Testing Monotonicity

Oded Goldreich Shafi Goldwassér Eric Lehmari Dana Roh

September 1998

Abstract

We present a (randomized) test for monotonicity of Boolaamcfions. Namely, given
the ability to query an unknown functiofi : {0,1}" — {0, 1} at arguments of its choice,
the test always accepts a monotofieand rejectsf with high probability if it is e-far from
being monotone (i.e., every monotone function differs fréran more than an fraction of
the domain). The complexity of the test is plye).

The analysis of our algorithm relates two natural combiriataguantities that can be
measured with respect to a Boolean function; one being gtolthe function and the other
being local to it.

We also consider the problem of testing monotonicity basalgl on random examples
labeled by the function. We show d(/2"/¢) lower bound on the number of required
examples, and provide a matching upper bound (via an afgoyit

*Department of Computer Science and Applied Mathematici&Mé&nn Institute of Science, RehovaRIAEL.
E-mail: oded@vi sdom wei zmann. ac. i | . Work done while visiting LCS, MIT.

fLaboratory for Computer Science, MIT, 545 Technology Sq.am®Bridge, MA 02139. E-mail:
{shafi, el ehman, danar }@heory. |l cs. mt. edu.

iSupported by an ONR Science Scholar Fellowship at the Bgtistitute.

1

1 Introduction

In this work we address the problemtefsting whether a given Boolean function is monotoke
function f : {0,1}" — {0, 1} is said to bemonotone if f(x) < f(y) for everyz < y, where<
denotes the natural partial order among strings (i£-; - ©, < y1- - -y, If x; < y; for every:; and
x; < y,; for somei). The testing algorithm can request the value of the funatio arguments of its
choice, and is required to distinguish monotone functisomffunctions that are far from being
monotone.

More precisely, the testing algorithm is givediatancgparametet > 0, and oracle accessto an
unknown functionf mapping{0, 1}" to {0, 1}. If f is a monotone then the algorithm should accept
it with probability at least 23, and if f is at distance greater tharfrom any monotone function
then the algorithm should reject it with probability at le233. Distance between functions is
measured in terms of the fraction of the domain on which thmetions differ. The complexity
measures we focus on are tipgery complexitynd therunning timeof the testing algorithm.

We present a randomized algorithm for testing the monoitynproperty whose query com-
plexity and running time are polynomial im and 1/e. The algorithm performs a simple local
test: It verifies whether monotonicity is maintained fordamly chosen pairs of strings that differ
exactly on a single bit. In our analysis we relate this locabsure to the global measure we are
interested in — the minimum distance of the function to anyotone function.

1.1 Perspective

Property Testing, as explicitly defined by Rubinfeld and 8ufRS96] and extended in [GGR98],
is best known by the special caseloiv degree testinglBBLR93, GLR"91, RS96, RS97, AS97]
which plays a central role in the construction of probakially checkable proofsecP [BFLI1,
BFLS91, FGLT96, AS98, ALM™98, RS97, AS97]. The recognition that property testing is a
general notion has been implicit in the contextral® It is understood that low degree tests as
used in this context are actually codeword tests (in thie cdBCH codes), and that such tests
can be defined and performed also for other error-correatodes such as the Hadamard code
[ALM t98, BGLR93, BS94, BCH95, BGS98, Kiw96, Tre98], and the “Long Code” [BGS98,
Has96, Hhs97, Tre98].

Forasmuch as error-correcting codes emerge naturallyeicdimtext ofPcr, they do not seem
to provide a natural representation of familiar objects sdproperties we may wish to investigate.
That is, one can certainly encode any given object by an-eooecting code — resulting in
a (legitimate yet) probably unnatural representation ef ébject — and then test properties of
the encoded object. However, this can hardly be considesea ‘anatural test” of a “natural
phenomena”. For example, one may indeed represent a grapipgdlying an error correcting
code to its adjacency matrix (or to its incidence list), b tesulting string is not the “natural
representation” of the graph.

The study of Property Testing as applied to natural reptasen of (non-algebraic) objects
was initiated in [GGR98]. In particular, Property Testing applied tographshas been studied
in [GGR98, GR97, GR98] — where the first work considersdldgacency matrix representation
of graphs (most adequate for dense graphs), and the lattksveonsider thancidence list

representatiorfadequate for sparse graphs).

In this work we consider property testing as applied to thethgeneric (i.e., least structured)
object — an arbitrary Boolean function. In this case the ohaf representation is “forced” upon
us.

1.2 Monotonicity

In interpreting monotonicity itis useful to view Booleamittions ovef 0, 1}" as subsets di0, 1},
calledconcepts This view is the one usually taken in the PAC Learning litera. Each position
in {1,...,n} corresponds to a certaattribute, and a string: = z; ...z, € {0, 1}" represents an
instance where; = 1 if and only if the instance has the" attribute. Thus, a concept (subset of
instances) is monotone if the presence of additional ategbmaintains membership of instances
in the concept (i.e., if instanceis in the concept C then any instance resulting frooy adding
some attributes is also in C).

The class of monotone concepts is quite general and rich. h®mwther hand, monotonicity
suggests a certain aspect of simplicity. Namely, eachbatii has a uni-directional effect on
the value of the function. Thus, knowing that a concept is ot@me may be useful in various
applications. In fact, this form of simplicity is exploitday Angluin’s learning algorithm for
monotone concepts [Ang88], which uses membership quengfias complexity that is linear in
the number of terms of the target concept’s DNF represamtati

We note that an efficient tester for monotonicity is usef peeliminary stage before employing
Angluin’s algorithm. As is usually the case, Angluin’s atglbbm relies on the premise that the
unknown target concept is in fact monotone. It is possibkEinaply apply the learning algorithm
without knowing whether the premise holds, and hope thdteeithe algorithm will succeed
nonetheless in finding a good hypothesis or detect that thettss not monotone. However, due
to the dependence of the complexity of Angluin’s algorithmtbe number of terms of the target
concept’'s DNF representation, it may be much more efficiefitst test whether the function is at
all monotone (or close to it).

1.3 The natural monotonicity test

The main result of the paper is that a tester for monotonisitptained by repeating the following
for poly(n/e) many times: Uniformly select a pair of strings at Hammingalice 1 and check if
monotonicity is satisfied with respect to the valuefadn these two strings. That is,

ALGORITHM 1: On inputn, e and oracle access tb: {0,1}"— {0, 1}, repeat the following steps
up ton?/e times
1. Uniformly selectz € {0,1}" andi € {1, ...,n}.
2. Obtain the values of(z) and f(y), wherey results fromz by flipping the:" bit.
3. Ifx,y, f(x), f(y) demonstrate thaf is not monotone thereject.
That s, if either(z <y) A (f(x)> f(y)) or (y<x) A (f(y) > f(z)) thenreject.

If all iterations were completed without rejecting thaccept.

3

Theorem 1 (main result): Algorithm 1 is a testing algorithm for monotonicity. Furtheore, if
the function is monotone then Algorithm 1 always accepts.

Theorem 1 asserts that a (randdogal check(i.e., Step 3 above) can establish the existence of a
global property(i.e., the distance of to the set of monotone functions). Actually, Theorem 1 is
proven by relating two quantities referring to the aboveveaif : {0,1}" — {0, 1}, we denote

by du(f) the fraction of pairgz,y) in which Step 3 rejects. Observe that(f) is actually a
combinatorial quantity (i.e., the fraction of pairsiebit strings, differing on one bit, which violate
the monotonicity condition). We then defiag(/) to be the distance gf from the set of monotone
functions (i.e., the minimum over all monotone functignsf |{z : f(x)#g(x)}|/2"). Observing
that Algorithm 1 always accepts a monotone function, Thecotdollows from Theorem 2, stated
below.

Theorem 2 Forany f : {0,1}"—{0,1},

€M (f)
oM (f) = nd
We comment that a slightly more careful analysis yields #ebétound than the one stated in the
theorem: namely,
em(f))
) =Q : 1
=2 gt) @

As for the reverse direction; that is, lower bounding f) in terms oféy (f), we have
Proposition 3 For every functionf : {0, 1}"—{0,1}, eu(f) > dm(f)/2.
Thus, for every functiory

EM(f)
ooly() < om(f) < O(em(f))

A natural question that arises is that of the exact relatetwberiy (-) andey (-). We observe that
this relation is not simple; that is, it does not depend omyle values oby andey,.

Proposition 4 The following holds for every and even2—<" < a < % — O(%), wherec is any
constant strictly smaller than 1.
1. There exists a functiofi : {0,1}" — {0,1} such thata < eu(f) < 2a and du(f) =

o (24).

2. There exists a functiofi : {0, 1}" — {0, 1} such thata < eu(f) < 2o and om(f) =
O (em(f))-

3. Foranya = O(n"?), there exists a functiofi : {0, 1}"+— {0, 1} such thatx < ey (f) < 2a
anddy (f) = © (L2,

PERSPECTIVE Analogous quantities capturing local and global propertf functions were an-
alyzed in the context ofinearity testing For a functionf : {0,1}" — {0, 1} (as above), one
may definec | (f) to be its distance from the set of linear functions apg, (f) to be the frac-
tion of pairs, (z,y) € {0,1}" x {0,1}" for which f(z) + f(y) # f(x & y). A sequence of
works [BLR93, BGLR93, BS94, BCHI5] has demonstrated a fairly complex behavior of the
relation between |y andep |y . The interested reader is referred to [BC3Y].

4

1.4 Monotonicity testing based on random examples

Algorithm 1 makes essential use of queries. We show thaisthis coincidence — any monotonicity
tester that utilizes only uniformly anidddependentlhosen random examples, must have much
higher complexity.

Theorem 5 For anye = O(n~%2), any tester for monotonicity that only utilizes random egpas
must use at lea® (/2" /¢) such examples.

Interestingly, this lower bound is tight up to a paly factor.

Theorem 6 There exists a tester for monotonicity which only utiliz&sdom examples and uses

at mostO(,/n3 - 27 /¢) examples. Furthermore, the algorithm runs in tip@y(n) - /27 /e.

We note that the above tester is significantly faster thanearying algorithm for the class of all
monotone concepts when the allowed errap{d//n): Learning (under the uniform distribution)
requiresQ(2"//n) examples (and even that number of queries) [KLV94].

1.5 Extensions and Open Problems

TESTING UNATENESS A function f : {0,1}" — {0, 1} is said to beunate if for every z; (where

xr = x1...x, IS the input to the function), exactly one of the followingd&r whenever the value

of z; is flipped from O to 1 then the value gf does not decreaser whenever the value of;

is flipped from 1 to O then the value gfdoes not decrease. Thus, unateness is a more general
notion than monotonicity. We show that our algorithm can xterded to test whether a Boolean
function is unate or far from any unate function. The quenry @ame complexities of the (extended)
algorithm are bounded b9 (n3°/¢).

OTHER DOMAINS AND RANGES. Let 2 and= be finite sets, anets and <= (total) orders ork and

=, respectively. Then we can extend the notion of monotontoifunctions from>" to =, in the
obvious manner: Namely, a functigh: X" — = is said to bemonotone if f(x) <z f(y) for
everyx <s y, wherexy ---x, <s y1---y, if z; <s y; for everyi andx; <s y; for somei. Our
algorithm generalizes to testing monotonicity over exeshdomains and ranges. The complexity
of the generalized algorithm scales quadratically ithand linearly with|=|. It is an interesting
open problem whether these dependencies can be removexti(med). In particular, we believe
that the dependence on the size of the raagan be removed.

REMOVING THE DEPENDENCE ONn. Our algorithm (even for the base case), has a polynomial
dependence on the dimension of the inputAs shown in Proposition 4, some dependence of the

1The claim follows by considering all possible concepts ttaitain all instances having:/2| + 1 or more 1’s,
no instances havingn/2| — 1 or less 1's, and any subset of the instances having exaefl| 1's. In contrast,
“weak learning” [KV94] is possible in polynomial time. Spgeally, the class of monotone concepts can be learned
in polynomial time with error at most/2 — Q(1/+/n) (though no polynomial-time learning algorithm can achiame
error of 1/2 — w(log(n)/+/n)) [BBL9S].

guery complexity om is unavoidable in the case of our algorithm. However, it isgresting open

problem whether other algorithms may have significantlydoguery (and time) complexities, and
in particular have query complexity independent:ofA candidate alternative algorithm inspects
pairs of stringse, y, wherex is chosen uniformly if 0, 1}, andy is chosen as follows: First select
an index weighd w € {0, ..., n} with probability EZ) - 27", and then selegf uniformly among

the strings havingy 1's, and being comparable to(i.e.,y < z ory > x).

Related Work

The “spot-checker for sorting” presented in [EK88, Sec. 2.1] implies a tester for monotonicity
with respect to functions from any fully ordered domain ty &nly ordered range, having query
and time complexities that are logarithmic in the size of deenain. We note that this problem
corresponds to the special casenof 1 of the extension discussed in Subsection 1.5 (to general
domains and ranges).

Organization

Theorem 2 is proved in Section 3. Propositions 3 and 4 aregorav Section 4, and Theorems 5
and 6 are proved in Section 5. The extensions are presengettion 6.

2 Preliminaries

For any pair of functiong, g : {0,1}" — {0, 1}, we define thalistancebetweenf andg, denoted,
dist(f, g), to be the fraction of instances € {0, 1}" on which f(z) # g(x). In other words,
dist(f, g) is the probability over a uniformly chosenthat f and g differ on z. Thus,ey(f) as
defined in the introduction is the minimum, taken over all mimme functiong of dist(f, g).

A general formulation of Property Testing was suggestedGi@R98], but here we consider a
special case formulated previously in [RS96].

Definition 1 (property tester) Let P = U,>1P, be a subsetor a property)of Boolean functions,
so thatP, is a subset of the functions mappifi@, 1}" to {0,1}. A (property) tester for Pis a
probabilistic oracle machirfe M, which givem, adistance parameter> 0 and oracle access to
an arbitrary functionf : {0, 1}"— {0, 1} satisfies the following two conditions:

1. The tester acceptgifitisin P :
If f € P, then Prob(M/(n,e)=1) > .
2. The tester rejects if it is far from P :
If dist(f,g) > ¢ foreveryg € P,, then ProbM/(n,e)=1) <

Wl

2 Alternatively, one may consider a RAM model of computatiarwhich trivial manipulation of domain and range
elements (e.g., reading/writing an element and compalaments) is performed at unit cost.

TESTING BASED ON RANDOM EXAMPLES In case the queries made by the tester are uniformly and
independentldistributed in{ 0, 1}", we say that ibnly uses examples. Indeed, a more appealing
way of looking as such a tester is as an ordinary algoriththérethan an oracle machine) which is
given asinputasequente,, f(z1)), (z2, f(x2)), ... where ther;'s are uniformly and independently
distributed in{0, 1}".

Definition 2 (the Boolean-Lattice graph}or every stringe € {0, 1}", letw(z) denote theveight
of x (i.e., the number of 1's in). For eachi, 0 < i < n, letL; C {0,1}" denote the set of-bit
strings of weight (i.e.,L; = {x €{0,1}" : w(z) =1i}). LetG, be the leveledirected(acyclic)
graph over the vertex sé€D, 1}, where there is a directed edge fraro « if and only ifx < y
andw(z) = w(y) — 1 (i.e.,z andy are in adjacent;’s).

Given the definition of G we may view our algorithm as uniformly selectiedgesn G,, and
guerying the functiorf on their end-points. We call an edge directed frgito x in G,, aviolating
edge with respect tdif f(x) > f(y) (Whereas: < y). Thus,om(f), as defined in the introduction,
is the fraction of violating edges in,Gwith respect tof .

3 Proof of the Main Technical Result

In order to prove Theorem 2 we prove the following two lemmdadhe first lemma shows the
existence of amatchingbetween two relatively large (with respect &Q(f)) sets of vertices
(strings) belonging to different layers of,Gvhere each vertey in the first set is matched to a
vertexx such thatr < y but f(z) > f(y). The second lemma shows that for any such matching
there exist vertex disjoint (directed) paths in, Between the two sets (though the paths may
correspond to a different matching — see Apper@idfor further discussion).

Lemma 7 (existence of large violating matched setdjor any functionf : {0,1}" — {0, 1},
there exist two sets of vertic&sC L, andR C L,, wheres > r, for which the following holds:
1. |s =Rl > 442
2. Foreveryy € S, f(y) = 0, and for everyr € R, f(x) = 1,
3. There exists a one-to-one mappinffom Sto R such that for every € S, ¢(y) < v.

Lemma 8 (existence of disjoint paths between matched set&petr ands be integers satisfying,
0<r<s<mn,andletSC L, andR C L, be sets each of size. Suppose that there exists a
1-to-1 mappingp from Sto R such that for every, € S, there is a directed path i, fromy to
¢(y). Then there exist: vertex-disjoint directed paths fro®ito R in G,,.

We prove the two lemmas in the next two subsections. But fiessiwow that Theorem 2 follows
by combining the two lemma.

Proof of Theorem 2: Fixing f we first invoke Lemma 7 to obtain the two matched sets S and
R of size at leastn = % - 2". By Lemma 8 this matching implies the existencerovertex
disjoint paths from S to R. Consider any such path- v, ..., 2, = =, wherey € S,z € R, and
d = s—r. Sincezy € S, we havef(zy) = 0. On the other hand, sineg € R, we havef(z,) = 1.

7

Therefore, there must exist some {0, ...,d — 1}, such thatf(z,) = O andf(z,.1) = 1. Thus the
edge directed from;, to z,,, is a violating edge with respect b Since the paths from S to R are
vertex disjoint, they are necessarily edge disjoint, antcbdhere are at least = % - 2" such

violating edges (at least one per path). Because each var@xhas total degree (indegree plus
outdegree), the number of edges in,3s % - 2" - n. Therefore, the fraction of violating edges is

at least®), and the theorem follows. ®

The strengthening of Theorem 2 stated in Equation (1) isfiedtby the fact that one may

actually show that there exist sets S and R as in Lemma 7 satfith- |R| = Q (W(/QM)) 2",
We show how this improvement can be obtained after we provena 7.

3.1 Proving the existence of large violating matched sets

Fixing f, let g be a monotone function (ové0, 1}") for which dis{ f, g) = em(f). Namely,g is a
monotone function that is closest fo Forb € {0, 1}, let

Dy € {x: f(z) # g(x) andg(z) = b} 2

That s, the set pUD; is a set of minimum size such that if we flip the valuefain all elements in
the set then we obtain a monotone function (y.Since|DoUD;| = en(f) - 2" andDoN Dy = 0,
we may assume, without loss of generality, thaf > # - 2". Recall that, by definition,

Di={z: g(z) =1landf(x) =0} C {z: f(z)=0}

For any set YC {0, 1}, theshadow? of Y, denoteds(Y), is defined as follows:
o) E{x¢Y: yevYsta<y} 3)

Namely, the shadow of Y is the set of all strings not in Y th& each smaller than some string in
Y. For any Y C D, define

() E{zea(Y): flz) =g(x) =1} C {z: f(z)=1} (4)

Namely,o;(Y) is the subset of the shadow of Y containing all strings on Winiath f andg have
value 1. (Note that for any YC D1, o(Y) \ 01(Y) C {z: g(z) = 0}.) As a visualization (see
Figure 3.1), we view; as defining doundaryin the Boolean Lattice (similarly, in {3, such that
all strings on and above the boundary are labeled 1, andhadt strings are labeled 0. The set D
contains those strings above the boundary phitbels 0. The set;(D;) contains all strings in
the shadow of Dthat lie above the boundary. These strings are labeled f1 (lag otherwise they
would be in Q).

Thus, by definition of @ ando,(D;), we have that for every € o,(D,), there existy € D,
such that the paifz, y) satisfies:x < y andf(y) < f(x) (i.e., f(y) = 0 andf(z) = 1). We next
show that a stronger statement holds.

3This is not the standard definition of a shadow, as in [Bol&&T 5].

The Boundary—= '
of g

Figure 1: The sets Dando,(D,).

Lemma 9 For everyY C Dy, there exists a 1-to-1 mappingfrom Y into o,(Y), such that for
eachy € Y, ¢(y) < y.

Lemma 9 is the main step in proving Lemma 7 (which also reguinat all elements in the set S
belong to the same layer in,(Gand that the same hold for all the elements they are mapped to

Proof: We first show that for every XC Dy, |o1(Y)| > |Y|. Assume towards contradiction that,
for some Y C Dy, |o1(Y)| < |Y|. We show, contrary to our hypothesis gnthat there exists
another monotone functiogi that is (strictly) closer tq.

Define g’ as follows: For everyz € Y Uo(Y), ¢'(z) = 0. Otherwiseg'(z) = g(x).

We need to verify the following two claims.

Claim 9.1: ¢’ is a monotone function.

Claim 9.2: dist(f,¢') < dist(f, g).

Proof of Claim 9.1: We need to show that for everyy suchthat: < y, itholds thay/(x) < ¢'(y).
Consider the following cases.

Casel:xz € YUo(Y). Inthiscase/(z) =0, and sy (z) < ¢'(y) for all y,

Case 2:2 ¢ YUo(Y). Note thatin this cas¢ (z) = g(z). We will show that for every if z < y
theny ¢ Y Uo(Y) as well, and thug'(y) = g(y) > g(x) = ¢'(z) as required. Suppose
towards contradiction that for somee Y U o(Y) it holds thatz < y. We consider two
subcases.

1. If y € Y then sincez < y we have thatt € Y U ¢(Y) in contradiction to the case
hypothesis.

2. Ify € o(Y) then there exists € Y such thaty < z. Usingz < y it follows thatz < z
and so again: € Y U o(Y) in contradiction to the case hypothesis.

9

Claim 9.1 follows. O

Proof of Claim 9.2: By definition of ¢/, the functionsg and ¢’ differ on the set of strings
A (YUa(Y)N {g; : g(x)=1}. Since YC Dy C {z : g(z)=1}, we have

A =Y Y)n{z:gx)=1})
= Y U (oY) n{z:g(z)=1andf(z)=1}) [(o(Y) N {z : g(x) =1 andf(x)=0})
=Y U 0'1 U A

where A% o(Y)Nn{z : g(z)=1andf(z) =0}. Consider the three (disjoint) subsets/ofY,

o1(Y), and A.
e Foreveryr € Y, we havef(z) = 0andg(x) = 1 (since YC D;), andg’(x) = 0 (by definition).
Suchz contributes to distf, g) but not to distf, ¢').
e Foreveryr € 01(Y), we havef(z) = g(z) = 1 (by definition ofey1(Y)), and agairy’(z) = 0.
Suchz do not contribute to disff, ¢) but do contribute to digf, ¢').
e Foreveryr € A, we havef(z) = 0 andg(xz) = 1 (by definition of A), and agaip’(z) =
Suchz contribute to distf, g) but not to distf, ¢').

Thus,
2" - (dist(f,g') — dist(f,g)) = |oa(Y)[= [YUA] < |ou(Y)[—]Y] < O
where the strict inequality is due to the assumption thgty)| < |Y|. Claim 9.2 follows. O

Consider any set YC D;. N (Y| > |Y'|. Lemma9
follows from Hall's Theorem ¢f. [Eve79, Thm. 6.12]): Consider the auxiliary bipartite gnap

whose vertex set is labeled by the strings inU¥,(Y), and whose edge set {$z,y) : = €

a1(Y), y € Y, x < y}. By the above, for each’YC Y, we have|l' (Y’)| > |Y’|, wherel (Y’)

denotes the neighbor set of ¥ B. By Hall's Theorem, this implies that there exists a petf
matching between Y and a subsetefY). Lemma 9 follows. W

Proof of Lemma 7: As noted previously, we may assume tha,t(@ee Eq. (2)) has size at least
em(f) - 2771 (the casgDyg| > em(f) - 271 is analogous). Let Yd D, N L;, and lets denote the

index of the largest set among thg'sY It follows that|Y ;| > EM 2",

We now invoke Lemma 9 with Y= Y,. Let X, def o(Y) wheregb is as guaranteed by the

lemma. Hence, XC o4(Y;), and|X,| = |Y,|. Note that while all elements of Ybelong to L,
the elements of Xare contained in severals, j < s. Foreach;, 0 < j < s, letX, ; LX, N L;.
Let X, be the largest such set. Sineg| = |Y,| > 4. 27 we haveX,,| > ML . 2n, Flnally,

let Yy, def ¢"1(Xs,). ThenLemma7 holdswithS Y, CL;andR=X,, CL,. H

Comment: To obtain the stronger bound on the sizes of S and R we do tlwsviop. Let

dev® \/%n -In(8/em(f)) -

Then we have that the total number of strings in laygrerhere: > 7 + dev is at mosf% -2,
Similarly, the total number of strings in layersWhere:; < 5 —dev is at mosf% -2". Assuming

10

(without loss of generality) thgD,| > GM(f - 2", we have that the number of strings in hat
belong to layers Lwherei < 7 + dev is at Ieasf’EMT 2". By invoking Lemma 9 on the set

Y=Din| U L
i<Z+dev

we have a one-to-one mappindrom Y to X = ¢(Y) C o1(Y). Note that by definition of Y,

Xc U L.

i<%+dev

Since|X| = |Y| > SEM(f -2", and the total number of strings in layerswhere:; < 3 — dev is
at most®Y) . 27 we have that

5 +dev
(¥ L) w(f)
i=3—dev 4
For eacm 2 —dev<i< Z+dev, letX £ XnL;and let X be the largest such set. Then
X | > 5 Zn LetY, d—ef¢ 1(X,), and for each, % —dev < i < 2 4 dev, define Y, €'Y, NL,.

Then there exists a set.Y C L, such that

(f) no__ EM(f)
2 16 16- dev 2 _Q(n-log(l/eM(f)

Y s)-2n .

We thenletS= Y, and R= X ,.

3.2 Existence of disjoint paths between matched sets

LetSC L, and RC L, be as stated in Lemma 8, anddet s — r. Recall that for each & i < n,

L, isthe set of all vertices in (zcorresponding to strings with exacily}’s. We shall prove Lemma 8
by induction onm andd. The base cases, i.e., the case where 1 andd > 1, and the case where
d = 1 andm > 1, clearly hold. Consider general > 1 andd > 1, and assume by induction
that the claim holds for every pain’ andd’ such that eithem’ < m andd’ < d orm’ < m and

d" < d. Let Q be the set of vertices in,L; that are on a directed path going from some vertex in S
to some vertex in R, and let P be the set of vertices,in lthat are on such directed paths from S
to R (see Figure 3.2). We shall prove the induction claim ia steps. In the first step we use the
induction hypothesis (fom’ < m andd’ = d) to show that eithefQ| > m or |P| > m (or both).

In the second step we use this fact together with the indattypothesis (forn’ < m andd’ = d
andfor m’ = m andd’ < d) to prove the induction claim.

Step 1: Either |Q| > m or |P| > m.

Proof: Consider the subgraph/®f G,, containing S, R and all vertices and edges that belong to
paths between S and R.

11

Q Level s-1

P . Level r+1

Figure 2: The sets S, R, Q, and P.

Claim 8.1: Letwv be a vertex irBand letu be a vertex in some level, wherer + 1 <i <s— 1,
such that there is a directed path fromto « in G/,. Then the outdegree ofin G, is at least as
large as the outdegree afin G/,. Similarly, ifw € Randz € L; wherer + 1 <i < s — 1, such
that there is a directed path fromto w in G, then the indegree ab in G, is at least as large as
the indegree of in G,.

Proof: We prove the claim concerning outdegrees. The claim abalgigrees is proved analo-
gously. Leta > 1 be the outdegree afand consider the vertices, . . ., u® in L;_, such that there
is an edge in ¢ from « to eachu’. Recall that by definition of (>there are paths in ‘Gfrom the
u”s to vertices in R. Therefore, any vertex that is on a patimfioto one of theu'’s is in G, as
well.

For eachu’, letd’ € [n] be the index of the bit on which the strings corresponding émdw’,
differ; i.e.,u; = 1 whilew{, = 0. By definition,b*, ..., " are distinct indices, and sineg: = 1
for everys, it also holds that;: = 1 for everyi. For each’, letv* be the vertex in L, that differs
from v on theb”th bit; i.e., vj; = 0, and for everyj # ¥, vj = v%. Then each of the v"’s is on a
path fromv to «?, and the claim follows. O

We note that the above claim can be strengthened to shovwhthatitdegree of (respectively,
indegree ofw) is greater than the outdegree wf(respectively, indegree of), by at leasts — i
(respectively; — r). This is done by taking into account the bits on whicéndu (respectivelyw
and:) differ.

Let k£ be the maximum outdegree of vertices in S, and ket the maximum indegree of vertices
in R. We partition S, R, Q, and P into subsets according to tfegjrees in (3 as follows. For every
1 < k we let § be the subset of vertices in S that have outdegree exaethd for every) < ¢, we
let R’ be the subset of vertices in R that have indegree exac®milarly we let G (respectively,
P’) be the subset of vertices in Q (respectively, P) with outdegxactlyi and indegree exactly.
First note that by Claim 8.1, the maximum outdegree of vegtim Q and P is at mo&t and the
maximum indegree is at most Therefore, for every and: > £, |Q!|, |P!| = 0, and for everyi
andj > ¢, |Q;|, |Pi| = 0.

Furthermore, by Claim 8.1, for evefyand each vertex € S;, the vertices: in P such that there

12

exists a directed path fromto « must belong taJ; <; U; Py ;. Foranyq < k, let S, = U_,S,.

By definition ofk (as the maximum degree of vertices in S), the sgas®onempty and hence for
everyq < k, |[S<,| < m. Therefore, we can apply the induction hypothesis and pliksit there
exist vertex disjoint paths between Sand ¢(S<,) (where¢ is the matching guaranteed by the
hypothesis of Lemma 8). For any< & letM(S<,) C @ denote the set of neighbors of vertices in
S., that lie on these paths t(S<,). Since these paths are disjoiffi(S<,)| = |S<,|. Using the
above and the fact that the'Sare disjoint and the B are disjoint, the following inequality holds
for everyq < k:

q

IS = 1Sql = IN(S<y)l < UL UL P = 3 > Pl =23 > [Pl (5)

=1 i=1j=1 i=1j5=1

Similarly, we can obtain that for evepy< s,

4 k p)
;IRJ'I < > > Il 6)

i=1j=1

Recall that we would like to show that eiti€ > m or|P| > m. Thus, assume in contradiction
that both|Q| < m and|P| < m. Therefore, by Equation (5), for evegy< k,

k q q t .
Yo Isl=18-> 18] = m- ZISI > m - ZZP’I > [PI=2_ X IR (7)
i=1

i=q+1 i=1 i=1j= =1j5=1

and so

Z S| > Z ZIF’ZI (8)

i=q+1 i1=q+1j=
Similarly, for everyp < t,

k k t
>R > 3 X IQl (9)
j=p+1 i=1 j=p+1
By summing both sides of Equation (8) over@k k we get

Z Z |$|>Z Z Z|P3| (10)

q=01i=q+1 q=01i=q+1j=

or equivalently,

ZZ |$|>ZZZ P (11)

i=1j=
Similarly, from Equation (9) we get

Z] |Rj|>ZZ] (12)

i=1j=

Summing Equations (11) and (12), we get

k t
ZZ'-ISZ-IjLZj-IRjI>ZZZ |P7|+ZZJ (13)
i-1 j=1

i=1j= i=1j=

13

However, since the number of edges going out of vertices igu&le the number of edges
entering vertices in Q we have that:

k kot _
Y-S =3 719 (14)
=1 3

and similarly for R and P we have

t k _
SR =350 |P. (15)
j=1 j

Summing Equations (14) and (15) we get

k ¢ kot ‘ kot ‘
DS+ IR =2 > - 1Q+> > i [P (16)
i=1 j=1

i=1;j=1 i=1j=1
contradicting Equation (13). B (Step 1.)

Step 2: There exist vertex disjoint paths fromSto R.

Proof: >From Step 1 we have that eithg| > m or |P| > m. Assume the former is true —
we shall see that this can be done without loss of generdg/.next show that (1) there exists a
perfect matching between S and (a subset of) Q; and (2) thasts @ 1-to-1 mapping’ from the
matched vertices of Q to R so that there is a path from eachhmdtce Q to ¢'(u). Given (2) we
can apply the induction hypothesis fédr= d — 1 (andm’ = m) on Q and R, and by combining
with (1) we get the desired paths from S to R.

We actually prove both (1) and (2) together. Consider thiedahg auxiliary network, A. It
has a single source vertexa single target vertex and the rest of the vertices are partitioned into
three layers corresponding to S, Q and R, respectively. €ltsean edge froms to each of the
vertices in S, and from each of the vertices in R.toThe edges between S and Q are asjn G
and edges between Q and R correspond to directed patts iW&show that the minimum — ¢
vertex-separator in A has size. Items (1) and (2) follow by one of the variations of Menger’s
Theorem (see [Eve79, Thm. 6.4 and discussion on pp. 130i¢fvguarantees the existencernf
vertex-disjoint paths from to ¢.

Assume in contradiction that there exists a vertex-sepa@tof size smaller tham: in A.
Letm; £ (CNS|, m, E|CNQ|, andms £ |CNR|. Consider the subset of vertices S S
that do not belong to C and are not mappedzhip vertices in R1 C. The size of Sis at least
m' =m — (my+ma) > |C| — (m1+ms) = my. Let R &' ¢(S), and Q be the subset of vertices
in Q that are on a directed path irj, @oing from some vertex in’$o a vertex in R

We consider two cases. If S S (i.e., CC Q) then Q@ = Q, and sincéC| < m < |Q|, there
exists at least one vertex in QC on a path from a vertex in S to a vertex in R, contradicting
the assumption that C is a vertex separator. 'lIfcSS, then by the induction hypothesis (for
m' = |S| < m andd = d), there exist vertex disjoint paths in,Grom S to ¢(S) and hence
necessarilyQ'| > |S| > m,. Since|CN Q| = my, we again reach contradiction to the assumption
that C is a vertex separator.ll

14

4 Proofs of Propositions 3 and 4

Below we restate and prove the propositions concerningelaions betweeny (f) anddy (f)
that were stated in the introduction.

Proposition 3 For every functionf : {0, 1}"—{0,1}, eu(f) > dm(f)/2.

Proof: Let us fix f and consider the set E of its violating edges. In order to njak¬one,

we must modify the value of on at least one end-point of each of its violating edges. &sgach
vertex (string) is incident to at mostviolating edges, the number of strings whose value must be
modified is at least

E wm)(5-2'n) su(h)
n o n N 2

.o

and the proposition follows. B

Comment: taking into account the fact that the number of violatinge=siopcident to a vertex is
at most the maximum between its indegree and outdegree atfbthmost vertices this maximum
values is roughly:/2, the above bound can be improved to yigld> (1—o(1)) - du(f), provided
du(f) > 2~ for any constant < 1.

Proposition 4 The following holds for every and every2—" < a < % — O(—x), wherec is any

constant strictly smaller than 1.

1. There exists a functiofi: {0, 1}"+— {0, 1} such thatx < ey (f) < 2a and

2. There exists a functiofi: {0,1}"~ {0, 1} such thatx < ey (f) < 2 and

om(f) = © (em(f)) -

sulr) =0

3. Foranya = O(n"?), there exists a functiofi : {0, 1}"+— {0, 1} such thatx < ey (f) < 2a
and
6M(f)> .

n

aulr) =

Proof:
Items 1 and 2. We start by proving the first two items for the case wher: % — O(%).

1. Let f be the (symmetric) function that has value 0 on all verticelomging to layers |
wherej > 7 and is 1 on all vertices belonging to layersitherei < . Then on one hand,

all edges between the layers,zk and Lz, are violating edges, and s@i(f) = @(%).

On the other hand, we next show thgt(f) = 3 — O(). Clearly,ey < 3 as the all 0
function is monotone and at distance at m})frbm f. Itremains to show that we cannot do

better.

15

To this end we show the existence of a one-to-one mappibgtween the vertices in the
layers L; wherei > % and the vertices in the layers Where: < % so that for everyr,
Y(r) < x. In particular for each, 0 < i < 3, there exists such a one-to-one mapping
between L,_; and L;: Consider the auxiliary bipartite graph over vertex sets;Lland L;,
where there is an edge betwegs L,,_; andz € L; ifan only if z < y. Since this auxiliary
graph is a regular bipartite graph (with degr(é‘g‘i)), where both sides are of the same size,
there exists a perfect matching between the two sides. Webetdefined by suchs | — 1
perfect matchings, where for oddall strings in{0, 1}" are matched, and for everonly the
strings in the middle layer, 4, are left unmatched. To makemonotone, we must modify
the value of at least one vertex in each matched pair, ané siese pairs are disjoint (and

their number is at leagtl — O(%) - 2™), the claim follows.

2. Let f be the (symmetric) function that has value 0 on all verticel®iging to layers L
wherei is even, and has value 1 on all vertices belonging to layergherei is odd. Since
all edges going from even layers to odd layers are violatioges,om(f) = 1/2. We next
show thatem (f) > 3 — O() (where once againw(f) < 3 since itis at distance at most
1/2 from the all-0 function or the all-1 function). Considerygmair of adjacent layers such
that the top layer is labeled O (so that all edges betweentbdatyers are violating edges).
It can be showndf. [Bol86, Chap. 2, Cor. 4]) using Hall's Theorem, that for amgls pair
of adjacent layers, there exists a perfect matching betwfeesmallest among the two layers
and a subset of the larger layer. Since we must modify theevailat least one end-point of
each violating edge, the claim follows.

To generalize the above two constructions for smalleve do the following. Letn’ = n —
[log(1/(2«))], and consider the set S of all strings whose tastn’ bits are set to 0 (thus forming
asub-cubeof then-dimensional cube). The size of the set S is at least2 and at most & - 2".

1. Letf’' be defined on S analogously to the wais defined or{0, 1}" in Item 1 above (i.e., it
has value 0 on all strings in S having weight at Ie@'ﬂnd is 1 on all strings having weight
less than%'). On all strings not in S, the functioff has value 1. By this definition, there
are no violating edges (w.r.tf") between vertices not in S and vertices in S, and the only
violating edges are between the middle two layers of the sydigof G, induced by S. The
number of these edges@% . "7'), which by our assumption om (and the definition of

n')is©(_% - n-2"). Onthe other hand, as argued in the first item above, we cam ttad
IS

em(f)is approximatelx% - 5, Which ranges betweemand 2v as required.

2. Here toof’ has value 1 on all strings not in S, and is defined on S analbgtuthe way
f is defined on{0, 1}" in Item 2 above, alternating between 0 and 1 on the layerseof th
subgraph of G induced by S. The rest of the argument follows as in Item 2 whestricting
the attention to this subgraph.

ltem 3. We start by proving the case= Q(n~%2). We consider the vertices inland L._1, where
k= [2]. We know thatlL|, |Lx_1| = Q(n~%2.2"). As noted in the proof of Item 2, between
any two adjacent layers there exists a matching whose sizal®the size of the smaller among
the two layers. Let such a matching, betweerahd L;,_;, be denoted M= {((v;, u;)};_,, where

16

t = |Lx_1|. Using a greedy approach, we find a large matchirig-M (v;,, u;,)} € M such that
there are no edges (inBbetween pairs;, andu;, suchthat; # i,. Since each edde;,, u;;) € M’
“rules out” at mostk — 1) + (n — (k — 1) — 1) < n other edges in M (i.e., an edge;,, u;,) is
ruled out if either(v;;, u;,) or (v;,, w;,) is an edge in), we can obtaifM’| > £ = Q(n=3/2.2").
Since we can always drop edges from Me can haveM’| = O(n=%/2.2").

Using M" we definef as follows. For each matched pair;,, u;;) in M’, the functionf has
value 0 orw;;, and value 1 om;,. All other vertices in layerg and higher have value 1, and those
in layersk — 1 and lower have value 0. Hence, the violating edges withedp / are only those
that belong to M and soiu(f) = 55 = ©(n~"/2). On the other handw(f) = 5 = ©(n=32)
(as in order to mak¢ monotone we must modify the value of at least one end-poietioh edge
in M’). For smaller values ot we simply definef based on a subset of Mf size[« - 2"]. R

5 Testing based on Random Examples

In this section we prove Theorems 5 and 6: establishing arlbaxend on the sample complexity of
such testers and a matching algorithm, respectively. Fovexmence, we first restate the theorems.

Theorem 5For anye = O(n~¥2), any tester for monotonicity which only utilizes randomnagées
must use at lea® (/2" /¢) such examples.

Theorem 6 There exists a tester for monotonicity which only utilizesdom examples and uses at

mostO(y/n3 - 2" /¢) examples. Furthermore, the algorithm runs in tipw@y(n) - /2" /e.

5.1 A Lower bound on sample complexity

Let M’ be as defined in the proof of Item 3 in Proposition 4. By pogsilbbpping edges from M
we can obtain a matching ‘Mso that|M”| is even and of sizee2 2" (recall thate = O(n=%2)).
Using M’ we define two families of functions. A function in each of thetfamilies is determined
by a partition of M’ into two sets,A and B, of equal size.

1. Afunction f in the first family is defined as follows

For every(v, u) € A, definef(v) = 1 andf(u) = 0.

For every(v, u) € B, definef(v) = 0andf(u) = 1.

Forx with w(x) > k, for which f has not been defined, defifier) = 1.
Forx with w(z) < k — 1, for which f has not been defined, defifiér) = 0.

2. Afunction f in the second family is defined as follows

e Forevery(v,u) € A, definef(v) =1andf(u) = 1.
e Forevery(v,u) € B, definef(v) = 0andf(u) = 0.
e Forz’s on which f has not been defined, defifiér) as in the first family.

It is easy to see that every function in the second family imatone, whereas for every function
f in the first familyey (f) = |B|/2" = . Theorem 5 is established by showing that an algorithm

which obtainso(y/| B|) random examples cannot distinguish a function uniformlgcted in the

17

first family (which needs to be rejected with probability east 23) from a function uniformly
selected in the second family (which needs to be acceptédpadbability at least 23). That is,
we show that the statistical distance between two such ssnptoo small.

Claim 10 The statistical difference between the distributions cetlby the following two random
. M7 . . .
processes is bounded above(l@&b sz - 1 hefirst process (resp.,second process) is define as

follows

e Uniformly select a functiorf in thefirst (resp., secondpmily.
e Uniformly and independently seleetstrings,zy, ..., z,,, in {0, 1}".
hd OUtpUt([L’l, f(xl))v sy ([L’m, f(xm))

Proof: The randomness in both processes amounts to the chaltémiiform among al(|M”|/2)-
subsets of M) and the uniform choice of the sequencergé. The processes differ only in the
labelings of ther;'s which are matched by K yet foru (resp.,v) so that(u, v) € M” the label ofu
(resp.,v) is uniformly distributed in both processes. The statatdifference is due merely to the
case in which for somé j the pair(x;, x;) resides in M. The probability of this event is bounded

by (’g) times the probability that a specific pait;, z;) resides in M. The latter probability equals

1"

Conclusion. By the above claimyn < 2"/,/3|M”| implies that the statistical difference between
these processes is less tl*@-zn- '2’;' < 1/6 and thus an algorithm utilizing: queries will fail to
work for the parameter = |B|/2". Theorem 5 follows. W

5.2 A matching algorithm

The algorithm consists of merely emulating Algorithm 1. Thg the algorithm is givemn det

O(y/n®-27/¢) uniformly selected examples and tries to find a violatingr @& in Step 3 of
Algorithm 1.

ALGORITHM 2: Inputn, e and(z1, f(21)), -, (Tm, [(Zm))-

1. Place allz;, f(z;))'s on a heap arranged according to any ordering @i }".

2. Forj=1 .., mand:i =1, .. n,trytoretrieve from the heap the valyé-j—Ef r; 0110

If successful then consider the valuesy, f(z;), f(y) and in case they demonstrate tifat
is not monotone thereject.

If all iterations were completed without rejecting thaccept.

ANALYSIS. Clearly, Algorithm 2 always accepts a monotone functior ean be implemented in
time poly(n) - m. Using a Birthday Paradox argument, we show that for a sleiteloice ofrm,
Algorithm 2 indeed rejects-far from monotone functions with high probability. We migraeed
to show the following.

18

Lemma 11 There exists a constantso that the following holds. tf > /cn32" /ey (f) and if
the z;’s are uniformly and independently selected{® 1}" then Algorithm 2 rejects the function
f with probability at leas®/3.

Proof: We use the fact that the proof of Theorem 2 provides two disjgets, V and U, with the
following properties

1. Each set has size at le&t) - 2".

2. There is 1-1 mapping;, of V to U.

3. Forevery € Vitholds thatf(v) = 0, f(¢(v)) = 1, andy(v) is obtained fromv by setting
a single bit to 0.

We will show that with probability at leasy3, there existandj so thatr; € Vandz; = ¢(x;) € U,

and the lemma will follow.

We split the sample into two equal parts. Using a MultipieatChernoff Bound, with
probability at least ® the number of;’s in the first part which hit V is at Iea%t- L |2V—| Denote
the set of examples hitting V by’Vand consider the set'\d U of vertices which are matched by

1 to V'. Then, the probability that none of the/2 examples in the second part hitsiflat most

U2 v\ " V| m v
(1— |2n|> = <1— |2n|> < exp<_|2n| .§> < exp<—4|‘ 2|2n .m2> (17)

The lemma follows by substitutingy | with % - 2" andm? with en®2" /ey (f). O

6 Extensions

6.1 Testing whether a function is unate

By our definition of monotonicity (used throughout the pgparfunction is said to be monotone if,
for any string, flipping any bit of the string from 0 to 1, doest decrease the value of the function.
A more general notion is that afnatefunctions. A functionf is unateif there exists a string
¢ =10C...¢ € {0,1}" for which the following holds: For any string = z; ... x,, and for any

1 such thate; = ¢, ifwe lety = xq,..., 2,1, 72, 2541, ..., 2, (i.€., 7 iS the same as except
for the ™ bit, which is flipped from(; to —¢;), thenf(y) > f(x). We say in such a case tlfeis
monotone with respect tQ. In particular, if a function is monotone with respect to #le0 string,
then we simply say that it is a monotone function, and if a fiomcis monotone with respect to
some(, then it is unate. Thus, the generalization of monotonicitynateness allows that for each
position there be a (possibly differerttijrection (i.e., not necessarily the 8- 1 direction), such
that the value of the function cannot decrease when the fiped in that direction.

Similarly to Algorithm 1 (for testing monotonicity), whickearches for evidence to non-
monotonicity, the testing algorithm for unateness triefirtd evidence to non-unateness. However,

“We assume for simplicity that (f) > n3/2", which impliesm > n3/ew(f). Otherwisegem (f) = O(n3/27),
in which casem = Q(1/n32"/em(f)) = Q(2"), which in turn suffices to hit even a single edge with constant
probability.

19

here it does not suffice to find a pair of stringg, that differ on thei" bit such that: < y while
f(x) > f(y), sincef could be monotone with respectdsuch that; = 1. Instead we search for
two pairsof strings,z! < y* andz? < y?, where each pair differs on the (sami®)bit, such that
f(xY) > f(y') and f(2?) < f(y?) (or vica versa). This implies that there is gsuch thatf is
monotone with respect tO(since, in particularg; can be neither 0 nor 1).

ALGORITHM 3 (TESTING UNATENESS: On inputn, e and oracle access o: {0, 1}"— {0, 1}, do
the following:

1. Uniformly selectn = O(n3°/¢) strings in{0,1}", denotedz?, ..., x™, andm indices in
{1,...,n}. denoted?, ... i™.

2. For each selected’, obtain the values of (+’) and f(y’), wherey’ results fromz’ by
flipping thei’'th bit.

3. If unateness is found to be violated theject.

Violation occurs, if among the string-paifs’, 4/ }, there exist two pairs and an indgxsuch
that in both pairs the strings differ on th& bit, but in one pair the value of the function
increases when the bit is flipped for O to 1, and in the other th& value of the function
increases when the bit is flipped from 1 to 0.

If no contradiction to unateness was found tlaecept.

Theorem 12 Algorithm 3 is a testing algorithm for unateness. Furtherepaf the function is
unate, then Algorithm 3 always accepts.

We shall need the following notation. For= {0, 1}", let <, denote the partial order on strings
with respect ta;. Namely,z < yifandonlyifz & (< y @ (. Letew ¢(f) denote the minimum
distance betweeji and any functiory that is monotone with respect to and letéy .(f) denote
the fraction of pairse, y that differ on a single bit such that <. y but f(z) > f(y). It follows
from the above definitions that for arfyandc, em ¢ (f) = em(fc) anddm ¢(f) = om(fe), wheref,
is defined byf.(z) = f(z @ (). Hence, as a corollary to Theorem 2, we have

em,¢c(f) _

n3

Corollary 13 Forany f : {0,1}"+—{0, 1}, and for any¢ € {0,1}", omc(f) >

Proof of Theorem 12: For eachi € {1,...,n}, let~, o(f) denote the fraction, among all pairs of
strings that differ on a single bit, of the pairsy such that: andy differ only on thei™ bit, z; = 0,
y; =1, andf(x) > f(y). Similarly, lety; 1(f) denote the fraction of pairs of stringsy such that
x andy differ only on thei™ bit, z; = 1,y; = 0, andf(z) > f(y). In other wordsyy, o(f) is the
fraction of pairs that can serve as evidencg twt being monotone with respect to apiguch that
¢ = 0, whilev;1(f) is the fraction of pairs that can serve as evidenc¢ tmt being monotone
with respect to any such that; = 1. Note that in cas¢ is monotone with respect to sonje
then for everyi, v, ¢,(f) = 0. More generallyjy (f) = 71 vi¢,(f) holds for every € {0,1}"
(since each edge contributingd@ . (f) contributes to exactly ong ;).

Let us definey(f) to be min(ev ¢(f)) so that it equals the minimum distancefa any unate
function (i.e., any function that is monotone with respecsome).

20

Claim 12.1. S, min(vyio(f), 7ia(f)) > L.

Proof: Let(= (1...¢, be defined as follows: For eachif v;o(f) < v:.1(f) then¢; = 0, and
otherwise(; = 1. In other wordsg; = argmin,. . 1,(7i). The key observation is

Buc(f) = zw - ilminmo(f),%,l(f»

where the first equality holds for ary and the second follows from the definition of this specific
¢. Invoking Corollary 13, we havéy .(f) > 6“””#3(” > % O

For eachi, letT; o(f) be the set of all pairs of strings y that differ only on the™ bit, where
x; = 0 andy; = 1, and such thaf(z) > f(y). Similarly, letl’; 1(f) be the set of all pairs, y that
differ only on thei™ bit, wherer; = 1 andy; = 0, and such that(z) > f(y). Claim 12.1 gives us
a lower bound on the suii, min(|l; 0|, |";.1|). To prove Theorem 12, it suffices to show that if we
uniformly selectQ(n3%/ey(f)) pairs of strings that differ on a single bit, then with probiapat
least 2/3, for some we shall obtain both a pair belongingltgo(/) and a pair belonging ; 1 (f).
The above is derived from the following technical claim, elhcan be viewed as a generalization
of theBirthday Paradox

Claim 12.2. LetS,,...,S,, T4,..., T, be disjoint sets of elements belonging to doninFor
eachi, let the probability of selecting an elemenin S; (whenz is chosen uniformly itX), bep;,
and the probability of selecting an elementTip beg;. Suppose that for all, ¢; > p;, and that
>, pi > p for somep > 0. Then, for some constantif we uniformly select - \/n/p elements in
X, then with probability at leas?/3, for some; we shall obtain one element 8 and one inT,.

Proof: As a mental experiment, we partition the sample of elementtstivo parts of equal size,
c-+/n/(2p). Let | be a random variable denoting the (set of) indices tf Sehit by the first part
of the sample. We show below that with probability at leg4 6ver the choice of the first part of
the sample,

p
pi > —= (18)
2h 2
The claim then follows since conditioned on Equation (18)ilmy, and by Claim 12.2’s hypothesis
thatg; > p; for all i, the probability that the second part of the sample doeswaide any elements
from U, T;, is at most

cv/n/(2p) P cv/n/(2p)
(1 — Zqi> < (1 — %> < expl—c/2)

1€l

which is less than /6 for an appropriate choice of

To prove that Equation (18) holds with probability at leagébwe assume without loss of
generality that the sets 8re ordered according to size. Let S ., S, be all sets with probability
weight at leasp/(2n) each (i.e.p1. > ... > pr > p/(2n)). Then, the total probability weight of
all other sets §.1,...,S, is less tharp/2, and>F_, p; > p/2 follows. We first observe that by a

(multiplicative) Chernoff bound (for an appropriate cheiaf c), with probability at least 1112,

the first part of the sample contains at least 4. elements i & U, S.

21

Let I €| n {1,...,k}. Thatis, [is a random variable denoting the indices of sets S
i € {1,...,k}thatare hit by the first part of the sample. Conditioned onglbeing at least 4,/n
elements fronS in the first part of the sample, we next show that with prolitgtzt least 1112,
Yl Pi 2 % (from which Equation (18) follows). Since conditioned one&ement belonging
to S it is uniformly distributed in that set, we may bound thelability of the above event, when
selecting 4/n elements uniformly irS. Consider the choice of th& element fronS, and let]_;
denote the indices of sets,$€ {1,...,k}, among the firsj — 1 selected elements &f If

Z D; > Z‘Zlepi
iell_y a \/ﬁ

then, sinc&"7_, p; > £, we are done. OtherwiseX;c, , pi < (2 SF , pi)/v/n), the probability
that the;™ element belongs td |\ I”_; (i.e., it hits a set in{S,, ..., S;} that was not yet hit), is
at least 1- 2/,/n, which is at least 4 for n > 36. Since we are assuming that the first part of
the sample includes at least 4/n elements fromS, with probability at least 1112, we succeed
in obtaining a new element in at least /n of these trials. Since the sets,S. ., S; all have
probability weight at least/(2n), the claim follows. O

6.2 Other Domains and Ranges

As defined in the introduction, for finite sefsand= and orders<s and<= onZ and=, respectively,
we say that a functiorf : X" +— = is monotone if f(z) <=z f(y) for everyz <s y, where
Ty T, <5 Y1y if x; <s y; for everyi andzx; <s y, for some;.

Without loss of generality we may think &f as being the sef0, . . ., |X| — 1} (so that<s is
simply the order< over integers). Similarly to th& = {0, 1} case, the partial ordexs induces
a layered directed graph, denoted where thei layer L; contains all strings: such that
>;z; = i. Hence, this graph has- (|Z| — 1) layers. For each vertex and every; such that
x; > 0, there is an edge directed framto o’ = x4, ..., z;_1,2; — 1, 241, . . ., Zp.

The algorithm we analyze is very similar to Algorithm 1. Itiformly selectsd(n3- |Z|?-|Z|/¢)
strings and for each stringchosen it performs the following local test: It uniformlysets an index
Jj €1,...,n, and queries the functiofionz and on either’ = 1, ..., z;_1,2; — L, 241, ..., 2y
oronz’ =z1,...,%;-1,2;+1, %41, . . ., x, (Where this decision is done randomly unless= 0 or
x; = |Z| —1). The algorithm rejects if for some f(z) >= f(«') whilez <5 2’ (or f(2') >= f(x)
while z’ <5 x).

6.2.1 General Domains

Consider first the case in whichmay be any finite ordered set, btit= {0,1}. As in the case
> ={0,1}, we want to boundy (f) in terms ofey (f), whereey (f) anddw(f) are generalized in
the straightforward manner. Here we have that

Theorem 14 For any finite ordered seX, and for everyf : 2" — {0, 1}, dm(f) > #ﬂf_)l)z

(Where similarly to thez = {0, 1} case a slightly stronger bound actually holds.)

22

The proof of Theorem 14 is analogous to the proof of Theorermzoarticular, the theorem
follows by combining slightly modified versions of Lemmas ida8, as done in the proof of
Theorem 2. In the modified version of Lemma 7, the only chasga item 1, where the sets S
and R are of size at Iea%% -|Z|™ (recall that|Z|™ is the size of the domain). The cause
for this modification is that the number of layers in the gré&pfy is» - (|Z| — 1). More precisely,
when invoking Lemma 9 (which can be easily verified to holdsdsn order to prove Lemma 7,
we “break” the set (as defined in Equation (2)) into subsets according to thersagf G, s. We
then take the largest such subset Y, whose size we can bougg({éﬁl—)) -|Z|™. When breaking
¢(Y) into layers, we lose another factorof (|Z| — 1).

Lemma 8 essentially holds as stated. The only part of thefghat directly depends on the
underlying graph is Claim 8.1, and it is easily verified th&i@ 8.1 (in the proof of Lemma 8) is
in fact still true in this case. The rest of the proof remainsltered.

6.2.2 General Ranges

Let = be any ordered set, and for ease of the exposition, as&um¢0, 1} (the generalization to
other domains is done as described above in Subsectior).6i12 this case we can show that

Theorem 15 For any finite ordered set, and for everyf : {0,1}" — =, du(f) > j;g(é)' where
dum(f) andey(f) are generalized in the natural manner.

In case= is not finite, we can replacé&| in the above expression with the size of the “effective”
domain off (that is, the number of different values assignedfby

The proof of Theorem 15 also follows similar lines to thoseha proof of Theorem 2. The
statement of Lemma 8 and its proof remain unaltered, sire@milerlying graph, Gis the same.
The statement of Lemma 7 is modified as follows:

Lemma 16 For any ordered sek, and for any functiory : {0,1}" — =, there exist two sets of
verticesS C L, andR C L,, wheres > r, for which the following holds:

1.5 =R > awl(f) . on.

2n?

2. There exists a one-to-one mappinffom Sto R such that for every € S, ¢(y) < y, while

f(o(y)) >= f(y).

We prove Lemma 16 momentarily, but first show how it can beiaggbgether with Lemma 8
to obtain Theorem 15. Fixing we invoke Lemma 7 to obtain the two matched sets S and R of
size at leasin = % - 2. Unfortunately, we cannot continue by simply applying Leanéto
the sets S and R as done in the proof of Theorem 2. The readuat isedmma 8 only tells us that
there exissomevertex-disjoint paths between S and R, but these paths doetetssarily respect
the matchingp. In the case of a Boolean range, this was sufficient. Howewleen the range is
larger, the disjoint paths might be frogne S tox € R such thatf(y) >= f(x), and the argument
breaks down. Thus, instead of invoking Lemma 8 directly om& R, we do the following. For

each € =, let & def {y € S: f(y) = &}. Let S be the largest among these subsets of S, so

23

that|S| > m/|=|. Since the value of is constant on ‘Swe have that for every € S andevery

z € ¢(S), fly) <= f(z). We then invoke Lemma 8 on’ &nd R &' ¢(S), and the proof of
Theorem 15 follows by the same argument used in the proof ebiidm 2.

One possible way to avoid the introduction of the factof®f is by proving the following
conjecture which is a variation of Lemma 8: While we relaxitbguirement that the paths between
the matched sets be vertex disjoint to being edge disjoihigfwsuffices for our purposes), we ask
that these paths respect the matching.

Conjecture 1 Letr ands be integers satisfyin) < r < s < n,andletSC L, andR C L, be
sets each of sizew. Suppose that there exists a 1-to-1 mappirfgom S to R such that for every
y € S, there is a directed path i, fromy to ¢(y). Then there exist: edge-disjoint directed
paths inG,, connecting eacly € Swith ¢(y) € R.

In fact, it would be interesting to show even the existencexgpoly(n) edge-disjoint paths that
respect the matching (instead of exactlyn).

Proof of Lemma 16: Fixing f, we letg be a monotone function closest foso that distf, g) =
em(f). The proof of Lemma 16 is analogous to the proof of Lemma 7. Ak by extending the
definition of Dy and Dy (as given in Equation (2)) to a non-Boolean range. We define:

D. ©{z: g(z) > f(x)} and D= {r: g(x) < f(x)} (19)
sothatD~| + |D.| = em(f) - 2". Without loss of generality we assurfi2.| > en(f) - 2771 We
next extend the operatet, (defined in Equation (4)). Forany ¥ D. let

o~ (Y) def {r: yeYsty=zxzandf(x) > f(y)}

where recall that (YY) denotes thehadowof Y (and is defined in Equation (3)). Thus, (Y) can
be viewed as theauseg(or witness sgtto the need to change (raise) the valug @n the points in
Y.

We next slightly depart from the course taken in the proof efrima 7. Namely, instead of
showing analogously to Lemma 9 that farerysubset Y of D., there exists a 1-to-1 mapping that
maps each elemepte Y to anz € o-(Y) such thatr < y, we prove this claim only for sets
Y whose elements all belong to a single layer ipn. GVhile this suffices for our purposes (as it
actually did for the proof of Lemma 7), it is still interesgino note that it is not clear whether the
stronger claim (referring to all subsets of.Pholds for a general range or not. In particular, the
proof technique we use does not seem to be extendible (asteémbe proof below).

Lemma 17 For everys, 0 < s < n, and for every¥ C (D. NL,), there exists a 1-to-1 mapping
¢ fromY into o (Y), such that for eacly € Y, ¢(y) < v.

Proof: We follow the same proof strategy of Lemma 9. Fixingwe first show that for every
Y C (D. NLy), |o=(Y)| > |Y|. Assume towards contradiction that for somelY (D. NLy),
lo~(Y)| < |Y|. We show, contrary to our hypothesis gnthat there exists another monotone
functiong’ that is (strictly) closer tqf.

Define ¢’ as follows:

24

e ForeveryycY, ¢ (y) = f(y);

o Foreveryz € o(Y), g'(z) = min(g(z), minyey - {f(4)});°

e Forz¢YUoa(Y),d(z) =g(2);

Thus, whileg raises the valug has on points in Y so as to obtain monotonicifymaintains the
value of f on points in Y but reduced the value of points beloW Y.

We need to verify the following two claims.

Claim 17.1: ¢’ is a monotone function.
Claim 17.2: dist(f,¢') < dist(f, g).

Proof of Claim 17.1: We need to show that for every,y such thatr < y, it holds that
g'(z) < ¢'(y). Consider the following four cases.

Casel:iz,y ¢ YUo(Y). Inthiscasg/(z) = g(z) < g(y) = ¢'(y), whereg(z) < ¢(y) follows
from the monotonicity of;, and the two equalities from the third item in the definitidrnyb

Case2:z € YUo(Y)andy ¢ YUo(Y). Ifz € Ytheng(z) = f(x) < g(z) < g(y) = ¢'(y),
where the inequality (z) < g(z) follows from Y C D and the equalities from the first and
third item, respectively, in the definition of. If z € o(Y) theng'(z) < g(z) < g(y) = ¢'(y),
whereg’(z) < g(z) follows from the second item in the definition gf

Case 3:x ¢ YUo(Y)andy € YUo(Y). By definition ofo(+), this case does not occur for< y.

Case4:z,y € YUo(Y). Sincex < yand Y C Ly, it cannot be the case that battandy belong
to Y. Thus we have two sub-cases.

1. Ify e Yandz € o(Y) theng'(z) < min.ey...{f(2)} < f(y) = ¢'(y), where the first
inequality is due to the second item in the definitiorygfand the last equality is due to
the first item in the definition.

2. If 2,y € o(Y), then sincey(x) < g(y) (asg is monotone), and migy .. .{f(z)} <
min.cv ..,{ f(2)} (as the firstminimum is taken over a larger set containing ally >),
by definition of¢’ we have (by the second item in the definitiorny6f

g'(x) = min (g(x),_min {/()}) < min(g(),_min {f(:)}) = 9')

z€Y,z-x z€Y,z-y

Claim 17.1 follows. O

Proof of Claim 17.2: By definition of ¢, the functionsg and ¢’ differ on the set of strings

A d:ef Y U A, where Ad:ef O'(Y) N {l' . g(flf) > miner,y>x{f(y)}}' For eachr € Y’ we have

g (x) = f(x) andg(z) # f(z), so that suche contributes to distf, g) but not to distf,¢).
Next consider any: € A. Since AC o(Y), by the second item in the definition ¢f, ¢'(z) =
min (g(z), min.ev ... {f(2)}), and since by definition of Ay(z) > min,cy ,..{f(y)}, we have
g'(x) = mingey . .{f(y)} < g(z). There are hence three sub-cases.

SNote that in the Boolean case, this minimum is always 0.
SHere we encounter the main difficulty in trying to prove theatea for arbitrary YC D- . In particular, if, as done
above, we sej’ to equalf on all points in Y, then it might not be monotone.

25

1. If f(z) = ¢'(x) (< g(x)), thenz does not contribute to dist, ¢’) but does contributed to
dist(f, 9).

2. If f(z) < ¢'(x) (< g(x)), thenz contributes both to disf, ¢’) and to distf, g).

3. If f(z) > ¢'(x) thenzx contributes to distf, ¢’), and may or may not contribute to digtg).

Thus,
2" - (dist(f,g') — dist(f,g)) < |o-(Y)[-]Y] <O
where the strict inequality is due to the assumption thatY)| < |Y|. Claim 17.2 follows. O

Consider any set YC (D- NL,). We have established that for every ¥ Y, |o-(Y’)| > |Y|.
Similarly to the proof of Lemma 9, Lemma 17 follows from HallTheorem. W

The proof of Lemma 16 follows from Lemma 17 similarly to theynlzemma 7 was shown to
follows from Lemma 9, and is hence omittedll

Acknowledgments

We would like to thank Dan Kleitmann for a helpful discussiand in particular for coming up
with the counter-example (Figure 3).

References

. Arora, C. Lund, R. Motwani, M. Sudan, and M. SzegedyoPwerification an
[ALM T98] S. A C. Lund, R. M i, M. Sud dM.S dyooPwerificati d
intractability of approximation problemgACM, 45(3):501-555, 1998.

[Ang88] D. Angluin. Queries and concept learniniglachine Learning2(4):319-342, April
1988.

[AS97] S. Aroraand S. Sudan. Improved low degree testingtamagplications. IfProceedings
of STOC97pages 485-495, 1997.

[AS98] S. Arora and S. Safra. Probabilistic checkable pgodf new characterization of NP.
JACM 45(1):70-122, 1998.

[BBL98] A. Blum, C. Burch, and J. Langford. On learning mooiw¢ Boolean functions. In
Proceedings of FOCS98998.

[BCH*95] M. Bellare, D. Coppersmith, J.adtad, M. Kiwi, and M. Sudan. Linearity testing in
characteristic two. IiProceedings of FOCS9pages 432—441, 1995.

[BFL91] L.Babai, L. Fortnow, and C. Lund. Non-deterministixponential time has two-prover
interactive protocolsComputational Complexifyi (1):3—40, 1991.

[BFLS91] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Ckimg computations in polyloga-
rithmic time. InProceedings of STOC9pages 21-31, 1991.

26

[BGLR93]

[BGS98]

[BLRO3]

[Bol86]
[BS94]

[DLOS]
[EKK+98]

[Eve79]
[FGL196]

[GGROS]

[GLR*91]

[GR97]

[GR98]

[Has96]

[Has97]

[Kiw96]

[KLV94]

M. Bellare, S. Goldwasser, C. Lund, and A. Rusdéfficient probabilistically check-
able proofs and applications to approximation. Aroceedings of STOC9®ages
294-304, 1993.

M. Bellare, O. Goldreich, and M. Sudan. Free bitsPB@nd non-approximability —
towards tight resultsSIAM Journal on Computind7(3):804-915, 1998.

M. Blum, M. Luby, and R. Rubinfeld. Self-testingitecting with applications to
numerical problemsJACM, 47:549-595, 1993.

B. Bollobas. Combinatorics Cambridge University Press, 1986.

M. Bellare and M. Sudan. Improved non-approximapilesults. InProceedings of
STOC94pages 184-193, 1994.

Y. Doddis and E. Lehman. Private Communications,&8.99

F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. disathan. Spot-checkers.
In Proceedings of STOC9Bages 259-268, 1998.

S. EvenGraph Algorithms Computer Science Press, 1979.

U. Feige, S. Goldwasser, L. Lasz, S. Safra, and M. Szegedy. Approximating clique
is almost NP-completel]ACM, 43(2):268—-292, 1996.

O. Goldreich, S. Goldwasser, and D. Ron. Propersyirtg and its connection to
learning and approximationJACM, 45(4):653-750, 1998. An extended abstract
appeared in the proceedings of FOCS96.

P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wiggbn. Self-
testing/correcting for polynomials and for approximat@édtions. InProceedings
of STOC91pages 32-42, 1991.

O. Goldreich and D. Ron. Property testing in boundegrde graphs. IRroceedings
of STOC97pages 406-415, 1997.

O. Goldreich and D. Ron. A sublinear bipartite testerbounded degree graphs. In
Proceedings of STOC9Bages 289-298, 1998. To appeaCimmbinatorica 1999.

J. Hhstad. Testing of the long code and hardness for cliquerdoeedings of STOC96
pages 11-19, 1996.

J. Hstad. Getting optimal in-approximability results. Pnoceedings of STOC97
pages 1-10, 1997.

M. Kiwi. Probabilistically Checkable Proofs and the Testing of Hadad-like Codes
PhD thesis, MIT, 1996.

M. Kearns, M. Li, and L. Valiant. Learning booleanrfaulae. JACM, 41(6):1298—
1328, 1994.

27

