment it to an n-vertex graph). Nevertheless, when the graph is in Π
(i)
n , we

can indirectly sample both sets at the (expected) cost of ci actual samples per each desired sample
(of the base graph).10 More importantly, the value of i∗ cannot be determined by accessing few fixed
locations in the graph (like in the proof of Claim 2.3.1). Instead, the value of i∗ is determined by
estimating the density of the low-degree vertices via sampling, which means that this determination is
only approximate and carries an error probability (also in the case that the graph has the property).
Specifically, we set i∗ ∈ [ℓ] such that the estimated density of the base graph (in the input graph) is
approximately c−i∗ , and otherwise we use i∗ = ℓ + 1 (as in the proof of Claim 2.3.1).11 We highlight
two issues here:

• As noted above, since the density is estimated by random sampling, it introduces an error proba-
bility also in the case that the input graph is in Πn, and hence we obtain a two-sided error tester
(although the upper bound of Theorem 3.1 is established using a one-sided error tester).

9If c−i · n < 1, then Π′

d,c−i·n,q(c−i) consists of the d-regular graph than contains only (d + 1)-cliques.
10Recall that, without loss of generality, testers in this model query about the incidence of either a previously seen

vertex or a randomly selected vertex.
11Recall that ℓ = ⌈logc(1/ǫ)⌉. Actually, if the estimated density is above ǫ/2 but is not close to a power of 1/c we may

reject on the spot.

7

• Since the density is only approximated, we may end-up invoking the tester for Π′

d,c−i∗ ·n,q(c−i∗)
on

a graph that has approximately but not exactly c−i∗ · n vertices. This may happen when testing
an input graph not in Πn, and it is relevant when the graph is far from Πn and has approximately

but not exactly n′ def
= c−i∗ · n low-degree vertices. The problem is that there is no guarantee as

to what the latter tester does when inspecting an n′′-vertex graph such that n′′ 6= n′.

Nevertheless, we observe that if n′′ is extremely close to n′ (say, n′′ = (1± 0.01/q(c−i∗)) · n′) and
the n-vertex graph is ǫ-far from Πn (and the high-degree vertices reside in (d + 1)-cliques), then
the tester will reject with probability at least 0.6. This is the case since if n′′ = n′ + k (resp.,
n′′ = n′ − k), for k ∈ [0.01n′/q(c−i∗)], then making q(c−i∗) queries to the n′′-vertex graph G′′

is almost the same as making these queries to an n′-vertex induced subgraph of G′′ (resp., to
an n′-vertex graph that contains G′′ as an induced subgraph), whereas this n′-vertex graph is
ci∗ǫ/2-far from Π′

d,n′,q(c−i∗)
.

For sake of clarity, we spell out the derived tester. On input an n-vertex graph G and proximity
parameter ǫ, the tester proceeds as follows (while setting ℓ = ⌈logc(1/ǫ)⌉):

1. Determining i∗: The tester selects uniformly and independently m = O(1/ǫ) random vertices,
and obtains a very rough estimate of the number of low-degree vertices (i.e., vertices of degree
at most d/2) in G. If, for some i∗ ∈ [ℓ], the number of low-degree vertices is (1 ± 0.1) · c−i∗ · m,
then i∗ is set accordingly; if the number of low-degree vertices seen in this sample is smaller than
1.1 · c−(ℓ+1) · m, then the tester sets i∗ = ℓ + 1; otherwise (i.e., i∗ was not set so far), the tester
rejects.

2. Testing that the high-degree vertices constitute a proper padding: The tester checks that the
vertices that have degree greater than d/2 are arranged in (d + 1)-cliques and that the number
of low-degree vertices is very close to c−i∗ · n. Specifically:

(a) The tester selects O(1/ǫ) random vertices in G and checks that each vertex of degree greater
than d/2 resides in an isolated (d + 1)-clique. If some vertex of degree greater than d/2 was
found not to reside in a (d + 1)-clique, then the tester rejects. If i∗ = ℓ + 1 and the tester
did not reject, then it accepts.

(b) Letting δ = min(0.1ci∗ǫ, 0.01/q(c−i∗)) and using a sample of O(ci∗/δ2) random vertices, the
tester estimates the number of low-degree vertices (i.e., vertices of degree at most d/2) up
to ±δ · c−i∗ · n (with high probability). If this estimate deviates from c−i∗ · n by more than
δ · c−i∗ · n, then the tester rejects. Note that the size of the sample is

O(ci∗/δ2) = max(O(ci∗/(ci∗ǫ)2), O(ci∗ · q(ci∗)2)) = max(O(1/ǫ2), O(q(ci∗)2/ǫ)).

3. Testing the subgraph induced by low-degree vertices: The tester invokes the (ci∗ · ǫ/2)-tester for
Π′

d,c−i∗ ·n,q(c−i∗)
on the subgraph of G induced by its low-degree vertices, and outputs the verdict of

this tester. Specifically, the (ci∗ǫ/2)-tester is invoked while emulating a graph with (1±δ) ·c−i∗ ·n
vertices that contains only low-degree vertices. (Recall that we emulate each vertex selection at
an (expected) cost of ci∗ actual samples.)

Formally, the tester for Π′

d,c−i∗ ·n,q(c−i∗)
expects the labels of the tested graph to reside in [c−i∗ ·n],

whereas the labels of the vertices of the induced subgraph are in [n]. This discrepancy is easy to
bridge by maintaining a partial injection of [n] to [c−i∗ · n]. Specifically, a query regarding the
incidence list of a vertex v in [c−i∗ · n], is emulated by using the matched vertex in [n] if v has
appeared before (either as a query or as an answer) and by a new random low-degree vertex of
G (obtained by repeated sampling) otherwise.

8

The query complexity of the purported ǫ-tester is upper-bounded by O(1/ǫ)+O(max(q(ǫ/c)2/ǫ, ǫ−2))+
O(q(ǫ/c)/ǫ), where the three terms correspond to the three foregoing steps. In particular, the third term
is due to the complexity of emulating the (ci∗ǫ/2)-testing of Π′

d,c−i∗ ·n,q(c−i∗)
, which is ci∗ ·O(q(c−i∗)/(ci∗ǫ/2)).

Indeed, the query complexity is dominated by the second term, which accounts for the cost of obtaining
a good approximation (in Step 2b).

The analysis of the case that G ∈ Πn proceeds very much as in the proof of Claim 2.3.1, except
that here Steps 1 and 2b carry a small probability of error (also in the case of an input in Πn). Turning
to the case that G is ǫ-far from Πn, the case of improper padding (i.e., the high-degree vertices of G
are 0.1ǫ-far from forming a collection of (d + 1)-cliques) is handled by Step 2a (analogously to Step 2
in the proof of Claim 2.3.1). More care is required with the remaining case in which the distance of
G from Πn is due to its low-degree vertices. Specifically, we are concerned of the case that G, which

is ǫ-far from Πn, contains n′′ def
= (1 ± 2δ) · c−i∗ · n low-degree vertices, whereas n′′ does not necessarily

equal c−i∗ · n. (The other cases are handeled by Steps 1 and 2b.)12 Letting G′′ denote the subgraph of
G induced its low-degree vertices, we consider two cases.

• If n′′ ≥ n′ def
= ci∗ · n, then any n′-vertex induced subgraph of G′′ is ci∗ · (ǫ − 0.3ǫ)-far from

Π′

d,n′,q(c−i∗)
. This is so because G is (2δ · ci∗ + 0.1ǫ)-close to an n-vertex graph that consists of

the latter n′-vertex subgraph and n − n′ high-degree vertices arranged in (d + 1)-cliques, which
implies that G is (ǫ − 0.3ǫ)-far from Π(i∗) (since δ · ci∗ ≤ ǫ and n′/n = c−i∗). On the other hand,
the probability that the tester queries G′′ on a vertex that is not in the n′-vertex subgraph (or
obtains such a vertex as an answer) is at most q(ci∗) · 2δ, which implies when invoked on G′′ the
(ci∗ǫ/2)-tester rejects with probability at least 2/3 − 2q(ci∗)δ > 0.6.

• A similar argument holds when n′′ < n′, since in this case any n′-vertex graph that contains G′′

as an induced subgraph is ci∗ · (ǫ − 0.3ǫ)-far from Π′

d,n′,q(c−i∗)
.

Hence, we obtain the desired tester, which has two-sided error, where the error on inputs in Πn arises
from a mistaken determination of i∗ (which occurs with small probability).

Claim 3.2.2 (lower bound): The property Πn is not ǫ-testable in less than min(q(c2 · ǫ), ǫn)/c queries

(even when allowing two-sided error).

Claim 3.2.2 follows by a straightforward adaptation of the proof of Claim 2.3.2; note that here, for
i = ⌊logc(1/cǫ)⌋, we reduce 1/c-testing Π′

d,c−i·n,q(c−i) to ǫ-testing Πn by emulating answers to the queries

issued by the latter tester, which means that we emulate an n-vertex graph using queries to an c−i · n-
vertex graph.13 The crucial fact is that, as in the proof of Claim 2.3.2, the elements of the base object
are different from those used in the padding; specifically, here, the vertices of the base graph have low
degree whereas the vertices used in the padding have high degree. The theorem follows.

A tighter hierarchy theorem. The quadratic gap between the upper and lower bounds in Theo-
rem 3.2 is due to the way we coped with the problem of invoking a tester for n′-vertex graphs on an
n′′-vertex graph, where n′′ ≈ n′ (alas n′′ 6= n′). Specifically, we used a very good approximation of the
number of low-degree vertices in the input n-vertex graph, denoted n′′, and invoked the tester only if
n′′ is very close to n′ (while rejecting the graph otherwise). This was obtained by approximating n′′

12Assuming that G is ǫ-far from Πn and that (almost all) its high degree vertices reside in (d + 1)-cliques, the other
(two) cases are the case that the number of low-degree vertices is at least 1.2 ·c−(ℓ+1)n but is not in

S

i∈[ℓ]{(1±0.2) ·c−in},
and the case that the number of low-degree vertices is not (1 ± 2δ) · c−i∗ · n (where i∗ is as step in Step 1). In the first
case Step 1 rejects (w.h.p.), whereas in the second case Step 2b rejects (w.h.p.).

13Hence, we can place the low-degree vertices at fixed locations of our choice (e.g., we may just assign the low-degree
vertices labels in [c−i · n]).

9

such that the relative deviation is smaller that the reciprocal of the query complexity of the tester.
Unfortuantely, such a good approximation had a high cost (i.e., quadratic in the query complexity of
the given tester).

Fortunately, the tester provided by the proof of Theorem 3.1 is actually oblivious of the number
of vertices in the tested graph, denoted n′. It only uses this number in order to sample the vertex
set, which is identified with [n′]. (The same holds for many other known testers.) Hence, we may
provide this tester with a device that samples the vertex set rather than with the size of this set, and
subsequently avoid the need to obtain a very good approximation of the number of low-degree vertices
in our input graph.

Definition 3.3 (property testing in the bounded-degree graph model, revised): For a fixed d ∈ N, let

Π be a property of graphs of maximum degree d such that each graph is represented by an incidence

function of the form g : V × [d] → V ∪ {0}, where V is an arbitrary subset of N. A tester for the graph

property Π is a probabilistic oracle machine T that is given access to two oracles, an incidence function

g : V × [d] → V ∪{0} and a device denoted Samp(g) that samples uniformly in V (equiv., in the domain
of g), and satisfies the following two conditions:

1. The tester accepts each g ∈ Π with probability at least 2/3; that is, for every g ∈ Π (and every
ǫ > 0), it holds that Pr[T g,Samp(g)(ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any g that is ǫ-far from Π, the tester rejects with probability at

least 2/3; that is, for every ǫ > 0 and g : V × [d] → V ∪ {0} that is ǫ-far from ΠV , it holds that

Pr[T g,Samp(g)(ǫ)=0] ≥ 2/3, where ΠV consists of the graphs in Π that have vertex-set V .

(As usual, g : V × [d] → V ∪ {0} is ǫ-far from ΠV if, for every g′ ∈ ΠV , it holds that |{(v, i) ∈
V × [d] : g(v, i) 6= g′(v, i)}| > ǫ · d|V |.)

The notion of ǫ-tester is defined analogously.

It turns out that the upper bound established in [11, Thm. 3] (see also Theorem 3.1) holds also in the
model of Definition 3.3. This is the case since the corresponding tester takes a sample of vertices14

and explores the connected component in which each of these vertices resides, while suspending the
exploration once a predetermined number of vertices is encountered (where this predtermined number
is q′ + 1). Hence, we have:

Proposition 3.4 ([11, Thm. 3], further revised): Let c and the Π′

d,n′,q′’s be as in Theorem 3.1. Then,

there exists an oracle machine that, on input d, q′ and ǫ′, makes c · dq′/ǫ′ queries and constitutes an

ǫ′-tester of
⋃

n′∈N
Π′

d,n′,q′ (in the sense of Definition 3.3).

Using (Theorem 3.1 and) Proposition 3.4, we prove the following.

Theorem 3.5 (hierarchy theorem for size-oblivious query complexity, actual version for the bounded-
degree graph model): For all sufficiently large d ∈ N and every monotonically non-increasing q : (0, 1] →
N, there exists a graph property Π =

⋃
n∈N

Πn, where Πn consists of n-vertex graphs of degree at most d,
such that Π is ǫ-testable in O(q(Ω(ǫ))/ǫ) + O(1/ǫ2) queries, but is not ǫ-testable in o(min(q(O(ǫ)), ǫn))
queries.

Both lower and upper bounds refer to two-sided error testers (in the bounded-degree graph model).

Proof: We follow the proof of Theorem 3.2, while modifying the emulation performed towards es-
tablishing the upper bound. Specifically, we shall use less accurate approximation of the number

14Actually, this ǫ′-tester repeats a basic test for O(1/ǫ′), where the basic test calls for sampling a single vertex and
exploring its connected component.

10

of low-degree vertices and rely on Proposition 3.4. In particular, we use the same graph properties
Π′

d,c−i·n,q(c−i)
and Πn (as in the proof of Theorem 3.2), while recalling that the

⋃
n′∈N

Π′

d,n′,q(c−i)
’s can

be tested in the model of Definition 3.3. We thus focus on replacing Claim 3.2.1 by the stronger upper
bound provided by the following claim.

Claim 3.5.1 (upper bound): The property Πn is ǫ-testable in O(q(ǫ/c)/ǫ) + O(1/ǫ2) queries.

Proof: We follow the strategy of the proof of Claim 3.2.1, while using less accurate approximation for
the number of low-degree vertices and rely on Proposition 3.4. Specifically, we approximate the said
number up to an additive deviation of 0.1ǫ · n, and invoke the (ci∗ · ǫ/2)-tester for

⋃
n′∈N

Π′

d,n′,q(c−i)
on

the subgraph induced by the low-degree vertices. For sake of clarity, we spell out the derived tester (as
operating on input an n-vertex graph G and proximity parameter ǫ).

1. The tester selects uniformly and independently m = O(1/ǫ2) random vertices, and obtains a
rough estimate of the number of low-degree vertices in G; specifically, the density of low-degree
vertices is estimated within an additive deviation of ±0.1ǫ. If, for some i∗ ∈ [logc(1/ǫ)], the
number of low-degree vertices seen is (c−i∗ ± 0.1ǫ) · m, then i∗ is set accordingly; if the number
of low-degree vertices is smaller than 1.1 · c−(ℓ+1) · m, then the tester sets i∗ = ℓ + 1; otherwise
(i.e., i∗ was not set so far), the tester rejects.

(This step replaces Steps 1 and 2b in the proof of Claim 3.2.1.)15

In addition (as in Step 2a in the proof of Claim 3.2.1), the tester selects O(1/ǫ) random vertices
and checks whether each vertex of degree greater than d/2 resides in a (d+1)-clique. If this check
fails, then the tester rejects. If this check passes and i∗ = ℓ + 1, then the tester accepts.

2. The tester invokes the (ci∗ · ǫ/2)-tester for
⋃

n′∈N
Π′

d,n′,q(c−i∗)
on the subgraph of G induced by its

low-degree vertices, and outputs the verdict of this tester.

(Indeed, this step replaces the last step in the proof of Claim 3.2.1. The point is that we invoke
the tester for

⋃
n′∈N

Π′

n′,q(c−i∗)
while emulating a sampling oracle to the said subgraph, denoted

G′′, but without providing the approximate size of G′′. In contrast, in the proof of Claim 3.2.1,
we invoked a tester for Π′

c−i∗ ·n,q(c−i∗)
on G′′, while relying on the hypothesis that the size of G′′

is
(
1 ± 0.02

q(c−i∗)

)
· c−i∗ · n.)

The query complexity of the purported ǫ-tester is upper-bounded by O(1/ǫ2) + O(q(ǫ/c)/ǫ), where
the second term is due to the complexity of emulating the (ci∗ǫ/2)-testing

⋃
n′∈N

Π′

d,n′,q(c−i∗)
, which is

ci∗ · O(q(c−i∗)/(ci∗ǫ/2)). We note that, unlike in the proof of Claim 3.2.1, the approximation to the
number of low-degree vertices (obtained in Step 1) is not used in the analysis of Step 2 (but it is rather
used in order to assert that G is closed to a graph that has ci∗ ·n low-degree vertices). Hence, we obtain
the desired tester, which has two-sided error, where the error on inputs in Πn arises from a mistaken
determination of i∗ (which occurs with small probability).

Noting that Claim 3.2.2 remains intact, the theorem follows.

An alternative construction. We present an alternative proof of Theorem 3.5, which actually yields
a stronger result. Most importantly, the upper bound is established using a tester of one-sided error
probability, while the lower bound still holds for general testers (having two-sided error probability).
(In addition, we eliminated the additive O(1/ǫ2) term in the upper bound, which is quite insignificant,
since typically q(ǫ) = Ω(1/ǫ).)

15In contrast, in the proof of Claim 3.2.1, the approximation was aimed at an additive deviation of
±min(0.1ǫ, 0.01c−i∗/q(c−i∗)), which is tyoically much smaller (esp., when i∗ ≥ ℓ − O(1)).

11

Theorem 3.6 (a stronger version of Theorem 3.5): For all sufficiently large d ∈ N and every mono-

tonically non-increasing q : (0, 1] → N, there exists a graph property Π =
⋃

n∈N
Πn, where Πn consists

of n-vertex graphs of degree at most d, such that Π is ǫ-testable with one-sided error in O(q(Ω(ǫ))/ǫ)
queries, but is not ǫ-testable in o(min(q(O(ǫ)), ǫn)) queries (even when allowing two-sided error).

Proof Sketch: Using the same graph properties Π′

d,c−i·n,q(c−i) (as in the proof of Theorems 3.2 and 3.5),

we describe a different construction of Π. Specifically, rather than padding the n′-vertex base graph
with n − n′ vertices of high degree that reside in (d + 1)-cliques, we pad it with (d − 1)-ary trees of
height logd−1((n − n)/n′), and connect the root of each of these n′ trees to a different vertex of the
base graph. Actually, to facilitate the argument, we also connect all pairs of leaves that share the same
parent node, forming (d − 1)-cliques, as detailed next.

For every n ∈ N, we let Πn =
⋃

i∈[logc n] Π
(i)
n such that an n-vertex graph of maximum degree d is

in Π
(i)
n if it consists of a (base) graph in Π′

d,c−i·n,q(c−i)
, and (1− c−i) · n vertices of degree at least d− 1

that are connected as follows.

• The high-degree vertices reside in c−i ·n trees, each being a (d− 1)-ary tree of size ci − 1. Hence,
each tree has depth logd−1(c

i − 1).

• The root of each tree is connected (by an edge) to a different vertex of the base graph.

• Leaves that are siblings in the tree are connected by additional edges, forming a (d−1)-clique. In
other word, if v is the parent of leaves w1, ..., wd−1, then the graph induced by {v,w1, ..., wd−1}
is a d-clique.

Hence, each vertex of the base graph has degree at most (d/2) + 1, each internal node of the foregoing
(d − 1)-ary trees has degree d, and each leave of each tree has degree d − 1. Hence, the gap between
the degrees of vertices of the base graph (a.k.a low-degree vertices) and the padded vertices (a.k.a
high-degree vertices) is maintained.

The crucial fact about this construction is that it allows for an efficient determination of i∗. Specif-

ically, given access to a graph G ∈ Π
(i)
n , for an unknown i, we can determine the value of i by making

O(d · ci) queries by selecting an arbitrary vertex in the graph and exploring its neighborhood. The
point is that this number of queries suffices for exploring the tree to which the start vertex belongs (or
the tree that is connected to it, in case it resides in the base graph). Once i∗ is determined, we use a
random sample of O(c−i∗/ǫ) vertices to test that all low-degree vertices are connected to (d − 1)-ary
trees of depth logd−1(c

i∗ − 1) (with cliques connecting sibling leaves). Hence, we use a one-sided error
test of the properness of the padding.

The foregoing one-sided error test, which indirectly also tests that density of the set of low-degree
vertices equals ci∗ , replaces the probabilistic estimation of the density of this set as well as the setting
of i∗ itself (as conducted in the proofs of Claims 3.2.1 and 3.5.1, and leading to the two-sided error
probability there). Next, we test the base graph as in the proof of Claim 3.5.1, and rely on the fact
that this tester has one-sided error.

Having concluded that (the redefine property) Π can be ǫ-tested with one-sided error and O(q(ǫ/c)/ǫ)
queries, we note that the lower bound asserted in Claim 3.2.2 hold also for the redefined property Π.
This is the case since the proof is quite oblivious of the specific form of padding used, as long as the
degrees of the padded vertices are far from the degrees of the vertices of the base graph.

4 Graph Properties in the Adjacency Matrix Model

In the adjacency matrix model (a.k.a the dense graph model), an n-vertex graph G = ([n], E) is
represented by the Boolean function g : [n] × [n] → {0, 1} such that g(u, v) = 1 if and only if u

12

and v are adjacent in G (i.e., {u, v} ∈ E). Distance between graphs is measured in terms of their
aforementioned representation; that is, as the fraction of (the number of) different matrix entries (over
n2). Again, we focus on graph properties (i.e., properties of labeled graphs that are invariant under
renaming of the vertices).

Recall that [10] proved that, in this model, there exist graph properties for which testing requires a
quadratic (in the number of vertices) query complexity (even when allowing two-sided error). Building
on this result, Goldreich et. al. [11] showed:

Theorem 4.1 ([11, Thm. 4], revised):16 There exists a universal constant c > 5 and a fixed quadratic

polynomial p such that, for every q′, n′ ∈ N that satisfy q′ ≤
(n′

2

)
, there exists a graph property Π′

n′,q′ of

n′-vertex graphs such that the following holds in the dense graph model:

1. There exists an algorithm that, on input n′, q′ and ǫ′, makes p(1/ǫ′) · q′ queries and constitutes

an ǫ′-tester of Π′

n′,q′.

2. For every q′ ≤ n′, any 1/c-tester of Π′

n′,q′ requires at least q′/c queries.

Both lower and upper bounds refer to two-sided error testers. As in Section 3, using Theorem 4.1, we
first prove a weak form of the hierarchy theorem eluded to in the abstract and introduction.

Theorem 4.2 (hierarchy theorem for size-oblivious query complexity, a weak version for the dense
graph model): For every q : (0, 1] → N that is monotonically non-increasing, there exists a graph

property Π =
⋃

n∈N
Πn, where Πn consists of n-vertex graphs, that is ǫ-testable in O(q(Ω(ǫ))/ǫ)2 queries,

but is not ǫ-testable in o(min(q(O(ǫ)), ǫn2)) queries.

Both lower and upper bounds refer to two-sided error testers in the dense graph model.

Proof: Following the strategy of the proof of Theorem 3.2, our starting point is the family of properties
asserted in Theorem 4.1. Again, we avoid the temptation to pad the base n′-vertex graph by n − n′

isolated vertices. Instead, we use a single (n − n′)-clique as the padding. Note that here, unlike in the
proof of Theorem 3.2, the description of the (n′-vertex) base graph occupies an (n′/n)2 fraction of the
description of the n-vertex graph (rather than an (n′/n) fraction of it).

Specifically, we let Πn =
⋃

i∈[logc n] Π
(i)
n such that an n-vertex graph is in Π

(i)
n if it consists of a

(1 − c−i) · n-vertex clique and graph in Π′

c−i·n,q(c−2i)
, which is called the base graph. Note that each

graph in Π
(i)
n is c−2i-close to graph that consists of an (1 − c−i) · n-vertex clique and c−i · n isolated

vertices (whereas in the proofs of Theorems 2.3 and 3.2 the corresponding relative distance was c−i).
We shall use the fact that the vertices of the base graph have low degree (i.e., degree smaller than

n/c < 0.2n), whereas the remaining vertices have high degree (i.e., degree at least n−(n/c)−1 > 0.8n).17

It is tempting to say that these two cases can be easily distinguished, but we warn that the distinguishing
procedure is randomized (i.e., it relies on sampling additional vertices and checking whether they are
adjacent to the tested vertex). We shall address this issue shortly.

Claim 4.2.1 (upper bound): The property Πn is ǫ-testable in O(q(ǫ/c2)2/ǫ) + O(q(ǫ/c2)/ǫ2) queries.

16The original statement of [11, Thm. 4] uses asymptotic notation and does not specify the dependence of the upper
bound on ǫ. Nevertheless, the original proof explicitly establishes the result stated here. We comment that [11, Thm. 6]
provides a stronger result in which the upper bound holds for one-sided error tester, but our technique introduces an error
probability also in case the graph has the property. We postulated that c > 5 (rather than c > 2) in order to simplify the
rest of the exposition, while noting that one can always increase c.

17Indeed, in the case of graphs in Π
(i)
n , the vertices of the base graph have degree smaller than n/ci, whereas the

remaining vertices have degree n − (n/ci) − 1.

13

Proof: As in the proof of Claim 3.2.1, we wish to follow the strategy used in the proof of Claim 2.3.1.
As noted above, one crucial difference is in the way we identify the vertices of the base graph (of a

graph in Π
(i)
n), which are chracterized by their low degree. Here, unlike in the proof of Claim 3.2.1,

we cannot identify these vertices by few deterministicly determined queries, but rather rely on random
sampling. The straighforward way amounts to samplying several random vertices and asserting that
the tested vertex is of low degree if it neighbors less than half of them, but a characterization of the
vertices according to their degrees requires fixing the sample.18 We prefer an alterantive way that
consists of finding one high degree vertex (by sampling), and characterizing all other vertices in the
graph according to whether or not they neighbor this vertex. (Indeed, vertices in the base graph do
not neighbor any high degree vertex, whereas all other vertices of the large clique do neighbor such a
vertex.)

Another difference between the proofs of Claims 2.3.1 and 3.2.1 and the current proof is that here
we set ℓ = ⌈0.5 logc(1/ǫ)⌉, rather than ℓ = ⌈logc(1/ǫ)⌉ as in the previous proofs. (Likewise, we invoke
the c−2i∗ǫ/2-tester (rather than a c−i∗ǫ/2-tester).)

Again, the determination of i∗ is done by sampling (see above), while here we rely on the fact that

if G ∈ Π
(i)
n then the vertices in its base graph do not neighbor any high degree vertex, whereas all high

degree vertices neighbor each other (since they reside in an (n − c−i∗n)-vertex clique). Hence, as in
the proof of Claim 3.2.1, the determination of i∗ carries an error probability (also in the case that the
graph has the property).

Specifically, we set i∗ ∈ [ℓ] such that the estimated density of the base graph (defined as the subgraph
induced by the vertices that do not neighbor the selected high degree vertex) is approximately c−i∗ ,
and set i∗ = ℓ + 1 if the estimated density is below 1.1 · c−(ℓ+1). Like in the proof of Claim 3.2.1,
we approximate the size of the base graph up-to ±0.01min(ǫ, c−i∗/q(c−2i∗)) · n, and the complexity of
obtaining this approximation (i.e., maxi∗∈[ℓ]{O(max(ǫ−2, ci∗ · q(c−2i∗)2)}) dominates the complexity of

the entire tester. This very good approximation allows to invoke the c−2i∗ǫ/2-tester of Π′

c−i∗ ·n,q(c−2i∗)

on the subgraph of G induced by vertices that do not neighbor the selected high degree vertex, although
the number of such vertices may slightly deviate from c−i∗ · n (where the deviation is upper-bounded
by c−i∗n/q(c−2i∗)).

Lastly, as in the proof of Claim 3.2.1, we cannot directly sample vertices in the base graph (nor can
we directly sample the vertices of the large clique used to augment the base graph to an n-vertex graph),
but we can indirectly sample both sets at the (expected) cost of ci∗ actual samples per each desired
sample (of the base graph). For sake of clarity, we spell out the derived tester. On input an n-vertex
graph G and proximity parameter ǫ, the tester proceeds as follows (while setting ℓ = ⌈0.5 logc(1/ǫ)⌉):

1. Determining i∗: The tester finds a vertex, denoted s, that seems to have degree at least n/2,
by sampling O(1) random vertices and very roughly approximating their degree (by considering
their adjacency relation to O(1) random vertices).

Letting B denote the set of vertices that do not neighbor s in G, the tester obtains a rough
estimate of the size of B; specifically, using a sample of m = O(1/ǫ2) random vertices, with high
probability, the relative deviation error is smaller than 0.1ǫ. If, for some i∗ ∈ [ℓ], the number of
sampled vertices in B is (1 ± 0.1) · c−i∗ · m, then i∗ is set accordingly; if the number of sampled
vertices in B is smaller than 1.1 · c−(ℓ+1) · m, then the tester sets i∗ = ℓ + 1; otherwise (i.e., if i∗

was not set), the tester rejects.

2. Testing the subgraph induced by [n]\B and obtaining a refined estimate of |B|: The tester checks
that the subgraph induced by [n] \B is a clique and that |B| is very close to c−i∗ ·n. Specifically:

18That is, a fixed partition of the vertices to high and low degree ones is obtained when fixing the coins used for the
corresponding sampling process.

14

(a) The tester selects O(1/ǫ) random vertices in G and checks that the vertices that neighbor s
are adjacent to one another. If two vertices that neighbor s were found not to be adjacent,
then the tester rejects.

(b) Letting δ = min(0.1ci∗ǫ, 0.01/q(c−2i∗)) and using a sample of O(ci∗/δ2) random vertices, the
tester estimates the size of B up to ±δ · c−i∗ · n (with high probability). If this estimate
deviates from c−i∗ · n by more than δ · c−i∗ · n, then the tester rejects.

(Note that O(ci∗/δ2) = max(O(1/ǫ2), O(q(c2i∗)2/ǫ)).)

3. Testing the subgraph induced by B: The tester invokes the (c2i∗ · ǫ/2)-tester for Π′

c−i∗ ·n,q(c−2i∗)
on

the subgraph of G induced by B, and outputs the verdict of this tester. Specifically, the (c2i∗ǫ/2)-
tester is invoked while emulating a graph with (1 ± δ) · c−i∗ · n vertices. (Recall that we emulate
each vertex selection at an (expected) cost of ci∗ actual samples.)19

(The complexity of this emulation is ci∗ · O(q(c−2i∗)/(c2i∗ · ǫ)2) = O(q(c−2i∗)/ǫ2).)

The analysis of the foregoing tester mimics the analysis of the tester presented in the proof of Claim 3.2.1.
The claim follows, while using q(c−2ℓ) ≤ q(ǫ/c2), which holds since ℓ < 0.5 logc(1/ǫ) + 1.

Claim 4.2.2 (lower bound): The property Πn is not ǫ-testable in less than min(q(c3 · ǫ), ǫn2)/c queries

(even when allowing two-sided error).

The proof of Claim 4.2.2 mimics the proofs of Claims 2.3.2 and 3.2.2, except that here i is set such
that c−2i ∈ [cǫ, c3ǫ] (i.e., i = ⌊0.5 logc(1/cǫ)⌋). The theorem follows.

A tighter hierarchy theorem. As in the proof of Theorem 3.2, the quadratic gap between the
upper and lower bounds in Theorem 4.2 is due to the way we coped with the problem of invoking a
tester for n′-vertex graphs on an n′′-vertex graph, where n′′ ≈ n′ (alas n′′ 6= n′). Specifically, we used
a very good approximation of the number of “high degree” vertices in the input n-vertex graph, but
such a good approximation had a high cost (i.e., quadratic in the query complexity of the given tester).

Fortunately, the tester provided by the proof of Theorem 4.1 is actually oblivious of the number of
vertices in the tested graph, denoted n′. Like in the case of Theorem 3.1, the tester only uses n′ to
sample the vertex set, which is identified with [n′]. Hence, we may provide this tester with a device
that samples the vertex set rather than with the size of this set, and avoid the need to obtain a very
good approximation of the number of low-degree vertices in our input graph.

Definition 4.3 (property testing in the dense graph model, revised): Let Π be a property of graphs

such that each graph is represented by an adjacency predicate of the form g : V × V → {0, 1}, where V
is an arbitrary subset of N. A tester for the graph property Π is a probabilistic oracle machine T that is

given access to two oracles, an adjacency predicate g : V × V → {0, 1} and a device denoted Samp(g)
that samples uniformly in the domain of g (i.e., V × V), and satisfies the following two conditions:

1. The tester accepts each g ∈ Π with probability at least 2/3; that is, for every g ∈ Π (and every
ǫ > 0), it holds that Pr[T g,Samp(g)(ǫ)=1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any g that is ǫ-far from Π, the tester rejects with probability at

least 2/3; that is, for every ǫ > 0 and g : V × V → {0, 1} that is ǫ-far from ΠV , it holds that

Pr[T g,Samp(g)(ǫ)=0] ≥ 2/3, where ΠV consists of the graphs in Π that have vertex-set V .

(As usual, g : V ×V ×{0, 1} is ǫ-far from ΠV if, for every g′ ∈ ΠV , it holds that |{(u, v) ∈ V ×V :
g(u, v) 6= g′(u, v)}| > ǫ · |V |2.)

19As in the proof of Claim 3.2.1, the tester for Π′

c−i∗ ·n,q(c−2i∗)
expects the labels of the tested graph to reside in

[c−i∗ · n], whereas the labels of the vertices of the induced subgraph are in [n]. Again, this discrepancy is easy to bridge
by maintaining a partial injection of [n] to [c−i∗ · n].

15

The notion of ǫ-tester is defined analogously.

It turns out that the upper bound established in [11, Thm. 4] (see also Theorem 4.1) holds also in the
model of Definition 4.3. This is the case since the corresponding tester (presented as [11, Alg. 4.5])
takes a sample of vertices, queries some of the corresponding vertex pairs, and decides based on some
statistics of the sample (obliviously of the size of the tested graph).20 Hence, we have:

Proposition 4.4 ([11, Thm. 3], further revised): Let p and the Π′

n′,q′’s be as in Theorem 4.1. Then,

there exists an oracle machine that, on input q′ and ǫ′, makes p(1/ǫ′) · q′ queries and constitutes an

ǫ′-tester of
⋃

n′∈N
Π′

n′,q′ (in the sense of Definition 4.3).

Using (Theorem 4.1 and) Proposition 4.4, we prove the following.

Theorem 4.5 (hierarchy theorem for size-oblivious query complexity, actual version for the dense
graph model): For every q : (0, 1] → N that is monotonically non-increasing, there exists a graph

property Π =
⋃

n∈N
Πn, where Πn consists of n-vertex graphs, that is ǫ-testable in O(q(Ω(ǫ))/ǫ2) queries,

but is not ǫ-testable in o(min(q(O(ǫ)), ǫn2)) queries.

Both lower and upper bounds refer to two-sided error testers in the dense graph model.

Proof: We follow the proof of Theorem 4.2, while modifying the emulation performed towards estab-
lishing the upper bound. (The modification is analogous to the modification of the proof of Theorem 3.2
employed when proving Theorem 3.5.) Specifically, we shall use less accurate approximation of the num-
ber of “low degree” vertices and rely on Proposition 4.4. In particular, we use the same graph properties
Π′

c−i·n,q(c−2i) and Πn (as in the proof of Theorem 4.2), while observing that the
⋃

n′∈N
Π′

n′,q(c−2i)’s can

be tested in the model of Definition 4.3. We thus focus on replacing Claim 4.2.1 by the stronger upper
bound provided by the following claim.

Claim 4.5.1 (upper bound): The property Πn is ǫ-testable in O(q(ǫ/c)/ǫ2) queries.

Proof: We follow the strategy of the proof of Claim 4.2.1, while using less accurate approximation for
the number of “low degree” vertices and rely on Proposition 4.4. Specifically, we approximate the said
number up to an additive deviation of 0.1ǫ · n, and invoke the (c2i∗ · ǫ/2)-tester for

⋃
n′∈N

Π′

n′,q(c−2i∗)

on the subgraph induced by the “low degree” vertices (or rather by the non-neighbors of the selected
high-degree vertex). For sake of clarity, we spell out the derived tester (as operating on input an
n-vertex graph G and proximity parameter ǫ, while letting ℓ = ⌈0.5 logc(1/ǫ)⌉).

1. Determining s, B and i∗ is done exactly as in Step 1 of the tester presented in the proof of
Claim 4.2.1.

2. The tester checks that the subgraph induced by [n] \ B is a clique. This is done exactly as in
Step 2a of the tester presented in the proof of Claim 4.2.1.

(Indeed, we avoid Step 2b in the foregoing tester.)

20Specifically, for s =
√

q′, using a sample of O(1/ǫ′)2 ·s vertices in the input graph G, the tester first clusters the vertices
in the sample according to their adjacency to O(log s) “signature vertices” (i.e., the O(log s)-bit long string descibing the
adjacency values); it continues if and only if exactly s clusters were found and these clusters are of approximately the
same size (otherwise it rejects). It next selects (arbitrarily) a representative vertex in each cluster, and checks (making
`

s

2

´

queries) that the subgraph induced by these representatives satisfies the “underlying property” (used to construct the
property being tested, which is a “balanced blow-up” of the former). In addition, the tester check that random vertex
pairs (in G) fit the adjacency relation of the representatives of the clusters to which they belong (per their own adjacency
pattern). All operations are performed without reference to the number of vertices in G. (We stress that s is determined
by q′ only.)

16

3. Testing the subgraph induced by B: The tester invokes the (c2i∗ · ǫ/2)-tester for ∪n′∈NΠ′

n′,q(c−2i∗)

on the subgraph of G induced by B, and outputs the verdict of this tester.

(Indeed, this step replaces the last step of the tester presented in the proof of Claim 3.2.1. The
point is that we invoke the tester for

⋃
n′∈N

Π′

n′,q(c−2i∗)
while emulating a sampling oracle to the

said subgraph, but without providing the approximate size of this subgraph. In contrast, in the
proof of Claim 3.2.1, we invoked a tester for Π′

c−i∗ ·n,q(c−2i∗)
on this subgraph, while relying on the

hypothesis that its size was (1 ± 0.01/q(c−i∗)) · c−i∗ · n.)

The query complexity of the purported ǫ-tester is upper-bounded by O(1/ǫ2) + O(q(ǫ/c)/ǫ2), where
the second term is due to the complexity of emulating the (c2i∗ǫ/2)-testing

⋃
n′∈N

Π′

n′,q(c−2i∗)
, which is

ci∗ · O(q(c−i∗)/(c2i∗ǫ/2)2). We note that, unlike in the proof of Claim 3.2.1, the approximation to the
number of “low degree” vertices (obtained in Step 1) is not used in the analysis of Step 3 (but it is
rather used in order to assert that G is closed to a graph that has ci∗ ·n “low degree” isolated vertices).
Hence, we obtain the desired tester, which has two-sided error, where the error on inputs in Πn arises
from a mistaken determination of i∗ (which occurs with small probability).

Noting that Claim 3.2.2 remains intact, the theorem follows.

5 On Query Complexity that Depends on Both Parameters

As stated in the introduction, the results presented in Sections 2–4 complement hierachy theorems
of Goldreich, Krivelevich, Newman, and Rozenberg [11]. While our results refer to query complexity
that depends only on the proximity parameter, the results in [11] refer to the dependence of the query
complexity on the size of the tested object (and focus on the case that the proximity parameter is set
to some small positive constant). We can actually combine both flavors and get quite tight results
on the query complexity of testing when allowing the query complexity to depend quite arbitrarily on
both the size of the object and the proximity parameter. The proof are identical to those presented
in Sections 2–4, except that the parameter q′ will be determine as a function of the desired quyery
complexity, which is now a function of both parameters.

Properties of generic functions. Generalizing the proof of Theorem 2.3, we obtain the following

Theorem 5.1 (Theorem 2.3, generalized): For every q : N × (0, 1] → N monotonically non-decreasing

in the first parameter and monotonically non-increasing in the second parameter, there exists a property

Πn of Boolean functions over [n] that is ǫ-testable (with one-sided error) in q(n,Ω(ǫ))+O(1/ǫ) queries,

but is not ǫ-testable in o(min(q(n,O(ǫ)), ǫn)) queries (even when allowing two-sided error).

Recall that by Remark 2.4, we may obtain a property of Boolean functions over [3n] that is ǫ-testable in
O(q(n,Ω(ǫ)))+O(1/ǫ) queries, but is not ǫ-testable in o(max(min(q(n,O(ǫ)), ǫn),min(1/ǫ, n))) queries.
Note that when ǫ > 1/

√
n, the lower bound simplifies to Ω(min(q(n,O(ǫ)), ǫn)).

Proof Sketch: As stated above, we proceed as in the proof of Theorem 2.3, except that we place f in

Π
(i)
n if there exists f ′ ∈ Π′

c−i·n,q(n,c−i) such that f(j) = f ′(j) + 1 if j ∈ [c−i · n] and f(j) = 0 otherwise.

(Here, letting Π′

n′,q′ = ∅ if q′ > n′ means that Π
(i)
n = ∅ if q(n, c−i) > c−in.) The rest of the arguement

proceeds exactly as in the case of Theorem 2.3.

Graph properties in the bounded-degree model. Generalizing the proof of Theorem 3.5, we
obtain the following

17

Theorem 5.2 (Theorem 3.5, generalized): For all sufficiently large d ∈ N and every q : N× (0, 1] → N

monotonically non-decreasing in the first parameter and monotonically non-increasing in the second

parameter, there exists a graph property Πn of n-vertex graphs of degree at most d that is ǫ-testable in

O(q(n,Ω(ǫ))/ǫ) + O(1/ǫ2) queries, but is not ǫ-testable in o(min(q(n,O(ǫ)), ǫn)) queries.

Both lower and upper bounds refer to two-sided error testers (in the bounded-degree graph model).
Generalizing Theorem 3.6, we can show ǫ-testability with one-sided error using O(q(Ω(ǫ))/ǫ) queries,
while maintained the Ω(min(q(O(ǫ)), ǫn)) lower bound for general ǫ-testers (of two-sided error).

Graph properties in the adjacency matrix model. Generalizing the proof of Theorem 4.5, we
obtain the following

Theorem 5.3 (Theorem 4.5, generalized): For every q : N × (0, 1] → N monotonically non-decreasing

in the first parameter and monotonically non-increasing in the second parameter, there exists a graph

property Πn of n-vertex graphs that is ǫ-testable in Õ(q(n,Ω(ǫ))/ǫ2) queries, but is not ǫ-testable in

o(min(q(n,O(ǫ)), ǫn2)) queries.

Both lower and upper bounds refer to two-sided error testers in the dense graph model.

6 Open Problems

While our query complexity bounds for the generic model are of the form Θ(q(n,Θ(ǫ))), in the two
graph testing models we have a slackness of the form ǫc, where c ∈ {1, 2} depending on the model.
This is most significant in the case of q(n, ǫ) = poly(1/ǫ), and a well-defined open problem is to get rid
of this slackness.

Another problem left open refers to the dense graph model and consists of obtaining a hierarchy
theorem in which the upper bound is established via one-sided error testers, whereas the lower bound
holds also for general testers (with two-sided error). Note that such results were obtained for the other
two models (see Theorems 2.3 and 3.6, resp.).

A much more vague open problem is to avoid the unnatural flavor of the properties used in es-
tablishing our results (as well as those of [11]). One cannot expect natural problems for arbitrary
complexity bounds (i.e., for results stated for essentially any function q), but one may ask for it in
cases such as q(n, ǫ) = exp(1/ǫ) and q(n, ǫ) = ǫ−3. For sake of concreteness, we adopt the definition of
Noam Livne for natural problems saying that a problem is natural, beyond its use in a specific context,

if it was considered before in a different context.

References

[1] N. Alon. Testing subgraphs of large graphs. Random Structures and Algorithms, Vol. 21,
pages 359–370, 2002.

[2] N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Characterization of the
Testable Graph Properties: It’s All About Regularity. In 38th STOC, pages 251–260, 2006.

[3] N. Alon and A. Shapira. Testing subgraphs in directed graphs. JCSS, Vol. 69, pages 354–482,
2004.

[4] N. Alon and A. Shapira. Every Monotone Graph Property is Testable. SIAM Journal on

Computing, Vol. 38, pages 505–522, 2008.

18

[5] I. Benjamini, O. Schramm, and A. Shapira. Every Minor-Closed Property of Sparse Graphs
is Testable. In 40th STOC, pages 393–402, 2008.

[6] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to Numerical
Problems. JCSS, Vol. 47, No. 3, pages 549–595, 1993.

[7] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability in bounded-
degree graphs. In 43rd FOCS, pages 93–102, 2002.

[8] L. Gishboliner and A. Shapira. A Generalized Turan Problem and its Applications. ECCC,
TR18-007, 2018.

[9] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[10] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, pages 653–750, July 1998.

[11] O. Goldreich, M. Krivelevich, I. Newman, and E. Rozenberg. Hierarchy Theorems for Property
Testing. Computational Complexity, Vol. 21 (1), pages 129–192, 2012.

[12] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
Vol. 32 (2), pages 302–343, 2002.

[13] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2), pages 252–271, 1996.

19

