
Testing Monotonicity

Oded Goldreich∗ Shafi Goldwasser† Eric Lehman† Dana Ron†‡

September 1998

Abstract

We present a (randomized) test for monotonicity of Boolean functions. Namely, given
the ability to query an unknown functionf : {0, 1}n 7→ {0, 1} at arguments of its choice,
the test always accepts a monotonef , and rejectsf with high probability if it is ǫ-far from
being monotone (i.e., every monotone function differs fromf on more than anǫ fraction of
the domain). The complexity of the test is poly(n/ǫ).

The analysis of our algorithm relates two natural combinatorial quantities that can be
measured with respect to a Boolean function; one being global to the function and the other
being local to it.

We also consider the problem of testing monotonicity based only on random examples
labeled by the function. We show anΩ(

√

2n/ǫ) lower bound on the number of required
examples, and provide a matching upper bound (via an algorithm).

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, ISRAEL.
E-mail: oded@wisdom.weizmann.ac.il. Work done while visiting LCS, MIT.

†Laboratory for Computer Science, MIT, 545 Technology Sq., Cambridge, MA 02139. E-mail:
{shafi,e lehman,danar}@theory.lcs.mit.edu.

‡Supported by an ONR Science Scholar Fellowship at the Bunting Institute.

1

1 Introduction

In this work we address the problem oftesting whether a given Boolean function is monotone. A
functionf : {0, 1}n 7→ {0, 1} is said to bemonotone if f(x) ≤ f(y) for everyx ≺ y, where≺
denotes the natural partial order among strings (i.e.,x1 · · ·xn ≺ y1 · · · yn if xi ≤ yi for everyi and
xi < yi for somei). The testing algorithm can request the value of the function on arguments of its
choice, and is required to distinguish monotone functions from functions that are far from being
monotone.

More precisely, the testing algorithm is given adistanceparameterǫ > 0, and oracle access to an
unknown functionf mapping{0, 1}n to{0, 1}. If f is a monotone then the algorithm should accept
it with probability at least 2/3, and iff is at distance greater thanǫ from any monotone function
then the algorithm should reject it with probability at least 2/3. Distance between functions is
measured in terms of the fraction of the domain on which the functions differ. The complexity
measures we focus on are thequery complexityand therunning timeof the testing algorithm.

We present a randomized algorithm for testing the monotonicity property whose query com-
plexity and running time are polynomial inn and 1/ǫ. The algorithm performs a simple local
test: It verifies whether monotonicity is maintained for randomly chosen pairs of strings that differ
exactly on a single bit. In our analysis we relate this local measure to the global measure we are
interested in — the minimum distance of the function to any monotone function.

1.1 Perspective

Property Testing, as explicitly defined by Rubinfeld and Sudan [RS96] and extended in [GGR98],
is best known by the special case oflow degree testings[BLR93, GLR+91, RS96, RS97, AS97]
which plays a central role in the construction of probabilistically checkable proofs (PCP) [BFL91,
BFLS91, FGL+96, AS98, ALM+98, RS97, AS97]. The recognition that property testing is a
general notion has been implicit in the context ofPCP: It is understood that low degree tests as
used in this context are actually codeword tests (in this case of BCH codes), and that such tests
can be defined and performed also for other error-correctingcodes such as the Hadamard code
[ALM +98, BGLR93, BS94, BCH+95, BGS98, Kiw96, Tre98], and the “Long Code” [BGS98,
Hås96, H̊as97, Tre98].

Forasmuch as error-correcting codes emerge naturally in the context ofPCP, they do not seem
to provide a natural representation of familiar objects whose properties we may wish to investigate.
That is, one can certainly encode any given object by an error-correcting code — resulting in
a (legitimate yet) probably unnatural representation of the object — and then test properties of
the encoded object. However, this can hardly be considered as a “natural test” of a “natural
phenomena”. For example, one may indeed represent a graph byapplying an error correcting
code to its adjacency matrix (or to its incidence list), but the resulting string is not the “natural
representation” of the graph.

The study of Property Testing as applied to natural representation of (non-algebraic) objects
was initiated in [GGR98]. In particular, Property Testing as applied tographshas been studied
in [GGR98, GR97, GR98] – where the first work considers theadjacency matrix representation
of graphs (most adequate for dense graphs), and the latter works consider theincidence list

2

representation(adequate for sparse graphs).
In this work we consider property testing as applied to the most generic (i.e., least structured)

object – an arbitrary Boolean function. In this case the choice of representation is “forced” upon
us.

1.2 Monotonicity

In interpreting monotonicity it is useful to view Boolean functions over{0, 1}n as subsets of{0, 1}n,
calledconcepts. This view is the one usually taken in the PAC Learning literature. Each position
in {1, . . . , n} corresponds to a certainattribute, and a stringx = x1 . . . xn ∈ {0, 1}n represents an
instance wherexi = 1 if and only if the instancex has theith attribute. Thus, a concept (subset of
instances) is monotone if the presence of additional attributes maintains membership of instances
in the concept (i.e., if instancex is in the concept C then any instance resulting fromx by adding
some attributes is also in C).

The class of monotone concepts is quite general and rich. On the other hand, monotonicity
suggests a certain aspect of simplicity. Namely, each attribute has a uni-directional effect on
the value of the function. Thus, knowing that a concept is monotone may be useful in various
applications. In fact, this form of simplicity is exploitedby Angluin’s learning algorithm for
monotone concepts [Ang88], which uses membership queries and has complexity that is linear in
the number of terms of the target concept’s DNF representation.

We note that an efficient tester for monotonicity is useful asa preliminary stage before employing
Angluin’s algorithm. As is usually the case, Angluin’s algorithm relies on the premise that the
unknown target concept is in fact monotone. It is possible tosimply apply the learning algorithm
without knowing whether the premise holds, and hope that either the algorithm will succeed
nonetheless in finding a good hypothesis or detect that the target is not monotone. However, due
to the dependence of the complexity of Angluin’s algorithm on the number of terms of the target
concept’s DNF representation, it may be much more efficient to first test whether the function is at
all monotone (or close to it).

1.3 The natural monotonicity test

The main result of the paper is that a tester for monotonicityis obtained by repeating the following
for poly(n/ǫ) many times: Uniformly select a pair of strings at Hamming distance 1 and check if
monotonicity is satisfied with respect to the value off on these two strings. That is,

ALGORITHM 1: On inputn, ǫ and oracle access tof : {0, 1}n 7→{0, 1}, repeat the following steps
up ton3/ǫ times

1. Uniformly selectx ∈ {0, 1}n andi ∈ {1, ..., n}.

2. Obtain the values off(x) andf(y), wherey results fromx by flipping theith bit.

3. If x, y, f(x), f(y) demonstrate thatf is not monotone thenreject.

That is, if either(x≺y) ∧ (f(x)>f(y)) or (y≺x) ∧ (f(y)>f(x)) thenreject.

If all iterations were completed without rejecting thenaccept.

3

Theorem 1 (main result):Algorithm 1 is a testing algorithm for monotonicity. Furthermore, if
the function is monotone then Algorithm 1 always accepts.

Theorem 1 asserts that a (random)local check(i.e., Step 3 above) can establish the existence of a
global property(i.e., the distance off to the set of monotone functions). Actually, Theorem 1 is
proven by relating two quantities referring to the above: Givenf : {0, 1}n 7→ {0, 1}, we denote
by δM(f) the fraction of pairs(x, y) in which Step 3 rejects. Observe thatδM(f) is actually a
combinatorial quantity (i.e., the fraction of pairs ofn-bit strings, differing on one bit, which violate
the monotonicity condition). We then defineǫM(f) to be the distance off from the set of monotone
functions (i.e., the minimum over all monotone functionsg of |{x : f(x) 6=g(x)}|/2n). Observing
that Algorithm 1 always accepts a monotone function, Theorem 1 follows from Theorem 2, stated
below.

Theorem 2 For anyf : {0, 1}n 7→{0, 1},

δM(f) ≥ ǫM(f)

n3
.

We comment that a slightly more careful analysis yields a better bound than the one stated in the
theorem: namely,

δM(f) = Ω
(

ǫM(f)

n2 log(1/ǫM(f))

)

. (1)

As for the reverse direction; that is, lower boundingǫM(f) in terms ofδM(f), we have

Proposition 3 For every functionf : {0, 1}n 7→{0, 1}, ǫM(f) ≥ δM(f)/2.

Thus, for every functionf
ǫM(f)

poly(n)
≤ δM(f) ≤ O(ǫM(f))

A natural question that arises is that of the exact relation betweenδM(·) andǫM(·). We observe that
this relation is not simple; that is, it does not depend only on the values ofδM andǫM .

Proposition 4 The following holds for everyn and every2−c·n ≤ α ≤ 1
2 −O(1√

n
), wherec is any

constant strictly smaller than 1.
1. There exists a functionf : {0, 1}n 7→ {0, 1} such thatα ≤ ǫM(f) ≤ 2α and δM(f) =

Θ
(

ǫM(f)√
n

)

.

2. There exists a functionf : {0, 1}n 7→ {0, 1} such thatα ≤ ǫM(f) ≤ 2α and δM(f) =
Θ
(

ǫM(f)
)

.

3. For anyα = O(n− 3
2), there exists a functionf : {0, 1}n 7→{0, 1} such thatα ≤ ǫM(f) ≤ 2α

andδM(f) = Θ
(

ǫM(f)
n

)

.

PERSPECTIVE. Analogous quantities capturing local and global properties of functions were an-
alyzed in the context oflinearity testing. For a functionf : {0, 1}n 7→ {0, 1} (as above), one
may defineǫLIN (f) to be its distance from the set of linear functions andδLIN (f) to be the frac-
tion of pairs, (x, y) ∈ {0, 1}n × {0, 1}n for which f(x) + f(y) 6= f(x ⊕ y). A sequence of
works [BLR93, BGLR93, BS94, BCH+95] has demonstrated a fairly complex behavior of the
relation betweenδLIN andǫLIN . The interested reader is referred to [BCH+95].

4

1.4 Monotonicity testing based on random examples

Algorithm 1 makes essential use of queries. We show that thisis no coincidence – any monotonicity
tester that utilizes only uniformly andindependentlychosen random examples, must have much
higher complexity.

Theorem 5 For anyǫ = O(n−3/2), any tester for monotonicity that only utilizes random examples

must use at leastΩ(
√

2n/ǫ) such examples.

Interestingly, this lower bound is tight up to a poly(n) factor.

Theorem 6 There exists a tester for monotonicity which only utilizes random examples and uses
at mostO(

√

n3 · 2n/ǫ) examples. Furthermore, the algorithm runs in timepoly(n) ·
√

2n/ǫ.

We note that the above tester is significantly faster than anylearning algorithm for the class of all
monotone concepts when the allowed error isO(1/

√
n): Learning (under the uniform distribution)

requiresΩ(2n/
√
n) examples (and even that number of queries) [KLV94].1

1.5 Extensions and Open Problems

TESTING UNATENESS. A functionf : {0, 1}n 7→ {0, 1} is said to beunate if for every xi (where
x = x1 . . . xn is the input to the function), exactly one of the following holds: whenever the value
of xi is flipped from 0 to 1 then the value off does not decrease;or whenever the value ofxi

is flipped from 1 to 0 then the value off does not decrease. Thus, unateness is a more general
notion than monotonicity. We show that our algorithm can be extended to test whether a Boolean
function is unate or far from any unate function. The query and time complexities of the (extended)
algorithm are bounded byO(n3.5/ǫ).

OTHER DOMAINS AND RANGES. Let Σ andΞ be finite sets, and<Σ and<Ξ (total) orders onΣ and
Ξ, respectively. Then we can extend the notion of monotonicity to functions fromΣn to Ξ, in the
obvious manner: Namely, a functionf : Σn 7→ Ξ is said to bemonotone if f(x) ≤Ξ f(y) for
everyx ≺Σ y, wherex1 · · ·xn ≺Σ y1 · · · yn if xi ≤Σ yi for everyi andxi <Σ yi for somei. Our
algorithm generalizes to testing monotonicity over extended domains and ranges. The complexity
of the generalized algorithm scales quadratically with|Σ| and linearly with|Ξ|. It is an interesting
open problem whether these dependencies can be removed (or reduced). In particular, we believe
that the dependence on the size of the rangeΞ can be removed.

REMOVING THE DEPENDENCE ONn. Our algorithm (even for the base case), has a polynomial
dependence on the dimension of the input,n. As shown in Proposition 4, some dependence of the

1The claim follows by considering all possible concepts thatcontain all instances having⌊n/2⌋ + 1 or more 1’s,
no instances having⌊n/2⌋ − 1 or less 1’s, and any subset of the instances having exactly⌊n/2⌋ 1’s. In contrast,
“weak learning” [KV94] is possible in polynomial time. Specifically, the class of monotone concepts can be learned
in polynomial time with error at most 1/2−Ω(1/

√
n) (though no polynomial-time learning algorithm can achievean

error of 1/2− ω(log(n)/
√

n)) [BBL98].

5

query complexity onn is unavoidable in the case of our algorithm. However, it is aninteresting open
problem whether other algorithms may have significantly lower query (and time) complexities, and
in particular have query complexity independent ofn. A candidate alternative algorithm inspects
pairs of stringsx, y, wherex is chosen uniformly in{0, 1}n, andy is chosen as follows: First select
an index (weight) w ∈ {0, . . . , n} with probability

(

n
w

)

· 2−n, and then selecty uniformly among
the strings havingw 1’s, and being comparable tox (i.e.,y ≺ x or y ≻ x).

Related Work

The “spot-checker for sorting” presented in [EKK+98, Sec. 2.1] implies a tester for monotonicity
with respect to functions from any fully ordered domain to any fully ordered range, having query
and time complexities that are logarithmic in the size of thedomain. We note that this problem
corresponds to the special case ofn = 1 of the extension discussed in Subsection 1.5 (to general
domains and ranges).

Organization

Theorem 2 is proved in Section 3. Propositions 3 and 4 are proved in Section 4, and Theorems 5
and 6 are proved in Section 5. The extensions are presented inSection 6.

2 Preliminaries

For any pair of functionsf, g : {0, 1}n → {0, 1}, we define thedistancebetweenf andg, denoted,
dist(f, g), to be the fraction of instancesx ∈ {0, 1}n on whichf(x) 6= g(x). In other words,
dist(f, g) is the probability over a uniformly chosenx that f andg differ on x. Thus,ǫM(f) as
defined in the introduction is the minimum, taken over all monotone functionsg of dist(f, g).

A general formulation of Property Testing was suggested in [GGR98], but here we consider a
special case formulated previously in [RS96].

Definition 1 (property tester): Let P = ∪n≥1Pn be a subset(or a property)of Boolean functions,
so thatPn is a subset of the functions mapping{0, 1}n to {0, 1}. A (property) tester for P is a
probabilistic oracle machine2,M , which givenn, a distance parameterǫ > 0 and oracle access to
an arbitrary functionf : {0, 1}n 7→{0, 1} satisfies the following two conditions:

1. The tester acceptsf if it is in P :

If f ∈ Pn then Prob(Mf (n, ǫ)=1) ≥ 2
3.

2. The tester rejectsf if it is far from P :

If dist(f, g) > ǫ for everyg ∈ Pn , then Prob(Mf (n, ǫ)=1) < 1
3.

2 Alternatively, one may consider a RAM model of computation,in which trivial manipulation of domain and range
elements (e.g., reading/writing an element and comparing elements) is performed at unit cost.

6

TESTING BASED ON RANDOM EXAMPLES. In case the queries made by the tester are uniformly and
independentlydistributed in{0, 1}n, we say that itonly uses examples. Indeed, a more appealing
way of looking as such a tester is as an ordinary algorithm (rather than an oracle machine) which is
given as input a sequence(x1, f(x1)), (x2, f(x2)), ...where thexi’s are uniformly and independently
distributed in{0, 1}n.

Definition 2 (the Boolean-Lattice graph): For every stringx ∈ {0, 1}n, letw(x) denote theweight
of x (i.e., the number of 1’s inx). For eachi, 0 ≤ i ≤ n, let Li ⊂ {0, 1}n denote the set ofn-bit
strings of weighti (i.e., Li = {x∈ {0, 1}n : w(x) = i}). Let Gn be the leveleddirected(acyclic)
graph over the vertex set{0, 1}n, where there is a directed edge fromy to x if and only ifx ≺ y
andw(x) = w(y) − 1 (i.e.,x andy are in adjacentLi’s).

Given the definition of Gn we may view our algorithm as uniformly selectingedgesin Gn and
querying the functionf on their end-points. We call an edge directed fromy to x in Gn aviolating
edge with respect tof if f(x) > f(y) (whereasx ≺ y). Thus,δM(f), as defined in the introduction,
is the fraction of violating edges in Gn with respect tof .

3 Proof of the Main Technical Result

In order to prove Theorem 2 we prove the following two lemmas.The first lemma shows the
existence of amatchingbetween two relatively large (with respect toǫM(f)) sets of vertices
(strings) belonging to different layers of Gn where each vertexy in the first set is matched to a
vertexx such thatx ≺ y but f(x) > f(y). The second lemma shows that for any such matching
there exist vertex disjoint (directed) paths in Gn between the two sets (though the paths may
correspond to a different matching — see Appendix?? for further discussion).

Lemma 7 (existence of large violating matched sets)For any functionf : {0, 1}n 7→ {0, 1},
there exist two sets of verticesS⊆ Ls andR ⊆ Lr, wheres > r, for which the following holds:

1. |S| = |R| ≥ ǫM(f)
2n2 · 2n;

2. For everyy ∈ S, f(y) = 0, and for everyx ∈ R, f(x) = 1;

3. There exists a one-to-one mappingφ fromS to R such that for everyy ∈ S, φ(y) ≺ y.

Lemma 8 (existence of disjoint paths between matched sets)Letr ands be integers satisfying,
0 ≤ r < s ≤ n, and letS ⊆ Ls andR ⊆ Lr be sets each of sizem. Suppose that there exists a
1-to-1 mappingφ from S to R such that for everyy ∈ S, there is a directed path inGn from y to
φ(y). Then there existm vertex-disjoint directed paths fromS to R in Gn.

We prove the two lemmas in the next two subsections. But first we show that Theorem 2 follows
by combining the two lemma.

Proof of Theorem 2: Fixing f we first invoke Lemma 7 to obtain the two matched sets S and
R of size at leastm = ǫM(f)

2n2 · 2n. By Lemma 8 this matching implies the existence ofm vertex
disjoint paths from S to R. Consider any such pathz0 = y, . . . , zd = x, wherey ∈ S,x ∈ R, and
d = s− r. Sincez0 ∈ S, we havef(z0) = 0. On the other hand, sincezd ∈ R, we havef(zd) = 1.

7

Therefore, there must exist someℓ ∈ {0, ..., d−1}, such thatf(zℓ) = 0 andf(zℓ+1) = 1. Thus the
edge directed fromzℓ to zℓ+1 is a violating edge with respect tof . Since the paths from S to R are
vertex disjoint, they are necessarily edge disjoint, and hence there are at leastm = ǫM(f)

2n2 · 2n such
violating edges (at least one per path). Because each vertexin Gn has total degree (indegree plus
outdegree)n, the number of edges in Gn is 1

2 · 2n · n. Therefore, the fraction of violating edges is

at leastǫM(f)
n3 , and the theorem follows.

The strengthening of Theorem 2 stated in Equation (1) is justified by the fact that one may
actually show that there exist sets S and R as in Lemma 7 such that|S| = |R| = Ω

(

ǫM(f)
n log(1/ǫM(f)

)

·2n.
We show how this improvement can be obtained after we prove Lemma 7.

3.1 Proving the existence of large violating matched sets

Fixing f , let g be a monotone function (over{0, 1}n) for which dist(f, g) = ǫM(f). Namely,g is a
monotone function that is closest tof . Forb ∈ {0, 1}, let

Db
def
= {x : f(x) 6= g(x) andg(x) = b } (2)

That is, the set D0∪D1 is a set of minimum size such that if we flip the value off on all elements in
the set then we obtain a monotone function (i.e.,g). Since|D0∪D1| = ǫM(f) ·2n andD0∩D1 = ∅,
we may assume, without loss of generality, that|D1| ≥ ǫM(f)

2 · 2n. Recall that, by definition,

D1 = {x : g(x) = 1 andf(x) = 0} ⊆ {x : f(x) = 0}

For any set Y⊆ {0, 1}n, theshadow3 of Y, denotedσ(Y), is defined as follows:

σ(Y)
def
= {x /∈ Y : ∃y ∈ Y s.t. x ≺ y} (3)

Namely, the shadow of Y is the set of all strings not in Y that are each smaller than some string in
Y. For any Y⊆ D1 define

σ1(Y)
def
= {x ∈ σ(Y) : f(x) = g(x) = 1} ⊆ {x : f(x) = 1} (4)

Namely,σ1(Y) is the subset of the shadow of Y containing all strings on which bothf andg have
value 1. (Note that for any Y⊆ D1, σ(Y) \ σ1(Y) ⊆ {x : g(x) = 0}.) As a visualization (see
Figure 3.1), we viewg as defining aboundaryin the Boolean Lattice (similarly, in Gn), such that
all strings on and above the boundary are labeled 1, and all other strings are labeled 0. The set D1

contains those strings above the boundary thatf labels 0. The setσ1(D1) contains all strings in
the shadow of D1 that lie above the boundary. These strings are labeled 1 byf (as otherwise they
would be in D1).

Thus, by definition of D1 andσ1(D1), we have that for everyx ∈ σ1(D1), there existsy ∈ D1

such that the pair(x, y) satisfies:x ≺ y andf(y) < f(x) (i.e.,f(y) = 0 andf(x) = 1). We next
show that a stronger statement holds.

3This is not the standard definition of a shadow, as in [Bol86, Chap. 5].

8

The Boundary
of g

g = 0

g = 1

f = 0

f = 1(D)1

D1

1σ

Figure 1: The sets D1 andσ1(D1).

Lemma 9 For everyY ⊆ D1, there exists a 1-to-1 mappingφ from Y into σ1(Y), such that for
eachy ∈ Y, φ(y) ≺ y.

Lemma 9 is the main step in proving Lemma 7 (which also requires that all elements in the set S
belong to the same layer in Gn, and that the same hold for all the elements they are mapped to).

Proof: We first show that for every Y⊆ D1, |σ1(Y)| ≥ |Y|. Assume towards contradiction that,
for some Y⊆ D1, |σ1(Y)| < |Y|. We show, contrary to our hypothesis ong, that there exists
another monotone functiong′ that is (strictly) closer tof .
Define g

′ as follows: For everyx ∈ Y ∪ σ(Y), g′(x) = 0. Otherwise,g′(x) = g(x).
We need to verify the following two claims.

Claim 9.1: g′ is a monotone function.

Claim 9.2: dist(f, g′) < dist(f, g).

Proof of Claim 9.1: We need to show that for everyx, y such thatx ≺ y, it holds thatg′(x) ≤ g′(y).
Consider the following cases.

Case 1:x ∈ Y ∪ σ(Y). In this caseg′(x) = 0, and sog′(x) ≤ g′(y) for all y,

Case 2:x /∈ Y ∪σ(Y). Note that in this caseg′(x) = g(x). We will show that for everyy if x ≺ y
theny /∈ Y ∪ σ(Y) as well, and thusg′(y) = g(y) ≥ g(x) = g′(x) as required. Suppose
towards contradiction that for somey ∈ Y ∪ σ(Y) it holds thatx ≺ y. We consider two
subcases.

1. If y ∈ Y then sincex ≺ y we have thatx ∈ Y ∪ σ(Y) in contradiction to the case
hypothesis.

2. If y ∈ σ(Y) then there existsz ∈ Y such thaty ≺ z. Usingx ≺ y it follows thatx ≺ z
and so againx ∈ Y ∪ σ(Y) in contradiction to the case hypothesis.

9

Claim 9.1 follows. 2

Proof of Claim 9.2: By definition of g′, the functionsg and g′ differ on the set of strings
∆ def

= (Y ∪ σ(Y)) ∩ {x : g(x)=1}. Since Y⊆ D1 ⊆ {x : g(x)=1}, we have

∆ = Y
⋃

(σ(Y) ∩ {x : g(x)=1})
= Y

⋃

(σ(Y) ∩ {x : g(x)=1 andf(x)=1})
⋃

(σ(Y) ∩ {x : g(x)=1 andf(x)=0})
= Y

⋃

σ1(Y)
⋃

A

where A def
= σ(Y) ∩ {x : g(x) = 1 andf(x) = 0}. Consider the three (disjoint) subsets of∆: Y,

σ1(Y), and A.

• For everyx ∈ Y, we havef(x) = 0 andg(x) = 1 (since Y⊆ D1), andg′(x) = 0 (by definition).
Suchx contributes to dist(f, g) but not to dist(f, g′).

• For everyx ∈ σ1(Y), we havef(x) = g(x) = 1 (by definition ofσ1(Y)), and againg′(x) = 0.
Suchx do not contribute to dist(f, g) but do contribute to dist(f, g′).

• For everyx ∈ A, we havef(x) = 0 andg(x) = 1 (by definition of A), and againg′(x) = 0.
Suchx contribute to dist(f, g) but not to dist(f, g′).

Thus,
2n · (dist(f, g′) − dist(f, g)

)

= |σ1(Y)| − |Y ∪ A| ≤ |σ1(Y)| − |Y| < 0

where the strict inequality is due to the assumption that|σ1(Y)| < |Y|. Claim 9.2 follows. 2

Consider any set Y⊆ D1. We have established that for every Y′ ⊆ Y, |σ1(Y′)| ≥ |Y′|. Lemma 9
follows from Hall’s Theorem (cf. [Eve79, Thm. 6.12]): Consider the auxiliary bipartite graph B
whose vertex set is labeled by the strings in Y∪ σ1(Y), and whose edge set is{(x, y) : x ∈
σ1(Y), y ∈ Y, x ≺ y}. By the above, for each Y′ ⊆ Y, we have|Γ(Y′)| ≥ |Y′|, whereΓ(Y′)
denotes the neighbor set of Y′ in B. By Hall’s Theorem, this implies that there exists a perfect
matching between Y and a subset ofσ1(Y). Lemma 9 follows.

Proof of Lemma 7: As noted previously, we may assume that D1 (see Eq. (2)) has size at least
ǫM(f) · 2n−1 (the case|D0| ≥ ǫM(f) · 2n−1 is analogous). Let Yi

def
= D1 ∩ Li, and lets denote the

index of the largest set among the Yi’s. It follows that|Ys| ≥ ǫM(f)
2n

· 2n.

We now invoke Lemma 9 with Y= Ys. Let Xs
def
= φ(Ys), whereφ is as guaranteed by the

lemma. Hence, Xs ⊆ σ1(Ys), and|Xs| = |Ys|. Note that while all elements of Ys belong to Ls,

the elements of Xs are contained in several Lj ’s, j < s. For eachj, 0≤ j < s, let Xs,j
def
= Xs ∩ Lj.

Let Xs,r be the largest such set. Since|Xs| = |Ys| ≥ ǫM(f)
2n

·2n, we have|Xs,r| ≥ ǫM(f)
2n2 ·2n. Finally,

let Ys,r
def
= φ−1(Xs,r). Then Lemma 7 holds with S= Ys,r ⊆ Ls and R= Xs,r ⊆ Lr.

Comment: To obtain the stronger bound on the sizes of S and R we do the following. Let

devdef
=

√

1
2
n · ln(8/ǫM(f)) .

Then we have that the total number of strings in layers Li wherei > n
2 + dev is at mostǫM(f)

8 · 2n.

Similarly, the total number of strings in layers Li wherei < n
2 −dev is at mostǫM(f)

8 ·2n. Assuming

10

(without loss of generality) that|D1| ≥ ǫM(f)
2 · 2n, we have that the number of strings in D1 that

belong to layers Li wherei ≤ n
2 + dev is at least3ǫM(f)

8 · 2n. By invoking Lemma 9 on the set

Y = D1 ∩




⋃

i≤n
2 +dev

Li





we have a one-to-one mappingφ from Y to X = φ(Y) ⊆ σ1(Y). Note that by definition of Y,

X ⊆
⋃

i< n
2 +dev

Li .

Since|X| = |Y| ≥ 3ǫM(f)
8 · 2n, and the total number of strings in layers Li wherei < n

2 − dev is

at mostǫM(f)
8 · 2n, we have that

∣

∣

∣

∣

∣

∣

X ∩




n
2 +dev
⋃

i= n
2 −dev

Li





∣

∣

∣

∣

∣

∣

≥ ǫM(f)

4
· 2n .

For eachi, n
2 − dev ≤ i < n

2 + dev, let Xi
def
= X ∩ Li and let Xr be the largest such set. Then

|Xr| ≥ ǫM(f)
4·2dev·2n. Let Yr

def
= φ−1(Xr), and for eachi, n

2 −dev< i ≤ n
2 +dev, define Yi,r

def
= Yr∩Li.

Then there exists a set Ys,r ⊆ Ls such that

|Ys,r| ≥
ǫM(f)

16 · dev2 · 2n = Ω(
ǫM(f)

n · log(1/ǫM(f)
) · 2n .

We then let S= Ys,r and R= Xs,r.

3.2 Existence of disjoint paths between matched sets

Let S⊆ Ls and R⊆ Lr be as stated in Lemma 8, and letd = s− r. Recall that for each 0≤ i ≤ n,
Li is the set of all vertices in Gn corresponding to strings with exactlyi 1’s. We shall prove Lemma 8
by induction onm andd. The base cases, i.e., the case wherem = 1 andd ≥ 1, and the case where
d = 1 andm ≥ 1, clearly hold. Consider generalm > 1 andd > 1, and assume by induction
that the claim holds for every pairm′ andd′ such that eitherm′ < m andd′ ≤ d or m′ ≤ m and
d′ < d. Let Q be the set of vertices in Ls−1 that are on a directed path going from some vertex in S
to some vertex in R, and let P be the set of vertices in Lr+1 that are on such directed paths from S
to R (see Figure 3.2). We shall prove the induction claim in two steps. In the first step we use the
induction hypothesis (form′ < m andd′ = d) to show that either|Q| ≥ m or |P| ≥ m (or both).
In the second step we use this fact together with the induction hypothesis (form′ < m andd′ = d
and for m′ = m andd′ < d) to prove the induction claim.

Step 1: Either |Q| ≥ m or |P| ≥ m.

Proof: Consider the subgraph G′n of Gn containing S, R and all vertices and edges that belong to
paths between S and R.

11

.

.

.

.

Level

Level

Level

Level s-1

s

r+1

r

S

R

Q

P

Figure 2: The sets S, R, Q, and P.

Claim 8.1: Letv be a vertex inSand letu be a vertex in some levelLi, wherer + 1 ≤ i ≤ s− 1,
such that there is a directed path fromv to u in G′

n. Then the outdegree ofv in G′
n is at least as

large as the outdegree ofu in G′
n. Similarly, ifw ∈ R andz ∈ Li wherer + 1 ≤ i ≤ s− 1, such

that there is a directed path fromz tow in G′
n, then the indegree ofw in G′

n is at least as large as
the indegree ofz in G′

n.

Proof: We prove the claim concerning outdegrees. The claim about indegrees is proved analo-
gously. Leta ≥ 1 be the outdegree ofu and consider the verticesu1, . . . , ua in Li−1 such that there
is an edge in G′n from u to eachui. Recall that by definition of G′n there are paths in G′n from the
ui’s to vertices in R. Therefore, any vertex that is on a path from v to one of theui’s is in G′

n as
well.

For eachui, let bi ∈ [n] be the index of the bit on which the strings corresponding tou andui,
differ; i.e.,ubi = 1 whileui

bi = 0. By definition,b1, . . . , ba are distinct indices, and sinceubi = 1
for everyi, it also holds thatvbi = 1 for everyi. For eachbi, let vi be the vertex in Ls−1 that differs
from v on thebi’th bit; i.e., vi

bi = 0, and for everyj 6= bi, vi
j = vi

j . Then each of thea vi’s is on a
path fromv to ui, and the claim follows. 2

We note that the above claim can be strengthened to show that the outdegree ofv (respectively,
indegree ofw) is greater than the outdegree ofu (respectively, indegree ofz), by at leasts − i
(respectively,i− r). This is done by taking into account the bits on whichv andu (respectively,w
andz) differ.

Let k be the maximum outdegree of vertices in S, and lett be the maximum indegree of vertices
in R. We partition S, R, Q, and P into subsets according to their degrees in G′n as follows. For every
i ≤ k we let Si be the subset of vertices in S that have outdegree exactlyi, and for everyj ≤ t, we
let Ri be the subset of vertices in R that have indegree exactlyj. Similarly we let Qj

i (respectively,
Pj

i) be the subset of vertices in Q (respectively, P) with outdegree exactlyi and indegree exactlyj.
First note that by Claim 8.1, the maximum outdegree of vertices in Q and P is at mostk, and the
maximum indegree is at mostt. Therefore, for everyj andi > k, |Qj

i |, |Pj
i | = 0, and for everyi

andj > t, |Qj
i |, |Pj

i | = 0.
Furthermore, by Claim 8.1, for everyi, and each vertexv ∈ Si, the verticesu in P such that there

12

exists a directed path fromv to u must belong to∪i′≤i ∪j Pi′,j. For anyq ≤ k, let S≤q = ∪q
i=1Si.

By definition ofk (as the maximum degree of vertices in S), the set Sk is nonempty and hence for
everyq < k, |S≤q| < m. Therefore, we can apply the induction hypothesis and obtain that there
exist vertex disjoint paths between S≤q andφ(S≤q) (whereφ is the matching guaranteed by the
hypothesis of Lemma 8). For anyq < k let Π(S≤q) ⊆ Q denote the set of neighbors of vertices in
S≤q that lie on these paths toφ(S≤q). Since these paths are disjoint,|Π(S≤q)| = |S≤q|. Using the
above and the fact that the Si’s are disjoint and the Pji ’s are disjoint, the following inequality holds
for everyq < k:

q
∑

i=1

|Si| = |S≤q| = |Π(S≤q)| ≤
∣

∣

∣∪q
i=1 ∪∞

j=1 Pj
i

∣

∣

∣ =
q
∑

i=1

∞
∑

j=1

|Pj
i | =

q
∑

i=1

k
∑

j=1

|Pj
i | . (5)

Similarly, we can obtain that for everyp < s,

p
∑

j=1

|Rj| ≤
k
∑

i=1

p
∑

j=1

|Qj
i | . (6)

Recall that we would like to show that either|Q| ≥ m or |P| ≥ m. Thus, assume in contradiction
that both|Q| < m and|P| < m. Therefore, by Equation (5), for everyq < k,

k
∑

i=q+1

|Si| = |S| −
q
∑

i=1

|Si| = m−
q
∑

i=1

|Si| ≥ m−
q
∑

i=1

t
∑

j=1

|Pj
i | > |P| −

q
∑

i=1

t
∑

j=1

|Pj
i | (7)

and so
k
∑

i=q+1

|Si| >
k
∑

i=q+1

t
∑

j=1

|Pj
i | . (8)

Similarly, for everyp < t,
k
∑

j=p+1

|Rj| >
k
∑

i=1

t
∑

j=p+1

|Qj
i | . (9)

By summing both sides of Equation (8) over allq < k we get

k−1
∑

q=0

k
∑

i=q+1

|Si| >
k−1
∑

q=0

k
∑

i=q+1

t
∑

j=1

|Pj
i | (10)

or equivalently,
k
∑

i=1

i · |Si| >
k
∑

i=1

t
∑

j=1

i · |Pj
i | . (11)

Similarly, from Equation (9) we get

t
∑

j=1

j · |Rj | >
k
∑

i=1

t
∑

j=1

j · |Qj
i | . (12)

Summing Equations (11) and (12), we get

k
∑

i=1

i · |Si| +
t
∑

j=1

j · |Rj | >
k
∑

i=1

t
∑

j=1

i · |Pj
i | +

k
∑

i=1

t
∑

j=1

j · |Qj
i | . (13)

13

However, since the number of edges going out of vertices in S equals the number of edges
entering vertices in Q we have that:

k
∑

i=1

i · |Si| =
k
∑

i=1

t
∑

j=1

j · |Qj
i | (14)

and similarly for R and P we have

t
∑

j=1

j · |Rj | =
k
∑

i=1

t
∑

j=1

i · |Pj
i | . (15)

Summing Equations (14) and (15) we get

k
∑

i=1

i · |Si| +
t
∑

j=1

j · |Rj | =
k
∑

i=1

t
∑

j=1

j · |Qj
i | +

k
∑

i=1

t
∑

j=1

i · |Pj
i | (16)

contradicting Equation (13). (Step 1.)

Step 2: There exist vertex disjoint paths fromS to R.

Proof: >From Step 1 we have that either|Q| ≥ m or |P| ≥ m. Assume the former is true —
we shall see that this can be done without loss of generality.We next show that (1) there exists a
perfect matching between S and (a subset of) Q; and (2) there exists a 1-to-1 mappingφ′ from the
matched vertices of Q to R so that there is a path from each matchedu ∈ Q toφ′(u). Given (2) we
can apply the induction hypothesis ford′ = d − 1 (andm′ = m) on Q and R, and by combining
with (1) we get the desired paths from S to R.

We actually prove both (1) and (2) together. Consider the following auxiliary network, A. It
has a single source vertexs, a single target vertext, and the rest of the vertices are partitioned into
three layers corresponding to S, Q and R, respectively. There is an edge froms to each of the
vertices in S, and from each of the vertices in R tot. The edges between S and Q are as in G′

n

and edges between Q and R correspond to directed paths in G′
n. We show that the minimums− t

vertex-separator in A has sizem. Items (1) and (2) follow by one of the variations of Menger’s
Theorem (see [Eve79, Thm. 6.4 and discussion on pp. 130]), which guarantees the existence ofm
vertex-disjoint paths froms to t.

Assume in contradiction that there exists a vertex-separator C of size smaller thanm in A.
Let m1

def
= |C ∩ S|, m2

def
= |C ∩ Q|, andm3

def
= |C ∩ R|. Consider the subset of vertices S′ ⊆ S

that do not belong to C and are not mapped byφ to vertices in R∩ C. The size of S′ is at least
m′ = m− (m1 +m3) > |C| − (m1 +m3) = m2. Let R′ def

= φ(S′), and Q′ be the subset of vertices
in Q that are on a directed path in G′

n going from some vertex in S′ to a vertex in R′.
We consider two cases. If S′ = S (i.e., C⊆ Q) then Q′ = Q, and since|C| < m ≤ |Q|, there

exists at least one vertex in Q\ C on a path from a vertex in S to a vertex in R, contradicting
the assumption that C is a vertex separator. If S′ ⊂ S, then by the induction hypothesis (for
m′ = |S′| < m andd′ = d), there exist vertex disjoint paths in G′n from S′ to φ(S′) and hence
necessarily|Q′| ≥ |S′| > m2. Since|C∩Q| = m2, we again reach contradiction to the assumption
that C is a vertex separator.

14

4 Proofs of Propositions 3 and 4

Below we restate and prove the propositions concerning the relations betweenǫM(f) andδM(f)
that were stated in the introduction.

Proposition 3 For every functionf : {0, 1}n 7→{0, 1}, ǫM(f) ≥ δM(f)/2.

Proof: Let us fixf and consider the set E of its violating edges. In order to makef monotone,
we must modify the value off on at least one end-point of each of its violating edges. Since each
vertex (string) is incident to at mostn violating edges, the number of strings whose value must be
modified is at least

|E|
n

=
δM(f) ·

(

1
2 · 2nn

)

n
=

δM(f)

2
· 2n

and the proposition follows.

Comment: taking into account the fact that the number of violating edges incident to a vertex is
at most the maximum between its indegree and outdegree and that for most vertices this maximum
values is roughlyn/2, the above bound can be improved to yieldǫM ≥ (1− o(1)) · δM(f), provided
δM(f) ≥ 2−cn for any constantc < 1.

Proposition 4 The following holds for everyn and every2−c·n ≤ α ≤ 1
2 −O(1√

n
), wherec is any

constant strictly smaller than 1.

1. There exists a functionf : {0, 1}n 7→{0, 1} such thatα ≤ ǫM(f) ≤ 2α and

δM(f) = Θ
(

ǫM(f)√
n

)

.

2. There exists a functionf : {0, 1}n 7→{0, 1} such thatα ≤ ǫM(f) ≤ 2α and

δM(f) = Θ
(

ǫM(f)
)

.

3. For anyα = O(n− 3
2), there exists a functionf : {0, 1}n 7→{0, 1} such thatα ≤ ǫM(f) ≤ 2α

and

δM(f) = Θ
(

ǫM(f)

n

)

.

Proof:
Items 1 and 2. We start by proving the first two items for the case whereα = 1

2 − O(1√
n
).

1. Let f be the (symmetric) function that has value 0 on all vertices belonging to layers Lj
wherej ≥ n

2 and is 1 on all vertices belonging to layers Li wherei < n
2 . Then on one hand,

all edges between the layers, L⌈n
2 ⌉ and L⌈n

2 ⌉−1 are violating edges, and soδM(f) = Θ(1√
n
).

On the other hand, we next show thatǫM(f) = 1
2 − O(1√

n
). Clearly, ǫM ≤ 1

2 as the all 0

function is monotone and at distance at most1
2 from f . It remains to show that we cannot do

better.

15

To this end we show the existence of a one-to-one mappingψ between the vertices in the
layers Li wherei > n

2 and the vertices in the layers Li wherei < n
2 so that for everyx,

ψ(x) ≺ x. In particular for eachi, 0 ≤ i < n
2 , there exists such a one-to-one mapping

between Ln−i and Li: Consider the auxiliary bipartite graph over vertex sets Ln−i and Li,
where there is an edge betweeny ∈ Ln−i andx ∈ Li if an only if x ≺ y. Since this auxiliary
graph is a regular bipartite graph (with degree

(

n−i
i

)

), where both sides are of the same size,
there exists a perfect matching between the two sides. We letψ be defined by such⌈n

2⌉ − 1
perfect matchings, where for oddn all strings in{0, 1}n are matched, and for evenn only the
strings in the middle layer, Ln

2
, are left unmatched. To makef monotone, we must modify

the value of at least one vertex in each matched pair, and since these pairs are disjoint (and
their number is at least(1− O(1√

n
) · 2n), the claim follows.

2. Let f be the (symmetric) function that has value 0 on all vertices belonging to layers Li
wherei is even, and has value 1 on all vertices belonging to layers Li wherei is odd. Since
all edges going from even layers to odd layers are violating edges,δM(f) = 1/2. We next
show thatǫM(f) ≥ 1

2 − O(1√
n
) (where once again,ǫM(f) ≤ 1

2 since it is at distance at most
1/2 from the all-0 function or the all-1 function). Consider any pair of adjacent layers such
that the top layer is labeled 0 (so that all edges between the two layers are violating edges).
It can be shown (cf. [Bol86, Chap. 2, Cor. 4]) using Hall’s Theorem, that for any such pair
of adjacent layers, there exists a perfect matching betweenthe smallest among the two layers
and a subset of the larger layer. Since we must modify the value of at least one end-point of
each violating edge, the claim follows.

To generalize the above two constructions for smallerα we do the following. Letn′ = n −
⌊log(1/(2α))⌋, and consider the set S of all strings whose lastn− n′ bits are set to 0 (thus forming
asub-cubeof then-dimensional cube). The size of the set S is at least 2α · 2n and at most 4α · 2n.

1. Letf ′ be defined on S analogously to the wayf is defined on{0, 1}n in Item 1 above (i.e., it
has value 0 on all strings in S having weight at leastn′

2 and is 1 on all strings having weight
less thann′

2). On all strings not in S, the functionf ′ has value 1. By this definition, there
are no violating edges (w.r.t.f ′) between vertices not in S and vertices in S, and the only
violating edges are between the middle two layers of the subgraph of Gn induced by S. The
number of these edges isΘ(|S|√

n′
· n′

2), which by our assumption onα (and the definition of
n′) is Θ(α√

n′
· n · 2n). On the other hand, as argued in the first item above, we can show that

ǫM(f ′) is approximately1
2 ·

|S|
2n , which ranges betweenα and 2α as required.

2. Here toof ′ has value 1 on all strings not in S, and is defined on S analogously to the way
f is defined on{0, 1}n in Item 2 above, alternating between 0 and 1 on the layers of the
subgraph of Gn induced by S. The rest of the argument follows as in Item 2 whenrestricting
the attention to this subgraph.

Item 3. We start by proving the caseα = Ω(n−3/2). We consider the vertices in Lk and Lk−1, where
k = ⌈n

2⌉. We know that|Lk|, |Lk−1| = Ω(n−1/2 · 2n). As noted in the proof of Item 2, between
any two adjacent layers there exists a matching whose size equals the size of the smaller among
the two layers. Let such a matching, between Lk and Lk−1, be denoted M= {((vi, ui)}t

i=1, where

16

t = |Lk−1|. Using a greedy approach, we find a large matching M′ = {(vij , uij)} ⊂ M such that
there are no edges (in Gn) between pairsvij anduiℓ such thatij 6= iℓ. Since each edge(vij , uij) ∈ M ′

“rules out” at most(k − 1) + (n − (k − 1) − 1) < n other edges in M (i.e., an edge(viℓ , uiℓ) is
ruled out if either(vij , uiℓ) or (viℓ , uij) is an edge in Gn), we can obtain|M ′| ≥ t

n
= Ω(n−3/2 · 2n).

Since we can always drop edges from M′, we can have|M ′| = Θ(n−3/2 · 2n).
Using M′ we definef as follows. For each matched pair(vij , uij) in M ′, the functionf has

value 0 onvij , and value 1 onuij . All other vertices in layersk and higher have value 1, and those
in layersk− 1 and lower have value 0. Hence, the violating edges with respect tof are only those
that belong to M′, and soδM(f) = |M′|

2n·n/2 = Θ(n−1/2). On the other hand,ǫM(f) = |M′|
2n = Θ(n−3/2)

(as in order to makef monotone we must modify the value of at least one end-point ofeach edge
in M ′). For smaller values ofα we simply definef based on a subset of M′ of size⌈α · 2n⌉.

5 Testing based on Random Examples

In this section we prove Theorems 5 and 6: establishing a lower bound on the sample complexity of
such testers and a matching algorithm, respectively. For convenience, we first restate the theorems.

Theorem 5For anyǫ = O(n−3/2), any tester for monotonicity which only utilizes random examples

must use at leastΩ(
√

2n/ǫ) such examples.

Theorem 6There exists a tester for monotonicity which only utilizes random examples and uses at
mostO(

√

n3 · 2n/ǫ) examples. Furthermore, the algorithm runs in timepoly(n) ·
√

2n/ǫ.

5.1 A Lower bound on sample complexity

Let M′ be as defined in the proof of Item 3 in Proposition 4. By possibly dropping edges from M′

we can obtain a matching M′′ so that|M ′′| is even and of size 2ǫ · 2n (recall thatǫ = O(n−3/2)).
Using M′′ we define two families of functions. A function in each of the two families is determined
by a partition of M′′ into two sets,A andB, of equal size.

1. A functionf in the first family is defined as follows

• For every(v, u) ∈ A, definef(v) = 1 andf(u) = 0.
• For every(v, u) ∈ B, definef(v) = 0 andf(u) = 1.
• Forx with w(x) ≥ k, for whichf has not been defined, definef(x) = 1.
• Forx with w(x) ≤ k − 1, for whichf has not been defined, definef(x) = 0.

2. A functionf in the second family is defined as follows

• For every(v, u) ∈ A, definef(v) = 1 andf(u) = 1.
• For every(v, u) ∈ B, definef(v) = 0 andf(u) = 0.
• Forx’s on whichf has not been defined, definef(x) as in the first family.

It is easy to see that every function in the second family is monotone, whereas for every function
f in the first familyǫM(f) = |B|/2n = ǫ. Theorem 5 is established by showing that an algorithm

which obtainso(
√

|B|) random examples cannot distinguish a function uniformly selected in the

17

first family (which needs to be rejected with probability at least 2/3) from a function uniformly
selected in the second family (which needs to be accepted with probability at least 2/3). That is,
we show that the statistical distance between two such samples is too small.

Claim 10 The statistical difference between the distributions induced by the following two random
processes is bounded above by

(

m
2

)

· |M′′|
22n . Thefirst process (resp.,second process) is define as

follows

• Uniformly select a functionf in thefirst (resp., second)family.

• Uniformly and independently selectm strings,x1, ..., xm, in {0, 1}n.

• Output(x1, f(x1)), ..., (xm, f(xm)).

Proof: The randomness in both processes amounts to the choice ofB (uniform among all(|M ′′|/2)-
subsets of M′′) and the uniform choice of the sequence ofxi’s. The processes differ only in the
labelings of thexi’s which are matched by M′′, yet foru (resp.,v) so that(u, v) ∈ M ′′ the label ofu
(resp.,v) is uniformly distributed in both processes. The statistical difference is due merely to the
case in which for somei, j the pair(xi, xj) resides in M′′. The probability of this event is bounded
by
(

m
2

)

times the probability that a specific pair(xi, xj) resides in M′′. The latter probability equals
|M′′|
2n · 2−n. 2

Conclusion. By the above claim,m < 2n/
√

3|M ′′| implies that the statistical difference between

these processes is less thanm2

2 · |M′′|
22n < 1/6 and thus an algorithm utilizingm queries will fail to

work for the parameterǫ = |B|/2n. Theorem 5 follows.

5.2 A matching algorithm

The algorithm consists of merely emulating Algorithm 1. That is, the algorithm is givenm def
=

O(
√

n3 · 2n/ǫ) uniformly selected examples and tries to find a violating pair as in Step 3 of
Algorithm 1.

ALGORITHM 2: Inputn, ǫ and(x1, f(x1)), ..., (xm, f(xm)).

1. Place all(xj , f(xj))’s on a heap arranged according to any ordering on{0, 1}n.

2. Forj = 1, ..., m andi = 1, ..., n, try to retrieve from the heap the valuey def
= xj ⊕ 0i−110n−i.

If successful then consider the valuesxj , y, f(xj), f(y) and in case they demonstrate thatf
is not monotone thenreject.

If all iterations were completed without rejecting thenaccept.

ANALYSIS. Clearly, Algorithm 2 always accepts a monotone function, and can be implemented in
time poly(n) ·m. Using a Birthday Paradox argument, we show that for a suitable choice ofm,
Algorithm 2 indeed rejectsǫ-far from monotone functions with high probability. We merely need
to show the following.

18

Lemma 11 There exists a constantc so that the following holds. Ifm ≥
√

cn32n/ǫM(f) and if
thexi’s are uniformly and independently selected in{0, 1}n then Algorithm 2 rejects the function
f with probability at least2/3.

Proof: We use the fact that the proof of Theorem 2 provides two disjoint sets, V and U, with the
following properties

1. Each set has size at leastǫM(f)
2n3 · 2n.

2. There is 1-1 mapping,ψ, of V to U.

3. For everyv ∈ V it holds thatf(v) = 0, f(ψ(v)) = 1, andψ(v) is obtained fromv by setting
a single bit to 0.

We will show that with probability at least 2/3, there existiandj so thatxi ∈ V andxj = ψ(xi) ∈ U,
and the lemma will follow.

We split the sample into two equal parts. Using a Multiplicative Chernoff Bound,4 with
probability at least 0.9 the number ofxi’s in the first part which hit V is at least12 · m

2 · |V|
2n . Denote

the set of examples hitting V by V′, and consider the set U′ ⊆ U of vertices which are matched by
ψ to V′. Then, the probability that none of them/2 examples in the second part hits U′ is at most

(

1− |U′|
2n

)m/2

=

(

1− |V′|
2n

)m/2

< exp

(

−|V′|
2n

· m
2

)

≤ exp

(

− |V|
4 · 22n

·m2

)

(17)

The lemma follows by substituting|V| with ǫM(f)
2n3 · 2n andm2 with cn32n/ǫM(f). 2

6 Extensions

6.1 Testing whether a function is unate

By our definition of monotonicity (used throughout the paper), a function is said to be monotone if,
for any string, flipping any bit of the string from 0 to 1, does not decrease the value of the function.
A more general notion is that ofunatefunctions. A functionf is unateif there exists a string
ζ = ζ1 . . . ζn ∈ {0, 1}n for which the following holds: For any stringx = x1 . . . xn, and for any
i such thatxi = ζi, if we let y = x1, . . . , xi−1,¬xi, xi+1, . . . , xn (i.e., y is the same asx except
for the ith bit, which is flipped fromζi to ¬ζi), thenf(y) ≥ f(x). We say in such a case thef is
monotone with respect toζ . In particular, if a function is monotone with respect to theall-0 string,
then we simply say that it is a monotone function, and if a function is monotone with respect to
someζ , then it is unate. Thus, the generalization of monotonicityto unateness allows that for each
position there be a (possibly different)direction (i.e., not necessarily the 0→ 1 direction), such
that the value of the function cannot decrease when the bit isflipped in that direction.

Similarly to Algorithm 1 (for testing monotonicity), whichsearches for evidence to non-
monotonicity, the testing algorithm for unateness tries tofind evidence to non-unateness. However,

4We assume for simplicity thatǫM(f) ≫ n3/2n, which impliesm ≫ n3/ǫM(f). Otherwise,ǫM(f) = O(n3/2n),
in which casem = Ω(

√

n32n/ǫM(f)) = Ω(2n), which in turn suffices to hit even a single edge with constant
probability.

19

here it does not suffice to find a pair of stringsx, y that differ on theith bit such thatx < y while
f(x) > f(y), sincef could be monotone with respect toζ such thatζi = 1. Instead we search for
two pairsof strings,x1 < y1 andx2 < y2, where each pair differs on the (same)ith bit, such that
f(x1) > f(y1) andf(x2) < f(y2) (or vica versa). This implies that there is noζ such thatf is
monotone with respect toζ (since, in particular,ζi can be neither 0 nor 1).

ALGORITHM 3 (TESTINGUNATENESS): On inputn, ǫ and oracle access tof : {0, 1}n 7→{0, 1}, do
the following:

1. Uniformly selectm = O(n3.5/ǫ) strings in{0, 1}n, denotedx1, . . . , xm, andm indices in
{1, . . . , n}. denotedi1, . . . , im.

2. For each selectedxj , obtain the values off(xj) and f(yj), whereyj results fromxj by
flipping theij ’th bit.

3. If unateness is found to be violated thenreject.

Violation occurs, if among the string-pairs{xj , yj}, there exist two pairs and an indexi, such
that in both pairs the strings differ on theith bit, but in one pair the value of the function
increases when the bit is flipped for 0 to 1, and in the other pair the value of the function
increases when the bit is flipped from 1 to 0.

If no contradiction to unateness was found thenaccept.

Theorem 12 Algorithm 3 is a testing algorithm for unateness. Furthermore, if the function is
unate, then Algorithm 3 always accepts.

We shall need the following notation. Forζ ∈ {0, 1}n, let≺ζ denote the partial order on strings
with respect toζ . Namely,x ≺ζ y if and only if x⊕ ζ ≺ y ⊕ ζ . Let ǫM,ζ(f) denote the minimum
distance betweenf and any functiong that is monotone with respect toζ , and letδM,ζ(f) denote
the fraction of pairsx, y that differ on a single bit such thatx ≺ζ y but f(x) > f(y). It follows
from the above definitions that for anyf andζ , ǫM,ζ(f) = ǫM(fζ) andδM,ζ(f) = δM(fζ), wherefζ

is defined byfζ(x) = f(x⊕ ζ). Hence, as a corollary to Theorem 2, we have

Corollary 13 For anyf : {0, 1}n 7→{0, 1}, and for anyζ ∈ {0, 1}n, δM,ζ(f) ≥ ǫM,ζ(f)

n3 .

Proof of Theorem 12: For eachi ∈ {1, . . . , n}, let γi,0(f) denote the fraction, among all pairs of
strings that differ on a single bit, of the pairsx, y such thatx andy differ only on theith bit, xi = 0,
yi = 1, andf(x) > f(y). Similarly, letγi,1(f) denote the fraction of pairs of stringsx, y such that
x andy differ only on theith bit, xi = 1, yi = 0, andf(x) > f(y). In other words,γi,0(f) is the
fraction of pairs that can serve as evidence tof not being monotone with respect to anyζ such that
ζi = 0, while γi,1(f) is the fraction of pairs that can serve as evidence tof not being monotone
with respect to anyζ such thatζi = 1. Note that in casef is monotone with respect to someζ ,
then for everyi, γi,ζi

(f) = 0. More generally,δM,ζ(f) =
∑n

i=1 γi,ζi
(f) holds for everyζ ∈ {0, 1}n

(since each edge contributing toδM,ζ(f) contributes to exactly oneγi,ζi
).

Let us defineǫU(f) to be minζ(ǫM,ζ(f)) so that it equals the minimum distance off to any unate
function (i.e., any function that is monotone with respect to someζ).

20

Claim 12.1.
∑n

i=1 min(γi,0(f), γi,1(f)) ≥ ǫU(f)
n3 .

Proof: Let ζ = ζ1 . . . ζn be defined as follows: For eachi, if γi,0(f) ≤ γi,1(f) thenζi = 0, and
otherwise,ζi = 1. In other words,ζi = argminb∈{0,1}(γi,b). The key observation is

δM,ζ(f) =
n
∑

i=1

γi,ζi
=

n
∑

i=1

min(γi,0(f), γi,1(f))

where the first equality holds for anyζ , and the second follows from the definition of this specific
ζ . Invoking Corollary 13, we haveδM,ζ(f) ≥ ǫM,ζ(f)

n3 ≥ ǫU(f)
n3 . 2

For eachi, let Γi,0(f) be the set of all pairs of stringsx, y that differ only on theith bit, where
xi = 0 andyi = 1, and such thatf(x) > f(y). Similarly, letΓi,1(f) be the set of all pairsx, y that
differ only on theith bit, wherexi = 1 andyi = 0, and such thatf(x) > f(y). Claim 12.1 gives us
a lower bound on the sum

∑

i min(|Γi,0|, |Γi,1|). To prove Theorem 12, it suffices to show that if we
uniformly selectΩ(n3.5/ǫU(f)) pairs of strings that differ on a single bit, then with probability at
least 2/3, for someiwe shall obtain both a pair belonging toΓi,0(f) and a pair belonging toΓi,1(f).
The above is derived from the following technical claim, which can be viewed as a generalization
of theBirthday Paradox.

Claim 12.2. Let S1, . . . ,Sn,T1, . . . ,Tn be disjoint sets of elements belonging to domainX. For
eachi, let the probability of selecting an elementx in Si (whenx is chosen uniformly inX), bepi,
and the probability of selecting an element inTi, beqi. Suppose that for alli, qi ≥ pi, and that
∑

i pi ≥ ρ for someρ > 0. Then, for some constantc, if we uniformly selectc · √n/ρ elements in
X, then with probability at least2/3, for somei we shall obtain one element inSi and one inTi.

Proof: As a mental experiment, we partition the sample of elements into two parts of equal size,
c · √n/(2ρ). Let I be a random variable denoting the (set of) indices of sets Si hit by the first part
of the sample. We show below that with probability at least 5/6 over the choice of the first part of
the sample,

∑

i∈I

pi ≥ ρ√
n

(18)

The claim then follows since conditioned on Equation (18) holding, and by Claim 12.2’s hypothesis
thatqi ≥ pi for all i, the probability that the second part of the sample does not include any elements
from

⋃

i∈I Ti, is at most

(

1−
∑

i∈I

qi

)c·√n/(2ρ)

≤
(

1− ρ√
n

)c·√n/(2ρ)

< exp(−c/2)

which is less than 1/6 for an appropriate choice ofc.
To prove that Equation (18) holds with probability at least 5/6, we assume without loss of

generality that the sets Si are ordered according to size. Let S1, . . . ,Sk be all sets with probability
weight at leastρ/(2n) each (i.e.,p1 ≥ . . . ≥ pk ≥ ρ/(2n)). Then, the total probability weight of
all other sets Sk+1, . . . ,Sn is less thanρ/2, and

∑k
i=1 pi ≥ ρ/2 follows. We first observe that by a

(multiplicative) Chernoff bound (for an appropriate choice of c), with probability at least 11/12,

the first part of the sample contains at least 4· √n elements in̄S def
=
⋃k

i=1 Si.

21

Let I′ def
= I ∩ {1, . . . , k}. That is, I′ is a random variable denoting the indices of sets Si,

i ∈ {1, . . . , k} that are hit by the first part of the sample. Conditioned on there being at least 4·√n
elements from̄S in the first part of the sample, we next show that with probability at least 11/12,
∑

i∈I′ pi ≥ ρ√
n

(from which Equation (18) follows). Since conditioned on anelement belonging

to S̄ it is uniformly distributed in that set, we may bound the probability of the above event, when
selecting 4

√
n elements uniformly in̄S. Consider the choice of thej th element fromS̄, and let I′j−1

denote the indices of sets Si, i ∈ {1, . . . , k}, among the firstj − 1 selected elements of̄S. If

∑

i∈I′
j−1

pi ≥ 2 ·∑k
i=1 pi√
n

then, since
∑k

i=1 pi ≥ ρ
2, we are done. Otherwise (

∑

i∈I′
j−1

pi < (2
∑k

i=1 pi)/
√
n), the probability

that thej th element belongs to I′ \ I′j−1 (i.e., it hits a set in{S1, . . . ,Sk} that was not yet hit), is
at least 1− 2/

√
n, which is at least 3/4 for n ≥ 36. Since we are assuming that the first part of

the sample includes at least 4· √n elements fromS̄, with probability at least 11/12, we succeed
in obtaining a new element in at least 2· √n of these trials. Since the sets S1, . . . ,Sk all have
probability weight at leastρ/(2n), the claim follows. 2

6.2 Other Domains and Ranges

As defined in the introduction, for finite setsΣ andΞ and orders<Σ and<Ξ onΣ andΞ, respectively,
we say that a functionf : Σn 7→ Ξ is monotone if f(x) ≤Ξ f(y) for every x ≺Σ y, where
x1 · · ·xn ≺Σ y1 · · · yn if xi ≤Σ yi for everyi andxi <Σ yi for somei.

Without loss of generality we may think ofΣ as being the set{0, . . . , |Σ| − 1} (so that<Σ is
simply the order< over integers). Similarly to theΣ = {0, 1} case, the partial order≺Σ induces
a layered directed graph, denoted Gn,Σ, where theith layer Li contains all stringsx such that
∑

j xj = i. Hence, this graph hasn · (|Σ| − 1) layers. For each vertexx and everyj such that
xj > 0, there is an edge directed fromx to x′ = x1, . . . , xj−1, xj − 1, xj+1, . . . , xn.

The algorithm we analyze is very similar to Algorithm 1. It uniformly selectsΘ(n3 · |Σ|2 · |Ξ|/ǫ)
strings and for each stringx chosen it performs the following local test: It uniformly selects an index
j ∈ 1, . . . , n, and queries the functionf onx and on eitherx′ = x1, . . . , xj−1, xj − 1, xj+1, . . . , xn

or onx′ = x1, . . . , xi−1, xj +1, xi+1, . . . , xn (where this decision is done randomly unlessxj = 0 or
xj = |Σ|−1). The algorithm rejects if for somex, f(x) >Ξ f(x′) whilex ≺Σ x

′ (or f(x′) >Ξ f(x)
while x′ ≺Σ x).

6.2.1 General Domains

Consider first the case in whichΣ may be any finite ordered set, butΞ = {0, 1}. As in the case
Σ = {0, 1}, we want to boundδM(f) in terms ofǫM(f), whereǫM(f) andδM(f) are generalized in
the straightforward manner. Here we have that

Theorem 14 For any finite ordered setΣ, and for everyf : Σn 7→ {0, 1}, δM(f) ≥ ǫM(f)
n3·(|Σ|−1)2 .

(Where similarly to theΣ = {0, 1} case a slightly stronger bound actually holds.)

22

The proof of Theorem 14 is analogous to the proof of Theorem 2.In particular, the theorem
follows by combining slightly modified versions of Lemmas 7 and 8, as done in the proof of
Theorem 2. In the modified version of Lemma 7, the only change is in Item 1, where the sets S
and R are of size at least ǫM(f)

2(n·(|Σ|−1))2 · |Σ|n (recall that|Σ|n is the size of the domain). The cause
for this modification is that the number of layers in the graphGn,Σ is n · (|Σ| − 1). More precisely,
when invoking Lemma 9 (which can be easily verified to hold as is) in order to prove Lemma 7,
we “break” the set D1 (as defined in Equation (2)) into subsets according to the layers of Gn,Σ. We
then take the largest such subset Y, whose size we can bound byǫM(f)

2(n(|Σ|−1)) · |Σ|n. When breaking
φ(Y) into layers, we lose another factor ofn · (|Σ| − 1).

Lemma 8 essentially holds as stated. The only part of the proof that directly depends on the
underlying graph is Claim 8.1, and it is easily verified that Claim 8.1 (in the proof of Lemma 8) is
in fact still true in this case. The rest of the proof remains unaltered.

6.2.2 General Ranges

Let Ξ be any ordered set, and for ease of the exposition, assumeΣ = {0, 1} (the generalization to
other domains is done as described above in Subsection 6.2.1). In this case we can show that

Theorem 15 For any finite ordered setΞ, and for everyf : {0, 1}n 7→ Ξ, δM(f) ≥ ǫM(f)
n3·|Ξ| , where

δM(f) andǫM(f) are generalized in the natural manner.

In caseΞ is not finite, we can replace|Ξ| in the above expression with the size of the “effective”
domain off (that is, the number of different values assigned byf .)

The proof of Theorem 15 also follows similar lines to those inthe proof of Theorem 2. The
statement of Lemma 8 and its proof remain unaltered, since the underlying graph, Gn is the same.
The statement of Lemma 7 is modified as follows:

Lemma 16 For any ordered setΞ, and for any functionf : {0, 1}n 7→ Ξ, there exist two sets of
verticesS⊆ Ls andR ⊆ Lr, wheres > r, for which the following holds:

1. |S| = |R| ≥ ǫM(f)
2n2 · 2n;

2. There exists a one-to-one mappingφ fromS to R such that for everyy ∈ S, φ(y) ≺ y, while
f(φ(y)) >Ξ f(y).

We prove Lemma 16 momentarily, but first show how it can be applied together with Lemma 8
to obtain Theorem 15. Fixingf we invoke Lemma 7 to obtain the two matched sets S and R of
size at leastm = ǫM(f)

2n2 · 2n. Unfortunately, we cannot continue by simply applying Lemma 8 to
the sets S and R as done in the proof of Theorem 2. The reason is that Lemma 8 only tells us that
there existsomevertex-disjoint paths between S and R, but these paths do notnecessarily respect
the matchingφ. In the case of a Boolean range, this was sufficient. However,when the range is
larger, the disjoint paths might be fromy ∈ S tox ∈ R such thatf(y) >Ξ f(x), and the argument
breaks down. Thus, instead of invoking Lemma 8 directly on S and R, we do the following. For
eachξ ∈ Ξ, let Sξ

def
= {y ∈ S : f(y) = ξ}. Let S′ be the largest among these subsets of S, so

23

that |S′| ≥ m/|Ξ|. Since the value off is constant on S′, we have that for everyy ∈ S′ andevery

x ∈ φ(S′), f(y) <Ξ f(x). We then invoke Lemma 8 on S′ and R′ def
= φ(S′), and the proof of

Theorem 15 follows by the same argument used in the proof of Theorem 2.

One possible way to avoid the introduction of the factor of|Ξ|, is by proving the following
conjecture which is a variation of Lemma 8: While we relax therequirement that the paths between
the matched sets be vertex disjoint to being edge disjoint (which suffices for our purposes), we ask
that these paths respect the matching.

Conjecture 1 Let r ands be integers satisfying,0 ≤ r < s ≤ n, and letS ⊆ Ls andR ⊆ Lr be
sets each of sizem. Suppose that there exists a 1-to-1 mappingφ from S to R such that for every
y ∈ S, there is a directed path inGn from y to φ(y). Then there existm edge-disjoint directed
paths inGn connecting eachy ∈ S with φ(y) ∈ R.

In fact, it would be interesting to show even the existence ofm/poly(n) edge-disjoint paths that
respect the matchingφ (instead of exactlym).

Proof of Lemma 16: Fixing f , we letg be a monotone function closest tof , so that dist(f, g) =
ǫM(f). The proof of Lemma 16 is analogous to the proof of Lemma 7. We start by extending the
definition of D0 and D1 (as given in Equation (2)) to a non-Boolean range. We define:

D>
def
= {x : g(x) > f(x)} and D<

def
= {x : g(x) < f(x)} (19)

so that|D>| + |D<| = ǫM(f) · 2n. Without loss of generality we assume|D>| ≥ ǫM(f) · 2n−1. We
next extend the operatorσ1 (defined in Equation (4)). For any Y⊆ D> let

σ>(Y)
def
= {x : ∃y ∈ Y s.t. y ≻ x andf(x) > f(y)}

where recall thatσ(Y) denotes theshadowof Y (and is defined in Equation (3)). Thus,σ>(Y) can
be viewed as thecause(or witness set) to the need to change (raise) the value off on the points in
Y.

We next slightly depart from the course taken in the proof of Lemma 7. Namely, instead of
showing analogously to Lemma 9 that foreverysubset Y of D>, there exists a 1-to-1 mapping that
maps each elementy ∈ Y to anx ∈ σ>(Y) such thatx ≺ y, we prove this claim only for sets
Y whose elements all belong to a single layer in Gn. While this suffices for our purposes (as it
actually did for the proof of Lemma 7), it is still interesting to note that it is not clear whether the
stronger claim (referring to all subsets of D>) holds for a general range or not. In particular, the
proof technique we use does not seem to be extendible (as we note in the proof below).

Lemma 17 For everys, 0 < s ≤ n, and for everyY ⊆ (D> ∩ Ls), there exists a 1-to-1 mapping
φ fromY into σ>(Y), such that for eachy ∈ Y, φ(y) ≺ y.

Proof: We follow the same proof strategy of Lemma 9. Fixings, we first show that for every
Y ⊆ (D> ∩ Ls), |σ>(Y)| ≥ |Y|. Assume towards contradiction that for some Y⊆ (D> ∩ Ls),
|σ>(Y)| < |Y|. We show, contrary to our hypothesis ong, that there exists another monotone
functiong′ that is (strictly) closer tof .
Define g′ as follows:

24

• For everyy ∈ Y, g′(y) = f(y);

• For everyx ∈ σ(Y), g′(x) = min
(

g(x),miny∈Y,y≻x{f(y)});5

• Forz /∈ Y ∪ σ(Y), g′(z) = g(z);

Thus, whileg raises the valuef has on points in Y so as to obtain monotonicity,g′ maintains the
value off on points in Y but reduced the value of points below Y.6

We need to verify the following two claims.

Claim 17.1: g′ is a monotone function.

Claim 17.2: dist(f, g′) < dist(f, g).

Proof of Claim 17.1: We need to show that for everyx, y such thatx ≺ y, it holds that
g′(x) ≤ g′(y). Consider the following four cases.

Case 1:x, y /∈ Y ∪ σ(Y). In this caseg′(x) = g(x) ≤ g(y) = g′(y), whereg(x) ≤ g(y) follows
from the monotonicity ofg, and the two equalities from the third item in the definition of g′.

Case 2:x ∈ Y ∪ σ(Y) andy /∈ Y ∪ σ(Y). If x ∈ Y theng′(x) = f(x) < g(x) ≤ g(y) = g′(y),
where the inequalityf(x) < g(x) follows from Y ⊆ D> and the equalities from the first and
third item, respectively, in the definition ofg′. If x ∈ σ(Y) theng′(x) ≤ g(x) ≤ g(y) = g′(y),
whereg′(x) ≤ g(x) follows from the second item in the definition ofg′.

Case 3:x /∈ Y∪σ(Y) andy ∈ Y∪σ(Y). By definition ofσ(·), this case does not occur forx ≺ y.

Case 4:x, y ∈ Y ∪ σ(Y). Sincex ≺ y and Y⊆ Ls, it cannot be the case that bothx andy belong
to Y. Thus we have two sub-cases.

1. If y ∈ Y andx ∈ σ(Y) theng′(x) ≤ minz∈Y,z≻x{f(z)} ≤ f(y) = g′(y), where the first
inequality is due to the second item in the definition ofg′, and the last equality is due to
the first item in the definition.

2. If x, y ∈ σ(Y), then sinceg(x) ≤ g(y) (as g is monotone), and minz∈Y,z≻x{f(z)} ≤
minz∈Y,z≻y{f(z)} (as the first minimum is taken over a larger set containing allz ≻ y ≻ x),
by definition ofg′ we have (by the second item in the definition ofg′),

g′(x) = min
(

g(x), min
z∈Y,z≻x

{f(z)}
)

≤ min
(

g(y), min
z∈Y,z≻y

{f(z)}
)

= g′(y) .

Claim 17.1 follows. 2

Proof of Claim 17.2: By definition of g′, the functionsg and g′ differ on the set of strings
∆ def

= Y ∪ A, where A def
= σ(Y) ∩ {x : g(x) > miny∈Y,y≻x{f(y)}}. For eachx ∈ Y, we have

g′(x) = f(x) and g(x) 6= f(x), so that suchx contributes to dist(f, g) but not to dist(f, g′).
Next consider anyx ∈ A. Since A⊆ σ(Y), by the second item in the definition ofg′, g′(x) =
min

(

g(x),minz∈Y,z≻x{f(z)}), and since by definition of A,g(x) > miny∈Y,y≻x{f(y)}, we have
g′(x) = miny∈Y,y≻x{f(y)} < g(x). There are hence three sub-cases.

5Note that in the Boolean case, this minimum is always 0.
6Here we encounter the main difficulty in trying to prove the lemma for arbitrary Y⊆ D>. In particular, if, as done

above, we setg′ to equalf on all points in Y, then it might not be monotone.

25

1. If f(x) = g′(x) (< g(x)), thenx does not contribute to dist(f, g′) but does contributed to
dist(f, g).

2. If f(x) < g′(x) (< g(x)), thenx contributes both to dist(f, g′) and to dist(f, g).

3. If f(x) > g′(x) thenx contributes to dist(f, g′), and may or may not contribute to dist(f, g).

Thus,
2n · (dist(f, g′) − dist(f, g)

) ≤ |σ>(Y)| − |Y| < 0

where the strict inequality is due to the assumption that|σ>(Y)| < |Y|. Claim 17.2 follows. 2

Consider any set Y⊆ (D> ∩ Ls). We have established that for every Y′ ⊆ Y, |σ>(Y′)| ≥ |Y′|.
Similarly to the proof of Lemma 9, Lemma 17 follows from Hall’s Theorem.

The proof of Lemma 16 follows from Lemma 17 similarly to the way Lemma 7 was shown to
follows from Lemma 9, and is hence omitted.

Acknowledgments

We would like to thank Dan Kleitmann for a helpful discussion, and in particular for coming up
with the counter-example (Figure 3).

References

[ALM +98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
intractability of approximation problems.JACM, 45(3):501–555, 1998.

[Ang88] D. Angluin. Queries and concept learning.Machine Learning, 2(4):319–342, April
1988.

[AS97] S. Arora and S. Sudan. Improved low degree testing andits applications. InProceedings
of STOC97, pages 485–495, 1997.

[AS98] S. Arora and S. Safra. Probabilistic checkable proofs: A new characterization of NP.
JACM, 45(1):70–122, 1998.

[BBL98] A. Blum, C. Burch, and J. Langford. On learning monotone Boolean functions. In
Proceedings of FOCS98, 1998.

[BCH+95] M. Bellare, D. Coppersmith, J. H̊astad, M. Kiwi, and M. Sudan. Linearity testing in
characteristic two. InProceedings of FOCS95, pages 432–441, 1995.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols.Computational Complexity, 1(1):3–40, 1991.

[BFLS91] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polyloga-
rithmic time. InProceedings of STOC91, pages 21–31, 1991.

26

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell.Efficient probabilistically check-
able proofs and applications to approximation. InProceedings of STOC93, pages
294–304, 1993.

[BGS98] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-approximability –
towards tight results.SIAM Journal on Computing, 27(3):804–915, 1998.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems.JACM, 47:549–595, 1993.

[Bol86] B. Bollobás.Combinatorics. Cambridge University Press, 1986.

[BS94] M. Bellare and M. Sudan. Improved non-approximability results. InProceedings of
STOC94, pages 184–193, 1994.

[DL98] Y. Doddis and E. Lehman. Private Communications, 1998.

[EKK+98] F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers.
In Proceedings of STOC98, pages 259–268, 1998.

[Eve79] S. Even.Graph Algorithms. Computer Science Press, 1979.

[FGL+96] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique
is almost NP-complete.JACM, 43(2):268–292, 1996.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation.JACM, 45(4):653–750, 1998. An extended abstract
appeared in the proceedings of FOCS96.

[GLR+91] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-
testing/correcting for polynomials and for approximate functions. InProceedings
of STOC91, pages 32–42, 1991.

[GR97] O. Goldreich and D. Ron. Property testing in bounded degree graphs. InProceedings
of STOC97, pages 406–415, 1997.

[GR98] O. Goldreich and D. Ron. A sublinear bipartite testerfor bounded degree graphs. In
Proceedings of STOC98, pages 289–298, 1998. To appear inCombinatorica, 1999.

[Hås96] J. H̊astad. Testing of the long code and hardness for clique. InProceedings of STOC96,
pages 11–19, 1996.

[Hås97] J. H̊astad. Getting optimal in-approximability results. InProceedings of STOC97,
pages 1–10, 1997.

[Kiw96] M. Kiwi. Probabilistically Checkable Proofs and the Testing of Hadamard-like Codes.
PhD thesis, MIT, 1996.

[KLV94] M. Kearns, M. Li, and L. Valiant. Learning boolean formulae. JACM, 41(6):1298–
1328, 1994.

27

