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Abstract

Property testing deals with tasks where the goal is to distinguish
between the case that an object (e.g., function or graph) has a pre-
specified property (e.g., the function is linear or the graph is bipartite)
and the case that it differs significantly from any such object. The task
should be performed by observing only a very small part of the object,
in particular by querying the object, and the algorithm is allowed a
small failure probability.

One view of property testing is as a relaxation of learning the object
(obtaining an approximate representation of the object). Thus property
testing algorithms can serve as a preliminary step to learning. That is,
they can be applied in order to select, very efficiently, what hypothesis
class to use for learning. This survey takes the learning-theory point of
view and focuses on results for testing properties of functions that are
of interest to the learning theory community. In particular, we cover
results for testing algebraic properties of functions such as linearity,
testing properties defined by concise representations, such as having a
small DNF representation, and more.
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Introduction

Property testing [82, 128] is the study of the following class of problems.

Given the ability to perform (local) queries concerning a
particular object the problem is to determine whether the
object has a predetermined (global) property or differs
significantly from any object that has the property. In
the latter case we say it is far from (having) the property.
The algorithm is allowed a small probability of failure,
and typically it inspects only a small part of the whole
object.

For example, the object may be a graph and the property is that it is
bipartite, or the object may be a function and the property is that it is
linear. It is usually assumed that the property testing algorithm is given
query access to the object. When the object is a function f the queries
are of the form: “what is f(x)?” while if the object is a graph then
queries may be: “is there an edge between vertices u and v” or: “what
vertex is the ith neighbor of v?”. In order to determine what it means to
be far from the property, we need a distance measure between objects.
In the case of functions it is usually the weight according to the uniform
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1.1 Property Testing as Relaxed Decision 301

distribution of the symmetric difference between the functions, while in
the case of graphs it is usually the number of edge modifications divided
by some upper bound on the number of edges. When dealing with other
objects (e.g., the object may be a set of points and the property may
be that the set of points can be clustered in a certain way) one has to
define both the types of queries allowed and the distance measure.

1.1 Property Testing as Relaxed Decision

Property testing problems are often viewed as a relaxation of deci-
sion problems. Namely, instead of requiring that the algorithm decide
whether the object has the property or does not have the property, the
algorithm is required to decide whether the object has the property
or is far from having the property. Given this view there are several
scenarios in which property testing may be useful.

• If the object is very large, then it is infeasible to examine
all of it and we must design algorithms that examine only a
small part of the object and make an approximate decision
based on what they view.

• Another scenario is when the object is not too large to fully
examine, but the exact decision problem is NP-hard. In such
a case some form of approximate decision is necessary if one
seeks an efficient algorithm and property testing suggest one
such form. We note that in some cases the approximation
essentially coincides with standard notions of approximation
problems (e.g., Max-Cut [82]) while in others it is quite dif-
ferent (e.g., k-Colorability [82]).

• It may be the case that the object is not very large and
there is an efficient (polynomial-time) algorithm for solving
the problem exactly. However, we may be interested in a
very efficient (sublinear-time) algorithm, and are willing to
tolerate the approximation/error it introduces.

• Finally, there are cases in which typical no-instances of the
problem (that is, objects that do not have the property) are
actually relatively far from having the property. In such cases
we may first run the testing algorithm. If it rejects the object
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then we reject it and otherwise we run the exact decision
procedure. Thus, we save time on the typical no-instances.
This is in particular useful if the testing algorithm has one-
sided error so that it never rejects yes-instances (that have
the property).

In all the aforementioned scenarios we are interested in testing algo-
rithms that are much more efficient than the corresponding decision
algorithms, and in particular have complexity that is sublinear in the
size of the object.

1.2 Property Testing and Learning (Estimation)

Here when we say learning we mean outputting a good estimate of the
target object.1 Thus, another view of property testing is as a relaxation
of learning (with queries and under the uniform distribution).2 Namely,
instead of asking that the algorithm output a good estimate of the
function (object), which is assumed to belong to a particular class of
functions F , we only require that the algorithm decide whether the
function belongs to F or is far from any function in F . Given this view, a
natural motivation for property testing is to serve as a preliminary step
before learning (and in particular, agnostic learning (e.g., [107]) where
no assumption is made about the target function but the hypothesis
should belong to a particular class of functions): we can first run the
testing algorithm to decide whether to use a particular class of functions
as our hypothesis class.

Here too we are interested in testing algorithms that are more effi-
cient than the corresponding learning algorithms. As observed in [82],
property testing is no harder than proper learning (where the learning
algorithm is required to output a hypothesis from the same class of
functions as the target function). Namely, if we have a proper learning

1 One may argue that property testing is also a certain form of learning as we learn infor-

mation about the object (i.e., whether it has a certain property or is far from having the
property). However, we have chosen to adopt the notion of learning usually used in the

computational learning theory community.
2 Testing under non-uniform distributions (e.g., [1, 92]) and testing with random examples
(e.g., [105]) have been considered (and are discussed in this survey), but most of the work
in property testing deals with testing under the uniform distributions and with queries.
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algorithm for a class of functions F then we can use it as a subroutine
to test the property: “does the function belong to F” (see Section 2.2
for a formal statement and proof).

Choosing between the two viewpoints. The choice of which of the afore-
mentioned views to take is typically determined by the type of objects
and properties in question. Much of property testing deals with combi-
natorial objects and in particular graphs. For such objects it is usually
more natural to view property testing as a relaxation of exact decision.
Indeed, there are many combinatorial properties for which there are
testing algorithms that are much more efficient than the corresponding
(exact) decision algorithms. On the other hand, when the objects are
functions, then it is usually natural to look at property testing from a
learning theory perspective. In some cases, both viewpoints are appro-
priate. This survey focuses on the latter perspective.

1.3 Property Testing and Hypothesis Testing

The notion of property testing is related to that of hypothesis testing
(see e.g., [108, Chap. 8]) and indeed the distinction between estimation
and testing is well known in the mathematical statistics literature. In
this context, having the tested property (belonging to the correspond-
ing class of objects) is called the null hypothesis, while being ε-far from
the property (where ε is the distance parameter that the algorithm is
given as input) is the alternative hypothesis. There are two major math-
ematical approaches to the study of testing in statistics (see, e.g., [136]
and [113]). In the first, the alternative is taken to approach the null
hypothesis at a certain rate as a function of the number of data points;
when the correct rate is chosen the error probabilities stabilize at val-
ues strictly greater than zero and strictly less than one. In the second
approach, the alternative is held fixed as the number of data points
grows; in this case error probabilities go to zero and large deviation
methods are used to assess the rate at which error probabilities go to
zero. Aspects of both of these approaches can be found in the property
testing literature.

While in many cases the particular problems studied in the property
testing literature are somewhat different from those typically studied
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in the mathematical statistics literature, the work on testing proper-
ties of distributions (which is discussed shortly in Section 6.3) deals
with problems that are similar (or even the same) as those studied in
mathematical statistics.

We also note that there are several works with a mathematical
statistics flavor that are related to property testing and appeared in
the computational learning literature (e.g., [33, 112, 137]).

1.4 Topics and Organization

We start with some preliminaries, which include basic definitions and
notations. The preliminaries also include a precise statement and proof
of the simple but important observation that testing is no harder than
learning.

In Section 3, we consider the first type of properties that were
studied in the context of property testing: algebraic properties. These
include testing whether a function is (multi-)linear and more generally
whether it is a polynomial of bounded degree. This work has implica-
tions to coding theory, and some of the results played an important
role in the design of Probabilistically Check Proof (PCP) systems.

In Section 4, we turn to the study of function class that have a
concise (propositional logic) representation such as singletons, mono-
mials, and small DNF formula. This section includes a general result
that applies to many classes of functions, where the underlying idea is
that testing is performed by implicit learning.

The results in Sections 3 and 4 are in the standard model of testing.
That is, the underlying distribution is uniform and the algorithm may
perform queries to the function. In Section 5, we discuss distribution-
free testing, and testing from random examples alone.

Finally, in Section 6, we give a more brief survey of other results
in property testing. These include testing monotonicity, testing of clus-
tering, testing properties of distributions, and more.
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Preliminaries

2.1 Definitions and Notations

For any positive integer k, let [k] = {1, . . . ,k}. For a string x =
x1, . . . ,xn ∈ {0,1}n, we use |x| to denote the number of indices i such
that xi = 1. We use “·” to denote multiplication (e.g., a · b) whenever
we believe it aids readability.

For two functions f,g : X → R over a finite domain X and a distri-
bution D over X, we let

distD(f,g) def= Prx∈X [f(x) 6= g(x)] (2.1)

denote the distance between the functions according to the underlying
distribution D. Since we mostly deal with the uniform distribution U ,
we use the shorthand dist(f,g) for distU (f,g).

When we use the term “with high probability,” we mean with prob-
ability at least 1 − δ for a small constant δ. When the claim is for
higher success probability (e.g., 1 − poly(1/n), where n is the input
size), then this is stated explicitly. When considering the probability of
a certain event we usually denote explicitly over what the probability
is taken (e.g., Prx∈X [f(x) 6= g(x)]), unless it is clear from the context
(in which case we may write Pr[f(x) 6= g(x)]).
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Let P be a property of functions (from domain X to range R). That
is, P defines a subset of functions, and so we shall use the notation g ∈ P
to mean that function g has the property P. For a function f : X → R

and a distribution D over X, we let

distD(f,P) = min
g∈P

{distD(f,g)}, (2.2)

(where there may be more than one function g that attains the mini-
mum on the right-hand side). If distD(f,P) = ε, then we shall say that
f is at distance ε from (having) P (or has distance ε to P).

What we shall refer to as standard testing, assumes D is the
uniform distribution over the domain, and allows queries, as is defined
precisely next.

Definition 2.1(Standard Testing). A (standard) testing algorithm
for property P (of functions from domain X to range R) is given a
distance parameter ε and query access to an unknown function f :
X → R.

• If f ∈ P then the algorithm should accept with probability
at least 2/3;

• If dist(f,P) > ε then the algorithm should reject with prob-
ability at least 2/3.

We shall be interested in bounding both the query complexity and
the running time of the testing algorithm. In some cases our focus will
be on the query complexity, putting aside the question of time complex-
ity. This can be seen as analogous to the study of sample complexity
bounds in learning theory. We observe that the choice of a success
probability of 2/3 is arbitrary and can clearly be improved to 1 − δ,
for any δ > 0 at a multiplicative cost of log(1/δ) in the complexity of
the algorithm. We say that a testing algorithm has one-sided error if
it accepts every f ∈ P with probability 1. Otherwise, it has two-sided
error .

Variants of standard testing. In the spirit of PAC Learning (see
Section 2.2 for a formal definition), we consider two variations/
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generalizations of Standard Testing. In the Distribution-free test-
ing model with queries there is an unknown underlying distribution
D over X. The testing algorithm is given access to examples x ∈ X

distributed according to D in addition to its query access to f . As in
the standard model, if f ∈ P then the algorithm should accept with
probability1 at least 2/3. The difference is that the algorithm should
reject (with probability at least 2/3) if distD(f,P) > ε. In the model of
testing from random examples, the algorithm is not given query access
to the function f but is only given random examples labeled by f . The
random examples are either distributed according to the uniform distri-
bution, or, more generally, according to some unknown distribution D.

2.2 A Basic Observation on the Relation Between
Learning and Testing

Our starting point is that, roughly speaking, testing is easier than learn-
ing. The result for testing is in the model that corresponds to the
learning result (i.e., with or without queries, and distribution-free vs.
distribution specific). In particular, if the learning model allows queries
and the underlying distribution is uniform, then the corresponding test-
ing model is the standard one from Definition 2.1. We first recall what
a Probably Approximately Correct (PAC ) [134] learning algorithm is,
and in particular what is a proper learning algorithm.

In what follows a representation class is a set of functions together
with a language for describing the functions in the set. In the context
of efficient learning it is assumed that there is an efficient procedure
that, given a string in the language representing a function f , outputs a
circuit for computing f . Here, we also assume that membership in the
representation language is efficiently decidable. Usually the language
is not specified explicitly since it is clear that it is straightforward to
construct such a language and we only refer to the function class (e.g.,
monomials (conjunctions)).

1 An alternative definition would require that the algorithm accept (with high probability)

if distD(f,P) = 0. We adopt the requirement that f ∈ P since the known results are under
this definition.
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Definition 2.2 (PAC Learning (including variants)). A learn-
ing algorithm L for a representation class F using a representation
(hypothesis) class H is given parameters 0 < ε,δ ≤ 1 and access to
points distributed according to a fixed distribution D and labeled by
an unknown function f ∈ F . The algorithm should output a hypoth-
esis h ∈ H such that with probability at least 1 − δ, distD(h,f) ≤ ε,
where the probability is taken over the choice of the sample points and
possibly the internal coin flips of L.

If D is unknown then the algorithm is distribution-free, while if D is
known then it is distribution specific. A special case of interest is when
D is the uniform distribution. The algorithm may also be allowed to
perform queries of the form: “what is f(x)” for any x of its choice,
in which case we refer to the learning model as learning with queries.
Finally, if H = F then the algorithm is a proper learning algorithm.

Note that the learning algorithm works under the promise that the
examples it gets are indeed labeled by a fixed function2 f ∈ F . If the
examples are not labeled by a function f ∈ F then nothing can be
assumed about the output of the algorithm (and it may even halt with-
out an output or not halt).

Proposition 2.1. If a function class F has a proper learning algorithm
L, then F has a property testing algorithm T with sample complexity

mT (n,ε) = mL(n,ε/2) + O(1/ε),

where mL(·, ·) is the sample complexity of L as a function of the input
size n and the error parameter ε when executed with the confidence
parameter δ set to 1/6. If L is also allowed queries then the query
complexity of T is the same as that of L.3 The running time tT (n,ε)
of the testing algorithm satisfies tT (n,ε) = tL(n,ε/2) + O(1/ε)tE(n),

2 This is as opposed to what is known as agnostic learning [107] (or learning in the unrealiz-
able case) where no such assumption is made. In such a case the distance of the output of
the algorithm from f should (with high probability) be at most ε larger than the minimum

distance that any function in H has from f .
3 When working with the standard testing model, that is, under the uniform distributions
and with queries, one usually does not distinguish between sample points, which are viewed
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where tL(·, ·) is the running time of the learning algorithm, and tE(·)
is the maximum over all g ∈ F of the time it takes to evaluate g on a
given input.

We note that a certain claim in the reverse direction (from a form of
weak testing to weak learning) is presented in Proposition 5.3.

Proof. In order to test if f ∈ F or is ε-far from any function in F , we
first run the learning algorithm L with confidence parameter δ = 1/6,
and accuracy parameter ε/2, using random examples labeled by f (and
possibly queries if L is allowed to perform queries). If L does not output
a hypothesis or outputs a hypothesis that is not in F , or L passes the
upper bound on its query complexity or running time, then we reject f .
Otherwise (L outputs a hypothesis h ∈ F), we approximate the distance
between h and f by uniformly and independently drawing an additional
(labeled) sample S = {(xi,f(xi)}m

i=1 of m = Θ(1/ε) points and consider

the empirical error of h on S, that is, ε̂S(h) def= 1
m |{1 ≤ i ≤ m : h(xi) 6=

f(xi)}|. If ε̂S(h) ≤ 3ε/4 then we accept, otherwise we reject.
In case f ∈ F , with probability at least 5/6, L’s output, h, is (ε/2)-

close to f . Conditioned on this event, we next show that by a multiplica-
tive Chernoff bound [53] (see Appendix A), with probability at least
5/6, ε̂S(h) ≤ 3ε/4. This implies that if f ∈ F then with probability at
least 2/3 f is accepted. To verify the bound on ε̂S(h), let χ1, . . . ,χm

be 0/1 random variables, where χi = 1 if and only if h(xi) 6= f(xi)
(recall that xi denotes the ith point in the additional sample S). By the
definition of χi, PrS [χi = 1] = dist(f,h) ≤ ε/2 and ε̂S(h) = 1

m

∑m
i=1 χi.

Since the probability that ε̂S(h) > 3ε/4 increases with dist(f,h), we
may assume without loss of generality that dist(f,h) = ε/2 (rather than
dist(f,h) ≤ ε/2). By Theorem A.1 (setting p = ε/2 and γ = 1/2),

PrS [ε̂S(h) > 3ε/4] = PrS

[
1
m

m∑
i=1

χi > (1 + 1/2)dist(f,h)

]
(2.3)

< exp(−(1/2)2(ε/2)m/3) ≤ 1/6, (2.4)

where the last inequality holds for m ≥ 72/ε.

as uniformly and independently selected queries, and queries that are selected in a different

manner. However, since Proposition 2.1 is stated for more general models, the distinction

is made.
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In case f is ε-far from F , the hypothesis h ∈ F that is output by
L is at least ε-far from f . If we define χ1, . . . ,χm as in the foregoing
discussion, then by Theorem A.1,

PrS [ε̂S(h) ≤ 3ε/4] ≤ PrS

[
1
m

m∑
i=1

χi < (1 − 1/4)dist(f,h)

]
(2.5)

< exp(−(1/4)2εm/2) ≤ 1/3, (2.6)

where the last inequality holds for m ≥ 64/ε. Therefore, with probabi-
lity at least 2/3 over the additional sample S, f is rejected.

Observe that it was crucial that the learning algorithm L be a proper
learning algorithm. If L is not a proper learning algorithm then it is
possible that f is ε-far from F (so that the promise that f ∈ F is
violated) but still L outputs a hypothesis h ∈ H that is ε-close to f .

Thus, our focus is on designing testing algorithms that are strictly
more efficient than the corresponding learning algorithms. We note
that, as opposed to the situation with respect to learning, having a
testing algorithm for a class of functions F does not imply that we
have a testing algorithm for F ′ ⊂ F .



3

Algebraic Properties

In this section, we survey results on testing some algebraic families
(properties) of functions: linear functions and more generally, low-
degree polynomials. These families were first studied in the context of
Program Testing, and played an important role in the design of Proba-
bilistically Checkable Proof (PCP) systems. As we shall see, there is a
similar underlying structure in all proofs. The main results mentioned
in this section are summarized in Table 3.1.

We note that the results described in this section also have an inter-
pretation from the point of view of coding theory. Namely, each of the
properties (function classes) correspond to a code (or family of codes):
The Hadamard code, Reed–Solomon codes, Reed Muller codes, and
Generalized Reed Muller codes. If we view functions as words (e.g., for
the domain {0,1}n, the word is of length 2n), then the test distinguishes
between codewords and words that are ε-far from every codeword. This
is referred to as local testing of codes (see, e.g., [80]).

3.1 Linearity

For the sake of simplicity we consider functions from {0,1}n to {0,1}.
The result extends to functions f : G → H, where G and H are groups.

311
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Table 3.1 Results for testing polynomial function classes over a finite field F . Unless stated

otherwise, all function classes consist of multivariate functions (that is, functions of the form

f : F n → F ). We note that by building on [21] it is possible to obtain a linear dependence
on d in the case of degree-d polynomials and sufficiently large fields [131].

Class of functions Number of queries References

linear functions O(1/ε) [42]

univariate deg-d Polynomials O(d + 1/ε) [128]

deg-d polynomials, |F | ≥ d + 2 O(poly(d)/ε) [128]

deg-d polynomials, |F | = 2 O
`

1
ε

+ d22d
´

[12]

Ω
`

1
ε

+ 2d
´

deg-d polynomials, |F | = ps O(1/ε + `|F |2`+1) [99, 103]

Ω(1/ε + |F |`−1)`
` =

˚
d+1

|F |−|F |/p

ˇ´
s-sparse polynomials Õ((s|F |)4/ε2) [61]

Ω̃(
√

s) (|F | = O(1))

Thus addition is modulo 2, and for x,y ∈ {0,1}n, x + y is the bitwise
sum (XOR) of the two strings, that is, it is the string z ∈ {0,1}n such
that zi = xi + yi.

Definition 3.1 (Linearity). We say that f : {0,1}n → {0,1} is a lin-

ear function if there exist coefficients b1, . . . , bn ∈ {0,1} such that for
x = x1, . . . ,xn ∈ {0,1}n, f(x) =

∑n
i=1 bixi. In other words, there exists

a subset S ⊆ {1, . . . ,n} such that f(x) =
∑

i∈S xi.

Linearity testing is essentially the first property testing problem
studied, though the term “Property Testing” was not yet explicitly
defined at the time. Linearity testing was first studied by Blum, Luby
and Rubinfeld [42] in the context of Program Testing . Namely, they
were interested in designing algorithms (program-testers) that, given
access to a program that is supposed to compute a particular func-
tion f , distinguish between the case that the program computes f cor-
rectly on all inputs, and the case that it errs on at least a certain
fraction ε of the domain elements. The program-tester should be much
simpler than the program itself, and is typically based on calls to the
program and some basic operations on the resulting outputs.

In the case of testing whether a program computes a particular
linear function, the program-tester first distinguishes between the case
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that the program computes some linear function and the case that the
function it computes is far from any linear function. That is, it first
performs property testing of linearity. The starting point of the BLR
linearity test is the following characterization of linear functions, which
is not hard to verify (and some would actually use it as a definition of
linear functions).

Fact 3.1. A function f : {0,1}n → {0,1} is linear if and only if f(x) +
f(y) = f(x + y) for every x,y ∈ {0,1}n.

The BLR test is described next.

Algorithm 3.1 (Linearity Test).

(1) Repeat the following Θ(1/ε) times.

(a) Uniformly and independently select x,y ∈ {0,1}n.

(b) If f(x) + f(y) 6= f(x + y) then output reject (and
exit).

(2) If no iteration caused rejection then output accept.

Before we prove the correctness of the algorithm, we remark on its
complexity: the algorithm performs only O(1/ε) queries. In particu-
lar, its query complexity is independent of n. This is in contrast to
the query complexity of any learning algorithm for the class of linear
(parity) functions, which is Ω(n). This is true simply because every
two linear functions have distance 1/2 between them (under the uni-
form distribution), and a linear function is not uniquely determined by
fewer than n labeled points. We note that the difference in the running
time between testing and learning is less dramatic (linear in n versus
quadratic in n), since the testing algorithm reads all n bits of each
sampled string.

Theorem 3.1. Algorithm 3.1 is a one-sided error testing algorithm for
linearity. Its query complexity is O(1/ε).
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Let L denote the class of linear functions over {0,1}n. By Fact 3.1,
Algorithm 3.1 accepts every function f ∈ L with probability 1. We
turn to proving that if dist(f,L) > ε then the algorithm rejects with
probability at least 2/3. Let εL(f) denote the distance of f to being
linear. Namely, εL(f) def= dist(f,L). We would like to prove that for
every given ε > 0, if ε > εL(f) then the probability that the test rejects
is at least 2/3. This will follow from showing that if the constraint
f(x) + f(y) = f(x + y) is violated for relatively few pairs (x,y), then
f is close to some linear function. In other words (using the terminol-
ogy of [42, 128]), the characterization provided by Fact 3.1 is robust .
To this end we define:

η(f) def= Prx,y[f(x) + f(y) 6= f(x + y)] , (3.1)

where in Equation (3.1) and elsewhere in this subsection, the probabi-
lity is taken over a uniform choice of points in {0,1}n. That is, η(f) is
the probability that a single iteration of the algorithm “finds evidence”
that f is not a linear function. We shall show that η(f) ≥ εL(f)/c for
some constant c ≥ 1 (this can actually be shown for c = 1 but the proof
uses Discrete Fourier analysis [32] while the proof we show builds on
first principles). It directly follows that if εL(f) > ε and the number of
iterations is at least 2c/ε, then the probability that the test rejects is
at least

1 − (1 − η(f))2c/ε > 1 − e−2cη(f)/ε ≥ 1 − e−2 > 2/3 , (3.2)

thus establishing Theorem 3.1.
Somewhat unintuitively, showing that η(f) ≥ εL(f)/c is easier if

εL(f) is not too large. Specifically, it is not hard to prove the following
claim.

Claim 3.2. For every function f , η(f) ≥ 3εL(f)(1 − 2εL(f)). In par-
ticular, if εL(f) ≤ 1

4 then η(f) ≥ 3
2ε(f) (and more generally, if η(f) =

1
2 − γ for γ > 0, then η(f) ≥ 6γεL(f), which gives a weak bound as
η(f) approaches 1/2).

It remains to prove that even when εL(f) is not bounded away (from
above) from 1/2 then still η(f) ≥ εL(f)/c for a constant c. To this
end we define the following majority function: for each fixed choice of
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x ∈ {0,1}n, gf (x) = 0 if Pry[f(x + y) − f(y) = 0] ≥ 1/2, and gf (x) = 1
otherwise. Let

V f
y (x) def= f(x + y) − f(y) = f(y) + f(x + y) (3.3)

be the Vote that y casts on the value of x. By the definition of gf (x)
it is the majority vote taken over all y. Note that if f is linear then
V f

y (x) = f(x) for every y ∈ {0,1}n.
We shall prove two lemmas, stated next.

Lemma 3.3. dist(f,gf ) ≤ 2η(f).

Lemma 3.4. If η(f) ≤ 1
6 then gf is a linear function.

By combining Lemmas 3.3 and 3.4 we get that η(f) ≥ 1
6εL(f). To

see why this is true, observe first that if η(f) > 1
6 , then the inequality

clearly holds because εL(f) ≤ 1. (In fact, since it can be shown that
εL(f) ≤ 1/2 for every f , we actually have that η(f) ≥ 1

3εL(f).) Other-
wise (η(f) ≤ 1

6), since gf is linear and dist(f,gf ) ≤ 2η(f), we have that
εL(f) ≤ dist(f,gf ) ≤ 2η(f), so that η(f) ≥ εL(f)/2, and we are done.

Proof of Lemma 3.3: Let ∆(f,gf ) = {x : gf (x) 6= f(x)} be the set of
points on which f and gf differ. By the definition of gf (x), it is the
majority value of V f

y (x) taken over all y. Hence, for every fixed choice
of x ∈ ∆(f,gf ), we have that Pry[V

f
y (x) 6= f(x)] ≥ 1/2. Therefore,

Prx,y[f(x) 6= V f
y (x)]

≥ Prx[x ∈ ∆(f,gf )] · Pry[f(x) 6= V f
y (x) |x ∈ ∆(f,gf )]

≥ 1
2
Prx[gf (x) 6= f(x)] . (3.4)

Since Prx,y[f(x) 6= V f
y (x)] = η(f), it must hold that Prx[gf (x) 6=

f(x)] ≤ 2η(f).

Proof of Lemma 3.4: In order to prove this lemma, we first prove the
next claim.

Claim 3.5. For every x ∈ {0,1}n it holds that Pry[gf (x) = V f
y (x)] ≥

1 − 2η(f).
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Note that by the definition of gf as the “majority-vote function,”
Pry[gf (x) = V f

y (x)] ≥ 1
2 . Claim 3.5 says that the majority is actually

“stronger” (for small η(f)).

Proof. Fixing x, let p0(x) = Pry[V
f
y (x) = 0], and let p1(x) =

Pry[V
f
y (x) = 1]. We are interested in lower bounding pgf (x)(x),

where, by the definition of gf , pgf (x)(x) = max{p0(x),p1(x)}. Now,

pgf (x)(x) = pgf (x)(x) · (p0(x) + p1(x)) ≥ (p0(x))2 + (p1(x))2 . (3.5)

Since (p0(x))2 + (p1(x))2 = Pry,z[V
f
y (x) = V f

z (x)], in order to lower
bound pgf (x)(x), it suffices to lower bound Pry,z[V

f
y (x) = V f

z (x)], which
is what we do next.

In what follows we shall use the fact that the range of f is {0,1}.

Pry,z[V f
y (x) = V f

z (x)]

= Pry,z[V f
y (x) + V f

z (x) = 0]

= Pry,z[f(y) + f(x + y) + f(z) + f(x + z) = 0]

= Pry,z[f(y) + f(x + z) + f(y + x + z)

+f(z) + f(x + y) + f(z + x + y) = 0]

≥ Pry,z[f(y) + f(x + z) + f(y + x + z) = 0

∧ f(z) + f(x + y) + f(z + x + y) = 0]

= 1 − Pry,z[f(y) + f(x + z) + f(y + x + z) = 1

∨ f(z) + f(x + y) + f(z + x + y) = 1]

≥ 1 −
(
Pry,z[f(y) + f(x + z) + f(y + x + z) = 1]

+ Pry,z[f(z) + f(x + y) + f(z + x + y) = 1]
)

= 1 − 2η(f).

In order to complete the proof of Lemma 3.4, we show that for any
two given points a,b ∈ {0,1}n, gf (a) + gf (b) = gf (a + b). We prove this
by the probabilistic method. Specifically, we show that there exists a
point y for which the following three equalities hold simultaneously:

(1) gf (a) = f(a + y) − f(y) (= V f
y (a)).

(2) gf (b) = f(b + (a + y)) − f(a + y) (= V f
a+y(b)).

(3) gf (a + b) = f(a + b + y) − f(y) (= V f
y (a + b)).
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But in such a case,

gf (a) + gf (b) = f(b + a + y) − f(y) = gf (a + b) , (3.6)

and we are done. To see why there exists such a point y, consider
selecting y uniformly at random. For each of the three equalities, by
Claim 3.5, the probability that the equality does not hold is at most
2η(f). By the union bound, the probability (over a uniform selection
of y) that any one of the three does not hold is at most 6η(f). Since
η(f) < 1/6, this is bounded away from 1, and so the probability that
there exists a point y for which all three equalities hold simultaneously
is greater than 0, implying that there exists at least one such pair.

3.1.1 Self-Correction

One of the nice features of the analysis of the linearity tester (which
we shall use in two different contexts, in Subsection 4.1.1 and in Sec-
tion 5.1) is that it implies that f can be self-corrected (assuming it is
sufficiently close to being linear). That is, for any x of our choice, if we
want to know the value, on x, of the closest linear function (or, in the
coding theory view, we want to know the correct bit in the position
corresponding to x in the closest code-word), then we do the following.
We select, uniformly at random, y1, . . . ,yt and take the majority vote
of V f

y1(x), . . . ,V f
yt(x) (where the choice of t determines the probability

that the majority is correct).

3.1.2 On the Relation Between η(f) and εL(f)

By combining Claim 3.2 with Lemmas 3.3 and 3.4 we get that η(f) ≥
max{3εL(f)(1 − 2εL(f)), 1

6εL(f)}. The analysis of [42] actually showed
that the constant 1

6 can be replaced with 2/9.1 An interesting ques-
tion is what is the true behavior of η(f) as a function of εL(f)? Bel-
lare et al. [32] studied this question and showed several lower bounds,
some of which are tight. One of the interesting phenomenon they
observe is that the lower bound 3εL(f)(1 − 2εL(f)) is tight as long as
εL(f) ≤ 5/16, implying that there is a nonmonotonic behavior (since

1 We note that this holds for every f : G → H, where G and H are any two groups, and not
only for Boolean functions over the Boolean hypercube.
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3x(1 − 2x) increases until x = 1/4 but then decreases between x = 1/4
and x = 5/16). Recent progress was made on understanding the rela-
tion between η(f) and εL(f) in [102].

3.2 Low-Degree Polynomials

Let F be a finite field, and consider first the univariate case, that is,
testing whether a function f : F → F is of the form f(x) =

∑d
i=0 Cf

i xi

for a given degree bound d (where the coefficients Cf
i belong to F ). In

this case, the testing algorithm [128] works by simply trying to inter-
polate the function f on Θ(1/ε) collections of d + 2 uniformly selected
points, and checking whether the resulting functions are all polynomial
of degree at most d. Thus the algorithm essentially works by trying to
learn the function f .2

We now turn to multivariate polynomials.

Definition 3.2 (Multivariate Polynomials). Let F be a finite
field. A function f : Fn → F is a (multivariate) polynomial of degree

(at most) d, if there exist coefficients Cf
α in F for every α ∈ {0, . . . ,d}n

satisfying
∑n

i=1 αi ≤ d, such that f(x) =
∑

α∈{0,...,d}n Cf
α
∏n

i=1 xαi
i .

Let POLYn,d denote the class of all functions f : Fn → F that are
polynomials of total degree at most d (where the degree in each variable
is at most |F | − 1).

Low-degree testing has been studied extensively in the context of PCP
systems [22, 23, 24, 66, 77, 78, 128]. The aforementioned results all
apply to testing polynomials over fields that are larger than the degree-
bound, d (where in some cases the bound is on the total degree, and in
some case it is on the degree in each variable). In particular, if |F | ≥
d + 2, then the dependence on d is known to be polynomial [77, 128].3

2 In fact, a slightly more efficient version of the algorithm would select d + 1 arbitrary
points, find (by interpolating), the unique polynomial gf of degree d that agrees with f

on these points, and then check that gf agrees with f on an additional sample of Θ(1/ε)

uniformly selected points.
3 To be precise, the requirement that |F | ≥ d + 2 is sufficient for prime fields, and otherwise
needs to be slightly modified.
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By combining [128] with [21] it is possible to get complexity that is
only linear in d for sufficiently large fields [131].

Alon et al. [12] studied low-degree testing for the case |F | = 2 and
d ≥ 2. Namely, they considered the case in which the degree-bound
may be (much) larger than the field size, for F = GF (2). They showed
that the number of queries both necessary and sufficient in this case
is exponential in d. Hence, we encounter a very large gap in terms of
the dependence on d between the query complexity when |F | > d and
the query complexity when |F | = 2. In [99, 103] this gap is bridged.
We give more precise details in Subsection 3.2.2, but for now we state
an approximate version of the result for the case that F is a prime
field: there is a testing algorithm whose complexity grows roughly like
|F |2(d+1)/(|F |−1). Thus, for any degree d, as the field size |F | increases,
the exponent 2(d + 1)/(|F | − 1) decreases (from O(d) when |F | = 2 to
O(1) when |F | = d + 3).

Results for testing sparse polynomials (where there is a depen-
dence on the number of terms rather than the degree) were obtained
by Diakonikolas et al. [61] using techniques that are discussed in
Section 4.3. They show that polynomials with at most s terms can
be tested using Õ((s|F |)4/ε2) queries and that Ω̃(

√
s) queries are

necessary for |F | = O(1). They also show that Õ(s4|F |3/ε2) queries
are sufficient for size-s algebraic circuits and computation trees
over F .

The problem of learning polynomials in various learning models
(including using only membership queries, i.e., interpolation), has been
considered in many papers (e.g., [31, 35, 38, 41, 49, 51, 55, 76, 89,
115, 127, 129, 138, 139]). In particular, when allowed membership
queries and equivalence queries (which implies learnability in the PAC
model with membership queries), Beimel et al. [31] show that learn-
ing n-variate polynomials with s terms over GF (p) can be done with
query complexity and running time poly(n,s,p). When the field is large
(possibly even infinite), then the dependence on the field size can be
replaced with a polynomial dependence on the degree d. The running
time was recently improved in the work of Bisht et al. [38].

In the next subsection, we describe a low-degree test for large fields
and in the following subsection we turn to the general case.
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3.2.1 The Case of Large Fields

In this subsection, we describe an algorithm of Rubinfeld and
Sudan [128], where as in [128] we consider the case that F is the prime
field GF (p). The idea of the algorithm is to select a random line in
Fn, defined by two (random) points x,h ∈ Fn, and to verify that the
restriction of f to this line is a (univariate) polynomial of degree at
most d. To be precise, the algorithm does not query all points on the
line, but rather d + 2 evenly spaced points. The algorithm is based
on the following characterization of degree-d polynomials, which was
proved in [77] (improving on what is shown in [128] where the require-
ment was that |F | ≥ 2d + 1).

Theorem 3.6. Let d be an integer and let F be a prime field such that
|F | ≥ d + 2. A function f : Fn → F belongs to POLYn,d if and only if
for all x,h ∈ Fn,

∑d+1
i=0 τif(x + i · h) = 0, where τi = (−1)i+1

(
d+1

i

)
.

We note that if F is not a prime field but rather |F | = ps for some
prime p and integer s > 1, then the requirement on the size of the field
is that |F | ≥ (d + 1)(p/(p − 1)).

Algorithm 3.2 (Low-Degree Test (for |F | ≥ d + 2)).

(1) Repeat the following Θ(1/ε + d2) times.

(a) Uniformly and independently select x,y ∈ Fn.

(b) If
∑d+1

i=0 τif(x + i · y) 6= 0 (where the coefficients τi

are as defined in Theorem 3.6), then output reject

(and exit).

(2) If no iteration caused rejection then output accept.

The query complexity and running time of the algorithm are O(d/ε +
d3). As noted previously, by combining [128] with [21] it is possible to
get complexity that is only linear in d for sufficiently large fields [131].
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Theorem 3.7. Assuming |F | ≥ d + 2, Algorithm 3.2 is a one-
sided error testing algorithm for POLYn,d. Its query complexity is
O(d/ε + d3).

By Theorem 3.6, if f ∈ POLYn,d (and |F | ≥ d + 2), then the test
accepts with probability 1. It remains to prove that if f is ε-far from
any degree-d polynomial, then the test rejects with probability at least
2/3. Here too this follows from proving that the characterization in
Theorem 3.6 is robust.

For any x,y ∈ Fn, let

V f
y (x) def=

d+1∑
i=1

τif(x + i · y) . (3.7)

Recalling that τi = (−1)i+1
(
d+1

i

)
so that τ0 = −1, the condition

∑d+1
i=0 τi

f(x + i · y) = 0 is equivalent to −f(x) + V f
y (x) = 0, that is f(x) =

V f
y (x). Thus, analogously to the analysis of the linearity test, V f

y (x) is
the value that f(x) “should have” so that the condition

∑d+1
i=0 τif(x +

i · y) = 0 holds. In all that follows, probabilities are taken over points
in Fn. Let

η(f) def= Prx,y[f(x) 6= V f
y (x)] (3.8)

denote the probability that the test rejects in a single iteration of the
algorithm. We now define the function gf : Fn → F as follows:

gf (x) def= pluralityy∈F n{V f
y (x)}, (3.9)

where the plurality value is simply the value that appears most often in
the set {V f

y (x)}y∈F n (so that it generalizes the notion of the majority).
For gf as defined in Equation (3.9) (and η(f) as defined in Equa-
tion (3.8)) we have:

Lemma 3.8. For any function f and for η and gf as defined in Equa-
tions (3.8) and (3.9), respectively:

(1) dist(f,gf ) ≤ 2η(f).
(2) If η(f) ≤ 1

2(d+2)2
, then gf is a degree-d polynomial.
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We prove the lemma momentarily, but first show why it follows
that the algorithm rejects any function f that is ε-far from POLYn,d

with probability at least 2/3 (thus establishing Theorem 3.7). Let f

be a function that is ε-far from POLYn,d. If η(f) > 1
2(d+2)2

, then, for
a sufficiently large constant in the Θ(·) notation for the number of
iterations of the algorithm, the algorithm rejects with high probability.
Thus, assume that η(f) ≤ 1

2(d+2)2
. By the second item in Lemma 3.8,

it follows that gf is a degree-d polynomial. Since f is ε-far from any
degree-d polynomial, in particular dist(f,gf ) > ε. By the first item of
Lemma 3.8, we have that η(f) > ε/2. Once again, for a sufficiently
large constant in the Θ(·) notation for the number of iterations of the
algorithm, it rejects with high probability.

The proof of the first item in Lemma 3.8 is essentially the same as
the proof of Lemma 3.3. In order to prove the second item we first prove
the following claim. By the definition of gf as the plurality function over
V f

y (x), for every x we have that gf (x) agrees with V f
y (x) for at least

1/|F | of the choices of y. The claim shows (similarly to Claim 3.5) that
there is actually a much larger agreement, assuming η(f) is sufficiently
small.

Claim 3.9. For every x ∈ Fn we have that Pry[gf (x) = V f
y (x)] ≥ 1 −

2(d + 1)η(f).

Proof. By slightly extending the argument used in the proof of
Claim 3.5, we can get that for every fixed choice of x, Pry[gf (x) =
V f

y (x)] ≥ Pry1,y2 [V
f
y1(x) = V f

y2(x)], and hence we turn to lower bound-
ing Pry1,y2 [V

f
y1(x) = V f

y2(x)].
Observe that if we select, uniformly at random, y1 and y2 in Fn, then

for any choice of 1 ≤ i, j ≤ d + 1 we have that x + i · y1 and x + j · y2

are uniformly distributed in Fn. Therefore, by the definition of η(f) we
have that for each fixed choice of 1 ≤ i, j ≤ d + 1,

Pry1,y2

f(x + i · y1) =
d+1∑
j=1

τjf((x + i · y1) + j · y2)

 ≥ 1 − η(f)

(3.10)
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and

Pry1,y2

[
f(x + j · y2) =

d+1∑
i=1

τif((x + j · y2) + i · y1)

]
≥ 1 − η(f) .

(3.11)
Therefore, with probability at least 1 − 2(d + 1)η(f) over the choice of
y1 and y2, we have that

d+1∑
i=1

τif(x + i · y1) =
d+1∑
i=1

τi ·
d+1∑
j=1

τjf
(
(x + i · y1) + j · y2

)
(3.12)

=
d+1∑
j=1

τj ·
d+1∑
i=1

τif
(
(x + j · y2) + i · y1

)
(3.13)

=
d+1∑
j=1

τjf(x + j · y2). (3.14)

In Equation (3.12) we applied Equation (3.10), in Equation (3.13)
we simply reordered the summands, and to obtain Equation (3.14)
we applied Equation (3.11). Thus, Pry1,y2 [V

f
y1(x) = V f

y2(x)] ≥ 1 − 2(d +
1)η(f), as desired.

Proof of Lemma 3.8: As noted previously, the proof of the first item
in Lemma 3.8 is essentially the same as the proof of Lemma 3.3. In
order to prove the second item we show that if η(f) ≤ 1

2(d+2)2
, then∑d+1

j=0 τjg
f (x + j · y)= 0 for all x,y ∈ Fn. The second item of the lemma

then follows from Theorem 3.6.
Consider any fixed choice of x and y. Observe that if we select,

uniformly at random, two points, r1 and r2 in Fn, then for any choice
of 0 ≤ j ≤ d + 1, the point r1 + j · r2 is uniformly distributed in Fn.
Therefore, by Claim 3.9, for any choice of 0 ≤ j ≤ d + 1,

Prr1,r2

[
gf (x + j · y) = V f

r1+j·r2
(x + j · y)

]
≥ 1 − 2(d + 1)η(f). (3.15)

That is,

Prr1,r2

[
gf (x + j · y) =

d+1∑
i=1

τif((x + j · y) + i · (r1 + j · r2))

]
≥ 1 − 2(d + 1)η(f). (3.16)
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For our fixed choice of x,y ∈ Fn and a uniformly selected r1, r2 ∈ Fn,
we have that x + i · r1 and y + i · r2 are uniformly distributed in Fn

for any 1 ≤ i ≤ d + 1. Therefore, by the definition of η(f) we get that
for every 1 ≤ i ≤ d + 1,

Prr1,r2

d+1∑
j=0

τjf((x + i · r1) + j · (y + i · r2)) = 0

 ≥ 1 − η(f).

(3.17)
Since η(f) ≤ 1

2(d+2)2
, there exists a choice of r1 and r2 such that for

every 0 ≤ j ≤ d + 1,

τjg
f (x + j · y) = τj

d+1∑
i=1

τif
(
(x + j · y) + i · (r1 + j · r2)

)
(3.18)

=
d+1∑
i=1

τiτjf
(
(x + i · r1) + j · (y + i · r2)

)
(3.19)

and for every 1 ≤ i ≤ d + 1,
d+1∑
j=0

τjf
(
(x + i · r1) + j · (y + i · r2)

)
= 0. (3.20)

But this implies that
d+1∑
j=0

τjg
f (x + j · y) =

d+1∑
i=0

τi

d+1∑
j=0

τjf
(
(x + i · r1) + j · (y + i · r2)

)
= 0,

(3.21)
as claimed.

3.2.2 The General Case

Here we follow [103], who generalize the algorithm and the analysis
of [128], described in Subsection 3.2.1, as well as that of [12] (for the
special case of |F | = 2). A similar result, using different techniques, was
obtained by Jutla et al. [99], where they focused on prime fields (the
result in [103] holds also for nonprime fields).

A main building block of the analysis of the general case is the fol-
lowing characterization of degree-d multivariate polynomials over finite
fields.
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Theorem 3.10. Let F = GF (q), where q = ps and p is prime. Let d

be an integer, and let f : Fn → F . The function f is a polynomial of
degree at most d if and only if its restriction to every affine subspace
of dimension ` =

⌈
d+1

q−q/p

⌉
is a polynomial of degree at most d.

Theorem 3.10 generalizes the characterization result of Friedl and
Sudan [77] (a variant of which is stated in Theorem 3.6), which refers
to the case q − q/p ≥ d + 1. That is, the size of the field F is suffi-
ciently larger than the degree d, and the affine subspaces considered
are of dimension ` = 1. As stated in Theorem 3.6, when ` = 1 it suffices
to verify that a certain condition holds for d + 2 points on the line
(one-dimensional affine subspace).

We also note that this value, `, of the dimension of the considered
subspaces, is tight. Namely, there exist polynomials of degree greater
than d whose restrictions to affine subspaces of dimension less than `

are all degree-d polynomials.
The testing algorithm we describe next utilizes the characteriza-

tion in Theorem 3.10 (which is shown to be robust). Specifically, the
algorithm selects random affine subspaces (of dimension ` as defined
in Theorem 3.10), and checks that the restriction of the function f

to each of the selected subspaces is indeed a polynomial of degree at
most d. Such a check is implemented by verifying that various linear
combinations of the values of f on the subspace sum to 0.

Before giving more details, we introduce some notations.

Definition 3.3. For m ≥ 1 and any choice of a point x ∈ Fn and m

linearly independent points y1, . . . ,ym ∈ Fn, let S(x,y1, . . . ,ym) denote
the affine subspace of dimension m that contains all points of the form
x +

∑m
i=1 aiyi, where a1, . . . ,am ∈ F .

Definition 3.4. For a function f : Fn → F , a point x ∈ Fn, and m

linearly independent points y1, . . . ,ym ∈ Fn, we denote by f|(x,y1,...,ym)

the restriction of f to the affine subspace S(x,y1, . . . ,ym). Namely,
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f|(x,y1,...,ym) : Fm → F is defined as follows: for every a ∈ Fm,
f|(x,y1,...,ym)(a) = f(x +

∑m
i=1 aiyi).

With a slight abuse of notation (and for the sake of succinctness),
we shall sometimes use the notation f|S instead of f|(x,y1,...,ym), where
S = S(x,y1, . . . ,ym) is the subspace spanned by the points. In case the
set of points spanning the subspace S is not explicitly stated, then f|S
is determined by some canonical choice of a basis.4

Algorithm 3.3. (Low-Degree Test (for5 |F | = O(d)))

(1) Let ` = `(q,d) =
⌈

d+1
q−q/p

⌉
and repeat the following t =

Θ
(
`q`+1 + 1

εq`

)
times:

(a) Uniformly at random select ` linearly independent
points y1, . . . ,y` ∈ Fn, and a point x ∈ Fn.

(b) If f|(x,y1,...,y`) /∈ POLY`,d then output reject (and
exit).

(2) If no step caused rejection then output accept.

Checking whether f|S /∈ POLY`,d (where S = S(x,y1, . . . ,y`)) can
be done by querying f on all points in the subspace S and veri-
fying that the points obey certain linear constraints. Specifically,
we consider the standard and unique representation of the function
f|S as a polynomial of degree at most q − 1 in each variable. That

is, for each α ∈ {0, . . . , q − 1}`, there is a coefficient C
f|S
α such that

f|S(a) =
∑

α∈{0,...,q−1}` C
f|S
α
∏`

i=1 aαi
i for every a ∈ F `. The test checks

whether C
f|S
α = 0 for every α satisfying

∑`
i=1 αi > d. Each coefficient

Cf|S is a certain linear combination of the points in S. For example,
the coefficient corresponding to the highest degree monomial (that is,

4 Our interest lies in the degree of these functions (represented as polynomials). Since for

any given subspace this degree is invariant with respect to the choice of the basis, the
particular choice of the basis is only a matter of convenience.

5 The test can be applied to any field size, but when |F | is much larger than d, it is possible

to use Algorithm 3.2, which has lower complexity.
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C
f|S
〈q−1,...,q−1〉), equals (−1)`

∑
a∈F ` f|S(a). Hence the total number of

queries performed by the algorithm is O(tq`) = O(`q2`+1 + 1
ε ) and the

running time is at most q` times larger.

Theorem 3.11. Algorithm 3.3 is a one-sided error testing algo-
rithm for POLYn,d. Its query complexity is O(`q2`+1 + 1

ε ), where

` =
⌈

d+1
q−q/p

⌉
.

If f ∈ POLYn,d then clearly f|S ∈ POLY`,d for every affine sub-
space S of dimension ` and hence Algorithm 3.3 accepts with probabil-
ity 1. We therefore turn to the case that dist(f,POLYn,d) > ε. Since the
full analysis is fairly lengthy, we describe only the high level structure
of the proof and the underlying ideas. As in the proofs of Theorems 3.1
and 3.7, we define a function gf (a “corrected” version of f) and show
that: (1) the distance between gf and f is upper bounded by a function
of the probability that the test rejects in a single iteration; (2) if this
probability is not too large then gf belongs to POLYn,d.

Let

η(f) def= Prx,y1,...,y`

[
f|(x,y1,...,y`) /∈ POLY`,d

]
, (3.22)

where the probability is taken over x and y1, . . . ,y` such that y1, . . . ,y`

are linearly independent points in Fn. By the definition of Algo-
rithm 3.3, η(f) is the probability that a single step of the algorithm
causes f to be rejected. That is, it is the probability that the restric-
tion of f to a random affine subspace S = S(x,y1, . . . ,y`) of dimension
` is not a polynomial of degree at most d. As noted in the foregoing
discussion, this is equivalent to the requirement that in the standard
representation of f|S as a polynomial, all coefficients corresponding to
monomials with total degree greater than d are 0.

In particular, by our choice of `, this should be true of the coeffi-
cient of the highest degree monomial, in which all variables have the
highest degree, q − 1 (since `(q − 1) ≥ d + 1). As noted previously, this
coefficient equals (−1)` times the sum of the values of f taken over all
points in the subspace. We denote by V f (x;y1, . . . ,y`) the value that
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f(x) “should have” so that this coefficient equal 0. That is,

V f (x;y1, . . . ,y`)
def= −

∑
v∈F `\{~0}

f

(
x +

∑̀
i=1

viyi

)
. (3.23)

We refer to V f (x;y1, . . . ,y`) as the vote of (y1, . . . ,y`) on the value
assigned to x. Note that for η(f) as defined in Equation (3.22), η(f) ≥
Prx,y1,...,y`

[V f (x;y1, . . . ,y`) 6= f(x)] (where the probability is taken over
y1, . . . ,y` that are linearly independent). This is true since the test
checks that all coefficients Cf

α(x,y1, . . . ,y`) for which
∑`

i=1 αi > d are 0.
We are now ready to define the (self) corrected version of f , denoted

by gf .

gf (x) def= pluralityy1,...,y`F n

{
V f (x;y1, . . . ,y`)

}
. (3.24)

Recall that the plurality value is the value that appears most often
in the set {V f (x;y1, . . . ,y`)}. We note that in the definition of gf the
plurality is taken over all (not necessarily linearly independent) `-tuples
y1, . . . ,y` ∈ Fn.

Lemma 3.12. For any function f and for η(f) and gf as defined in
Equations (3.22) and (3.24), respectively:

(1) dist(f,gf ) ≤ 2η(f).
(2) If η(f) < 1

2(`+1)q`+1 then gf ∈ POLYn,d.

Similarly to the proof of Theorem 3.7, we can show that Lemma 3.12
implies that η(f) ≥ min

{
1

2(`+1)q`+1 , ε/2
}
. This in turn implies the cor-

rectness of a slightly less efficient version of Algorithm 3.3, which
performs t = Θ(`q`+1 + 1/ε) iterations (rather than t = Θ

(
`q`+1 + 1

εq`

)
iterations). To prove that the number of iteration performed by Algo-
rithm 3.3 suffices (from which Theorem 3.11 follows), there is a need
for another technical lemma, which we omit.

The proof of the first item of Lemma 3.12 is essentially the same
as the proof of Lemma 3.3. The proof of the second item is based on
showing that for every x, the value of gf (x), which is the plurality vote
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of V f (x;y1, . . . ,y`), taken over all y1, . . . ,y`, equals the vote of a large
fraction of the `-tuples y1, . . . ,y` (assuming η(f) is sufficiently small).
Namely,

Claim 3.13. For any fixed x ∈ Fn, let

γ(x) def= Pry1,...,y`

[
V f (x;y1, . . . ,y`) = g(x)

]
. (3.25)

Then γ(x) ≥ 1 − 2q`η(f).

Proof Sketch. In order to prove Claim 3.13 it will actually be more
convenient to work with another measure of “correctness” (or “consis-
tency”) of a point x. Specifically, for any fixed x ∈ Fn, let

δ(x) = Pry1,...,y`,z1,...,z`

[
V f (x;y1, . . . ,y`) = V f (x;z1, . . . ,z`)

]
. (3.26)

Similarly to what was shown in the proof of Claim 3.5, γ(x) ≥ δ(x).
Hence it suffices to obtain a lower bound on δ(x). In order to show
that δ(x) is large (and hence γ(x) is large), it will be useful to con-
sider the following auxiliary graph. The definition of this graph was
inspired by the way Shpilka and Wigderson used Cayley graphs in
their work [130]. Each vertex in this graph is labeled by a subset (mul-
tiset) of ` points, {y1, . . . ,y`}, yi ∈ Fn. The neighbors of {y1, . . . ,y`} are
of the form {y2, . . . ,y`+1}. Each vertex corresponds to ` points that
can “vote” on the value of f(x), for any given x and hence we refer
to it as the voting graph. For a fixed point x ∈ Fn, we say that an
edge between {y1, . . . ,y`} and {y2, . . . ,y`+1} is good with respect to x if
V f (x;y1, . . . ,y`) = V f (x;y2, . . . ,y`+1).

For any (random) choice of y1, . . . ,y` and z1, . . . ,z`, and for each
0 ≤ i ≤ `, let vi = {y1, . . . ,yi,zi+1, . . . ,z`}, where we view vi as a vertex
in the voting graph. In particular, v` = {y1, . . . ,y`} and v0 = {z1, . . . ,z`}.
Since y1, . . . ,y`,z1, . . . ,z` are selected uniformly at random, each vi is a
random variable. Consider the path v`, . . . ,v0 between v` and v0.

In what follows we shall use the shorthand V f (x;vi) for the vote
V f (x;y1, . . . ,yi,zi+1, . . . ,z`). Recall that an edge (vi,vi−1) is good if
V f (x;vi) = V f (x;vi−1). We claim that the probability (taken over
the choice of y1, . . . ,y`,z1, . . . ,z`) that an edge (vi,vi−1) on the path
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is not good is at most 2qη(f). By taking a union bound it follows
that the probability that all the edges on the path are good is at
least 1 − 2q`η(f). That is, with probability at least 1 − 2q`η(f),
V f (x;y1, . . . ,y`) = V f (x;y1, . . . ,y`−1,z`) = · · · = V f (x;z1, . . . ,z`), and
the lemma follows. Hence, it remains to show that an edge on the path
is not good with probability at most 2qη(f).

Consider any edge (vi,vi−1). We say that V f (x;vi) is an indepen-
dent vote for x if y1, . . . ,yi,zi+1, . . . ,z` are linearly independent points,
otherwise we say that V f (x;vi) is a dependent vote for x. For a depen-
dent vote V f (x;vi), it can be shown that V f (x;vi) = f(x). There-
fore, if both votes V f (x;vi) and V f (x;vi−1) for x are dependent then
V f (x;vi) = V f (x;vi−1) and the edge is good. If one of the votes is a
dependent vote and the other is an independent vote then the proba-
bility that the edge is not good is the probability that an independent
vote for y differs from f(y), which is η(f).

Finally, if V f (x;vi) and V f (x;vi−1) are both independent votes then
it can be shown that V f (x;vi) − V f (x;vi−1) is the sum, over 2(q − 1)
affine subspaces, S1, . . . ,S2q (defined by x and y1, . . . ,yi,zi, . . . ,z`) of
the largest degree coefficient of f|Sj

. For each subspace the probability
that this coefficient is nonzero is at most η(f), and so, by taking a
union bound, the probability that V f (x;vi) = V f (x;vi−1) is at least
1 − 2qη(f), as claimed.

Showing how Lemma 3.12 follows Claim 3.13 is somewhat technical,
and hence we only provide the high-level idea. Consider any fixed set
of points x,y1, . . . ,y` ∈ Fn such that y1, . . . ,y` are linearly independent.
The goal is to show that gf

|(x,y1,...,y`)
∈ POLY`,d. The second item in

Lemma 3.12 then follows by applying Theorem 3.10. By using a proba-
bilistic argument it can be shown that there exists a choice of a subset of
elements, denoted {zi,j}, for which the following conditions hold. First,
the value of gf on every point w in the subspace S(x,y1, . . . ,y`) equals
the vote on w of a set, Tw, of ` points that are linear combinations of
the zi,j ’s. Next, for each of these sets of points Tw, the restriction of f

to the affine subspace defined by w and Tw, is a polynomial of degree at
most d. That is, all high degree coefficients in each of these restrictions
are 0. The next step is to show that each high degree coefficient in the
restriction of gf to the subspace S(x,y1, . . . ,y`) is a linear combination
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of the high degree coefficients in the abovementioned restrictions of f ,
and is hence 0.

A lower bound. By extending an argument given in [12], the following
lower bound is proved in [103].

Theorem 3.14. Every algorithm for testing POLYn,d with distance
parameter ε must perform Ω

(
max{1

ε , q
`−1}

)
queries when q is prime,

and Ω
(
max{1

ε , q
d`/2e−1}

)
queries otherwise.

Thus, a dependence on qΩ(`) is unavoidable.



4

Basic (Boolean) Function Classes

In this section, we describe and analyze several algorithms for testing
various families of Boolean functions over {0,1}n. For all families, the
query complexity of the algorithms is independent of n. This stands
in contrast to the fact that for these families the number of queries
required for learning (under the uniform distribution) depends on n. In
some cases the results extend to more general domains and/or ranges,
and this is noted when the result is discussed. The main results men-
tioned in this section are summarized in Table 4.1.

4.1 Singletons, Monomials, and Monotone DNF

In this subsection, we describe the results of [125]. We give full details
for the simplest case of testing the class of singleton functions, and
only the high-level ideas for the more complex problems of testing
monomials and monotone DNF. The query complexity of the algo-
rithms for testing singletons and for testing monomials is O(1/ε), and
the query complexity of the algorithm for testing monotone DNF is
Õ(s2/ε), where s is an upper bound on the number of terms in the
DNF formula. In Section 4.3, we shall describe a general result that in

332
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Table 4.1 Results for testing basic Boolean functions over {0,1}n (or, in the case of linear

threshold functions, over {+1,−1}n).

Class of functions Number of queries Reference

singletons and monomials O(1/ε) [125]

s-term monotone DNF Õ(s2/ε) [125]

k-Juntas Õ(k2/ε) [71]

Ω(k) [54]

decision lists Õ(1/ε2) [61]

size-s decision trees, Õ(s4/ε2) [61]

size-s branching programs, Ω(logs/ log logs)

s-term DNF and

size-s Boolean formulae

s-sparse polynomials over GF (2) Õ(s4/ε2) [61]

Ω̃(
√

s)

size-s Boolean circuits Õ(s6/ε2) [61]

functions with Fourier degree ≤ d Õ(26d/ε2) [61]

Ω̃(
√

d)

linear threshold functions poly(1/ε) [117]

particular implies that (general) DNF with s terms are testable using
Õ(s4/ε2) queries.

Definition 4.1 (Singletons, Monomials, and DNF Functions).
A function f : {0,1}n → {0,1} is a singleton function if there exists an
i ∈ [n] such that f(x) = xi for every x ∈ {0,1}n or f(x) = x̄i for every
x ∈ {0,1}n.

We say that f is a monotone k-monomial for 1 ≤ k ≤ n if there exist
k indices i1, . . . , ik ∈ [n] such that f(x) = xi1 ∧ ·· · ∧ xik for every x ∈
{0,1}n. If we allow some of the xij ’s above to be replaced with x̄ij , then
f is a k-monomial. The function f is a monomial if it is a k-monomial
for some 1 ≤ k ≤ n.

A function f is an s-term DNF function if it is a disjunction of at
most s monomials. If all monomials are monotone, then it is a monotone

DNF function.

Singletons, and more generally monomials, can be easily learned
under the uniform distribution. The learning algorithm uniformly
selects a sample of size Θ(logn/ε) and queries the function f on all
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sample strings. It then searches for a monomial that is consistent with
f on the sample. Finding a consistent monomial if such exists can be
done in time linear in the sample size and in n. A simple probabilistic
argument, which is a slight variant of Occam’s Razor [43],1 can be used
to show that a sample of size Θ(logn/ε) is sufficient to ensure that with
high probability any monomial that is consistent with the sample is an
ε-good approximation of f .

There is a large variety of results on learning DNF functions, and
in particular monotone DNF, in several different models. We restrict
our attention to the model most relevant to the result described here,
namely when membership queries are allowed and the underlying dis-
tribution is uniform. The best known algorithm results from combining
the works of Bshouty et al. [50] and Klivans and Servedio [109], and
builds on Jackson’s celebrated Harmonic Sieve algorithm [98]. This
algorithm has query complexity Õ

(
r ·
( log2 n

ε + s2

ε2

))
, where r is the

number of variables appearing in the DNF formula, and s is the num-
ber of terms. However, this algorithm does not output a DNF formula
as its hypothesis. On the other hand, Angluin [20] describes a proper
learning algorithm for monotone DNF formulae that uses membership
queries and works under arbitrary distributions. The query complexity
of her algorithm is Õ(s · n + s/ε). Using the same preprocessing tech-
nique as suggested in [50], if the underlying distribution is uniform,
then the query complexity can be reduced to Õ

( r·log2 n
ε + s ·

(
r + 1

ε

))
.

Recall that the query complexity of the testing algorithm has similar
dependence on s and 1/ε but does not depend on n.

4.1.1 Singletons

We start by describing an algorithm for testing singletons. The testing
algorithm for k-monomials generalizes this algorithm. More precisely,
we describe an algorithm for testing whether a function f is a mono-
tone singleton. In order to test whether f is a singleton we can check

1 Applying the theorem known as Occam’s Razor would give a stronger result in the sense
that the underlying distribution may be arbitrary (that is, not necessarily uniform). This

however comes at a price of a linear, as opposed to logarithmic, dependence of the sam-
ple/query complexity on n.
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whether either f or f̄ pass the monotone singleton test. For the sake of
succinctness, in what follows we refer to monotone singletons simply as
singletons. As we shall see, an interesting feature of the singletons test
is that it applies the linearity test (that was described and analyzed in
Section 3.1) as a subroutine.

When the identity of the function f is clear from the context, we
may use the following notation: F1

def= {x : f(x) = 1}. For x,y ∈ {0,1}n

we shall use x ∧ y to denote the bitwise “AND” of the two strings. That
is, z = x ∧ y satisfies zi = xi ∧ yi for every 1 ≤ i ≤ n.

The following characterization of monotone k-monomials motivates
the tests we describe.

Lemma 4.1. Let f : {0,1}n → {0,1}. The function f is a monotone
k-monomial if and only if the following two conditions hold:

(1) Pr[f(x) = 1] = 1
2k ;

(2) f(x ∧ y) = f(x) ∧ f(y) for all x,y ∈ {0,1}n.

In what follows we shall say that a pair of points x,y ∈ {0,1}n are
violating with respect to f if f(x ∧ y) 6= f(x) ∧ f(y).

Proof. If f is a k-monomial then clearly the conditions hold. We turn to
prove the other direction. We first observe that the two conditions imply
that f(x) = 0 for all |x| < k, where |x| denotes the number of ones in x.
In order to verify this, assume in contradiction that there exists some
x such that |x| < k but f(x) = 1. Now consider any y such that yi = 1
whenever xi = 1. Then x ∧ y = x, and therefore f(x ∧ y) = 1. But by
the second condition, since f(x) = 1, it must also hold that f(y) = 1.
However, since |x| < k, the number of such points y is strictly greater
than 2n−k, contradicting the first condition.

Next let y =
∧

x∈F1
x. Using the second condition in the claim

we get:

f(y) = f

 ∧
x∈F1

x

 =
∧

x∈F1

f(x) = 1. (4.1)
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However, we have just shown that f(x) = 0 for all |x| < k, and thus
|y| ≥ k. Hence, there exist k indices i1, . . . , ik such that yij = 1 for all
1 ≤ j ≤ k. But yij =

∧
x∈F1

xij . Hence, xi1 = · · · = xik = 1 for every x ∈
F1. The first condition now implies that f(x) = xi1 ∧ ·· · ∧ xik for every
x ∈ {0,1}n.

Given Lemma 4.1, a natural candidate for a testing algorithm for
singletons would take a sample of uniformly selected pairs (x,y), and for
each pair verify that it is not violating with respect to f . In addition, the
test would check that Pr[f(x) = 0] is roughly 1/2 (or else any monotone
k-monomial would pass the test). As shown in [125], the correctness of
this testing algorithm can be proved as long as the distance between
f and the closest singleton is bounded away from 1/2. It is an open
question whether this testing algorithm is correct in general.

We next describe a modified version of this algorithm, which con-
sists of two stages. In the first stage, the algorithm tests whether f

belongs to (is close to) a more general class of functions (that con-
tains all singleton functions). In the second stage, it applies a slight
variant of the original test (as described in the previous paragraph).
Specifically, the more general class of functions is the class L of lin-
ear Boolean functions over {0,1}n, which was discussed in Section 3.1.
Clearly, every singleton function f(x) = xi is a linear function. Hence,
if f is a singleton function, then it passes the first stage of the test (the
linearity test) with probability 1. On the other hand, if it is far from
any linear function, then it will be rejected already by the linearity
test. As we shall see, if f is far from every singleton function, but it is
close to some linear function that is not a singleton function (so that it
may pass the linearity test), then we can prove that it will be rejected
in the second stage of the algorithm with high probability.

In order to motivate the modification we introduce in the original
singleton test, we state the following lemma and discuss its implications.

Lemma 4.2. Let S ⊆ [n], and let gS(x) =
∑

i∈S xi (where the sum is
taken modulo 2). If |S| is even then

Prx,y[gS(x ∧ y) = gS(x) ∧ gS(y)] =
1
2

+
1

2|S|+1
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and if |S| is odd then

Prx,y[gS(x ∧ y) = gS(x) ∧ gS(y)] =
1
2

+
1

2|S|
.

Proof. Let s = |S|, and let x,y be two strings such that (i) x has 0 ≤
i ≤ s ones in S, that is, |{` ∈ S : x` = 1}| = i; (ii) x ∧ y has 0 ≤ k ≤ i

ones in S; and (iii) y has a total of j + k ones in S, where 0 ≤ j ≤ s − i.
If gS(x ∧ y) = gS(x) ∧ gS(y), then either (1) i is even and k is even,

or (2) i is odd and j is even. Let Z1 ⊂ {0,1}n × {0,1}n be the subset of
pairs x,y that obey the first constraint, and let Z2 ⊂ {0,1}n × {0,1}n

be the subset of pairs x,y that obey the second constraint. Since the
two subsets are disjoint,

Prx,y[gS(x ∧ y) = gS(x) ∧ gS(y)] = 2−2n(|Z1| + |Z2|) . (4.2)

It remains to compute the sizes of the two sets. Since the coordinates
of x and y outside S do not determine whether the pair x,y belongs to
one of these sets, we have

|Z1| = 2n−s · 2n−s ·

(
s∑

i=0,i even

(
s

i

) i∑
k=0,k even

(
i

k

) s−i∑
j=0

(
s − i

j

))
(4.3)

and

|Z2| = 2n−s · 2n−s ·

(
s∑

i=0,i odd

(
s

i

) i∑
k=0

(
i

k

) s−i∑
j=0,j even

(
s − i

j

))
(4.4)

The right-hand side of Equation (4.3) equals

22n−2s · (22s−2 + 2s−1) = 22n−2 + 22n−s−1 = 22n · (2−2 + 2−(s+1)).
(4.5)

The right-hand side of Equation (4.4) equals 22n · (2−2 + 2−(s+1)) if s

is odd and 22n−2 if s is even. The lemma follows by combining Equa-
tions (4.3) and (4.4) with Equation (4.2).

Hence, if f is a linear function that is not a singleton and is not
the all-0 function, that is f = gS for |S| ≥ 2, then the probability that
a uniformly selected pair x,y is violating with respect to f is at least
1/8. In this case, a sample of 16 such pairs will contain a violating pair
with probability at least 1 − (1 − 1/8)16 ≥ 1 − e−2 > 2/3.
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However, what if f passes the linearity test but is only close to being
a linear function? Let g denote the linear function that is closest to f

and let δ be the distance between them. (Note that g is unique, given
that f is sufficiently close to a linear function). What we would like to
do is to check whether g is a singleton, by selecting a sample of pairs
x,y and checking whether it contains a violating pair with respect to g.
Observe that, since the distance between functions is measured with
respect to the uniform distribution, for a uniformly selected pair (x,y),
with probability at least (1 − δ)2, both f(x) = g(x) and f(y) = g(y).
However, we cannot make a similar claim about f(x ∧ y) and g(x ∧ y),
since x ∧ y is not uniformly distributed. Thus, it is not clear that we can
replace the violation test for g with a violation test for f . In addition
we need to verify that g is not the all-0 function.

The solution is to use a self-corrector for linear functions [42] as
described in Subsection 3.1.1. Namely, given query access to a function
f : {0,1}n → {0,1}, which is strictly closer than 1/4 to some linear
function g, and an input x ∈ {0,1}n, the procedure Self-Correct(f,x)
returns the value of g(x), with probability at least 9/10. The query
complexity of the procedure is constant.

We are now ready to describe the testing algorithm for singletons.

Algorithm 4.1 (Test for Singleton Functions).

(1) Apply the linearity test (Algorithm 3.1) to f with distance
parameter min(1/5, ε). If the test rejects then output reject

(and exit).
(2) If Self-Correct(f,~1) = 0 (where ~1 is the all-1 vector), then

output reject (and exit).
(3) Uniformly and independently select m = 64 pairs of

points x,y.
• For each such pair, let bx = Self-Correct(f,x), by =

Self-Correct(f,y) and bx∧y = Self-Correct(f,x ∧ y).
• Check that bx∧y = bx ∧ by.

(4) If one of the checks fails then output reject. Otherwise output
accept.
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Theorem 4.3. Algorithm 4.1 is a one-sided error testing algorithm for
monotone singletons. The query complexity of the algorithm is O(1/ε).

Proof. Since the linearity testing algorithm has a one-sided error, if f is
a singleton function then it always passes the linearity test. In this case
the self corrector always returns the value of f on every given input
point. In particular, Self-Correct(f,~1) = f(~1) = 1, since every mono-
tone singleton has value 1 on the all-1 vector. Similarly, no violating
pair can be found in Step 3. Hence, Algorithm 4.1 always accepts a
singleton.

Assume, without loss of generality, that ε ≤ 1/5. Consider the case
in which f is ε-far from any singleton. If it is also ε-far from any lin-
ear function, then it will be rejected with probability at least 9/10 in
the first step of the algorithm. Otherwise, there exists a unique linear
function g such that f is ε-close to g. If g is the all-0 function, then f

is rejected with probability at least 9/10 (in Step 2).
Otherwise, g is a linear function of at least 2 variables. By

Lemma 4.2, the probability that a uniformly selected pair x,y is a
violating pair with respect to g is at least 1/8. Given such a pair,
the probability that the self-corrector returns the value of g on all the
three calls (that is, bx = g(x), by = g(y), and bx∧y = g(x ∧ y)), is at
least (1 − 1/10)3 > 7/10. The probability that Algorithm 4.1 obtains a
violating pair with respect to g and all calls to the self-corrector return
the correct value, is greater than 1/16. Therefore, a sample of 64 pairs
will ensure that a violation bx∧y 6= bx ∧ by will be found with proba-
bility at least 9/10. The total probability that f is accepted, despite
being ε-far from any singleton, is hence at most 3 · (1/10) < 1/3.

The query complexity of the algorithm is dominated by the query
complexity of the linearity tester, which is O(1/ε). The second stage
has constant query complexity.

4.1.2 Monomials

The testing algorithm for monomials has a high level structure that
is similar to the algorithm for singletons, and its query complexity
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is O(1/ε) as well. Here we consider testing monotone k-monomials,
where k is given as a parameter to the algorithm. It is possible to
remove the monotonicity assumption as well as the assumption that the
algorithm receives a parameter k, without increasing the complexity of
the algorithm.

Upon receiving the parameters k and ε, the algorithm first checks
what is the relation between ε and 2−k. If ε > 4 · 2−k then the algo-
rithm decides whether to accept or reject solely based on estimating
Pr[f(x) = 1] using a sample of size Θ(1/ε). Let α be this estimate. If α ≤
3ε/8, then the algorithm accepts and if α > 3ε/8, then the algorithm
rejects.

To verify that the algorithm makes a correct decision with high con-
stant probability, consider first the case that f is a k-monomial. In such
a case Pr[f(x) = 1] = 2−k < ε/4. By a multiplicative Chernoff bound
(see Appendix A), the probability that α > 3ε/8 (which causes the
algorithm to reject), is a small constant. On the other hand, every func-
tion f that satisfies Pr[f(x) = 1] ≤ ε/2 is ε-close to every k monomial.
This is true since for any k-monomial g, Pr[f(x) 6= g(x)] ≤ Pr[f(x) =
1] + Pr[g(x) = 1] < ε. Therefore, if f is ε-far from every k monomial,
then Pr[f(x) = 1] > ε/2. In such a case, by a multiplicative Chernoff
bound, the probability that α ≤ 3ε/8 (which causes the algorithm to
accept), is a small constant. Thus the case that ε is large relative to
2−k is straightforward, and we turn to the case that ε is of the same
order, or smaller, than 2−k.

Similarly to the simple case considered in the foregoing discussion,
in the first step of the algorithm a size test is performed. That is, the
algorithm verifies that Pr[f(x) = 1] is close to 2−k, as it should be if f

is a k-monomial. This step requires a sample of size Θ(2k) = O(1/ε).
Assuming f passes the size test, the algorithm performs an affinity test.
This step plays a similar role to that of the linearity test in the singleton
testing algorithm (Algorithm 4.1). That is, on the one hand, every
monotone k-monomial passes this test (with probability 1). On the
other hand, if a function passes this test but is far from any monotone
k-monomial, then the third step (which is described momentarily, and
plays a similar role to Step 3 in Algorithm 4.1), will reject the function
with high probability. We next describe both steps.
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Recall that F1 = {x : f(x) = 1}. The affinity test checks whether
F1 is (close to being) an affine subspace. We next recall the definition
of an affine subspace.

Definition 4.2 (Affine Subspaces). A subset H ⊆ {0,1}n is an
affine subspace of {0,1}n if and only if there exist an x ∈ {0,1}n and a
linear subspace V of {0,1}n such that H = V + x. That is,

H = {y | y = v + x, for some v ∈ V }.

The following is a well-known alternative characterization of affine sub-
spaces, which is a basis for the affinity test.

Fact 4.1. H is an affine subspace if and only if for every y1,y2,y3 ∈ H

we have y1 + y2 + y3 ∈ H.

Note that the above fact also implies that for every y1,y2 ∈ H and
y3 /∈ H we have y1 + y2 + y3 /∈ H. The affinity test selects, uniformly
and independently, m = Θ(1/ε) points a1, . . . ,am ∈ {0,1}n and t = Θ(1)
pairs of points (x1,y1), . . . ,(xt,yt) ∈ F1 × F1. If for some 1 ≤ i ≤ m,
1 ≤ j ≤ t, the equality f(ai + xj + yj) = f(ai) does not hold, then
the test rejects. The analysis of the affinity test shows that passing
this step with sufficiently high probability ensures that f is close to
some function g for which g(x) + g(y) + g(z) = g(x + y + z) for all
x,y,z ∈ G1 = {x|g(x) = 1}. That is, G1 is an affine subspace.

In the last step, which is referred to as the Closure-under-intersection

test, the algorithm selects, uniformly and independently, a constant
number of points x ∈ F1 and Θ(2k) points y ∈ {0,1}n. If for some
pair x,y selected, Self-Correct(f,x ∧ y) 6= Self-Correct(f,y), then the
test rejects. Here Self-Correct is a procedure that given any input z

and oracle access to f , returns with high probability the value g(z),
where g is as described in the previous paragraph.

In both the affinity test and the closure-under-intersection test, we
need to select strings in F1 uniformly. This is simply done by sampling
from {0,1}n and using only x’s for which f(x) = 1. Since in both tests
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the number of strings selected from F1 is a constant, the total number
of queries required is O(2k) = O(1/ε). (If the algorithm does not obtain
sufficiently many strings from F1, then it can give an arbitrary output,
since this event occurs with small constant probability.)

The correctness of the algorithm follows from the next two lemmas
(whose proofs can be found in [125]).

Lemma 4.4. Let f be a function for which |Pr[f(x) = 1] − 2−k| <
2−k−3. If the probability that the affinity test accepts f is greater than
1/10, then there exists a function g : {0,1}n → {0,1} for which the fol-
lowing holds:

(1) dist(f,g) ≤ ε/25.
(2) G1

def= {a : g(a) = 1} is an affine subspace of dimension
n − k.

(3) There exists a procedure Self-Correct that given any input
a ∈ {0,1}n and oracle access to f , asks a constant number of
queries and returns the value g(a) with probability at least
1 − 1/40.

Furthermore, if F1 is an affine subspace then the affinity tests always
accepts, g = f , and Self-Correct(f,a) = f(a) with probability 1 for every
a ∈ {0,1}n.

Lemma 4.5. Let f : {0,1}n → {0,1} be a function for which
|Pr[f(x) = 1] − 2−k| < 2−k−3. Suppose that there exists a function
g : {0,1}n → {0,1} such that:

(1) dist(f,g) ≤ 2−k−3.
(2) G1

def= {x : g(x) = 1} is an affine subspace of dimension n − k.
(3) There exists a procedure Self-Correct that given any input

a ∈ {0,1}n and oracle access to f returns the value g(a) with
probability at least 1 − 1/40.

If g is not a monotone k-monomial, then the probability that the
Closure-Under-Intersection Test rejects is at least 9/10.
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4.1.3 Monotone DNF

In the previous subsection we described an algorithm for testing
whether a function is a (single) monomial. A natural generalization is
to test whether a function is of the form f = T1 ∨ T2 ∨ ·· · ∨ Ts, where
each term Ti is a monomial. Here we consider a restricted case where
all terms are monotone monomials. For the sake of simplicity, from
this point on when we say “term” or “monomial” we mean that it is
monotone.

The basic idea underlying the algorithm is to test whether the
set F1

def= {x : f(x) = 1} can be “approximately covered” by at most s

terms (monomials). To this end, the algorithm finds strings xi ∈ {0,1}n

and uses them to define functions fi that are tested for being monomi-
als. If the original function f is in fact an s-term DNF, then, with high
probability, each such function fi corresponds to one of the terms of f .
In what follows we give a little more of the flavor of the algorithm. For
full details see [125].

Let f be a monotone s-term DNF, and let its terms be T1, . . . ,Ts.
Then, for any x ∈ {0,1}n, we let S(x) ⊆ {1, . . . ,s} denote the subset
of indices of the terms satisfied by x. That is: S(x) def= {i : Ti(x) = 1}.
In particular, if f(x) = 0 then S(x) = ∅. This notion extends to a set
R ⊆ F1, where S(R) def=

⋃
x∈R S(x). We observe that if f is a monotone

s-term DNF, then S(x ∧ y) = S(x) ∩ S(y) for every x,y ∈ {0,1}n.

Definition 4.3 (Single-Term Representatives). Let f be a mono-
tone s-term DNF. We say that x ∈ F1 is a single-term representative for
f if |S(x)| = 1. That is, x satisfies only a single term in f .

Definition 4.4 (Neighbors). Let x ∈ F1. The set of neighbors of x,
denoted by N(x), is defined as follows:

N(x) def= {y | f(y) = 1 and f(x ∧ y) = 1}.

The notion of neighbors extends to a set R ⊆ F1, where N(R) def=⋃
x∈R N(x).
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Note that the above definition of neighbors is very different from
the standard notion (that is, strings at Hamming distance 1), and in
particular depends on the function f .

Consider the case in which x is a single-term representative of f , and
S(x) = {i}. Then, for every neighbor y ∈ N(x), we must have i ∈ S(y)
(or else S(x ∧ y) would be empty, implying that f(x ∧ y) = 0). Notice
that the converse statement holds as well, that is, i ∈ S(y) implies that
x and y are neighbors. Therefore, the set of neighbors of x is exactly
the set of all strings satisfying the term Ti. The goal of the algorithm is
to find at most s such single-term representatives x ∈ {0,1}n, and for
each such x to test that its set of neighbors N(x) satisfies some common
term. It can be shown that if f is in fact a monotone s-term DNF, then
all these tests pass with high probability. On the other hand, if all
the tests pass with high probability, then f is close to some monotone
s-term DNF.

4.2 Juntas

In this subsection, we describe the main result of Fischer et al. [71].
Rather than considering families of functions characterized by their
logical structure as done in [125], the paper [71] considers families of
functions characterized by the number of variables they depend on.

Definition 4.5 (Juntas). A function f : {0,1}n → {0,1} is a k-junta

for an integer k ≤ n if f is a function of at most k variables. Namely,
there exists a set J ⊆ [n], where |J | ≤ k such that f(x) = f(y) for every
x,y ∈ {0,1}n that satisfy xi = yi for each i ∈ J . We say in such a case
that J dominates the function f .

The main result of [71] is stated next.

Theorem 4.6. For every fixed k, the property of being a k-junta is
testable using poly(k)/ε queries.

Fischer et al. [71] establish Theorem 4.6 by describing and analyzing
several algorithms. The algorithms vary in the polynomial dependence
on k (ranging between Õ(k4) to Õ(k2)), and in two properties: whether
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the algorithm is nonadaptive or adaptive (that is, queries may depend
on answers to previous queries), and whether it has one-sided error or
two-sided error. They also prove a lower bound of Ω̃(

√
k), which was

later improved to Ω(k) by Chockler and Gutreund [54], thus establish-
ing that a polynomial dependence on k is necessary. While we focus
here on the domain {0,1}n and on the case that the underlying distri-
bution is uniform, Theorem 4.6 holds for other domains and when the
underlying distribution is a product distribution.

The class of k-juntas can be viewed as generalizing the class of
k-monomials, where the function over the k variables is unrestricted.
Fischer et al. [71] also consider testing whether a function is identical
to a fixed function h up to a permutation of its variables. For any given
function h over k variables, the testing algorithm performs a number of
queries that is polynomial in 1/ε and in the number of variables of h.

Before describing one of the algorithms for testing k-juntas, we
briefly discuss the relation to learning. Knowing that a function
depends on only a small number of variables can be especially use-
ful in the context of learning. For various function classes there exist
algorithms that are attribute efficient (cf. [40, 114, 133]). That is, they
have a polynomial dependence on the number of relevant variables of
the function being learned and only a logarithmic dependence on the
total number of variables. Learning k-juntas under the uniform distri-
bution (but without queries) was studied by Mossel, O’Donnel, and
Servedio [119]. They give an algorithm for this learning problem that
runs in time (nk)ω/(ω+1), where ω < 2.376 is the matrix multiplication
exponent.

Perhaps, the most closely related learning-theory work is given by
Guijarro et al. [90]. In this work, Guijarro et al. [90], consider the
following problem. For a fixed but unknown distribution D over {0,1}n

and an unknown Boolean function f over {0,1}n that is known to be a
k-junta, the algorithm is given access to examples drawn according to
D and query access to f . The goal of the algorithm is to find a subset
J of size at most k that dominates a function f ′ that is ε-close to f .
They describe an algorithm for this problem whose query complexity
is O(k(log(k + 1)/ε + logn)). Their algorithm can be used to test for
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the property of be a k-junta. While the query complexity of the [90]
algorithm has a better dependence on k, it depends on n.

4.2.1 Preliminaries

In order to describe and analyze the testing algorithm, we first intro-
duce some definitions and notations. The domain of the functions we
consider is always {0,1}n and it will be convenient to assume that the
range of the function is {1,−1} = {(−1)0,(−1)1} (rather than {0,1}).

Partial Assignments. For a subset S ⊆ [n] we denote by A(S) the set of
partial assignments to the variables xi, where i ∈ S. Each w ∈ A(S) can
be viewed as a string in {0,1,∗}n, where for every i ∈ S, wi ∈ {0,1},
and for every i /∈ S, wi = ∗. In particular, A([n]) = {0,1}n. For two
disjoint subsets S,S′ ⊂ [n], and for partial assignments w ∈ A(S) and
w′ ∈ A(S′), we let wtw′ denote the partial assignment z ∈ A(S ∪ S′)
defined by: zi = wi, for every i ∈ S, zi = w′

i for every i ∈ S′, and zi =
wi = w′

i = ∗ for every i ∈ [n] \ {S ∪ S′}. In particular, we shall consider
the case S′ = [n] \ S, so that wtw′ ∈ {0,1}n is a complete assignment
(and f(wtw′) is well defined). Finally, for x ∈ {0,1}n and S ⊆ [n], we
let x|S denote the partial assignment w ∈ A(S) defined by wi = xi for
every i ∈ S, and wi = ∗ for every i /∈ S.

For the sake of conciseness, we shall use S as a shorthand for [n] \ S,
whenever it is clear that S ⊆ [n].

Variation. For a function f : {0,1}n → {1,−1} and a subset S ⊂ [n], we
define the variation of f on S, denoted Vrf (S), as the probability, taken
over a uniform choice of w ∈ A(S) and z1,z2 ∈ A(S), that f(wtz1) 6=
f(wtz2). That is2:

Vrf (S) def= Prw∈A(S),z1,z2∈A(S)[f(wtz1) 6= f(wtz2)] . (4.6)

The simple but important observation is that if f does not depend on
any variable xi, where i ∈ S, then Vrf (S) = 0, and otherwise it must
be nonzero (though possibly small). One useful property of variation is

2 We note that in [71] a more general definition is given (for real-valued functions). For the
sake of simplicity we give only the special case of {1,−1}-valued function, and we slightly
modify the definition by removing a factor of 2.
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that it is monotone. Namely, for any two subsets S,T ⊆ [n],

Vrf (S) ≤ Vrf (S ∪ T ). (4.7)

Another property is that it is subadditive, that is, for any two subsets
S,T ⊆ [n],

Vrf (S ∪ T ) ≤ Vrf (S) + Vrf (T ). (4.8)

As we show next, the variation can also be used to bound the dis-
tance that a function has to be a k-junta.

Lemma 4.7. Let f : {0,1}n → {1,−1} and let J ⊂ [n] be such that
|J | ≤ k and Vrf (J) ≤ ε. Then there exists a k-junta g that is dominated
by J and is such that dist(f,g) ≤ ε.

Proof. We define the function g as follows: for each x ∈ {0,1}n let

g(x) def= majorityu∈A(J){f(x|Jtu)} . (4.9)

That is, for each w ∈ A(J), the function g has the same value on all
strings x ∈ {0,1}n = A([n]) such that x|J = w, and this value is simply
the majority value of the function f taken over all strings of this form.

We are interested in showing that Pr[f(x) = g(x)] ≥ 1 − ε. That is,

Prw∈A(J),z∈A(J)

[
f(wtz) = majorityu∈A(J){f(wtu)}

]
≥ 1 − ε.

(4.10)

Similarly to what was shown in the proof of Claim 3.5, this probability
is lower bounded by Prw∈A(J),z1,z2∈A(J)[f(wtz1) = f(wtz2)], which is
simply 1 − Vrf (J) ≥ 1 − ε.

4.2.2 An Algorithm for Testing Juntas

Here we describe an algorithm for testing k-juntas, which has one-
sided error, is non-adaptive, and has query complexity Õ(k4/ε). In [71]
there are actually two algorithms with this complexity. We have chosen
to describe the one on which the more efficient algorithms (men-
tioned previously) are based, and which also plays a role in the results
described in Section 4.3. We assume that k > 1, since 1-juntas are
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simply singletons, for which we already know that there is a testing
algorithm.

Algorithm 4.2 (k-Junta Test).

(1) For r = Θ(k2) select a random partition {S1, . . . ,Sr} of [n]
by assigning each i ∈ [n] to a set Sj with equal probability.

(2) For each j ∈ [r], perform the following dependence test at
most h = 4(log(k + 1) + 4)r/ε = Θ(k2 logk/ε) times:

• Uniformly and independently select w ∈ A(Sj) and
z1,z2 ∈ A(Sj). If f(wtz1) 6= f(wtz2) then declare
that f depends on variables in Sj (and continue to
j + 1).

(3) If the number of subsets Sj that f was found to depend on
is larger than k, then output reject, otherwise output accept.

Theorem 4.8. Algorithm 4.2 is a one-sided error testing algorithm for
k-juntas. Its query complexity is O(k4 logk/ε).

The bound on the query complexity of the algorithm is O(r · h) =
O(k4 logk/ε). The dependence test declares that f depends on a set Sj

only if it has found evidence of such a dependence and the algorithm
rejects only if there are more than k disjoint sets for which such evidence
is found. Therefore, the algorithm never rejects a k-junta. We hence
turn to proving that if f is ε-far from a k-junta then it is rejected with
probability at least 2/3.

Let τ = (log(k + 1) + 4)/h and note that by the definition of h,
τ ≤ ε/(4r) (recall that r is the number of sets in the random partition
selected by the algorithm and h is the number of applications of the
dependence test). Define J = Jτ (f) def= {i ∈ [n] : Vrf ({i}) > τ}. Thus J

consists of all i such that Vrf ({i}) ≤ τ . We shall prove two lemmas:

Lemma 4.9. If Vrf (J) > ε then Algorithm 4.2 rejects with probability
at least 2/3.
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Lemma 4.10. If |J | > k then Algorithm 4.2 rejects with probability
at least 2/3.

By Lemma 4.7, if f is ε-far from any k-junta, then either Vrf (J) > ε

or |J | > k (or both). By Lemmas 4.9 and 4.10 this implies that the
algorithm rejects with probability at least 2/3. Both lemmas rely on
the following claim regarding the dependence test.

Claim 4.11. For any subset Sj , if Vrf (Sj) ≥ τ , then the probability
that Step 2 in Algorithm 4.2 declares that f depends on variables in
Sj is at least 1 − 1/(e4(k + 1)).

Proof. By the definition of the dependence test, the probability that
a single application of the test finds evidence that f depends on Sj is
exactly Vrf (Sj). Since τ = (log(k + 1) + 4)/h, if Vrf (Sj) ≥ τ , the prob-
ability that the test fails to find such evidence in h independent appli-
cations is at most (1 − τ)h < exp(−τh) < e−4/(k + 1), as claimed.

We now prove Lemma 4.10, which is quite simple, and later sketch
the proof of Lemma 4.9, which is more complex.

Proof of Lemma 4.10. First observe that if |J | > k, then the proba-
bility, over the choice of the partition, that there are fewer than k + 1
sets Sj such that Sj ∩ J 6= ∅, is O(k2/r). Since r = ck2, where c is a
constant, for an appropriate choice of c, this probability is at most 1/6.
Assume from this point on that there are at least k + 1 sets Sj such
that Sj ∩ J 6= ∅ (where we later take into account the probability that
this is not the case).

By the monotonicity of the variation (Equation (4.7)) and since
Vrf ({i}) > τ for each i ∈ J , if a set Sj satisfies Sj ∩ J 6= ∅, then
Vrf (Sj) ≥ τ . By Claim 4.11 and the union bound, the probability that
the algorithm finds evidence of dependence for fewer than k + 1 sets
is less than 1/6. Summing this probability with the probability that
there are fewer than k + 1 sets Sj such that Sj ∩ J 6= ∅, the lemma
follows.
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Proof Sketch of Lemma 4.9: By the premise of the lemma, Vrf (J) > ε.
Since the variation is subadditive (Equation (4.8)), for any parti-
tion {S1, . . . ,Sr},

∑r
j=1 Vrf (Sj ∩ J) > ε. Since the subsets in the parti-

tion are equally distributed, we have that for each fixed choice of j,
Exp[Vrf (Sj ∩ J)] > ε/r. The main technical claim (whose proof we
omit) is that with high probability Vrf (Sj ∩ J) is not much smaller
than its expected value. To be precise, for each fixed choice of j, with
probability at least 3/4 (over the random choice of the partition),
Vrf (Sj ∩ J) ≥ ε/(4r). Recall that by the definition of τ (and of h as a
function of r), we have that ε/(4r) ≥ τ .

Using this claim, we now show how Lemma 4.9 follows. Recall
that by monotonicity of the variation, Vrf (Sj) ≥ Vrf (Sj ∩ J). We shall
say that a subset Sj is detectable, if Vrf (Sj) ≥ τ . Thus, the expected
number of detectable subsets is at least (3/4)r. Let α denote the
probability that there are fewer than r/8 detectable subsets. Then
α ≤ 2/7 (as the expected number of detectable subsets is at most
α(r/4) + (1 − α)r). Equivalently, with probability at least 5/7, there
are at least r/8 = Ω(k2) > k + 1 detectable subsets. Conditioned on
this event, by Claim 4.11 (and the union bound), the probability that
the algorithm detects dependence for fewer than J + 1 subsets is at
most 1/e4. Adding this to the probability that there are fewer than
k + 1 detectable sets, the lemma follows.

4.2.3 More Efficient Algorithms

By allowing the algorithm to be adaptive, it is possible to reduce the
query complexity to O(k3 log3(k + 1)/ε), and by allowing the algo-
rithm to have two-sided error, it can be reduced to O(k2 log3(k + 1)/ε)
(without the need for adaptivity). Here we give the high-level ideas for
the more efficient algorithms.

Both algorithms start by partitioning the variables into r = Θ(k2)
disjoint subsets {S1,S2, . . . ,Sr} as done in Algorithm 4.2. The main idea
used in the first improvement is to speed up the detection of subsets
Sj that have non-negligible variation Vrf (Sj), in the following manner
of divide and conquer. Instead of applying the dependence test to each
subset separately, it is applied to blocks, each of which is a union of
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several subsets. If f is not found to depend on a block, then all the
variables in the block are declared to be “variation free.” Otherwise
(some dependence is detected), the algorithm partitions the block into
two equally sized sub-blocks, and continues the search on them.

The two-sided error test also applies the dependence test to blocks
of subsets, only the blocks are chosen differently and in particu-
lar, may overlap. The selection of blocks is done as follows. For s =
Θ(k logr) = Θ(k logk), the algorithm picks s random subsets of coordi-
nates I1 . . . , Is ⊆ [r] of size k independently, each by uniformly selecting
(without repetitions) k elements of [n]. For each 1 ≤ ` ≤ s, block B` is
defined as B` =

⋃
j∈I`

Sj . The dependence test is then applied h times
to each block (where h is as in Algorithm 4.2). For each subset Sj , the
algorithm considers the blocks that contain it. The algorithm declares
that f depends on Sj , if it found that f depends on all blocks that
contain Sj . If there are more than k such subsets, or if f depends on at
least a half of the blocks, the algorithm rejects, otherwise, it accepts.
For further details of the analysis, see [71].

4.3 Testing by Implicit Learning: General DNF, Decision
Trees and More

In this subsection, we describe the results of Diakonikolas et al. [61].
They present a general method for testing whether a function has a
concise representation (e.g., an s-term DNF or an s-node decision tree).
Here we mostly focus on the Boolean case, though the technique in [61]
extends to general domains and ranges. The query complexity is always
polynomial in the size parameter s, and is quadratic in 1/ε. The running
time grows exponentially3 with s.

4.3.1 The Algorithm

The idea. The key observation behind the general algorithm of [61]
is that many classes of functions that have a concise representation are
“well-approximated” by small juntas that belong to the class. That is,

3 In recent work [62] the dependence of the running time on s in the case of s-term polyno-
mials over GF (2) was reduced to polynomial.
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every function in the class is close to some other function in the class
that is a small junta. For example, for any choice of δ, every s-term
DNF is δ-close to an s-term DNF that depends only at most s log(s/δ)
variables. This is true since by removing a term that has more than
log(s/δ) variables, the error incurred is at most δ/s (recall that the
underlying distribution is uniform).

Given this observation, the algorithm works roughly as follows. It
first finds a collection of subsets of variables such that each subset
contains a single variable on which the function depends (in a non-
negligible manner). If the number of such subsets is larger than some
threshold k, then the algorithm rejects. Otherwise, the algorithm cre-
ates a sample of labeled examples, where the examples are points in
{0,1}k, that is, over the variables that the function depends on. It
is important to stress that the algorithm creates this sample without
actually identifying the relevant variables. Finally, the algorithm checks
whether there exists a function of the appropriate form over the small
set of variables that is consistent with the sample. This is the essence
of the idea of “testing by implicit learning.”

Before describing the algorithm in more detail, we give a central
definition, and state the main theorem.

Definition 4.6. Let F be a class of Boolean functions over {0,1}n.
For δ > 0, we say that a subclass F(δ) ⊆ F is a (δ,k(δ))-approximator

for F if the following two conditions hold.

• The subclass F(δ) is closed under permutations of the
variables.

• For every function f ∈ F there is a function f ′ ∈ F(δ) such
that dist(f ′,f) ≤ δ and f ′ is a k(δ)-junta.

Returning to the case that F is the class of s-term DNF functions,
we may take F(δ) to be the subclass of F that consists of s-term DNF
where each term is of size at most log(s/δ), so that k(δ) = s log(s/δ).
Note that k(δ) may be a function of other parameters determining the
function class F .
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We shall use the notation F̂(δ) for the subset of functions in F(δ)
that depend on the variables x1, . . . ,xk(δ). Moreover, we shall view these
functions as taking only k(δ) arguments, that is, being over {0,1}k(δ).

We now state the main theorem of [61] (for the Boolean case).

Theorem 4.12. Let F be a class of Boolean functions over {0,1}n. For
each choice of δ > 0, let F̂(δ) ⊆ F be a (δ,k(δ)) approximator for F .
Suppose that for every ε > 0 there is a δ satisfying

δ ≤ cε2

k2(δ) · log2(k(δ)) · log2 |F̂(δ)| · log log(k(δ)) · log(log |F̂(δ)|/ε)
,

(4.11)
where c is a fixed constant. Let δ∗ be the largest value of δ that satisfies
Equation (4.11). Then there is a two-sided error testing algorithm for
F that makes Õ(k2(δ∗) log2 |F̂(δ∗)|/ε2) queries.

We note that Theorem 4.12 extends to function classes with domain
Ωn and any range, in which case there is a dependence on log |Ω| in
Equation (4.11) and in the query complexity of the algorithm.

All results from [61] that appear in Table 4.1 are obtained by apply-
ing Theorem 4.12. In all these applications, k(δ) grows logarithmically
with 1/δ, and log |F̂(δ)| is at most polynomial in k(δ). This ensures
that Equation (4.11) can be satisfied. The most typical case in the
applications is that for a class F defined by a size parameter s, we have
that k(δ) ≤ poly(s) log(1/δ) and log |F̂(δ)| ≤ poly(s)polylog(1/δ). This
yields δ∗ = Õ(ε2)/poly(s), and so the query complexity of the algorithm
is poly(s)/Θ̃(ε2).

In particular, returning to the case that F is the class of s-term
DNF, we have that k(δ) = s log(s/δ) and |F̂(δ)| ≤ (2s log(s/δ))s log(s/δ).
This implies that δ∗ = Õ(ε2/s4), from which the upper bound of
Õ(s4/ε2) on the query complexity follows. As another example, con-
sider the case that F is the class of all decision lists. Then, for every
δ, if we let F̂(δ) be the subclass of decision lists with length log(1/δ),
and we set k(δ) = log(1/δ), then F̂(δ) is a (δ,k(δ))-approximation for
F . Since |F̂(δ)| ≤ 2 · 4log(1/δ)(log(1/δ))!, we get that δ∗ = Õ(ε2), from
which the bound of Õ(1/ε2) on the query complexity follows.
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The algorithm: The testing algorithm consists of three procedures.
The first procedure, named Identify-Critical-Subsets, is a slight variant
of the two-sided error junta test of [71] (described briefly in Sub-
section 4.2.3). This variant is executed with k = k(δ∗), where δ∗ is
as defined in Theorem 4.12 and with slightly larger constants than
the original [71] algorithm. The main modification is that instead of
returning accept in case of success, the procedure returns the at most
k(δ∗) subsets of variables among S1, . . . ,Sr that the function f was
found to depend on by the test. In case of failure, it outputs reject like
the two-sided error junta test.

The analysis of the two-sided error test can be slightly modified so
as to ensure the following. If f ∈ F , so that it is δ∗-close to a k(δ∗)-
junta f ′ ∈ F(δ∗), then with high probability, Identify-Critical-Subsets

completes successfully and outputs ` ≤ k(δ∗) subsets of variables among
Si1 , . . . ,Si` . On the other hand, it is still true that if f is far from any
k(δ∗)-junta, then Identify-Critical-Subsets outputs reject with high prob-
ability. Moreover, if f is such that with probability at least 1/3 the pro-
cedure completes successfully and outputs ` ≤ k(δ∗) subsets Si1 , . . . ,Si` ,
then these subsets satisfy the following conditions with high probabil-
ity. (1) For τ = Θ(ε/k(δ∗)), each variable xi for which Vrf ({i}) ≥ τ

occurs in one of the subsets Sij , and each of these subsets contains at
most one such variable; (2) The total variance of all other variables is
O(ε/ log |F̂(δ∗)|).

We now turn to the second procedure, which is referred to
as Construct-Sample. This procedure receives as input the subsets
Si1 , . . . ,Si` that were output by Identify-Critical-Subsets. Assume that
indeed the subsets satisfy the aforementioned conditions. For the sake of
the discussion, let us make the stronger assumption that every variable
has either non-negligible variance with respect to f or zero variance.
This implies that each subset Sij output by Identify-Critical-Subsets

contains exactly one relevant variable (and there are no other relevant
variables).

Given a point z ∈ {0,1}n, we would like to find the restriction of z

to its ` ≤ k(δ∗) relevant variables (without actually determining these
variables). Consider a subset Sij output by Identify-Critical-Subsets, and
let xp, for p ∈ Sij , denote the relevant variable in Sij . We would like to



4.3 Testing by Implicit Learning: General DNF, Decision Trees and More 355

know whether zp = 0 or zp = 1. To this end, we partition the variables in
Sij into two subsets: S0

ij
(z) = {q ∈ Sij : zq = 0}, and S1

ij
(z) = {q ∈ Sij :

zq = 1}. Now we run the dependence test (as defined in Algorithm 4.2)
sufficiently many times so as to ensure (with high probability) that we
determine whether p ∈ S0

ij
(z) (so that zp = 0), or p ∈ S1

ij
(z) (so that

zp = 1). The pseudo-code for the procedure appears next.

Procedure Construct-Sample: Let m = Θ(log |F̂(δ∗)|/ε). For t =
1, . . . ,m construct a labeled example (xt,yt), where xt ∈ {0,1}k(δ∗) and
yt ∈ {0,1}, as follows:

(1) Uniformly select zt ∈ {0,1}n, and let yt = f(zt).
(2) For j = 1, . . . , ` do:

(a) For b ∈ {0,1}, let Sb
ij

(zt) = {q ∈ Sij : zt
q = b}.

(b) For g = Θ(k(δ∗) log(m · k(δ∗))/ε) = Θ((k(δ∗)/ε) log
(log |F(δ∗)|k(δ∗)/ε)), run the dependence test on
S0

ij
(zt) and on S1

ij
(zt), g times (each).

(c) If there is evidence that f depends on both S0
ij

(zt)
and S1

ij
(zt), then output reject (and exit). If there is

evidence that f depends on Sb
ij

(zt) for b = 0 or b = 1,
then set xt

j = b. Otherwise set xt
j uniformly at random

to be either 0 or 1.

(3) For j = ` + 1, . . . ,k(δ∗), set xt
j uniformly at random to be

either 0 or 1.

The third procedure, Check-Consistency, is given as input the sample
output by Construct-Sample. If some function f ′ ∈ F̂(δ∗) is consistent
with the sample, then the procedure outputs accept. Otherwise it out-
puts reject.

Proof Sketch of Theorem 4.12: Consider first the case that f ∈ F , so
that it is δ∗-close to some function f ′ ∈ F̂(δ∗), where, f ′ is a k(δ∗)-
junta. The parameter δ∗ is selected to be sufficiently small so that we
can essentially assume that f = f ′. Thus, we shall make this assump-
tion in this proof sketch. For τ = Θ(ε/k(δ∗)), each variable xi such
that Vrf ′({i}) ≥ τ will be referred to as highly relevant . As discussed
previously, with high probability, the procedure Identify-Critical-Subsets
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outputs ` ≤ k(δ∗) subsets Si1 , . . . ,Si` that satisfy the following condi-
tions: (1) each highly relevant variable occurs in one of these subsets;
(2) each of the subsets contains at most one highly relevant variable of
f ′ (in fact, exactly one relevant variable of f ′); (3) all other variables
are “very irrelevant” (have small total variance).

Assuming the subsets output by Identify-Critical-Subsets are as
specified above, consider the construction of xt ∈ {0,1}k(δ∗) for any
1 ≤ t ≤ m. Since each Sij contains exactly one relevant variable, if this
variable is highly relevant, then the following holds with high proba-
bility: one of the executions of the dependence test finds evidence that
either this variable is in S0

ij
(zt) or that it is in S1

ij
(zt), and xt

i is set
accordingly. If the variable is not highly relevant, then either xt

i is set
correctly, as in the highly relevant case, or xt

i is set randomly to 0 or
1. Since the total variation of all nonhighly-relevant variables is small,
with high probability f ′(xt

i) = yt (recall that yt = f(zt)). Thus, with
high probability, we get a random sample of points in {0,1}k(δ∗) that
is labeled by the k(δ∗)-junta f ′. Since f ′ ∈ F̂(δ∗), in such a case the
procedure Check-Consistency will output accept, as required (recall that
F̂(δ∗) is closed under permutations of the variables).

We now turn to the case that f is ε-far from F . If it is also (ε/2)-far
from every k(δ∗)-junta, then Identify-Critical-Subsets detects this with
high probability, and rejects. Otherwise, f is (ε/2)-close to a k(δ∗)-
junta. Note that f can still be rejected by either Identify-Critical-Subsets

or by Create-Sample. If this occurs with high probability, then we are
done. Otherwise, by the properties of these two procedures, with high
probability there would not be any function in F̂(δ∗) that is consistent
with the sample output by Create-Sample (based on the subsets out-
put by Identify-Critical-Subsets). This is true since otherwise it would
imply that there is a function f ′′ ∈ F̂(δ∗) ⊆ F that is (ε/2)-close to a
k(δ∗)-junta f ′ such that dist(f,f ′) ≤ ε/2. But this would contradict the
fact that f is ε-far from F .

4.4 Testing Linear Threshold Functions

One of the function classes most extensively studied in the learn-
ing theory literature is the class of linear threshold functions. A lin-
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ear threshold function (LTF ) is a Boolean function of the form
f(x) = sgn(w1x1 + · · · + wnxn − θ) (where sgn(y) = 1 for y ≥ 0, and
sgn(y) = −1 for y < 0). In recent work, Matulef et al. [117] give an
algorithm for testing LTFs when the domain is {1,−1}n, whose query
complexity is poly(1/ε). This is in contrast to the corresponding learn-
ing problem that requires Ω(n/ε) queries (this can be shown to follow
from, e.g., [111]). The algorithm of Matulef et al. is quite complex, and
here we only mention that to obtain their result they first consider the
case that the domain is <n and the underlying distribution is Gaussian.
They give an algorithm with poly(1/ε) for this case, which they later
modify for the case that the domain is {1,−1}n and the underlying
distribution is uniform.



5

Other Models of Testing

In this section, we consider distribution-free testing (with queries), and
learning from uniformly distributed random examples (i.e., without
queries) under the uniform distribution. The main results discussed in
this section are summarized in Table 5.1.

Table 5.1 Results in other models of testing. As shown in Section 5.1, the first result
generalizes to any function class that has a self-corrector. The result for uniform examples

extends to size-s decision trees over [0,1]d and certain neural networks over [0,1]d but the

results are weaker.

Model Function class Queries/Examples Reference

dist-free deg-d polynomials same as standard testing [95]

|F | = Ω(d)

dist-free monotone O((2 log |Σ|)n/ε) [95]

f : Σn → R exp(Ω(n)), |Σ| = |R| = 2

dist-free monomials, Ω((n/ logn)1/5) [79]

decision-lists and
linear thresh. functions

examples s-interval functions O(
√

s/ε3/2) [105]

(uniform) (rej. boundary s/ε)

358
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5.1 Distribution-Free Testing

The notion of distribution-free testing (with or without queries) was
introduced in [82]. However, in that paper it was only observed (as
shown in Proposition 2.1) that distribution-free (proper) learning
implies distribution-free testing. Other than that, in [82], there were
only negative results about distribution-free testing of graph proper-
ties, which have very efficient standard testing algorithms (that is, that
work under the uniform distribution).

The first positive results for distribution-free testing (with queries)
were given by Halevy and Kushilevitz [92, 95]. They describe a
distribution-free testing algorithm for degree-d multivariate polynomi-
als (over large fields) with query complexity linear in 1/ε and poly-
nomial in d (like the standard testing algorithm of [128]), and a
distribution-free monotonicity testing algorithm for functions f : Σn →
R with query complexity O((2 log |Σ|)n/ε). As we shall discuss later
in this subsection, the first result is actually more general, and gives
certain sufficient conditions for obtaining distribution-free testing algo-
rithms from standard testing algorithms.

As for the second result for monotonicity, the complexity of the
algorithm has exponential dependence on the dimension n of the
input. This is in contrast to standard testing algorithms [63, 81],
where the dependence on n is linear (to be precise, the complexity is
O(n log |Σ| log |R|/ε), where |R| is the effective size of the range of the
function, that is, the number of distinct values of the function). In a fur-
ther investigation of distribution-free testing of monotonicity [94, 95],
Halevy and Kushilevitz showed that the exponential dependence on n

is unavoidable even in the case of Boolean functions over the Boolean
hypercube (that is, |Σ| = |R| = 2).

Motivated by positive results for standard testing of several classes
of Boolean functions (as described in Section 4) Glasner and Serve-
dio [79] asked whether these results can be extended to the distribution-
free model of testing. Specifically, they consider monotone and general
monomials (conjunction), decisions lists, and linear threshold functions.
They prove that for these classes, in contrast to standard testing, where
the query complexity does not depend on n, every distribution-free
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testing algorithm must make Ω((n/ logn)1/5) queries (for constant ε).
While there is still a gap between this lower bound and the upper
bound implied by learning these classes, a strong dependence on n is
unavoidable in the distribution-free case.

Finally, we note that Halevy and Kushilevitz [93] also study
distribution-free testing of graph properties in sparse graphs, and give
an algorithm for distribution-free testing of connectivity, with similar
complexity to the standard testing algorithm for this property.

We next describe the general result for obtaining distribution-free
testing algorithms from standard testing algorithms when the function
class has a self-corrector. The algorithm for distribution-free testing of
monotonicity is briefly discussed in Section 6.1 (as part of a discussion
on results for testing monotonicity). Since the lower bound construc-
tions are somewhat complex, we do not include them in this survey and
refer the interested reader to the respective papers mentioned earlier.

5.1.1 Distribution-free Testing of Properties with
Self-correctors

Halevy and Kushilevitz introduce the notion of a property self corrector ,
which generalizes the notion of a self-corrector, introduced by Blum
et al. [42] (and which was already mentioned earlier in this survey, e.g.,
in Subsection 3.1.1).

Definition 5.1. A γ-self-corrector for a class of functions F is a prob-
abilistic oracle machine M , which is given oracle access to an arbitrary
function f : X → R and satisfies the following conditions (where Mf

denotes the execution of M when given oracle access to f):

• If f ∈ F then Pr[Mf (x) = f(x)] = 1 for every x ∈ X.
• If there exists a function g ∈ F such that dist(f,g) ≤ γ, then

Pr[Mf (x) = g(x)] ≥ 2/3 for every x ∈ X.

In this definition, the distance (i.e., the measure dist(·, ·)) is defined
with respect to the uniform distribution. However, it will be useful for
distribution-free testing (when the distance is measured with respect
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to some fixed but unknown distribution). Observe that the second con-
dition in Definition 5.1 implies that either g is unique, or, if there is
more than one function in F that is ε-close to f , then Mf is consistent
with one such function (on at least 2/3 of the inputs x).

Theorem 5.1. Let F be a class of functions that has a standard test-
ing algorithm T and a γ-self-corrector M . Let QT (·) be the query com-
plexity of T (as a function of the distance parameter ε) and let QM be
the query complexity of M (that is, the number of queries required in
order to determine Mf (x)). Then there exists a distribution-free testing
algorithm for F with query complexity O(QT (min{ε,γ}) + QM/ε).

We now describe the distribution-free testing algorithm referred to in
Theorem 5.1. We assume that the distance parameter ε is smaller than
γ (or else we set ε to γ).

Algorithm 5.1 (Distribution-free Test Based on Self-
correction).

(1) Run the standard testing algorithm T on f , 24 (independent)
times with the distance parameter ε. If T outputs reject in
at least half of these executions then halt and output reject.

(2) Repeat 2/ε times:

(a) Sample a point x ∈ X according to the underlying
distribution D.

(b) Repeat twice: Compute Mf (x) and query f(x). If
Mf (x) 6= f(x) then output reject (and exit).

(3) If no iteration caused rejection then output accept.

Proof of Theorem 5.1: Clearly the query complexity of Algorithm 5.1
is as stated in Theorem 5.1. Hence we turn to proving its correctness.
Consider first the case that f ∈ F . In such a case the standard testing
algorithm T should accept with probability at least 2/3, and the prob-
ability that it rejects in at least half of its 24 independent executions
is less than 1/3. Assume that such an event did not occur. By the first
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condition in Definition 5.1, for every x ∈ X, we have that Mf (x) = f(x)
with probability 1. Hence, the second step of the algorithm never causes
rejection. It follows that the algorithm accepts with probability at least
2/3. (Note that if T has one-sided error then so does Algorithm 5.1.)

In what follows, in order to distinguish between the case that dis-
tance is measured with respect to the uniform distribution, and the
case that it is measured with respect to the underlying distribution D,
we shall use the terms (ε,U)-close (or far) and (ε,D)-close (or far),
respectively. Assume now that f is (ε,D)-far from F . If f is also (ε,U)-
far from F then it is rejected by T with probability at least 2/3, and
is therefore rejected by the algorithm in its first step with probability
at least 2/3. Hence assume that f is (ε,U)-close to F .

In such a case, by the second condition in Definition 5.1, for every
x ∈ X, Pr[Mf (x) = g(x)] ≥ 2/3, where g is a fixed function in F that is
(γ,U)-close to f and the probability is taken over the internal coin flips
of M (recall that ε ≤ γ so such a function g exists). In particular, for
any point x such that f(x) 6= g(x) we have that Pr[Mf (x) 6= f(x)] ≥
2/3. Thus, if in one of the (2/ε) iterations of the second step of the
algorithm we obtain such a point x, then the algorithm rejects with
probability at least 1 − (1/3)2 = 8/9 (since it computes Mf (x) twice).
But since f is (ε,D)-far from F , for every function h ∈ F , we have that
Prx∼D[f(x) 6= h(x)] > ε, and in particular this is true for g. Hence the
probability that the algorithm does not obtain any point x for which
f(x) 6= g(x) is at most (1 − ε)2/ε < exp(−2) < 1/6. It follows that the
algorithm rejects with probability at least 1 − (1/9 + 1/6) > 2/3, as
required.

In particular, Theorem 5.1 can be applied to obtain distribution-
free property testing algorithms for all algebraic properties described
in Section 3, as well as singletons (since they are a subclass of the class
of linear functions). This is also true for the class of k-juntas, since they
are a subclass of degree-k multivariate polynomials.

5.2 Testing From Random Examples

Similarly to the case of distribution-free testing, the notion of testing
from random examples was considered in [82]. For this testing model
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too, the paper includes negative results for testing graph properties
from random example only but does not include any positive results for
testing algorithms with complexity strictly smaller than that required
for learning. The only positive results we are aware of in this model are
those presented by Kearns and Ron [105], which are described next. The
functions studied in [105] are decision trees over [0,1]d, and a special
case of neural networks. We first extend the notion of property testing
by allowing the relaxation of the rejection criteria. We focus in this
extension on testing from random examples distributed according to
the uniform distribution.

Definition 5.2 (Testing with a Rejection Boundary). Let F
be a class of functions from domain X to range R, let F ′ ⊇ F , and
let 0 < ε ≤ 1. A testing algorithm for membership in F with rejec-

tion boundary (F ′, ε) is given access to uniformly distributed examples
labeled according to an unknown function f : X → R.

• If f ∈ F then the algorithm should accept with probability
at least 2/3;

• If dist(f,F ′) > ε then the algorithm should reject with prob-
ability at least 2/3.

5.2.1 Interval Functions

Here we describe and analyze a testing algorithm for the class of interval
functions. This is a special case of decision trees (which are defined
precisely in Subsection 5.2.2) and the study of this simple class gives
some of the flavor of the other results in [105].

For any size s, the class of interval functions with at most s intervals,
denoted INTs, is defined as follows. Each function f ∈ INTs is defined
by t ≤ s − 1 switch points, a1 < · · · < at, where ai ∈ (0,1). The value
of f is fixed in each interval that lies between two switch points, and
alternates between 0 and 1 when going from one interval to the next.

It is not hard to verify that learning the class INTs requires Ω(s)
examples (even when the underlying distribution is uniform). In fact,
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Ω(s) is also a lower bound on the number of membership queries nec-
essary for learning this class. As we show below, the complexity of
testing under the uniform distribution is much lower — it suffices to
observe O(

√
s) random examples. We also note that if the algorithm

is allowed queries then the number of queries that suffice for testing is
independent of s and linear in 1/ε.

Theorem 5.2. For any integer s > 0 and ε ∈ (0,1/2], the class of inter-
val functions INTs is testable with rejection boundary INTs/ε under the
uniform distribution using O(

√
s/ε1.5) examples. The running time of

the testing algorithm is linear in the number of examples used.

The basic property of interval functions that the testing algorithm
exploits is that most pairs of close points belong to the same inter-
val, and thus have the same label. The algorithm scans the sample for
such close pairs and accepts only if the fraction of pairs in which both
points have the same label is above a certain threshold. In the proof
below we quantify the notion of closeness, and analyze its implications
both on the rejection boundary for testing and on the number of exam-
ples needed. Intuitively, there is the following tradeoff: as the distance
between the points in a pair becomes smaller, we are more confident
that they belong to the same interval (in the case that f ∈ INTs);
but the probability that we observe such pairs of points in the sample
becomes smaller, and the class F ′ in the rejection boundary becomes
larger.

Proof. We first describe the testing algorithm. Let s′ = s/ε, and con-
sider the partition of the domain [0,1] imposed by a one-dimensional
grid with s′ equal-size cells (intervals) c1, . . . , cs′ . Given a uniformly
selected sample S of size m = Θ(

√
s′/ε) (=Θ(

√
s/ε1.5)), we partition

the examples x1, . . . ,xm into bins, B1, . . . ,Bs′ , where the bin Bj con-
tains points belonging to the cell cj . Within each (nonempty) bin Bj ,
let xi1 ,xi2 , . . . ,xit be the examples in Bj , ordered according to their
appearance in the sample, and let us pair the points in each such bin
according to this order (thus, xi1 is paired with xi2 , xi3 with xi4 , and
so on). We call these pairs the close pairs, and we further call a pair
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pure if it is close and both points have the same label. The algorithm
accepts f if the fraction of pure pairs (among all close pairs) is at least
1 − 3ε/4; otherwise it rejects.

The first central observation is that by the choice of m, with high
probability the number m′′ of close pairs is at least m′ = Θ(1/ε). To
obtain this lower bound on m′′, assume that we restricted our choice
of pairs by breaking the random sample into 4m′ random subsamples,
each of size 2

√
s′, and considered only close pairs that belong to the

same subsample. We claim that by the well-known Birthday Paradox ,
for each subsample, the probability that the subsample contains a close
pair is at least 1/2. To see why this is true, think of each subsample S′

as consisting of two parts, S′1 and S′2, each of size
√

s′. We consider two
cases: In the first case, S′1 already contains two examples that belong to
a common cell and we are done. Otherwise, each example in S′1 belongs
to a different cell. Let this set of

√
s′ cells be denoted C and recall that

all cells have the same probability mass 1/s′. Thus, the probability that
S′2 does not contain any example from a cell in C is(

1 − |C|· 1
s′

)|S′2|
=
(

1 − 1√
s′

)√s′

< e−1 < 1/2 (5.1)

as claimed. Hence, with very high probability, at least a fourth of the
subsamples (that is, at least m′) will contribute a close pair, in which
case m′′ ≥ m′. Since the close pairs are equally likely to fall in each
cell cj and are uniformly distributed within each cell, the correctness
of the algorithm when using examples reduces to the correctness of the
following algorithm, which is given query access to f . The algorithm
uniformly and independently selects m′ = O(1/ε) of the grid cells, uni-
formly draws a pair of points in each cell chosen, and queries f on these
pairs of points. The acceptance criteria is as in the original algorithm.
We next establish the correctness of the latter algorithm (that performs
queries).

Case 1: f ∈ INTs. For t = 1 . . . ,m′, let χt be a random variable that
is 0 if the tth close pair is pure, and 1 otherwise. Thus χt is determined
by a two-stage process: (1) the choice of the tth grid cell ct; (2) the
selection of the two points inside that cell. When ct is a subinterval
of some interval of f , then the points always have the same label, and



366 Other Models of Testing

otherwise they have a different label with probability at most 1/2. Since
f has at most s intervals, the number of cells that intersect intervals
of f (that is, are not subintervals of fs intervals) is at most s, and
since there are s/ε grid cells, the probability of selecting such a cell is
at most ε. It follows that for each t,

Exp[χt] ≤ ε · (1/2) + (1 − ε) · 0 = ε/2. (5.2)

By a multiplicative Chernoff bound (see Appendix A), with probability
at least 2/3, the average of the χts (which is just the fraction of close
pairs that are not pure), is at most 3ε/4, as required.

Case 2: dist(f, INTs′) > ε. In order to prove that in this case the
algorithm rejects with probability at least 2/3 we prove the contraposi-
tive: if the algorithm accepts with probability greater than 1/3, then
there exists a function f ′ ∈ INTs′ that is ε-close to f .

Let f ′ ∈ INTs′ be the (equally spaced) s′-interval function that gives
the majority label according to f to each grid cell. We claim that if
f is accepted with probability greater than 1/3 then dist(f,f ′) ≤ ε.
Assume, contrary to the claim, that dist(f,f ′) > ε. For each grid cell
cj , let εj ∈ [0,1/2] be the probability mass of points in cj that have the
minority label of f among points in cj . Thus, dist(f,f ′) = Expj [εj ], and
so, by our assumption, Expj [εj ] > ε. On the other hand, if we define χt

as in Case 1, then we get that

Exp[χt] = Expj [2εj(1 − εj)] ≥ Expj [εj ], (5.3)

where the second inequality follows from εj ≤ 1/2. By our assumption
on f , Exp[χt] > ε, and by applying a multiplicative Chernoff bound,
with probability greater than 2/3, the average over the χts is greater
than 3ε/4 (which causes the algorithm to reject).

It is also proven in [105] that the dependence on
√

s is unavoidable.
Specifically, it is shown that distinguishing with probability at least 2/3
between a function selected randomly from a certain subclass of INTs

and a completely random function over [0,1] requires Ω(
√

s) examples.
This implies the same lower bound for testing with rejection boundary
INTs/ε for constant ε, since for every s, with very high probability, a
random function will be Ω(1)-far from any interval function in INTs′

for s′ = O(s).
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5.2.2 Decision Trees and Aligned Voting Networks

A Decision Tree over [0,1]d is given as input x = x1, . . . ,xd. The (binary)
decision at each node of the tree is whether xi ≥ a for some i ∈ {1, . . . ,d}
and a ∈ [0,1]. The labels of the leaves of the decision tree are in {0,1}.
We define the size of such a tree to be the number of leaves. Thus,
every tree of size s over [0,1]d determines a partition of the domain
[0,1]d into at most s axis aligned rectangles, each of dimension d (the
leaves of the tree), where all points belonging to the same rectangle
have the same label.

Aligned Voting Networks are a restricted class of neural networks
over [0,1]d. These are essentially neural networks in which the hyper-
plane defining each hidden unit is constrained to be parallel to some
coordinate axis, and the output unit takes a majority vote of the hid-
den units. To be precise, an aligned hyperplane over [0,1]d is a function
h : [0,1]d → {1,−1} of the form h(x) = sgn(xi − a) for some dimension
i ∈ {1, . . . ,d} and some a ∈ [−1,1]. An aligned voting network over [0,1]d

is a function f : [0,1]d → {1,−1} of the form:

f(x) = sgn

 s∑
j=1

hj(x)

 , (5.4)

where each hj(x) is an aligned hyperplane over [0,1]d. The size of f is
the number of voting hyperplanes s.

An alternative way of viewing an aligned voting network f is as
a constrained labeling of the cells of a rectilinear partition of [0,1]d.
For each dimension i, we have positions aj

i ∈ [0,1] and orientations
uj

i ∈ {+1,−1}. The hyperplanes xi = aj
i define the rectilinear partition,

and f is constant over each cell c: for any x, we define

#(x) =
d∑

i=1

si∑
j=1

sgn(xi − uj
ia

j
i ), (5.5)

(where si is the number of aligned hyperplanes that project on dimen-
sion i), and then f(x) = sgn(#(x)). By extension, for each cell c of the
partition, we define #(c) as the constant value of #(x) for all x ∈ c,
and f(c) as the constant value of f(x) for all x ∈ c.
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The algorithms for testing decision trees and aligned voting
networks apply a similar high level idea as the algorithm for interval
functions. Roughly speaking, they decide whether to accept or reject
the function f by pairing “nearby” points, and checking that such pairs
have the same label according to f . A common theme in the analysis
is that the class in question, which we denote by Fs, can be “approxi-
mated by” a bounded number of fixed partitions of the domain. More
precisely, if we consider the class of functions H defined by these parti-
tions (when we allow all labelings of the cells of the partitions), then for
every function in Fs there exists a function in H that approximates it.
Furthermore, these partition functions can be implemented by a class
Fs′ , where s′ ≥ s. The testing algorithms essentially perform the same
task: for each fixed partition, pairs of points that belong to a common
cell of the partition are considered, and if there is a sufficiently strong
bias among these pairs toward having a common label, then the tested
function is accepted.

However, the algorithms (which are somewhat more complex than
the one for testing intervals), give weaker results in the sense of the
rejection boundary (Fs′ , ε) they work for. This is both in terms of the
relation between s′ and s, and in terms of the ε they work for. Namely,
as opposed to the case of interval functions, where the algorithm can
work with any ε, for the more complex classes, the algorithm works
only for certain settings of ε that are bounded away from 1/2 by a
function that depends exponentially on d. Thus these results can be
seen as “weak testing,” analogously to “weak learning.”

5.2.3 Testing and Weak Learning

In fact, the relation between weak learning and a certain form of weak
testing is formalized in [105] as described next.

Definition 5.3. Let F be a class of functions over a domain X, and
let D be a distribution over X. We say that F is testable against a

random function in m examples with respect to D if there is an algorithm
T such that:

• If T is given m examples drawn according to D and labeled
by any f ∈ F , then T accepts with probability at least 2/3.
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• If T is given m examples drawn according to D and labeled
randomly, then T rejects with probability at least 2/3. The
probability here is taken both over the choice of examples
and their random labels.

Recall that Proposition 2.1 established that proper learning implies
testing. The proposition can be easily generalized to show that if a
function class F is learnable using a hypothesis class H ⊇ F with accu-
racy ε using m examples, then for every ε′ the class F is testable with
rejection boundary (H, ε + ε′) using m + O(1/(ε′)2) examples.

Below we give a proposition concerning the reverse direction —
namely, any class that is efficiently testable against a random function
(as defined in Definition 5.3) is efficiently weakly learnable. Observe
that testing against a random function (with respect to a particular
distribution D) is no harder than testing with respect to a certain
rejection boundary class F ′ whenever (with respect to D), a random
function is far from any function in the class F ′ (with high probability
over the choice of the random function).

Proposition 5.3. Let F be a class of functions over domain X and let
D be a distribution over X. If F is testable against a random function
in m examples with respect to D, then F is weakly learnable with
respect to D with advantage Ω(1/m) and constant confidence in Õ(m2)
examples.

Proof. Let T be the testing algorithm that distinguishes between func-
tions in F and a random function. We start by using a standard
technique first applied in the cryptography literature [87]. Let us
fix any function f ∈ F , and consider the behavior of the algorithm
when it is given a random sample drawn according to D and labeled
partly by f and partly randomly . More precisely, for i = 0, . . . ,m, let
pi be the probability, taken over a random sample x1, . . . ,xm drawn
according to D, and a vector ~r uniformly chosen vector in {0,1}m−i,
that the test T accepts when given as input 〈x1,f(x1)〉, . . . ,〈xi,f(xi)〉,
〈xi+1, r1)〉, . . . ,〈xm, rm−i)〉.
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Since pm ≥ 2/3, while p0 ≤ 1/3, there must exist an index 1 ≤ i ≤ m

such that pi − pi−1 = Ω(1/m). Thus, by observing Õ(m2) examples
(and generating the appropriate number of random labels) we can find
an index i such that T has significant sensitivity to whether the ith

example is labeled by f or randomly. From this it can be shown [104]
that by taking another Õ(m2) examples, we can find a fixed sequence
S1 of i examples labeled according to f , and a fixed sequence S2 of
m − i examples having an arbitrary (but fixed) 0/1 labeling such that
the difference between the probability that T accepts when given as
input S1,〈x,f(x)〉,S2 and the probability that it accepts when given
as input S1,〈x,¬f(x)〉,S2, is Ω(1/m), where now the probability is
taken only over the draw of x. Let h(x) be the following proba-
bilistic function. If T (S1,〈x,0〉,S2) = T (S1,〈x,1〉,S2), then h outputs
the flip of a fair coin. If for b ∈ {0,1}, T (S1,〈x,b〉,S2) = accept and
T (S1,〈x,¬b〉,S2) = reject, then h outputs b. Then from the preceding
arguments, h has an advantage of Ω(1/m) over a random coin in pre-
dicting f .



6

Other Results

In this section we mention, quite briefly, several additional directions
of research within the area of property testing and the corresponding
known results.

6.1 Monotonicity

A very basic property of functions, which plays a role in learning
theory, is monotonicity . For a partially ordered set (poset) X (e.g.,
X = {0,1}n) and a totally ordered domain R, we say that a function
f : X → R is monotone if for every x,y ∈ X, if x < y then f(x) ≤ f(y).

Boolean functions over the Boolean hypercube. In this case, that is
when X = {0,1}n (so that the partial order is the natural lexicographic
order over strings), and R = {0,1}, it is possible to test monotonicity
(in the standard model, that is, under the uniform distribution and
with queries) using O(n/ε) queries [81]. The algorithm simply selects,
uniformly and at random, Θ(n/ε) pairs of points that differ on a single
bit and checks whether the function violates monotonicity on any of
the selected pairs. Clearly, every monotone function is accepted with

371



372 Other Results

probability 1. The heart of the analysis is in showing that the probabi-
lity that a function f violates monotonicity on such a pair of neigh-
boring points is at least the distance of the function to monotonicity,
divided by n. This is proved by showing that if the fraction of violating
pairs is at most δM (f), then it is possible to “fix” the function f and
make it a monotone function by modifying the value of f on at most
an (nδM (f))-fraction of the points.

The aforementioned testing algorithm makes essential use of queries.
Goldreich et al. [81] show that this is no coincidence — any mono-
tonicity tester that works under the uniform distribution, but is not
allowed queries, must have much higher complexity. Specifically, they
prove a lower bound of Ω(

√
2n/ε) on the number of examples, for

every ε = O(n−3/2). They also show that this lower bound is tight.
Namely, there exists a tester for monotonicity that only utilizes ran-
dom examples and uses at most O(

√
2n/ε) examples. As noted in [81],

this tester is significantly faster than any learning algorithm for the
class of all monotone concepts when the allowed error is O(1/

√
n):

Learning (under the uniform distribution) requires Ω(2n/
√

n) examples
(and at least that many queries) [104]. In contrast, “weak learn-
ing” [106] is possible in polynomial time. Specifically, the class of mono-
tone concepts can be learned in polynomial time with error at most
1/2 − Ω(1/

√
n) [39] (though no polynomial-time learning algorithm

can achieve an error of 1/2 − ω(log(n)/
√

n)) [39]).

Non-Boolean functions. Returning to standard testing, Ergun
et al. [64] considered the case that X = Σ, where Σ is a totally ordered
finite set and R is any totally ordered set. They referred to the test-
ing problem as “Spot checking of sorting” and gave an algorithm whose
query complexity is O(logn/ε). Ergun et al. [64] also gave a lower bound
for non adaptive testing algorithms, which, combined with a result of
Fischer [67], implies a lower bound of Ω(log |Σ|) for any testing algo-
rithm (when ε is constant).

Batu et al. [30] extended the algorithm of Ergun et al. [64] to
higher dimensions, that is, for X = Σn (and any range R), at an expo-
nential cost in the dimension n. The complexity of their algorithm is
O((2 log |Σ|)n/ε). Halevy and Kushilevitz [92] reduced the complexity
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(for sufficiently large Σ) to O(n4n log |Σ|/ε), and Ailon and Chazelle [1]
further improved this bound to O(n2n log |Σ|/ε).

Dodis et al. [63] showed that it is possible to reduce the depen-
dence on the dimension n to linear, and obtain query complexity
O(n log |Σ| log |R|/ε), where the dependence on log |R| can be replaced
by n log |Σ|.

General Posets. Fischer et al. [72] considered the case in which X

is a general poset. They showed that testing monotonicity of Boolean
functions over general posets is equivalent to the problem of testing
2CNF assignments (namely, testing whether a given assignment satis-
fies a fixed 2CNF formula or is far from any such assignment). They
also showed that for every poset it is possible to test monotonicity over
the poset with a number of queries that is sublinear in the size of the
domain poset; specifically, the complexity grows like a square root of
the size of the poset. Finally, they give some efficient algorithms for
several special classes of posets (e.g., posets that are defined by trees).

Distribution-free testing. As mentioned in Section 5.1, Halevy and
Kushilevitz [95] gave a distribution-free monotonicity testing algorithm
for functions f : Σn → R with query complexity O((2 log |Σ|)n/ε). They
also showed that the exponential dependence on n is unavoidable even
in the case of Boolean functions over the Boolean hypercube (that is,
|Σ| = |R| = 2).

Related properties. The related properties of whether a one-
dimensional function f : [n] →< is convex, and whether a two dimen-
sional function, or n × n matrix, is submodular, are studied in [123].

6.2 Clustering

Alon et al. [5] consider the problem of testing whether a set of points can
be clustered into a given number k of clusters with a given bound on the
cost of the clustering for a fixed cost measure. To be precise, for a set
X of points in <d, the set X is (k,b)-clusterable if X can be partitioned
into k subsets (clusters) so that the diameter (alternatively, the radius)
of each cluster is at most b. For β > 0 and 0 ≤ ε ≤ 1, we say that X
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is ε-far from being (k,(1 + β)b)-clusterable if more than ε · |X| points
should be removed from X so that it becomes (k,(1 + β)b)-clusterable.

Alon et al. [5] describe and analyze algorithms that by sampling
from a set X, distinguish between the case that X is (k,b)-clusterable
and the case that X is ε-far from being (k,(1 + β)b)-clusterable for any
given 0 < ε ≤ 1 and for various values of 0 ≤ β ≤ 1. The algorithms run
in time independent of n = |X|, and use a sample from X that has size
polynomial in k and ε. Specifically:

(1) For the radius cost, and when the underlying distance
between points is the Euclidean distance, the algorithm
works for β = 0 and the sample size is Õ(d · k/ε).

(2) For the diameter cost and the Euclidean distance, the sample
is of size Õ

(
k2

ε ·
(

2
β

)2d). A dependence on 1/β, as well as an
exponential dependence on the dimension, are unavoidable:
there is a lower bound of Ω(β−(d−1)/4) on the size of the
sample required for testing, for k = 1 and a constant ε.

(3) If the underlying distance is a general metric, then there is an
algorithm that works for β = 1, and for both the radius cost
and the diameter cost, the sample selected is of size O(k/ε).
Interestingly, any algorithm for testing diameter clustering
for β < 1 under a general metric requires a sample of size
Ω(
√

n/ε).

The running time of the third algorithm is O(k2/ε). The first two algo-
rithms work by running an exact clustering procedure on the selected
sample. Since the corresponding clustering problems are NP-hard
(when an exact solution is required), we do not know of procedures
that run in less than exponential time in k and d.

The algorithms can also be used to find approximately good clus-
terings. Namely, these are clusterings of all but an ε-fraction of the
points in X that have optimal (or close to optimal) cost. The benefit of
the algorithms is that they construct an implicit representation of such
clusterings in time independent of |X|. That is, without actually hav-
ing to partition all points in X, the implicit representation can be used
to answer queries concerning the cluster any given point belongs to.
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These results belong to a family of sublinear approximation algorithms
for various cost measures (cf. [57, 97, 118]).

6.3 Properties of Distributions

The following types of problems were considered in several works. Given
access to samples drawn from an unknown distribution D, the goal is
to determine, with high success probability, whether D has a particular
property (e.g., it is uniform over its domain), or possibly compute an
approximation to a certain measure on distributions (e.g., entropy).1

Similarly, the algorithm may have access to samples drawn from a pair
of distributions, D1 and D2, and the property/measure in question is
for pairs of distributions (e.g., their statistical distance). The goal is to
perform the task by observing a number of samples that is sublinear in
the size of the domain over which the distribution(s) is (are) defined. In
what follows, the running times of the algorithms mentioned are linear
(or almost linear) in their respective sample complexities.

Testing that distributions are close. Batu et al. [28] consider the prob-
lem of determining whether the distance between a pair of distributions
over n elements is small (less than max

{
ε

4
√

n
, ε2

32n1/3

}
), or large (more

than ε) according to the L1 distance. They give an algorithm for this
problem that takes O(n2/3 logn/ε4) independent samples from each dis-
tribution. This result is based on testing closeness according to the L2

distance, which can be performed using O(1/ε4) samples. This in turn
is based on estimating the deviation of a distribution from uniform [84].

In recent work, Valiant [135] shows that Ω(n2/3) samples are also
necessary for this testing problem (with respect to the L1 distance). For
the more general problem of distinguishing between the case that the
two distributions are ε1-close and the case that they are ε2-far, where ε1
and ε2 are both constants, Valiant [135] proves an almost linear (in n)
lower bound.

One can also consider the problem of testing whether a distribution
D1 is close to a fixed and known distribution D2, or is far from it (letting

1 An alternative model may allow the algorithm to obtain the probability that the distri-
bution assigns to any element of its choice. We shall not discuss this variant.
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D2 be the uniform distribution is a special case of this problem). Batu
et al. [27] showed that it is possible to distinguish between the case that
the distance in L2 norm is O

(
ε3√

n logn

)
and the case that the distance

is greater than ε using Õ(
√

n·poly(1/ε)) samples from D1.

Testing random variables for independence. Batu et al. [27] also
showed that it is possible to test whether a distribution over [n] × [m]
is independent or is ε-far from any independent joint distribution, using
a sample of size Õ(n2/3m1/3poly(1/ε)).

Approximating the entropy. A very basic and important measure of
distributions is their (binary) entropy. The main result of Batu et
al. [25] is an algorithm that computes a γ-multiplicative approximation
of the entropy using a sample of size O(n(1+η)/γ2

logn) for distributions
with entropy Ω(γ/η), where n is the size of the domain of the distri-
bution and η is an arbitrarily small positive constant. They also show
that Ω(n1/(2γ2)) samples are necessary. A lower bound that matches
the upper bound of Batu et al. [25] is proved in [135].

Approximating the support size. Another natural measure for distri-
butions is their support size. To be precise, consider the problem of
approximating the support size of a distribution when each element in
the distribution appears with probability at least 1

n . This problem is
closely related to the problem of approximating the number of distinct
elements in a sequence of length n. For both problems, there is a lower
bound on the sample complexity that is nearly linear in n, which is
applicable even for approximation with additive error [126].

A unifying approach to testing symmetric properties of distributions.
Valiant [135] obtains the lower bounds mentioned in the foregoing dis-
cussion as part of a general study of testing symmetric properties of
distributions (or pairs of distributions). That is, he considers proper-
ties of distributions that are preserved under renaming of the elements
in the domain of the distributions. Roughly speaking, his main finding
is that for every such property, there exists a threshold such that ele-
ments whose probability weight is below the threshold “do not matter”
in terms of the task of testing. This implies that such properties have
a “canonical tester” that bases its decision on its estimate of the prob-
ability weight of elements that appear sufficiently often in the sample
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(“heavy elements”), and essentially ignores those elements that do not
appear sufficiently often. In the other direction, lower bounds can be
derived by constructing pairs of distributions on which the decision
of the tester should be different, but that give the same probability
weight to the heavy elements (and may completely differ on all light
elements).

Other results. Other works on testing properties of distributions
include [4, 29, 128].

6.4 Testing Membership in Regular Languages, Branching
Programs, and Other Languages

Alon et al. [13] consider the following problem of testing membership in
a regular language. For a predetermined regular language L ⊆ {0,1}∗,
the tester for membership in L should accept every word w ∈ L with
probability at least 2/3, and should reject with probability at least
2/3 every word w that differs from any w′ ∈ L on more than ε|w| bits.
We stress that the task is not to decide whether a language is regular
(which can be seen as a relaxation of learning a regular language), but
rather the language is predetermined, and the test is for membership
in the language.

The query complexity and running time of the testing algorithm for
membership in a regular language is Õ(1/ε), that is, independent of
the length n of w. (The running time is dependent on the size of the
(smallest) finite automaton accepting L, but this size is considered to
be a fixed constant with respect to n.) Alon et al. [13] also show that
a very simple context free language (of all strings of the form vvRu,
where vR denotes the reversal of v), cannot be tested using o(

√
n)

queries.
Newman [121] extended the result of Alon et al. [13] for reg-

ular languages and gave an algorithm that has query complexity
poly(1/ε) for testing whether a word w is accepted by a given constant-
width oblivious read-once branching program. (It is noted in [46] that
the result can be extended to the nonoblivious case.) On the other
hand, Fischer et al. [75] showed that testing constant width oblivi-
ous read-twice branching programs requires Ω(nδ) queries, and Bol-
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lig [46] shows that testing read-once branching programs of quadratic
size (with no bound on the width) requires Ω(n1/2) queries (improving
on [47]).

In both [75] and [46] lower bounds for membership in sets defined
by CNF formulae are also obtained, but the strongest result is in [36]:
an Ω(n) lower bound for 3CNF (over n variables). This should be con-
trasted with an O(

√
n) upper bound that holds for 2CNF [72]. More

generally, Ben-Sasoon et al. [36] provide sufficient conditions for linear
properties to be hard to test, where a property is linear if its elements
from a linear space.

6.5 Testing Graph Properties

One of the main focuses of property testing has been on testing graph
properties. Here we only mention, quite briefly, some of the results on
testing graph properties in order to give the flavor of research in this
sub-area of property testing. The results are partitioned according to
the model they are obtained in.

6.5.1 The Adjacency Matrix Model

The first model, introduced in [82], is the adjacency-matrix model. In
this model the algorithm may perform queries of the form: “is there an
edge between vertices u and v in the graph?” That is, the algorithm
may probe the adjacency matrix representing the graph. We refer to
such queries as vertex-pair queries. The notion of distance is also linked
to this representation: A graph is said to be ε-far from having property
P if more than εn2 edge modifications should be performed on the
graph so that it obtains the property, where n is the number of vertices
in the graph. In other words, ε measures the fraction of entries in the
adjacency matrix of the graph that should be modified. This model
is most suitable for dense graphs in which the number of edges m is
Θ(n2). For this reason, we shall also refer to it as the dense-graphs
model.

The algorithms described in [82] are for testing a variety of prop-
erties, amongst them: bipartiteness, k-colorability, having a large cut,
having a large clique, and a generalized partition property that includes



6.5 Testing Graph Properties 379

the former properties as special cases. The query complexity of all
algorithms is polynomial in 1/ε and independent of n. With the
exception of the algorithm for bipartiteness, whose running time is
polynomial in 1/ε, the other algorithms have running time that is
exponential in 1/ε. This is not surprising given the fact that for
all the properties but bipartiteness the exact decision problem is
NP-hard.2 Alon and Krivelevich [11] improved the results in [82]
for bipartiteness and k-colorability by applying a more sophisticated
analysis.

Alon et al. [7] gave algorithms for the class of first order graph
properties. These are properties that can be formulated by first order
expressions about graphs. This covers a large class of graph properties
(in particular coloring and subgraph-freeness properties). As in [82]
their algorithms do not have a dependence on n, but since they build
on the Regularity Lemma of Szemerédi [132], the dependence on 1/ε

is quite high. Interestingly, Alon [3] proved that for subgraph freeness,
if the subgraph is not bipartite, then the dependence on 1/ε must be
superpolynomial.

A sequence of works by Alon and Shapira [16, 17, 18], together with
the work of Fischer and Newman [74] culminated in a characterization
of all graph properties that are testable using a number of queries
that is independent of n [9]. As the title of the paper says: “It’s all
about regularity.” To be a little more precise, the characterization says
(roughly) that a graph property P is testable using a number of queries
that is independent of n if and only if testing P can be reduced to
testing the property of satisfying one of a finitely many Szemerédi-
partitions [132]. A different characterization was proved independently
by Borgs et al. [48].

Other results in the dense-graphs model (also for directed graphs)
include [8, 15, 37, 45, 58, 68, 69, 86, 88]. Extensions to hypergraphs
can be found in [14, 19, 59, 73, 110].

2 Interestingly, a testing algorithm for k-colorability whose query complexity is independent
of n is implicit in the earlier work of Alon et al. [6]. They build on a constructive version

of the Regularity Lemma of Szemerédi [132] which they prove, and the query complexity
of the implied testing algorithm is a tower of poly(1/ε) exponents.
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6.5.2 The Bounded-degree Incidence-lists Model

The second model, introduced in [85], is the bounded-degree
incidence-lists model. In this model, the algorithm may perform queries
of the form: “who is the ith neighbor of vertex v in the graph?” That is,
the algorithm may probe the incidence lists of the vertices in the graph,
where it is assumed that all vertices have degree at most d for some fixed
degree-bound d. We refer to these queries as neighbor queries. Here too
the notion of distance is linked to the representation: A graph is said
to be ε-far from having property P if more than εdn edge modifications
should be performed on the graph so that it obtains the property. In
this case ε measures the fraction of entries in the incidence lists repre-
sentation (among all dn entries) that should be modified. This model
is most suitable for graphs with m = Θ(dn) edges; that is, whose max-
imum degree is of the same order as the average degree. In particular,
this is true for sparse graphs that have constant degree.

Goldreich and Ron [85] gave algorithms in this model for connec-
tivity and more generally k-edge-connectivity, cycle-freeness, being a
Eulerian graph, and subgraph freeness. The complexity of all algo-
rithms is polynomial in 1/ε and independent of n. On the other hand,
they showed that for some properties a dependence on n is unavoid-
able. In particular, they proved lower bounds of Ω(

√
n) (for constant

ε) on testing bipartiteness and expansion of bounded degree graphs.
In [83], they gave an almost matching bound for testing bipartiteness
using algorithms that perform random walks. In [84], they proposed
(but did not prove the correctness of) an algorithm for testing expan-
sion using Õ(

√
n·poly(1/ε)) queries, and recently there has been quite

a bit of progress on this problem [60, 100, 120].
Czumaj, Shapira and Sohler [56] give a general result for testing

bounded-degree graphs: hereditary properties can be testing on non-
expanding bounded-degree graphs using a number of queries that is
independent of n.

The bounded-degree model was also considered for the study of
properties of directed graphs, and in particular acyclicity [37].
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6.5.3 A General Model

In [122], it was first suggested to decouple the questions of represen-
tation and type of queries allowed from the definition of distance to
having a property. Specifically, it was suggested that distance be mea-
sured simply with respect to the number of edges, denoted m, in the
graph (or an upper bound on this number). Namely, a graph is said to
be ε-far from having a property, if more than εm edge modifications
should be performed so that it obtains the property. In [122], (where
the main focus was on sparse graphs), the algorithm is allowed the same
type of queries as in the bounded-degree incidence-lists model, and it
can also query the degree of any given vertex. The properties studied
in that paper are having a bounded-size diameter and connectivity.

The main advantage of the [122] model over the bounded-degree
incidence-lists model is that it is suitable for sparse graphs whose
degrees may vary significantly. More generally, when the graph is not
necessarily sparse (and not necessarily dense), we may allow vertex-pair
queries in addition to neighbor queries and degree queries. This model
was first studied by Krivelevich et al. [101]. Their focus was on the
property of bipartiteness, which exhibits the following interesting phe-
nomenon. As noted previously, for dense graphs there is an algorithm
whose query complexity is poly(1/ε) [11, 82]. In contrast, for bounded-
degree graphs there is a lower bound of Ω(

√
n) [85] (and an almost

matching upper bound [83]). The question Krivelevich et al. asked is:
what is the complexity of testing bipartiteness in general graphs (using
the general model)?

They answer this question by describing and analyzing an algorithm
for testing bipartiteness in general graphs whose query complexity (and
running time) is O(min(

√
n,n2/m) · poly(logn/ε)). Recall that m is the

number of edges in the graph (or an upper bound on this number, with
respect to which distance is measure). Thus, as long as the average
degree of the graph is O(

√
n), the running time (in terms of the depen-

dence on n) is Õ(
√

n), and once the average degree goes above this
threshold, the running time starts decreasing. They also present an
almost matching lower bound of Ω(min(

√
n,n2/m)) (for a constant ε).

This bound holds for all testing algorithms (that is, for those which are
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allowed a two-sided error and are adaptive). Furthermore, the bound
holds for regular graphs.

Another property that was studied in the general model is test-
ing triangle-freeness (and more generally, subgraph-freeness) [10]. As
noted previously, for this property there is an algorithm in the dense-
graphs model whose complexity depends only on 1/ε [7], and the same
is true for constant-degree graphs [85]. Here too the question is what
is the complexity of testing the property in general graphs. In par-
ticular this includes graphs that are sparse (that is, m = O(n)), but
do not have constant degree. The main finding of Alon et al. [10]
is a lower bound of Ω(n1/3) on the necessary number of queries for
testing triangle-freeness that holds whenever the average degree d is
upper-bounded by n1−ν(n), where ν(n) = o(1). Since when d = Θ(n)
the number of queries sufficient for testing is independent of n [7], we
observe an abrupt, threshold-like behavior of the complexity of test-
ing around n. Additionally, they provide sub-linear upper bounds for
testing triangle-freeness that are at most quadratic in the stated lower
bounds.

Finally, a study of the complexity of testing k-colorability (for
k ≥ 3) is conducted by Ben-Eliezer et al. [34]. For this property there
is an algorithm with query complexity poly(1/ε) in the dense-graphs
model [11, 82] (where the algorithm uses only vertex-pair queries), and
there is a very strong lower bound of Ω(n) for testing in the bounded-
degree model [44] (where the algorithm uses neighbor queries). Ben-
Eliezer et al. [34] consider the complexity of testing k-colorability as a
function of the average degree d in models that allow different types of
queries (and in particular may allow only one type of query). In partic-
ular, they show that while for vertex-pair queries, testing k-colorability
requires a number of queries that is a monotone decreasing function
in the average degree d, the query complexity in the case of neighbor
queries remains roughly the same for every density and for large values
of k. They also study a new, stronger, query model, which is related to
the field of Group Testing.
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6.6 Tolerant Testing and Distance Approximation

Two natural extensions of property testing, first explicitly studied
in [124], are tolerant testing and distance approximation. A tolerant
property testing algorithm is required to accept objects that are ε1-
close to having a given property P and reject objects that are ε2-far
from having property P, for 0 ≤ ε1 < ε2 ≤ 1. Standard property testing
refers to the special case of ε1 = 0. Ideally, a tolerant testing algorithm
should work for any given ε1 < ε2, and have complexity that depends
on ε2 − ε1. However, in some cases the relation between ε1 and ε2 may
be more restricted (e.g., ε1 = ε2/2). A closely related notion is that of
distance approximation where the goal is to obtain an estimate of the
distance that the object has to a property. In particular, we would like
the estimate to have an additive error of at most δ for a given error
parameter δ, or we may also allow a multiplicative error.3

In [124], it was first observed that some earlier works imply results in
these models. In particular, this is true for coloring and other partition
problems on dense graphs [82], connectivity of sparse graphs [52], edit
distance between strings [26] and L1 distance between distributions [28]
(which was discussed in Section 6.3). The new results obtained in [124]
were for monotonicity of functions f : [n] → R, and clusterability of a
set of points. The first result was later improved in [2] and extended
to higher dimensions in [65]. In [70], it is shown that there exist prop-
erties of Boolean functions for which there exists a test that makes
a constant number of queries, yet there is no such tolerant test. In
contrast, in [74] it is shown that every property that has a testing algo-
rithm in the dense-graphs model whose complexity is only a function
of the distance parameter ε, has a distance approximation algorithm
with an additive error δ in this model, whose complexity is only a func-
tion of δ.4 Distance approximation in sparse graphs is studied in [116].
Guruswami and Rudra [91] presented tolerant testing algorithms for
several constructions of locally testable codes.

3 We note that if one does not allow an additive error (that is, δ = 0), but only allows a

multiplicative error, then a dependence on the distance that the object has to the property

must be allowed.
4 The dependence on δ may be quite high (a tower of height polynomial in 1/δ), but there
is no dependence on the size of the graph.
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The (Multiplicative) Chernoff Bound

Throughout the survey, we have applied the following theorem, which
we referred to as the “multiplicative Chernoff bound” (to distinguish
it from the additive form, usually attributed to Hoeffding [96]).

Theorem A.1 ([53]). Let χ1,χ2, . . . ,χm be m independent random
variables where χi ∈ [0,1]. Let p

def= 1
m

∑
i Exp[χi]. Then, for every γ ∈

[0,1], the following bounds hold:

Pr

[
1
m

m∑
i=1

χi > (1 + γ)p

]
< exp

(
−γ2pm/3

)
and

Pr

[
1
m

m∑
i=1

χi < (1 − γ)p

]
< exp

(
−γ2pm/2

)
.
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