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ABSTRACT − We consider the following adversarial situation. Let n, m and t be arbitrary integers, and let

f : {0, 1}n 7→ {0, 1}m be a function. An adversary, knowing the function f , sets t of the n input bits, while

the rest (n− t input bits) are chosen at random (independently and with uniform probability distribution).

The adversary tries to prevent the outcome of f from being uniformly distributed in {0, 1}m.

The question addressed is for what values of n, m and t does the adversary necessarily fail in biasing the

outcome of f : {0, 1}n 7→ {0, 1}m, when being restricted to set t of the input bits of f . We present various

lower and upper bounds on m’s allowing an affirmative answer. These bounds are relatively close for t ≤ n/3

and for t ≥ 2n/3. Our results have applications in the fields of fault-tolerance and cryptography.

1. INTRODUCTION

The bit extraction problem formulated above* can be viewed as a three move game between a user and

an adversary. The game is parametrized by the integers n, m and t; and proceeds as follows. First, the

user picks a function f : {0, 1}n 7→ {0, 1}m. (The function f will be applied to a n-bit string.) Next, the

adversary picks t locations in the input n-bit string and sets the bit values of these locations. The user does

not know which locations and what values were chosen by the adversary. The remaining n − t bits of the

string are set by the outcomes of independent unbiased coin tosses. Finally, the user applies the function f

to the entire string. The user’s objective is to cause the output of the function to be uniformly distributed

in {0, 1}m; while the objective of the adversary is to prevent this. The question is which of the parties (user

or adversary) has a winning strategy.

It is evident that the user has a winning strategy in the following two extreme cases:

1) m = 1 and t ≤ n− 1 (by XORing all the bits).

2) t = 1 and m ≤ n− 1 (by XORing every two adjacent bits).

In both cases m ≤ n − t. On the other hand, the adversary has a winning strategy when m > n − t. Can

* The bit extraction problem was suggested by Brassard and Robert [BR] and by Vazirani [V].
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the user win whenever m ≤ n− t ? We show that the answer is negative. In particular, the adversary has a

winning strategy in the following two cases:

1) When m = 2 and t ≥ ⌊2n/3⌋.

2) When t = 2 and m ≥ n− log2(n+ 1).

Lower and Upper Bounds

Before proceeding any further, let us state the bounds we obtain on the number of extractable bits. Let

n, m and t be as above. Let Bit(n, t) denote the maximal m for which the user has a winning strategy (when

playing against an adversary who fixes t out of the n bits). We now state the lower and upper bounds on

Bit(n, t) and approximate these expressions for t = o(n).

Bit(n, t) ≥ n− log2

t−1
∑

i=0

(

n− 1

i

)

≈ n− t · log2

n

t

Bit(n, t) ≤ n− log2

⌊t/2⌋
∑

i=0

(

n

i

)

≈ n− ⌊
t

2
⌋ · log2

n

t

Relation to Error Correcting Codes

Note the similarity and difference between the “extraction game” and the “error correcting game” hereby

presented. First the user chooses two functions fe : {0, 1}m 7→ {0, 1}n and fd : {0, 1}n 7→ {0, 1}m, a m-bit

string s and applies fe to s. Next, the adversary may alter any t bits of c = fe(s) resulting in a string c′.

Finally, the user applies fd to c′. In the theory of error correcting codes, the objective of the user is to always

retrieve s. Although the two games are different, we show that they have close relationship when (in both

games) the user is restricted to use linear GF (2) transformations. This relationship implies lower bounds on

the number of extractable bits. We show that these lower bounds (obtained by linear transformations) are

close to being optimal, by proving an upper bound on the number of extractable bits using general extraction

functions.

1.1 Fault-Tolerance Application

How to agree on a shared random string

Consider a synchronous communication network consisting of n processors, each having a perfect source

of random bits (i.e. the source’s output is a sequence of independent unbiased coin flips). Suppose that

the processors wish to share a common randomly selected bit string. This can be trivially achieved if one

processor just transmits to all processors the output of his local source. Things become more difficult if

there is a danger that some local sources are faulty and their output is no longer unbiased. Still a trivial

solution exists: each processor can transmit the next k bits output by his local source, and then take the

bit-by-bit exclusive-or of all the transmitted k-bit strings. This protocol yields a shared k-bit string with

uniform probability distributed, as long as one of the local sources is not faulty. However, this solution is

very wasteful. The ratio of the number of extracted bits over the number of transmitted bits is 1
n .

Much more efficient solutions are implied by our results. For example, suppose that it is guaranteed that

at most t of the local sources are faulty. Then using the function presented in Section 2, we can present a
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protocol which is both efficient in terms of rate and robust in the presence of at most t faults. Each processor

randomly chooses and transmits a ⌈log2 n⌉-bit string, and then applies the function to the concatenation of

all the strings, resulting in a (n − t) · ⌈log2 n⌉ bit string. The ratio of extracted/transmitted bits is n−t
n ,

and the resulting bit string is uniformly distributed in {0, 1}(n−t)·log
2

n, as long as at most t local sources

are faulty. This result is optimal in terms of rate versus number of faults, since we get as many unbiased

global bits as the number of unbiased local bits. Our solution holds also in the more general fault model of

simultanous networks [ACGM].

1.2 Cryptographic Application

Renewing a Partially Leaked Key

Suppose that two parties share a secret, randomly selected n-bit key, various parts of which they use

for various purposes. Suppose that at some moment an eavesdropper has succeeded in finding out t of the

bits of the key (but the parties do not know which t bits these are). As this may endanger tasks which rely

only on t bits, the parties wish to have a completely new and secert key. A trivial solution is to let one

party randomly choose a new key and secretly transmit it to the other. This requires randomization as well

as communication resources. Our results allow solutions which cost nothing in terms of randomization and

communication.

A new shared key can be determinstically computed from the old one, by each party, without any

communication between them. The new key is completely secret, as its bits are independent and unbiased

with respect to the eavesdropper who only knows t bits of the old key. It should be stated that the new key

is shorter than the old one. In particular, for “small” t’s, the length of the new key is n− t · ⌈log2 n⌉ (this is

close to optimal).

Other cryptographic applications of the bit extracting problem were studied in [BR].

1.3 Terminlogy

Definition 1: Let Z be a random variable assuming values in the set of m-bit strings. Z is said to be

unbiased if it is uniformly distributed on {0, 1}m (i.e. if for every α ∈ {0, 1}m Pr(Z = α) = 2−m).

Definition 2: Let f : {0, 1}n 7→ {0, 1}m be a function and {x1, x2, . . . , xn} be a set of random variables

assuming values in {0, 1}. The function f is said to be unbiased with respect to T ⊂ {1, 2, ..., n} if the random

variable f(x1x2 · · ·xn) is unbiased, when {xi : i /∈ T } is a set of independent unbiased random variables

and {xi : i ∈ T } is a set of constants. A function f : {0, 1}n 7→ {0, 1}m is said to be t-resilient if for every

T ⊂ {1, 2, ..., n} of cardinality t, the function f is unbiased with respect to T .

The Bit Extraction Problem: Let n and t be integers. What is the maximum m such that there exist a

t-resilient function f : {0, 1}n 7→ {0, 1}m. We denote this number by Bit(n, t).
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1.4 Organization (Summary of the results)

In Section 2, we present an explicit t-resilient function from n-bit strings to (n − t · log2 n)-bit strings,

implying that Bit(n, t) ≥ n − t · log2 n. This is done by reducing the bit extraction problem to a related

problem defined with respect to blocks of bits. The construction is conceptionally simple and is suitable for

applications.

In Section 3, better lower bounds on Bit(n, t) are derived using a relation we establish between the linear

extraction problem and the theory of linear error correcting codes. Of special interest is the XOR-Lemma,

stating that a necessary and sufficient condition for a set of random bits to be independent and unbiased is

that each non-empty exclusive-or of these bits is unbiased.

In Section 4, we demostrate a general upper bound on Bit(n, t) implying that the construction of Section

2 (as well as the lower bounds of Section 3) is reasonably good. Of special interest is the Uniform Projection

Lemma, which provides a lower bound on any set of strings which has a uniform projection on every t

coordinates.

In section 5, we show that 2 bits can be extracted if and only if t ≤ ⌊2n/3⌋− 1. In section 6, we consider

linear schemes for t > n/2. In section 7, we consider the case where the function is symmetric.

In Section 8, we demonstrate a bound on techniques (à la Luby [L]) for converting efficient randomized

algorithms based on k-wise independent choices, to efficient deterministic algorithms.

2. A Simple t-Resilient Function

We reduce the bit extraction problem to the block extraction problem, defined below. The block extraction

problem is identical to the bit extraction problem except that the variables assume bit-strings values, instead

of assuming bit values.

Definition 3: Let f : {0, 1}n·k 7→ {0, 1}m·k be a function, and {y1, y2, . . . , yn} be a set of random variables

assuming values in {0, 1}k. The function f is said to be k-unbiased with respect to T ⊂ {1, 2, ..., n} if the

random variable f(y1y2 · · · yn) is unbiased, when {yi : i /∈ T } is a set of independent unbiased random

variables and {yi : i ∈ T } is a set of constants. (Note that the yi’s are variables assuming values in {0, 1}k.)

A function f : {0, 1}n·k 7→ {0, 1}m·k is said to be (t, k)-resilient if for every T ⊂ {1, 2, ..., n} of cardinality t,

the function f is k-unbiased with respect to T .

The Block Extraction Problem: Let k, n and t be integers. What is the maximum m such that there

exist a (t, k)-resilient function f : {0, 1}n·k 7→ {0, 1}m·k. Let us denote the answer by Blockk(n, t).

Note that k ·Blockk(n, t) is the number of bits which can be extracted by a (t, k)-resilient function. Evidently,

Lemma 1: Let k be an integer. Then

1) k ·Blockk(n, t) ≥ Bit(n · k, t · k).

2) Bit(n · k, t) ≥ k · Blockk(n, t).

The block extraction problem has a direct application to fault-tolerance (see section 1.1). We now show that

it has an optimal solution, when n < 2k. Namely, Blockk(n, t) = n− t (n ≤ 2k − 1).
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Construction: Consider the field GF (2k) and the arithmetic in it. Suppose that n ≤ 2k − 1 and let a1 a2

· · · an be n distinct nonzero elements in this field. Define

ri(y1, y2, ..., yn) =
n

∑

j=1

ai
j · yj , for 1 ≤ i ≤ n− t.

Lemma 2: Fixing any t of the yi’s but allowing the rest to be independent random variables (with uniform

probability distribution over GF (2k)), the ri’s are independent unbiased random variables.

sketch of proof: Consider the equations ri(y1, y2, ..., yn) =
∑n

j=1 a
i
j · yj , 1 ≤ i ≤ n − t. Evaluate the terms

which correspond to variables fixed by the adversary and move these values to the left hand side of the

equations. The right hand side of the equations is a linear system with n− t variables and n− t rows. Note

that the resulting matrix is the transpose of the Vandermonde matrix, which is non-singular. Therefore the

system has a unique solution for every distinct value of its left hand side column. The Lemma follows. QED

Combining Lemma 2 and an elementary counting argument (to get the upper bound), we get

Theorem 1: Let n ≤ 2k − 1. Then Blockk(n, t) = n− t.

Returning to the Bit Extraction Problem, we combine Lemma 1 and Theorem 1 to get

Corollary 1: Bit(n, t) > n − (t+ 1) · log2 n.

3. Linear Extraction Scheme and Linear Error Correcting Codes

In this section we reduce the problem of extracting independent unbiased bits through a linear extrac-

tion scheme to the well studied problem of linear error correction codes. A similar reduction was proven

independently by Brassard and Robert [BR] and by Odlyzko [O].

3.1 Preliminaries

Convention: By a random bit we mean a random variable with arbitrary probability distribution which

assumes values 0 or 1. Throughout the rest of the paper x = x1x2 · · ·xn will denote the concatenation of the

random bits x1, x2, . . . , xn and a = a1a2 · · · an will denote the concatenation of the bit values a1, a2, . . . , an.

We take the liberty of associating n-bit strings with vectors in GF (2n), in the obvious manner.

We say that a set of m random bits {xi}
m
i=1 is unbiased and independently distributed, when for every

a ∈ {0, 1}m, Pr(x = a) =
∏m

i=1 Pr(xi = ai) and Pr(xi = ai) = 1
2 . An equivalent condition is proven below.

XOR-Lemma: A set {xi}
m
i=1 of random bits is unbiased and independently distributed iff the exclusive or

of any non-empty subset of the bits is unbiased.

The only if direction is trivial. The other direction is proved by using the following two lemmas.
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Lemma 3: A set {xi}
m
i=1 of m random bits is unbiased and indepently distributed if and only if

E(f(x)) = 2−m
∑

α∈{0,1}m

f(α)

for all f : {0, 1}m 7→R.

Proof: The only if direction is trivial. For the if direction assume that there is an a ∈ {0, 1}m such that

Pr(x = a) 6= 2−m. Then take as f the singleton function which is 1 at a and 0 elsewhere. This f violates

the condition. QED

Given a subset {xi : i ∈ S} of the varibles we have a natural function ψS : {0, 1}m 7→ {0, 1} which is

the exclusive-or of these variables (i.e. ψS(x) = ⊕i∈Sxi). Redifine this function slightly by making it into

{−1, 1} by replacing 0 by 1, and 1 by −1. If S is the empty set define ψS to be identically 1.

Lemma 4: Let f is an arbitrary function from {0, 1}m to R. Then there are uniquly determined cS ∈R

such that f =
∑

S⊂{1,2,...,m} cSψS .

sketch of proof: Identify the given function space with R2m

, by letting the i-th coordinate correspond to

f(i). One may readily verify that the ψS ’s are 2m mutually orthogonal vectors and hence they span the

space. QED

Proof of the if direction of the XOR-Lemma

By Lemma 3, it suffices to show E(f(x)) = 2−m
∑

α∈{0,1}m f(α) for all f : {0, 1}m 7→R. By the additivity

of the expectation operator and Lemma 4, it suffices to show this for all ψS . By our hypothesis, ψS(x)

is unbiased for every nonempty S and therefore E(ψS(x)) = 0 = 2−m
∑

α∈{0,1}m ψS(α). Also note that

E(ψ∅(x)) = 1 = 2−m
∑

α∈{0,1}m ψ∅(α). The XOR-Lemma follows. QED

3.2 The Reduction

Let us recall the basic definitions of linear codes that we need. Further details can be found in [McWS,

ch. 1].

Definition: Let V ⊂ {0, 1}n be a linear subspace of GF (2)n with cardinality 2m. Then V is a linear code

with information words of length m and code words of length n. The distance of V is the minimum Hamming

distance of two vectors in V . The m-by-n matrix M is a generator matrix of V if the rows of M form a basis

of V .

Discussion: The information word a ∈ {0, 1}m is encoded by the code word aM ∈ V . The distance of the

code equals the minimum Hamming weight of V ’s nonzero vectors. (A code of distance t + 1 can correct

⌊t/2⌋ errors.)

Theorem 2: Consider arithmetic in GF (2) and let M be an m-by-n zero-one matrix. M is a generator

matrix of a linear error corrcting code with distance t+ 1 if and only if f(x) = MxT is t-resilient.

sketch of proof: First, we prove that if the code has distance t+ 1 then the function is t-resilient.

6



By the virtue ot the XOR-Lemma we only need to check that the exclusive-ors are unbiased. An exclusive-

or of some of the bits of f(x) corresponds to the bit aMxT for an appropriate nonzero vector a. Note that

b = aM is the codeword corresponding to the information vector a, and hence has at least t+1 one’s. Then

at least one of the bits in the sum bxT =
∑n

i=1 bixi is truely random and the result is unbiased.

For the converse, suppose that the code has distance at most t. That is, there exist an a such that aM

has at most t ones. Then the adversary can bias the corresponding exclusive-or. QED

3.3 Implications

Theorem 2 imposes both upper and lower bounds on the number of extractible bits in the case of linear

schemes.

Corollary 2: Bit(n, t) ≥ n− log
∑t−1

i=0

(

n−1
i

)

.

This follows by combining Theorem 2 with the Gilbert-Varshamov bound for linear codes [McWS, ch. 1,

p. 34]. This is an existential result. Explicit constructions, which almost achieve this value, are known for

t = Ω(n). In fact, the explicit construcion of section 2 is analogous to the well known Reed-Solomon codes

[McWS, ch. 10].

Corollary 3: Linear t-resilient functions cannot extract more than n− log
∑⌊t/2⌋

i=0

(

n
i

)

bits.

This follows by combining Theorem 2 with the Hamming Bound [McWS, ch. 1, p. 19]. In the next

section, we will show that a similar upper bound holds also for general t-resilient functions.

4. An Upper Bound on the Number of Extractible Bits by a General Scheme

In this section we demonstrate an upper bound on the number of independent unbiased bits extractable

by a general scheme.

4.1 Preliminaries

Definition: Let S ⊂ {0, 1}n be a set of strings and I = (i1, i2, ..., it) be a monotonely increasing sequence

of t integers from {1, 2, ..., n}. For a ∈ {0, 1}t, we denote

SI,a = {x1x2 · · ·xn ∈ S : xij
= aj , 1 ≤ j ≤ t} .

The set S ⊂ {0, 1}n has a uniform projection onto the i1-st, i2-nd,. . ., it-th coordinates if for every a ∈ {0, 1}t,

|SI,a| = |S|
2t .

Let us show first show that sets having this property for every t coordinates, must be of large cardinality.

The Uniform Projection Lemma :
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If S ⊂ {0, 1}n has uniform projection on any t coordinates then |S| ≥
∑⌊ t

2
⌋

i=0

(

n
i

)

.

sketch of proof: Let k = |S|. For convienience change all 1 to −1 and 0 to 1. Now taking the exclusive-or of

two vectors corresponds to coordinatewise multiplication. Let H be the k × n matrix with the elements of

S as rows.

Consider j arbitrary columns of H , when j ≤ t. Let H ′ be the matrix consisting of the corresponding

columns of H . Since the rows of H have uniform projection onto these coordinates, all possible j-tuples

appear as rows of H ′ with the same frequency. Thus, exactly half of the rows of H ′ have an even number of

−1. It follows that the exclusive-or of the columnvectors of H ′ has as many 1’s as −1’s.

Let V be the set of vectors which result by taking the exclusive-or of i distinct columnvectors of H

(i ≤ ⌊ t
2⌋). The vectors in V are distinct and mutually orthogonal when considered as real vectors (since by

the above paragraph the coordinatewise multiplication of any pair of distinct vectors in V has as many 1’s

as −1’s). Therefore, V spans a subset of Rk, and |V | ≤ k follows. Noting that |V | =
∑⌊ t

2
⌋

i=0

(

n
i

)

, the Lemma

follows. QED

Observe that one can do slightly better when t is odd by considering also all columnvectors which are

xor’s of t−1
2 arbitrary vectors and the first columnvector.

In coding theory, the matrix H is called an orthogonal array of strength t. It is likely that the above

Lemma has already been proven.

4.2 The Upper bound

Theorem 3: Bit(n, t) ≤ n− log
∑⌊ t

2
⌋

i=0

(

n
i

)

.

sketch of proof: Let f : {0, 1}n 7→ {0, 1}m be a t-resilient function. One can easily verify that f−1(0, 0 . . . , 0)

is a set which has a uniform projection onto any t coordinates. Applying the Uniform Projection Lemma,

we get
∣

∣f−1(0, 0, . . . , 0)
∣

∣ ≥
∑⌊ t

2
⌋

i=0

(

n
i

)

. On the other hand
∣

∣f−1(0, 0 . . . , 0)
∣

∣ = 2n−m, and the theorem follows.

QED

The proof of Theorem 3 makes use of the fact that a t-resilient function f : {0, 1}n 7→ {0, 1}m yields an

orthogonal arrays of strength t. In fact, f yields 2m such arrays whose rows fill the entire n-dimentional

space. Thus, such a function is a much more complicated object than an orthogonal array.

By Theorem 2, this bound can be reached if perfect linear codes, with n-bit code words and distance

t+ 1, do exist. Perfect codes are quite rare and hence we do not know whether the optimal scheme is linear

in the general case.

5. Tight Bounds for Extracting Two Bits

5.1 Preliminaries
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Recall that by Lemma 4 (section 3), any Boolean function f(x) can be written as a sum of the exclusive-or

functions (that is the functions ψS(x) = ⊕i∈Sxi for S ⊂ {1, 2, . . . , n}). Furthermore, it was implicitly stated

that expressing f as a sum of the ψS(x)’s can be done in a unique way. We now show that when testing

the resiliency of a function it suffices to test the resiliency of the ψS(x)’s with nonzero coefficients in this

expression. Clearly, a ψS(x) is t-resilient if and only if |S| > t. This proves the if direction of the following

proposition.

Proposition: Let f : {0, 1}n 7→ {0, 1} be a non-trivial Boolean function, and let f(x) =
∑

S cSψS(x). The

function f is t-resilient if and only if there is no S ⊂ {1, 2, . . . , n} such that both cS 6= 0 and |S| ≤ t.

Proof: For the only if direction, let S0 denote a set S of minimum cardinality for which cS 6= 0, and

n0 = |S0|. Assume, on the contrary, that n0 ≤ t. Now, suppose that the adversary fixes the value 1 for all

the variables in {xi : i ∈ S0} (and lets the rest be independent unbiased bits). Let A0 denote the set of

all possible outcomes for the n-bit string when the adversary acts so; and let x be a random variable with

uniform probability distribution in A0. Equivalently, Pr(xi = 1) = 1 if i ∈ S0 and Pr(xi = 1) = 1
2 if i /∈ S0.

Let P (n) denote the power set of {1, 2, . . . n}.

E(f(x)) =
∑

α∈A0

2−(n−n0) · f(α)

=
∑

α∈A0

2−(n−n0) ·
∑

S∈P (n)

cSψS(α)

=
∑

S∈P (n)−{S0}

2−(n−n0) ·
∑

α∈A0

cSψS(α)

+ 2−(n−n0) ·
∑

α∈A0

cS0
ψS0

(α)

=
∑

S∈P (n)−{S0}

cS ·E(ψS(x))

+ cS0
· E(ψS0

(x))

= 0 + cS0

6= 0 .

Thus there is a way to fix at most t variables which makes b biased. QED

5.2 The Bounds

Lemma 5: Let n = 3l be a multiple of 3. Let b1(x) = ⊕2l
i=1xi, b2(x) = ⊕3l

i=l+1xi and f(x) = b1(x)b2(x).

Then f is (2l− 1)-resilient.

Proof Note that b1 and b2 satisfy b1 ⊕ b2 =
(

⊕l
i=1xi

)

⊕
(

⊕3l
i=2l+1xi

)

. So if the adversary is allowed to fix at

most 2l − 1 of the n bits, both b1, b2 and their exclusive-or are unbiased. By the XOR-lemma (see section

3), b1 and b2 are two independent random bits.QED

Similarly we get

Lemma 6 Let n = 3l + 2, b1(x) = ⊕2l+1
i=1 xi, b2(x) = ⊕3l+2

i=l+2xi. Then b1(x)b2(x) is 2l-resilient.
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On the other hand

Lemma 7: Let µ ∈ {0, 1}. Then, there exists no 2l-resilient function f : {0, 1}3l+µ 7→ {0, 1}2.

Proof: Assume, on the contrary, that f is 2l-resilient, and interpret f as a function from {1,−1}3l to

{1,−1}2. Let b1(x) denote the first bit of f(x), and b2(x) denote the second bit of f(x). By the XOR-Lemma

(section 3), both b1 and b2 as well as b1 ⊕ b2 must be 2l-resilient. Thus using the Proposition, for these three

Boolean functions the ψS ’s corresponding to nonzero coefficients must have |S| > 2l. We now show that this

condition cannot be met. Let
b1(x) =

∑

S⊂{1,2,...,n}

cSψS(x) and

b2(x) =
∑

T⊂{1,2,...,n}

dTψT (x) .

Then b1(x) ⊕ b2(x) corresponds to

b1(x) · b2(x) =
∑

S,T⊂{1,2,...,n}

cSdTψS(x)ψT (x)

=
∑

S,T⊂{1,2,...,n}

cSdTψS∆T (x)

(where S∆T = S ∪ T − S ∩ T is the symmetric difference). Recall that |S|, |T | ≥ 2l + 1 for all S, T where

cS ·dT 6= 0. Thus, all non-zero coefficients of b1 ·b2 correspond to subsets of cardinality ≤ 2(3l+µ−(2l+1)) ≤

2(l + µ− 1) ≤ 2l. QED

Similarly,

Lemma 8: Let n = 3l+ 2. Then, there exists no (2l + 1)-resilient function f : {0, 1}n 7→ {0, 1}2.

Combining the above four Lemmas, we get the following result conjectured by Vazirani [V].

Theorem 4: There exist a t-resilient function f : {0, 1}n 7→ {0, 1}2 if and only if t < ⌊2n/3⌋.

6. On Extracting Few Bits when t > n/2

In this section we show that k independent unbiased bits can be extracted if the adversary can determine

less than 2k−1 · ⌊ n
2k−1⌋ of the original n ≥ 2k − 1 bits. We also show that this is close to the best possible

performance as far as linear extraction schemes are concerned.

6.1 Possibility Result

Theorem 5: Let k ≤ ⌊log2 n⌋. Then there exist a (⌊ n
2k−1

⌋ · 2k−1 − 1)-resilient scheme extracting k bits out

of n.

sketch of proof: Assume that ⌊ n
2k−1

⌋ = 1. For 1 ≤ i ≤ k, let Ji ⊂ {1, 2, . . . , 2k − 1} be the subset of integers

j such that the i-th least significant bit in the binary expansion of j equals 1. Let bi(x1x2 · · ·xn) = ⊕j∈Ji
xj .

Let f(x) = b1(x)b2(x) · · · bk(x). We will show that the function f : {0, 1}n 7→ {0, 1}k is (2k−1 − 1)-resilient.
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Note that each of the bi, as well as each exclusive or of any non-empty subset of the bi’s, is a random

variable depending on 2k−1 of the xi’s. (In particular, consider the set S and the random variable rS(x) =

⊕i∈Sbi(x). Then rS(x) = ⊕j∈JS
xj , where JS is the bit-by-bit exclusive or of the k-bit strings which

correspond to the binary expansion of the integers in S. Note that |JS | = 2k−1.) For general n, make

⌊ n
2k−1

⌋ copies of the above construction.QED

6.2 Impossibility Result

Theorem 6: Let k ≤ ⌊log2 n⌋. Then there exist no linear ( 2k−1

2k−1 ·n)-resilient extraction scheme for extracting

k bits.

sketch of proof: Suppose that f : {0, 1}n 7→ {0, 1}k is a linear t-resilient function. Note the correspondence

between linear extraction schemes and schemes in which each extracted bit is the exclusive or of some subset

of the original bits. Consider an 2k − 1 by n matrix M in which each row correspond to an exclusive or of a

non-empty subset of the bits of f(x). By the fact f is t-resilient, each row must have at least t+ 1 non-zero

entries. On the other hand, each column contains exactly 2k−1 ones if it corresponds to a variable which

appears in some extracted bit, and contains no ones otherwise. Therefore, we have n ·2k−1 ≥ (2k −1) · (t+1)

and t < 2k−1

2k−1 · n. The Theorem follows.QED

An alterrnative proof of Theorem 6 can be derived by combining Plotkin Bound [McWS, ch. 2, pp. 41-42]

and our Theorem 2.

We conclude by suggesting the following

Conjecture: Let k ≤ ⌊log2 n⌋. Then there exist no general ( 2k−1

2k−1 · n)-resilient extraction scheme for

extracting k bits.

7. On Symmetric Predicates

A Boolean predicate f : {0, 1}n 7→ {0, 1} is called symmetric if for every permutation π : {1, 2, . . . , n} 7→

{1, 2, . . . , n},

f(x1, x2, . . . , xn) = f(xπ(1), xπ(2), . . . , xπ(n)) .

Let w(x) denote the Hamming weight of x. Then for every symmetric predicate f there exists an S ⊂

{1, 2, . . . , n} such that

f(x) =

{

1 if w(x) ∈ S

0 otherwise

Thus, an unbiased symmetric predicate on n Boolean variables correspond to an equal partition of the n-th

row in Pascal’s triangle (i.e. the set S corresponding to the predicate satisfies
∑

i∈S

(

n
i

)

=
∑

i/∈S

(

n
i

)

). Fixing

a variable in a symmetric predicate, corresponds to sliding the partition up one row to the right or left.

We have obtained the following results:

1) The exclusive-or of all n variables and its negation, are the only 2n/3-resilient symmetric predicates.
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2) For sufficiently large n, the exclusive-or of all n variables and its negation, are the only 7n/100-resilient

symmetric predicates.

An interesting open problem is to prove or disprove the following Conjecture: The exclusive-or of all n

variables and its negation, are the only 1-resilient symmetric predicates.

8. On k-wise Independence

In [L], Luby demonstrates how to convert a randomized algorithm that uses pairwise independent choices

into a parallel deterministic algorithm of the same depth. In this section, we consider generalizations of his

technique to the case of k-wise independent choices, and show that polynomiality can be maintained only if

k is a constant.

Convention: Let A be a set. We write a ∈R A to abbreviate “a is picked at random with uniform probability

distribution in A”.

Suppose that in the original polynomial-time algorithm, elements are picked randomly with uniform

distribution in a set E, and that the correctness of the algorithm is only based on the fact that these

choices are pairwise independent. Assume that |E| is polynomial in the size of the input n. By change

of parameters, we can assume that the algorithm makes at most n random choices at each round. Luby’s

(efficient) transformation is based on the construction of a set of sequences S which combines the following

properties.

0) s ∈ S is a n-long sequence of elements in E.

1) A sequence s ∈R S defines a sequence of pairwise independent random variables each uniformly distributed

in E.

2) The set S has a polynomially bounded cardinality.

Once such a set S is constructed, one may substitute the pairwise independent random choices in the

algorithm by the elements of a sequence s ∈R S. Furthermore, instead of picking randomly s ∈R S one can

exhaust all possible s ∈ S, and run them all in parallel.

In [ACGS], a simple construction that satisfies the above conditions was presented, and used in a different

context. This construction easily extends to allow the n elements be k-wise independent**. When k is a

fixed constant, this construction is polynomial in |E| and n. Similar constructions of k-wise independent

elements were used in [L, A, AW, KUW].

A natural question is whether such techniques can be extended, while maintaining polynomiality in |E|

and n, to k’s which are not fixed. More generaly, how large should a set S ⊂ En be so that the elements of

a sequence s ∈R S, are k-wise independent random variables with uniform probability distributed in E.

** Let |E| = p be a prime power, and let a1, a2, . . . , an be n distinct non-zero elements in the field GF (p).

Consider the sequence si(x) =
∑k

j=1 a
j
ixjmodp (1 ≤ i ≤ n). If the xi’s are independent random variables

(and each xi ∈R E), then the si(x)’s are k-wise independent variables each uniformly distributed in E.

Finally note that the set S = {(s1(α), s2(α), . . . , sn(α)) : α ∈ GF (p)k} can be deterministically constructed

in pk · n · k GF (p)-operations.
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Using the Uniform Projection Lemma of Section 4, one can verify that such S must satisfy

|S| ≥

⌊ k
2
⌋

∑

i=0

(

n

i

)

≈ n
k
2 .

Thus, a deterministic simulation of a k(n)-wise independent n-bit sequence cannot be done in poly(n)-time,

when limn→∞ k(n) = ∞.

9. Open Problem

Prove or disprove the following claim: for every n and t there exist a linear t-resilient function from

{0, 1}n to {0, 1}Bit(n,t).
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