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Abstract

Property testing algorithms are “ultra”-efficient algorithms that decide
whether a given object (e.g., a graph) has a certain property (e.g.,
bipartiteness), or is significantly different from any object that has the
property. To this end property testing algorithms are given the ability
to perform (local) queries to the input, though the decision they need to
make usually concerns properties with a global nature. In the last two
decades, property testing algorithms have been designed for many types
of objects and properties, amongst them, graph properties, algebraic
properties, geometric properties, and more.

In this monograph we survey results in property testing, where our
emphasis is on common analysis and algorithmic techniques. Among
the techniques surveyed are the following:

• The self-correcting approach, which was mainly applied in
the study of property testing of algebraic properties;

* This work was supported by the Israel Science Foundation (grant number 246/08).



• The enforce-and-test approach, which was applied quite
extensively in the analysis of algorithms for testing graph
properties (in the dense-graphs model), as well as in other
contexts;

• Szemerédi’s Regularity Lemma, which plays a very important
role in the analysis of algorithms for testing graph properties
(in the dense-graphs model);

• The approach of Testing by implicit learning , which implies
efficient testability of membership in many functions classes;
and

• Algorithmic techniques for testing properties of sparse
graphs, which include local search and random walks.



1
Introduction

Property testing algorithms are algorithms that perform a certain type
of approximate decision. Namely, standard (exact) decision algorithms
are required to determine whether a given input is a YES instance (has
a particular property) or is a NO instance (does not have the property).
In contrast, property testing algorithms are required to determine (with
high success probability) whether the input has the property (in which
case the algorithm should accept) or is far from having the property (in
which case the algorithm should reject). In saying that the input is far
from having the property we mean that the input should be modified
in a non-negligible manner so that it obtains the property.

To be precise, the algorithm is given a distance parameter,
denoted ε, and should reject inputs that are ε-far from having the prop-
erty (according to a prespecified distance measure). If the input neither
has the property nor is far from having the property, then the algorithm
can either accept or reject. In other words, if the algorithm accepts, then
we know (with high confidence) that the input is close to having the
property, and if it rejects, then we know (with high confidence) that
the input does not have the property.

75



76 Introduction

Since a property testing algorithm should perform only an approx-
imate decision and not an exact one, we may expect it to be (much)
more efficient than any exact decision algorithm for the same prop-
erty. In particular, as opposed to exact decision algorithms, which are
considered efficient if they run in time that is polynomial in the size
of the input (and the best we can hope for is linear-time algorithms),
property testing algorithms may run in time that is sublinear in the
size of the input (and hence we view them as being “ultra”-efficient).
In such a case they cannot even read the entire input. Instead, they are
given query access to the input, where the form of the queries depends
on the type of input considered.

Since property testing algorithms access only a small part of the
input, they are naturally allowed to be randomized and to have a small
probability of error (failure). In some cases they have a non-zero error
probability only on inputs that are far from having the property (and
never reject inputs that have the property). In such a case, when they
reject an input, they always provide (small) evidence that the input
does not have the property.

By the foregoing discussion, when studying a specific property test-
ing problem, one should define a distance measure over inputs (which
determines what inputs should be rejected), and one should define the
queries that the algorithm is allowed. For example, when dealing with
functions and their properties (e.g., linearity), the distance measure is
usually defined to be the Hamming distance normalized by the size
of the domain, and queries are simply queries for values of the func-
tion at selected elements of the domain. In other cases, such as graph
properties, there are several different natural models for testing (see
Section 2.2 for details).

1.1 Settings in Which Property Testing is Beneficial

In addition to the intellectual interest in relating global properties to
local patterns, property testing algorithms are beneficial in numerous
situations. A number of such settings are discussed next.

1. Applications that deal with huge inputs. This is the case when
dealing with very large databases in applications related to
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computational biology, astronomy, study of the Internet, and
more. In such cases, reading the entire input is simply infea-
sible. Hence, some form of approximate decision, based on
accessing only a small part of the input, is crucial.

2. Applications in which the inputs are not huge, but the prop-
erty in question is NP-hard. Here too some form of approxi-
mation is necessary, and property testing algorithms provide
one such form. In fact, while “classical” approximation algo-
rithms are required to run in time polynomial in the size
of the input, here we require even more of the algorithm: It
should provide an approximately good answer, but is allowed
only sublinear time. For example, there is a property test-
ing algorithm that can be used to obtain a (1 ± ε)-factor
approximation of the size of the maximum cut in a dense
graph, whose running time depends only on ε, and does not
depend at all on the size of the graph. (In Section 1.3 we
further discuss the relation between the notion of approx-
imation provided by property testing and more “classical”
notions.)

3. Applications in which the inputs are not huge and the corre-
sponding decision problem has a polynomial-time algorithm,
but we are interested in ultra-efficient algorithms, and do not
mind sacrificing some accuracy. For example, we may not
mind accepting a graph that is not perfectly bipartite, but
is close to being bipartite (that is, it has a two-way par-
tition with relatively few “violating edges” within the two
parts).

4. Scenarios similar to the one described in the previous item
except that the final decision must be exact (though a small
probability of failure is allowed). In such a case we can first
run the testing algorithm, and only if it accepts do we run the
exact decision procedure. Thus, we save time whenever the
input is far from having the property, and this is useful when
typical (but not all) inputs are far from having the property.
A related scenario, discussed in Section 1.4, is the application
of property testing as a preliminary step to learning.
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Thus, employing a property testing algorithm yields a certain loss in
terms of accuracy, but our gain, in terms of efficiency, is in many cases
dramatic. Furthermore, in many cases the loss in accuracy is inevitable
either because the input is huge or the problem is hard.

1.2 A Brief Overview

Property testing first appeared (implicitly) in the work of Blum
et al. [35], who designed the well-known Linearity testing algorithm.
It was first explicitly defined in the work of Rubinfeld and Sudan [123],
who considered testing whether a function is a low-degree polynomial.
The focus of these works was on testing algebraic properties of func-
tions, and they, together with other works, had an important role in
the design of Probabilistically Checkable Proofs (PCP) systems (cf.
[19, 20, 21, 22, 57, 66, 67, 123]).

The study of property testing in a more general context was initiated
by Goldreich et al. [72]. They gave several general results, among them
results concerning the relation between testing and learning, and then
focused on testing properties of graphs (in what we refer to as the dense-
graphs model). Following this work, property testing has been applied
to many types of inputs and properties.1 In particular, the study of
algebraic properties of functions continued to play an important role,
partly because of the relation to the area of error correcting codes (for
a short explanation concerning this relation, see the beginning of Sec-
tion 3). The study of graph properties was significantly extended since
the work of Goldriech et al. [72]. This includes a large number of works
in the dense-graphs model, as well as the introduction of other models
(more suitable for graphs that are sparse or that are neither dense nor
sparse), and the design of algorithms that work within these models.
There has also been progress in the last few years on the design of test-
ing algorithms for properties of functions that can be viewed as logical
rather than algebraic (such as functions that have a small DNF repre-
sentation). The study of such properties is of interest from the point of
view of learning theory (see Section 1.4). Other families of properties to

1 In what follows in this subsection we do not give references to relevant works. These refer-
ences can be found in the body of this monograph when each specific result is mentioned.
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which the framework of property testing has been applied include Geo-
metric properties and “clusterability” of ensembles of points, properties
defined by restricted languages (e.g., regular languages), properties of
distributions, and more.

In some cases the algorithms designed are extremely efficient: The
number of operations they perform does not depend at all on the size
of the input, but only on the distance parameter ε. In other cases the
dependence is some sublinear function of the size of the input (e.g.,
polylog(n) or

√
n, for inputs of size n), where in many of the latter cases

there are matching (or almost matching) lower bounds that justify this
dependence on the size of the input.

While each algorithm has features that are specific to the prop-
erty it tests, there are several common algorithmic and analysis tech-
niques. Perhaps, the two better-known analysis techniques are the
self-correcting approach, which is applied in the analysis of many
testing algorithms of algebraic properties, and Szemerédi’s Regularity
Lemma [124], which is central to the analysis of testing graph properties
in the dense-graphs model. Other techniques include the enforce-and-
test approach (that is also applied in the analysis of testing algorithms
in the dense-graphs model, as well as in testing certain metric properties
and clustering properties), and the approach of testing by implicit learn-
ing whose application gives a variety of results (among them testing of
small DNF formula). Indeed, as the title of this monograph suggests, we
organize the results presented according to such common techniques.

In addition to the extension of the scope of property testing, there
have been several extensions and generalizations of the basic notion of
property testing. One extension (which was already introduced in [72]
but for which positive results appeared several years later) is allowing
the underlying distribution (with respect to which the distance mea-
sure is defined) to be different from the uniform distribution (and in
particular to be unknown — this is referred to as distribution-free test-
ing). Another natural extension is to tolerant testing . In tolerant testing
the algorithm is given two distance parameters: ε1 and ε2, and it must
distinguish between the case that the object is ε1-close to having the
property (rather than perfectly having the property as in the original
definition of property testing) and the case that the object is ε2-far from
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having the property. A related notion is that of distance approximation
where the task is to obtain an estimate of the distance to having the
property.

1.3 Property Testing and “Classical” Approximation

Consider for example the problem of deciding whether a given graph
G = (V,E) has a clique of size at least k, for k = ρn where ρ is a fixed
constant and n = |V |. The “classical” notion of an approximation algo-
rithm for this problem requires the algorithm to distinguish between
the case that the max-clique in the graph has size at least ρn and, say,
the case in which the max-clique has size at most ρn/2.

On the other hand, when we talk of testing the “ρ-Clique” property,
the task is to distinguish between the case that the graph has a clique
of size ρn and the case in which it is ε-far from the any n-vertex graph
that has a clique of size ρn. Since this property is relevant only to
dense graphs (where |E| = Θ(n2)), our notion of ε-far in this context is
that more than εn2 edges should be added to the graph so that it has
a clique of size ρn. This is equivalent to the dual approximation task
(cf., [89, 90]) of distinguishing between the case that an n-vertex graph
has a clique of size ρn and the case that in any subset of ρn vertices,
the number of missing edges (between pairs of vertices in the subset)
is more than εn2.

The above two tasks are vastly different: Whereas the former task
is NP-hard, for ρ < 1/4 [30, 88], the latter task can be solved in
exp(O(1/ε2))-time, for any ρ,ε > 0 [72]. We believe that there is no
absolute sense in which one of these approximation tasks is better than
the other: Each of these tasks is relevant in some applications and irrele-
vant in others. We also mention that in some cases the two notions coin-
cide. For example, consider the problem of deciding whether a graph
has a cut of size at least k for k = ρn2 (where ρ is a fixed constant).
Then a testing algorithm for this problem will distinguish (with high
probability) between the case that the max-cut in the graph is of size
at least ρn2 and the case in which the max-cut is of size less than
(ρ − ε)n2 (which for ε = γρ gives a “classical” (1 − γ)-factor approxi-
mation to the size of the max-cut).
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Finally, we note that while property testing algorithms are decision
algorithms, in many cases they can be transformed into optimization
algorithms that actually construct approximate solutions. To illustrate
this, consider the two aforementioned properties, which we refer to
as ρ-Clique and ρ-Cut. For the first property, suppose the graph has
a clique of size at least ρn. Then, building on the testing algorithm,
it is possible to obtain (with high probability (w.h.p.)), in time that
grows only linearly in n, a subset of ρn vertices that is close to being a
clique. (That is, the number of missing edges between pairs of vertices
in the subset is at most εn2.) Similarly, for the second property, if
the graph has a cut of size at least ρn2, then it is possible to obtain
(w.h.p.), in time linear in n, a cut of size at least (ρ − ε)n2. In both
cases the dependence on 1/ε in the running time is exponential (whereas
a polynomial dependence cannot be obtained unless P = NP).

For these problems and other partition problems (e.g.,
k-colorability), the testing algorithm (when it accepts the input)
actually defines an implicit partition. That is, after the execution
of the testing algorithm, it is possible to determine for each vertex
(separately) to which part it belongs in the approximately good
partition, in time poly(1/ε).

1.4 Property Testing and Learning

Following standard frameworks of learning theory, and in particular
the PAC learning model of Valiant [125] and its variants, when we say
learning we mean outputting a good estimate of a function to which
we have query access (or from which we can obtain random labeled
examples). Thus, another view of property testing is as a relaxation of
learning (with queries and under the uniform distribution).2 Namely,
instead of asking that the algorithm output a good estimate of the
(target) function (which is possibly assumed to belong to a particular
class of functions F), we only require that the algorithm decide whether
the function belongs to F or is far from any function in F . Given

2 Testing under non-uniform distributions and testing with random examples (only) have
been considered (and we discuss the former in this monograph), but most of the work in
property testing deals with testing under the uniform distributions and with queries.
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this view, a natural motivation for property testing is to serve as a
preliminary step before learning: We can first run the testing algorithm
in order to decide whether to use a particular class of functions as our
hypothesis class.

In this context too we are interested in testing algorithms that are
more efficient than the corresponding learning algorithms. As observed
in [72], property testing is no harder than proper learning (where the
learning algorithm is required to output a hypothesis from the same
class of functions as the target function). Namely, if we have a proper
learning algorithm for a class of functions F , then we can use it as a
subroutine to test the property of membership in F .

We also note that property testing is related to hypothesis testing
(see e.g., [101, Chap. 8]). For a short discussion of this relation, see the
introduction of [121].

1.5 Organization of this Survey

In this monograph we have chosen to present results in property testing
with an emphasis on analysis techniques and algorithmic techniques.
Specifically:

• In Section 3 we discuss results whose analysis follows the
Self-correcting approach (e.g., testing linearity), and mention
several implications of this approach.

• In Section 4 we discuss results whose analysis follows the
enforce-and-test approach (e.g., testing bipartiteness in the
dense-graphs model). In many cases this approach implies
that the testing algorithm can be transformed into an effi-
cient approximate optimization algorithm (as discussed in
Section 1.3).

• The approach of Testing by Implicit Learning , whose appli-
cation leads to efficient testing of many function classes (e.g.,
DNF formula with a bounded number of terms), is described
in Section 5.

• The Regularity Lemma of Szemerédi [124], which is a very
important tool in the analysis of testing algorithms in the
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dense-graphs model, is presented in Section 6, together with
its application to testing triangle-freeness (in this model).

• In Section 7 we discuss algorithms for testing properties of
sparse graphs that are based on local search.

• The use of random walks by testing algorithms for properties
of sparse graphs is considered in Section 8.

• In Section 9 we present two examples of lower bound proofs
for property testing algorithms, so as to give a flavor of the
type of arguments used in such proofs.

• A small selection of other families of results, which did not fit
naturally in the previous sections (e.g., testing monotonicity
of functions), is discussed in Section 10.

• We conclude the monograph in Section 11 with a discussion
of several extensions and generalizations of property testing
(e.g., tolerant testing).

1.6 Related Surveys

There are several surveys on property testing ([58, 69, 120], and the
more recent [121]), which have certain overlaps with the current sur-
vey. In particular, the recent survey [121] of the current author presents
property testing from a learning theory perspective. Thus, the empha-
sis in that survey is mainly on testing properties of functions (that is,
testing for membership in various function classes). Though the per-
spective taken in the current monograph is different, there are naturally
several results that appear in both articles, possibly with different levels
of detail.

For the broader context of sublinear-time approximation algorithms
see [104, 47]. For a survey on Streaming (where the constraint is sub-
linear space rather than time), see [107].



2
Preliminaries

2.1 Basic Definitions and Notations

For any positive integer k, let [k] = {1, . . . ,k}. For a string x =
x1, . . . ,xn ∈ {0,1}n, we use |x| to denote the number of indices i such
that xi = 1. We use “·” to denote multiplication (e.g., a · b) whenever
we believe that it aids readability.

Since many of the results we survey deal with testing properties of
functions (or functional representations of objects, such as graphs), we
start with several definitions and notations pertaining to functions.

For two functions f,g : X → R over a finite domain X we let

dist(f,g) def= Prx∈X [f(x) �= g(x)] (2.1)

denote the distance between the functions, where the probability is
taken over a uniformly selected x ∈ X.

When we use the term “with high probability”, we mean with prob-
ability at least 1 − δ for a small constant δ. When the claim is for higher
success probability (e.g., 1 − poly(1/n) where n is the input size), then
this is stated explicitly. When considering the probability of a certain
event we usually denote explicitly over what the probability is taken

84
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(e.g., Prx∈X [f(x) �= g(x)]), unless it is clear from the context (in which
case we may write Pr[f(x) �= g(x)]).

Let P be a property of functions (from domain X to range R). That
is, P defines a subset of functions, and so we shall use the notation g ∈ P
to mean that function g has the property P. For a function f : X → R

we define

dist(f,P) def= min
g∈P

{dist(f,g)}, (2.2)

where there may be more than one function g that attains the minimum
on the right-hand side. If dist(f,P) = ε, then we shall say that f is at
distance ε from (having) P (or has distance ε to P).

Definition 2.1 (Testing (Function Properties)). A testing algo-
rithm for property P (of functions from domain X to range R) is
given a distance parameter ε and query access to an unknown function
f : X → R.

• If f ∈ P then the algorithm should accept with probability
at least 2/3; and

• If dist(f,P) > ε then the algorithm should reject with prob-
ability at least 2/3.

We shall be interested in bounding both the query complexity and the
running time of the testing algorithm. In some cases our focus will be
on the query complexity, putting aside the question of time-complexity.
We observe that the choice of a success probability of 2/3 is arbitrary
and can clearly be improved to 1 − δ, for any δ > 0 at a multiplicative
cost of log(1/δ) in the complexity of the algorithm. We say that a
testing algorithm has one-sided error if it accepts every f ∈ P with
probability 1. Otherwise, it has two-sided error .

One may consider variations of the abovementioned notion of test-
ing. In particular, the underlying distribution (which determines the
distance in Equation (2.1), and hence in Equation (2.2)) may be an
arbitrary and unknown distribution (rather than the uniform distri-
bution). We refer to this as distribution-free testing, and discuss it in
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Section 11.1. Another variant requires that testing be performed based
on random (uniform) examples alone; that is, queries cannot be per-
formed. We shall not discuss this variant in the current survey (and
there are actually only few positive results known in this model [100]).

2.2 Testing Graph Properties

Much of the work in property testing deals with testing properties of
graphs, where several models have been studied. The first two models,
described next, correspond to representations of graphs as functions,
and hence essentially coincide with Definition 2.1. In all that fol-
lows, the number of graph vertices is denoted by n. Unless stated oth-
erwise, we consider undirected, simple graphs (that is, with no multiple
edges and no self-loops). For a vertex v we let Γ(v) denote its set of
neighbors, and we let deg(v) = |Γ(v)| denote its degree.

2.2.1 The Dense-Graphs (Adjacency-Matrix) Model

The first model, introduced in [72], is the adjacency-matrix model.
In this model the algorithm may perform queries of the form: “is
there an edge between vertices u and v in the graph?” That is, the
algorithm may probe the adjacency matrix representing the tested
graph G = (V (G),E(G)), which is equivalent to querying the function
fG : V × V → {0,1}, where fG(u,v) = 1 if and only if (u,v) ∈ E. We
refer to such queries as vertex-pair queries. The notion of distance is
also linked to this representation: A graph is said to be ε-far from having
property P if more than εn2 edge modifications should be performed
on the graph so that it obtains the property. We note that since each
edge appears twice in the functional representation (and there are no
self-loops), to be exactly consistent with the functional view point, we
should have said that a graph is ε-far from having P if more than ε

(
n
2

)
edge modifications have to be be performed so that the graph obtains
the property. However, it will be somewhat simpler to work with the
slightly different definition given here. This model is most suitable for
dense graphs in which the number of edges m is Θ(n2). For this reason
we shall also refer to it as the dense-graphs model.
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2.2.2 The Bounded-Degree (Incidence-Lists) Model

The second model, introduced in [76], is the bounded-degree incidence-
lists model. In this model, the algorithm may perform queries of the
form: “who is the i-th neighbor of vertex v in the graph?” That is, the
algorithm may probe the incidence lists of the vertices in the graph,
where it is assumed that all vertices have degree at most d for some
fixed degree-bound d. This is equivalent to querying the function fG :
V × [d] → V ∪ {Γ} that is defined as follows: For each v ∈ V and i ∈ [d],
if the degree of v is at least i then fG(v, i) is the i-th neighbor of v

(according to some arbitrary but fixed ordering of the neighbors), and
if v has degree smaller than i, then fG(v, i) = Γ. We refer to these
queries as neighbor queries.

Here too the notion of distance is linked to the representation:
A graph is said to be ε-far from having property P if more than εdn

edge modifications should be performed on the graph so that it obtains
the property. In this case ε measures the fraction of entries in the
incidence lists representation (the domain of fG, which has size dn),
that should be modified. This model is most suitable for graphs with
m = Θ(dn) edges; that is, whose maximum degree is of the same order
as the average degree. In particular, this is true for sparse graphs
that have constant degree. We shall refer to it in short either as the
bounded-degree model or as the incidence-lists model.

2.2.3 The Sparse-Graphs Model and the
General-Graphs Model

In [112] it was first suggested to decouple the questions of represen-
tation and type of queries allowed from the definition of distance to
having a property. Specifically, it was suggested that distance be mea-
sured simply with respect to the number of edges, denoted m, in the
graph (or an upper bound on this number). Namely, a graph is said to
be ε-far from having a property, if more than εm edge modifications
should be performed so that it obtains the property. In [112] (where the
focus was on sparse graphs), the algorithm is allowed the same type of
queries as in the bounded-degree incidence-lists model, and it can also
query the degree of any given vertex.
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The main advantage of the [112] model over the bounded-degree
incidence-lists model is that it is suitable for sparse graphs whose
degrees may vary significantly. Hence we refer to it as the sparse-graphs
model. We note that while it may seem that the sparse-graphs model
is (strictly) more general than the bounded-degree model, this is not
exactly true. The reason is that for some properties a graph may be
far from having the property in the bounded-degree model but close to
having it in the sparse-graphs model because it is far from any graph
that has the property and has degree at most d, but is close to a graph
that has the property but doesn’t have the degree limitation.

More generally, when the graph is not necessarily sparse (and not
necessarily dense), we may allow vertex-pair queries in addition to
neighbor queries and degree queries. This model was first studied by
Kaufman et al. [96], and is referred to as the general-graphs model.



3
The Self-correcting Approach

Recall that the goal of a testing algorithm for a particular property P
is to distinguish between the case that the tested object (function f)
has the property P and the case that it is far from any function that
has P. To this end many testing algorithms run several independent
executions of some local test. For example, in the case of linearity, the
algorithm tests whether f(x) + f(y) = f(x + y) for uniformly selected
pairs x and y in the domain of f . The local tests are such that if the
function has the property, then they always pass. In order to show that
the testing algorithm rejects (with high constant probability) functions
that are far from having the property, the contrapositive statement is
established. Namely, that if the testing algorithm accepts a function f

with sufficiently large constant probability (that is, the probability that
a random local test doesn’t pass is sufficiently low), then f is close to
having the property.

For linearity and several other properties, this is done by defining a
self-corrected version of f . The self-corrected version is defined based
on the values of f (hence the usage of self ), and the local tests. For
example in the case of linearity, the self-corrected version, gf (·), is such
that gf (x) is the majority (or plurality) value of f(x + y) − f(y), taken

89
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over all points y in the domain. Showing that gf is close to f tends to
be relatively easy, and the crux of the proof is in showing that gf indeed
has the tested property (e.g., is a linear function).

A coding-theory perspective. The results described in this section
also have an interpretation from the point of view of coding theory.
Namely, each of the properties (function classes) corresponds to a code
(or family of codes): The Hadamard code, Reed–Solomon codes, Reed–
Muller codes, and Generalized Reed–Muller codes, respectively. If we
view functions as words (e.g., for the domain {0,1}n, the word is of
length 2n), then the test distinguishes between codewords and words
that are ε-far from every codeword. This is referred to as local testing
of codes (see, e.g., [70]). Taking this point of view, the self-corrected
version of a word that is not too far from being a codeword corresponds
to the closest codeword.

3.1 Linearity

For the sake of simplicity we consider functions from {0,1}n to {0,1}.
The result extends to functions f : G → H, where G and H are groups.
Thus, here addition is modulo 2, and for x,y ∈ {0,1}n, x + y is the
bitwise sum (XOR) of the two strings, that is, it is the string z ∈ {0,1}n

such that zi = xi + yi. For the sake of simplicity, here when we say
“linear functions” we mean linear functions that do not have a free term
(as defined next). In order to allow a free term, the test (Algorithm 3.1)
should be slightly modified. Thus, strictly speaking, the algorithm is
actually a homomorphism testing algorithm.

Definition 3.1 (Linearity). We say that f : {0,1}n → {0,1} is a lin-
ear function if there exist coefficients b1, . . . , bn ∈ {0,1} such that for
x = x1, . . . ,xn ∈ {0,1}n, f(x) =

∑n
i=1 bixi. In other words, there exists

a subset S ⊆ {1, . . . ,n} such that f(x) =
∑

i∈S xi.

Linearity testing is essentially the first property testing problem
studied, though the term “Property Testing” was not yet explic-
itly defined at the time. Linearity testing was first studied by
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Blum et al. [35] in the context of Program Testing . Namely, they were
interested in designing algorithms (program-testers) that, given access
to a program that is supposed to compute a particular function f , dis-
tinguish between the case that the program computes f correctly on
all inputs and the case that it errs on at least a certain fraction ε of
the domain elements. The program-tester should be much simpler than
the program itself, and is typically based on calls to the program and
some basic operations on the resulting outputs.

In the case of testing whether a program computes a particular
linear function, the program-tester first distinguishes between the case
that the program computes some linear function and the case that the
function it computes is far from any linear function. That is, it first
performs property testing of linearity. The starting point of the BLR
test is the following characterization of linear functions, which is not
hard to verify (and some would actually use it as a definition of linear
functions).

Fact 3.1. A function f : {0,1}n → {0,1} is linear if and only if f(x) +
f(y) = f(x + y) for every x,y ∈ {0,1}n.

The BLR test is given in Figure 3.1.
Before we prove the correctness of the algorithm, we remark on its

complexity: the algorithm performs only O(1/ε) queries. In particu-
lar, its query complexity is independent of n. This is in contrast to
the query complexity of any learning algorithm for the class of linear

Algorithm 3.1: Linearity Test

1. Repeat the following Θ(1/ε) times.

(a) Uniformly and independently select x,y ∈ {0,1}n.

(b) If f(x) + f(y) �= f(x + y) then output reject (and
exit).

2. If no iteration caused rejection then output accept.

Fig. 3.1 The BLR linearity testing algorithm.
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(parity) functions, which is Ω(n). This is true simply because every
two linear functions have distance 1/2 between them (under the uni-
form distribution), and a linear function is not uniquely determined by
fewer than n labeled points. We note that the difference in the running
time between testing and learning is less dramatic (linear in n versus
quadratic in n), since the testing algorithm reads all n bits of each
sampled string.

Theorem 3.1. Algorithm 3.1 is a one-sided error testing algorithm for
linearity. Its query complexity is O(1/ε).

Let L denote the class of linear functions over {0,1}n. By Fact 3.1,
Algorithm 3.1 accepts every function f ∈ L with probability 1. We turn
to proving that if dist(f,L) > ε then the algorithm rejects with prob-
ability at least 2/3. Let εL(f) denote the distance of f to being lin-
ear. Namely, if we let L denote the set of all linear functions, then
εL(f) def= dist(f,L). We would like to prove that for every given ε > 0, if
ε > εL(f), then the probability that the test rejects is at least 2/3. This
will follow from showing that if the constraint f(x) + f(y) = f(x + y)
is violated for relatively few pairs (x,y), then f is close to some lin-
ear function. In other words (using the terminology of [35, 123]), the
characterization provided by Fact 3.1 is robust . To this end we define:

η(f) def= Prx,y[f(x) + f(y) �= f(x + y)], (3.1)

where in Equation (3.1) and elsewhere in this subsection, the probabil-
ity is taken over a uniform choice of points in {0,1}n. That is, η(f) is
the probability that a single iteration of Algorithm 3.1 “finds evidence”
that f is not a linear function. We shall show that η(f) ≥ εL(f)/c for
some constant c ≥ 1 (this can actually be shown for c = 1 but the proof
uses Discrete Fourier analysis [29] while the proof we show builds on
first principles). It directly follows that if εL(f) > ε and the number of
iterations is at least 2c/ε, then the probability that the test rejects is
at least

1 − (1 − η(f))2c/ε > 1 − e−2cη(f)/ε ≥ 1 − e−2 > 2/3, (3.2)

thus establishing Theorem 3.1.
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Somewhat unintuitively, showing that η(f) ≥ εL(f)/c is easier if
εL(f) is not too large. Specifically, it is not hard to prove the following
claim.

Claim 3.2. For every function f it holds that η(f) ≥ 3εL(f)(1 −
2εL(f)). In particular, if εL(f) ≤ 1

4 then η(f) ≥ 3
2ε(f) (and more gener-

ally, if η(f) = 1
2 − γ for γ > 0, then η(f) ≥ 6γεL(f), which gives a weak

bound as η(f) approaches 1/2).

It remains to prove that even when εL(f) is not bounded away
(from above) from 1/2 then still η(f) ≥ εL(f)/c for a constant c. To
this end we define the following majority function: for each fixed choice
of x ∈ {0,1}n,

gf (x) =
{

0 if Pry[f(x + y) − f(y) = 0] ≥ 1/2
1 otherwise.

(3.3)

Let

V f
y (x) def= f(x + y) − f(y) = f(y) + f(x + y) (3.4)

be the Vote that y casts on the value of x. By the definition of gf (x)
it is the majority vote taken over all y. Note that if f is linear then
V f

y (x) = f(x) for every y ∈ {0,1}n.
We shall prove two lemmas, stated next.

Lemma 3.3. dist(f,gf ) ≤ 2η(f).

Lemma 3.4. If η(f) ≤ 1
6 then gf is a linear function.

By combining Lemmas 3.3 and 3.4 we get that η(f) ≥ 1
6εL(f). To

see why this is true, observe first that if η(f) > 1
6 , then the inequality

clearly holds because εL(f) ≤ 1. (In fact, since it can be shown that
εL(f) ≤ 1/2 for every f , we actually have that η(f) ≥ 1

3εL(f).) Other-
wise (η(f) ≤ 1

6), since gf is linear and dist(f,gf ) ≤ 2η(f), we have that
εL(f) ≤ dist(f,gf ) ≤ 2η(f), so that η(f) ≥ εL(f)/2, and we are done.



94 The Self-correcting Approach

Since gf is defined only based on f (and it is a linear function close
to f), we view it as the self-corrected version of f (with respect to
linearity).

Proof of Lemma 3.3. Let ∆(f,gf ) = {x : gf (x) �= f(x)} be the set
of points on which f and gf differ. By the definition of gf (x), it is the
majority value of V f

y (x) taken over all y. Hence, for every fixed choice
of x ∈ ∆(f,gf ) we have that Pry[V

f
y (x) �= f(x)] ≥ 1/2. Therefore,

Prx,y[f(x) �= V f
y (x)] ≥ Prx[x ∈ ∆(f,gf )]

·Pry[f(x) �= V f
y (x) |x ∈ ∆(f,gf )]

≥ 1
2
Prx[gf (x) �= f(x)]. (3.5)

Since Prx,y[f(x) �= V f
y (x)] = η(f), it must hold that Prx[gf (x) �=

f(x)] ≤ 2η(f).

Proof of Lemma 3.4. In order to prove this lemma, we first prove
the next claim.

Claim 3.5. For every x ∈ {0,1}n it holds that Pry[gf (x) = V f
y (x)] ≥

1 − 2η(f).

Note that by the definition of gf as the “majority-vote function”,
Pry[gf (x) = V f

y (x)] ≥ 1
2 . Claim 3.5 says that the majority is actually

“stronger” (for small η(f)).

Proof. Fixing x, let p0(x) = Pry[V
f
y (x) = 0], and let p1(x) =

Pry[V
f
y (x) = 1]. We are interested in lower bounding pgf (x)(x),

where, by the definition of gf , pgf (x)(x) = max{p0(x),p1(x)}. Now,

pgf (x)(x) = pgf (x)(x) · (p0(x) + p1(x)) ≥ (p0(x))2 + (p1(x))2 . (3.6)

Since (p0(x))2 + (p1(x))2 = Pry,z[V
f
y (x) = V f

z (x)], in order to lower
bound pgf (x)(x), it suffices to lower bound Pry,z[V

f
y (x) = V f

z (x)], which
is what we do next. In what follows we shall use the fact that the range
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of f is {0,1}.

Pry,z[V f
y (x) = V f

z (x)]

= Pry,z[V f
y (x) + V f

z (x) = 0]

= Pry,z[f(y) + f(x + y) + f(z) + f(x + z) = 0]

= Pry,z[f(y) + f(x + z) + f(y + x + z)

+f(z) + f(x + y) + f(z + x + y) = 0]

≥ Pry,z[f(y) + f(x + z) + f(y + x + z) = 0

∧f(z) + f(x + y) + f(z + x + y) = 0]

= 1 − Pry,z[f(y) + f(x + z) + f(y + x + z) = 1

∨f(z) + f(x + y) + f(z + x + y) = 1]

≥ 1 − (Pry,z[f(y) + f(x + z) + f(y + x + z) = 1]

+Pry,z[f(z) + f(x + y) + f(z + x + y) = 1])

= 1 − 2η(f).

In order to complete the proof of Lemma 3.4, we show that for any
two given points a,b ∈ {0,1}n, gf (a) + gf (b) = gf (a + b). We prove this
by the probabilistic method. Specifically, we show that there exists a
point y for which the following three equalities hold simultaneously:

(1) gf (a) = f(a + y) − f(y) (= V f
y (a)).

(2) gf (b) = f(b + (a + y)) − f(a + y) (= V f
a+y(b)).

(3) gf (a + b) = f(a + b + y) − f(y) (= V f
y (a + b)).

But in such a case,

gf (a) + gf (b) = f(b + a + y) − f(y) = gf (a + b), (3.7)

and we are done. To see why there exists such a point y, consider
selecting y uniformly at random. For each of the above three equalities,
by Claim 3.5, the probability that the equality does not hold is at most
2η(f). By the union bound, the probability (over a uniform selection
of y) that any one of the three does not hold is at most 6η(f). Since
η(f) < 1/6, this is bounded away from 1, and so the probability that
there exists a point y for which all three equalities hold simultaneously
is greater than 0, implying that such a point y indeed exists.
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3.1.1 Self-correction in Its Own Right

In the foregoing discussion we presented self-correction as an analysis
technique. However, the argument introduced directly implies that if
f is not too far from being linear, then it can be constructively self-
corrected (which was also a task studied in [35]). Namely, for any x of
our choice, if we want to know the value, on x, of the linear function
closest to f (or, in the coding theory view, we want to know the correct
bit in the position corresponding to x in the closest codeword), then we
do the following. We select, uniformly at random, y1, . . . ,yt and take the
majority vote of V f

y1(x), . . . ,V f
yt(x) (where the choice of t determines the

probability that the majority is correct). The fact that self-correction
can be done constructively has several implications, which we discuss
in Section 3.3.

3.2 Low-Degree Polynomials

Self-correcting is also applied in several results on testing low-degree
polynomials over finite fields [11, 66, 92, 98, 123]. Consider first
the univariate case, that is, testing whether a function f : F → F

for a finite field F is of the form f(x) =
∑d

i=0 Cf
i xi for a given

degree-bound d (where the coefficients Cf
i belong to F ). In this case,

the testing algorithm [123] works by simply trying to interpolate the
function f on Θ(1/ε) collections of d + 2 uniformly selected points,
and checking whether the resulting functions are all polynomial of
degree at most d. Thus the algorithm essentially works by trying to
learn the function f (and the interpolated function obtained is the
self-corrected version of f).1

When dealing with the more general case of multivariate polynomi-
als, the results vary according to the relation between the size of the
field |F | and the degree-bound d. In what follows we give the high-level
idea of the results, and note where self-correcting comes into play.

1 In fact, a slightly more efficient version of the algorithm would select d + 1 arbitrary
points, find (by interpolating), the unique polynomial gf of degree d that agrees with f
on these points, and then check that gf agrees with f on an additional sample of Θ(1/ε)
uniformly selected points.
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The case of large fields. In the first result, of Rubinfeld and
Sudan [123] (which builds in part on [66]), it is assumed that |F | ≥
d + 2 (and that F is a prime field). The idea of the algorithm is to
select random lines in Fn, and to verify that the restriction of f to
each line is a (univariate) polynomial of degree at most d. To be precise,
the algorithm does not query all points on the line, but rather d + 2
evenly spaced points of the form f(x + i · y) (for uniformly selected
x,y ∈ Fn), and verifies that they obey a certain linear constraint.

Here the self-corrected version of f (denoted gf ) is defined (for each
x ∈ Fn) as the plurality value taken over all y ∈ Fn of the vote V f

y (x)
of y on the value of x. This vote is the value that f(x) “should have”,
so that the restriction of f to the line defined by x and y will indeed
be a univariate polynomial of degree at most d (conditioned on the
values that f has on x + i · y for i �= 0). This value is simply a linear
combination of f(x + i · y) for 1 ≤ i ≤ d + 1. Similarly to the analysis
of the linearity testing algorithm, it is shown that if the test accepts
with sufficiently high probability, then gf is a polynomial of degree at
most d and is close to f .

Small fields and the general case. The case that |F | < d + 2 was
first studied by Alon et al. [11] for the special case of |F | = 2 (which
corresponds to the well-known Reed–Muller codes), and was later gen-
eralized to |F | > 2 in [98, 92] (where the two works, [98] and [92], differ
somewhat in the scope and the techniques). A main building block of
the analysis of the general case in [98] is the following characterization
of degree-d multivariate polynomials over finite fields.

Theorem 3.6. Let F = GF(q) where q = ps and p is prime. Let d

be an integer, and let f : Fn → F . The function f is a polynomial of
degree at most d if and only if its restriction to every affine subspace
of dimension � =

⌈
d+1

q−q/p

⌉
is a polynomial of degree at most d.

Theorem 3.6 generalizes the characterization result of Friedl and
Sudan [66] (on which the aforementioned algorithm of [123] builds)
which refers to the case q − q/p ≥ d + 1. That is, the size of the field
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F is sufficiently larger than the degree d, and the affine subspaces con-
sidered are of dimension � = 1.

The testing algorithm of [98] utilizes the characterization in Theo-
rem 3.6 (which is shown to be robust). Specifically, the algorithm selects
random affine subspaces (of dimension � as defined in Theorem 3.6),
and checks that the restriction of the function f to each of the selected
subspaces is indeed a polynomial of degree at most d. Such a check is
implemented by verifying that various linear combinations of the val-
ues of f on the subspace sum to 0. Here too the self-corrected version
of f , gf , is defined for each x ∈ Fn as the plurality value of a certain
vote. In this case the vote is taken over all �-tuples y1, . . . ,y�, which are
linearly independent points in Fn. Each such tuple, together with x,
determines an affine subspace of dimension �, and the vote is the value
that f(x) “should have” so that the restriction of f to the subspace be
a polynomial of degree at most d (conditioned on the values of f on
the other points in the subspace).

The query complexity and running times of the above algorithms
depend on the relation between |F | and d. Roughly speaking, for any
degree d, as the field size |F | increases, the complexity decreases from
being exponential in d (e.g., when |F | = 2) to being polynomial in d

when F is of the same order as d (or larger). This behavior can be shown
to be fairly tight by almost matching lower bounds. More details on
these algorithms and their analyses can be found in [121, Section 3].

Extending the results for testing low-degree polynomials.
The testability of low-degree polynomials was significantly extended by
Kaufman and Sudan [99]. Using invariance properties of algebraic func-
tion classes, they give sufficient conditions for efficient testing. These
conditions imply previously known results as well as new ones (e.g., sub-
families of polynomials with degree that is linear in n). Self-correcting
plays a role in their analysis as well.

Other techniques for testing algebraic properties. One of the
analysis techniques that was used early on in the study of testing lin-
earity by Bellare et al. [29] is Fourier analysis. Bellare et al. [29] reveal
a relation between the Fourier coefficients of (an appropriate transfor-
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mation of) a function f and its distance to linearity as well as a relation
between these coefficients and the probability that the BLR test [35]
rejects f . Using these relations they gain better understanding of the
behavior of the linearity test.

Another technique that was applied more recently by Kaufman and
Litsyn [97] for testing certain families of “almost-orthogonal” codes
(e.g., dual-BCH) is the weight distribution (spectrum) of a code and its
dual.

3.3 Implications of Self-correction

3.3.1 Self-correcting and Distribution-Free testing

One interesting implication of self-correction is in the context
of distribution-free testing . In distribution-free testing there is an
unknown underlying distribution D over the domain X, and distance
is defined with respect to this distribution. That is, for two functions
f,g : X → R we let

distD(f,g) def= Prx∼D[f(x) �= g(x)], (3.8)

and for a function f : X → R and a property (family of functions) P
we let

distD(f,P) def= min
g∈P

{distD(f,g)}. (3.9)

As in the “standard” definition of testing (when the underlying distri-
bution is uniform), the algorithm is given query access to the tested
function f . In addition, the algorithm is given access to examples x ∈ X

distributed according to D. The algorithm should still accept with prob-
ability at least 2/3 if2 f ∈ P, but now it should reject (with probability
at least 2/3) if distD(f,P) > ε.

The notion of distribution-free testing was introduced in [72]. How-
ever, in that paper it was only observed that distribution-free (proper)
learning implies distribution-free testing. Other than that, in [72] there

2 An alternative definition would require that the algorithm accept (with high probability)
if distD(f,P) = 0. We adopt the requirement that f ∈ P since the known results are under
this definition.
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were only negative results about distribution-free testing of graph prop-
erties, which have very efficient standard testing algorithms (that is,
that work under the uniform distribution). The first positive results
for distribution-free testing (with queries) were given by Halevy and
Kushilevitz [81, 84]. Here we describe their general result for obtaining
distribution-free testing algorithms from standard testing algorithms
when the function class has a (property) self-corrector.

Halevy and Kushilevitz introduce the notion of a property self-
corrector , which generalizes the notion of a self-corrector, introduced
by Blum et al. [35].

Definition 3.2. A γ-self-corrector for a class of functions F is a prob-
abilistic oracle machine M , which is given oracle access to an arbitrary
function f : X → R and satisfies the following conditions (where Mf

denotes the execution of M when given oracle access to f):

• If f ∈ F then Pr[Mf (x) = f(x)] = 1 for every x ∈ X.
• If there exists a function g ∈ F such that dist(f,g) ≤ γ, then

Pr[Mf (x) = g(x)] ≥ 2/3 for every x ∈ X.

In this definition, the distance (i.e., the measure dist(·, ·)) is defined
with respect to the uniform distribution. However, it will be useful
for distribution-free testing (when the distance (distD(·, ·)) is measured
with respect to some fixed but unknown distribution (D)). Observe that
the second condition in Definition 3.2 implies that g must be unique.

Theorem 3.7. Let F be a class of functions that has a standard test-
ing algorithm T and a γ-self-corrector M . Let QT (·) be the query com-
plexity of T (as a function of the distance parameter ε) and let QM be
the query complexity of M (that is, the number of queries performed in
order to determine Mf (x)). Then there exists a distribution-free testing
algorithm for F with query complexity O(QT (min{ε,γ}) + QM/ε).

In Figure 3.2 we give the distribution-free testing algorithm referred to
in Theorem 3.7. We assume that the distance parameter ε is smaller
than γ (or else we set ε to γ).
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Algorithm 3.2: Distribution-free test based
on self-correction

1. Run the standard testing algorithm T on f , 24 (indepen-
dent) times with the distance parameter ε. If T outputs
reject in at least half of these executions then halt and out-
put reject.

2. Repeat 2/ε times:

(a) Sample a point x ∈ X according to the underlying
distribution D.

(b) Repeat twice: Compute Mf (x) and query f(x). If
Mf (x) �= f(x) then output reject (and exit).

3. If no iteration caused rejection then output accept.

Fig. 3.2 The distribution-free testing algorithm that is based on self-correction.

Proof of Theorem 3.7. Clearly, the query complexity of Algo-
rithm 3.2 is as stated in Theorem 3.7. Hence we turn to proving its
correctness. Consider first the case that f ∈ F . In such a case the stan-
dard testing algorithm T should accept with probability at least 2/3,
and the probability that it rejects in at least half of its 24 indepen-
dent executions is less than 1/3. Assume such an event did not occur.
By the first condition in Definition 3.2, for every x ∈ X, we have that
Mf (x) = f(x) with probability 1. Hence the second step of the algo-
rithm never causes rejection. It follows that the algorithm accepts with
probability at least 2/3. (Note that if T has one-sided error then so
does Algorithm 3.2.)

In what follows, in order to distinguish between the case that dis-
tance is measured with respect to the uniform distribution and the case
that it is measured with respect to the underlying distribution D, we
shall use the terms (ε,U)-close (or far) and (ε,D)-close (or far), respec-
tively. Assume now that f is (ε,D)-far from F . If f is also (ε,U)-far
from F then it is rejected by T with probability at least 2/3, and is
therefore rejected by the algorithm in its first step with probability at
least 2/3. Hence assume that f is (ε,U)-close to F .



102 The Self-correcting Approach

In such a case, by the second condition in Definition 3.2, for every
x ∈ X, Pr[Mf (x) = g(x)] ≥ 2/3, where g is a fixed function in F that is
(γ,U)-close to f and the probability is taken over the internal coin flips
of M (recall that ε ≤ γ so such a function g exists). In particular, for any
point x such that f(x) �= g(x) we have that Pr[Mf (x) �= f(x)] ≥ 2/3.
Thus, if in one of the (2/ε) iterations of the second step of the algorithm
we obtain such a point x, then the algorithm rejects with probability at
least 1 − (1/3)2 = 8/9 (since it computes Mf (x) twice). But since f is
(ε,D)-far from F , for every function h ∈ F , we have that Prx∼D[f(x) �=
h(x)] > ε, and in particular this is true of g. Hence the probability that
the algorithm does not obtain any point x for which f(x) �= g(x) is at
most (1 − ε)2/ε < exp(−2) < 1/6. It follows that the algorithm rejects
with probability at least 1 − (1/9 + 1/6) > 2/3, as required.

In particular, Theorem 3.7 can be applied to obtain distribution-free
property testing algorithms for all properties described in this section.
Other properties (function classes) include singletons (since they are a
subclass of the class of linear functions), and k-juntas (since they are
a subclass of degree-k multivariate polynomials).

3.3.2 Self-correcting and Testing Subclasses of Functions

Two other (related) results that build on self-correcting are testing
singletons (also known as dictator functions) and testing monomials.

Definition 3.3 (Singletons and Monomials). A function f :
{0,1}n → {0,1} is a singleton function if there exists an i ∈ [n] such
that f(x) = xi for every x ∈ {0,1}n or f(x) = x̄i for every x ∈ {0,1}n.

We say that f is a monotone k-monomial for 1 ≤ k ≤ n if there exist
k indices i1, . . . , ik ∈ [n] such that f(x) = xi1 ∧ ·· · ∧ xik for every x ∈
{0,1}n. If we allow some of the xij s above to be replaced with x̄ij , then
f is a k-monomial. The function f is a monomial if it is a k-monomial
for some 1 ≤ k ≤ n.

Here we describe the algorithm for testing singletons and explain how
self-correcting comes into play. The testing algorithm for k-monomials
generalizes the algorithm for testing singletons and also builds on
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self-correcting. We actually describe an algorithm for testing whether
a function f is a monotone singleton. In order to test whether f is
a singleton we can check whether either f or f̄ passes the monotone
singleton test. For the sake of succinctness, in what follows we refer to
monotone singletons simply as singletons.

For x,y ∈ {0,1}n we shall use x ∧ y to denote the bitwise “AND”
of the two strings. That is, z = x ∧ y satisfies zi = xi ∧ yi for every
1 ≤ i ≤ n.

The following characterization of monotone k-monomials motivates
our algorithm.

Lemma 3.8. Let f : {0,1}n → {0,1}. The function f is a monotone
k-monomial if and only if the following two conditions hold:

(1) Pr[f(x) = 1] = 1
2k ; and

(2) f(x ∧ y) = f(x) ∧ f(y) for all x,y ∈ {0,1}n.

In what follows we shall say that a pair of points x,y ∈ {0,1}n are
violating with respect to f if f(x ∧ y) �= f(x) ∧ f(y).

Proof. If f is a k-monomial then clearly the conditions hold. We turn
to prove the other direction. We first observe that the two conditions
imply that f(x) = 0 for all |x| < k, where |x| denotes the number of ones
in x. In order to verify this, assume in contradiction that there exists
some x such that |x| < k but f(x) = 1. Now consider any y such that
yi = 1 whenever xi = 1. Then x ∧ y = x, and therefore f(x ∧ y) = 1.
But by the second item, since f(x) = 1, it must also hold that f(y) = 1.
However, since |x| < k, the number of such points y is strictly greater
than 2n−k, contradicting the first item.

Next let F1
def= {x : f(x) = 1}, and let y =

∧
x∈F1

x. Using the second
item in the claim we get:

f(y) = f

 ∧
x∈F1

x

 =
∧

x∈F1

f(x) = 1 . (3.10)

However, we have just shown that f(x) = 0 for all |x| < k, and thus
|y| ≥ k. Hence, there exist k indices i1, . . . , ik such that yij = 1 for all 1 ≤
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j ≤ k. But yij =
∧

x∈F1
xij . Hence, xi1 = . . . = xik = 1 for every x ∈ F1.

The first item now implies that f(x) = xi1 ∧ . . . ∧ xik for every x ∈
{0,1}n.

Given Lemma 3.8, a natural candidate for a testing algorithm for
singletons would take a sample of uniformly selected pairs (x,y), and for
each pair verify that it is not violating with respect to f . In addition, the
test would check that Pr[f(x) = 0] is roughly 1/2 (or else any monotone
k-monomial would pass the test). As shown in [116], the correctness of
this testing algorithm can be proved as long as the distance between
f and the closest singleton is bounded away from 1/2. It is an open
question whether this testing algorithm is correct in general.

We next describe a modified version of this algorithm, which con-
sists of two stages. In the first stage, the algorithm tests whether f

belongs to (is close to) a more general class of functions (that contains
all singleton functions). In the second stage it applies a slight variant
of the original test (as described in the previous paragraph). Specifi-
cally, the more general class of functions is the class L of linear Boolean
functions over {0,1}n, which was discussed in Section 3.1. Clearly, every
singleton function f(x) = xi is a linear function. Hence, if f is a sin-
gleton function, then it passes the first stage of the test (the linearity
test) with probability 1. On the other hand, if it is far from any linear
function, then it will be rejected already by the linearity test. As we
shall see, if f is far from every singleton function, but it is close to some
linear function that is not a singleton function (so that it may pass the
linearity test), then we can prove that it will be rejected in the second
stage of the algorithm with high probability.

In order to motivate the modification we introduce in the afore-
mentioned “natural” singleton test, we state the following lemma and
discuss its implications.

Lemma 3.9. Let S ⊆ [n], and let gS(x) =
∑

i∈S xi (where the sum is
taken modulo 2). If |S| is even then

Prx,y[gS(x ∧ y) = gS(x) ∧ gS(y)] =
1
2

+
1

2|S|+1
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and if |S| is odd then

Prx,y[gS(x ∧ y) = gS(x) ∧ gS(y)] =
1
2

+
1

2|S| .

Proof. Let s = |S|, and let x,y be two strings such that (i) x has 0 ≤
i ≤ s ones in S, that is, |{� ∈ S : x� = 1}| = i; (ii) x ∧ y has 0 ≤ k ≤ i

ones in S; and (iii) y has a total of j + k ones in S, where 0 ≤ j ≤ s − i.
If gS(x ∧ y) = gS(x) ∧ gS(y), then either (1) i is even and k is even,

or (2) i is odd and j is even. Let Z1 ⊂ {0,1}n × {0,1}n be the subset of
pairs x,y that obey the first constraint, and let Z2 ⊂ {0,1}n × {0,1}n

be the subset of pairs x,y that obey the second constraint. Since the
two subsets are disjoint,

Prx,y[gS(x ∧ y) = gS(x) ∧ gS(y)] = 2−2n(|Z1| + |Z2|). (3.11)

It remains to compute the sizes of the two sets. Since the coordinates
of x and y outside S do not determine whether the pair x,y belongs to
one of these sets, we have

|Z1| = 2n−s · 2n−s ·
 s∑

i=0,i even

(
s

i

) i∑
k=0,k even

(
i

k

) s−i∑
j=0

(
s − i

j

)
(3.12)

and

|Z2| = 2n−s · 2n−s ·
 s∑

i=0,i odd

(
s

i

) i∑
k=0

(
i

k

) s−i∑
j=0,j even

(
s − i

j

) .

(3.13)
The right-hand side of Equation (3.12) equals

22n−2s · (22s−2 + 2s−1) = 22n−2 + 22n−s−1 = 22n · (2−2 + 2−(s+1)).
(3.14)

The right-hand side of Equation (3.13) equals 22n · (2−2 + 2−(s+1)) if s

is odd and 22n−2 if s is even. The lemma follows by combining Equa-
tions (3.12) and (3.13) with Equation (3.11).

Hence, if f is a linear function that is not a singleton and is not
the all-0 function, that is, f = gS for |S| ≥ 2, then the probability that
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a uniformly selected pair x,y is violating with respect to f is at least
1/8. In this case, a sample of 16 such pairs will contain a violating pair
with probability at least 1 − (1 − 1/8)16 ≥ 1 − e−2 > 2/3.

However, what if f passes the linearity test but is only close to being
a linear function? Let g denote the linear function that is closest to f

and let δ be the distance between them. (Note that g is unique, given
that f is sufficiently close to a linear function). What we would like
to do is check whether g is a singleton, by selecting a sample of pairs
x,y and checking whether it contains a violating pair with respect to g.
Observe that, since the distance between functions is measured with
respect to the uniform distribution, for a uniformly selected pair x,y,
with probability at least (1 − δ)2, both f(x) = g(x) and f(y) = g(y).
However, we cannot make a similar claim about f(x ∧ y) and g(x ∧ y),
since x ∧ y is not uniformly distributed. Thus, it is not clear that we can
replace the violation test for g with a violation test for f . In addition
we need to verify that g is not the all-0 function.

The solution is to use a self-corrector for linear functions, essentially
as defined in Definition 3.2. Namely, given query access to a function
f : {0,1}n → {0,1}, which is strictly closer than 1/4 to some linear func-
tion g, and an input x ∈ {0,1}n, the procedure Self-Correct(f,x) returns
the value of g(x), with probability at least 9/10. The query complexity
of the procedure is constant. The testing algorithm for singletons is
given in Figure 3.3.

Theorem 3.10. Algorithm 3.3 is a one-sided error testing algorithm
for monotone singletons. The query complexity of the algorithm is
O(1/ε).

Proof. Since the linearity testing algorithm has a one-sided error, if f is
a singleton function, then it always passes the linearity test. In this case
the self-corrector always returns the value of f on every given input
point. In particular, Self-Correct(f,�1) = f(�1) = 1, since every mono-
tone singleton has value 1 on the all-1 vector. Similarly, no violating
pair can be found in Step 3.3.2. Hence, Algorithm 3.3.2 always accepts
a singleton.
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Algorithm 3.3: Test for Singleton Functions

1. Apply the linearity test (Algorithm 3.1) to f with distance
parameter min(1/5, ε). If the test rejects then output reject
(and exit).

2. If Self-Correct(f,�1) = 0 (where �1 is the all-1 vector), then
output reject (and exit).

3. Uniformly and independently select m = 64 pairs of points
x,y.

• For each such pair, let bx = Self-Correct(f,x), by =
Self-Correct(f,y) and bx∧y = Self-Correct(f,x ∧
y).

4. Check that bx∧y = bx ∧ by.

(1) If one of the checks fails then output reject. Otherwise out-
put accept.

Fig. 3.3 The testing algorithm for singletons (that is based on self-correction).

Assume, without loss of generality, that ε ≤ 1/5. Consider the case
in which f is ε-far from any singleton. If it is also ε-far from any lin-
ear function, then it will be rejected with probability at least 9/10 in
the first step of the algorithm. Otherwise, there exists a unique linear
function g such that f is ε-close to g. If g is the all-0 function, then f

is rejected with probability at least 9/10 (in Step 3.3.2).
Otherwise, g is a linear function of at least two variables. By

Lemma 3.9, the probability that a uniformly selected pair x,y is a
violating pair with respect to g is at least 1/8. Given such a pair,
the probability that the self-corrector returns the value of g on all the
three calls (that is, bx = g(x), by = g(y), and bx∧y = g(x ∧ y)), is at least
(1 − 1/10)3 > 7/10. The probability that Algorithm 3.3.2 obtains a vio-
lating pair with respect to g and all calls to the self-corrector return the
correct value, is greater than 1/16. Therefore, a sample of 64 pairs will
ensure that a violation bx∧y �= bx ∧ by will be found with probability at
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least 9/10. The total probability that f is accepted, despite being ε-far
from any singleton, is hence at most 3 · (1/10) < 1/3.

The query complexity of the algorithm is dominated by the query
complexity of the linearity tester, which is O(1/ε). The second stage
takes constant time.



4
The Enforce-and-Test Approach

In order to introduce the idea of the “enforce-and-test” approach, we
start by giving a very simple example: testing whether a graph is a
biclique. We later present the slightly more involved analysis for the
more general problem of testing whether a graph is bipartite, and
shortly discuss other properties for which the enforce-and-test approach
is applied. We note that this approach was most commonly (though not
solely) applied when testing properties of graphs in the dense-graphs
model.

4.1 Testing Whether a Graph is a Biclique

A graph G = (V,E) is a biclique if there exists a partition (V1,V2)
of the graph vertices such that E = V1 × V2 (that is, V1 and V2 are
independent sets and there is a complete bipartite graph between V1

and V2). Recall that by the definition of the dense-graphs model, a
graph is ε-far from being a biclique (and hence should be rejected with
probability at least 2/3) if more than εn2 edge-modification (additions
and/or deletions) should be performed on the graph so that it becomes
a biclique. This is equivalent to saying that for every partition (V1,V2),
the size of the symmetric difference (E \ V1 × V2) ∪ (V1 × V2 \ E) is
greater than εn2.

109
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Consider the following algorithm. It first selects an arbitrary ver-
tex v0. It then uniformly and independently selects s = 2/ε pairs of
vertices (u1,w1), . . . ,(us,ws) and queries each pair (uj ,wj) as well as
(v0,uj) and (v0,wj). If the algorithm encounters evidence that the
graph is not a biclique (that is, for some 1 ≤ j ≤ s we have that (uj ,wj),
(v0,uj), and (v0,wj) are all edges or exactly one of them is an edge),
then it rejects. Otherwise it accepts. Since the algorithm only rejects
when it finds evidence that the graph is not a biclique, it accepts every
biclique with probability 1.

In order to prove if the tested graph is ε-far from being a biclique,
then the algorithm rejects it with probability at least 2/3, we do the
following. We view v0 as enforcing a partition of all graph vertices in the
following manner. On one side of the partition (V1) we put v0 together
with all vertices that it does not neighbor, and on the other side (V2),
we put all the neighbors of v0. The vertex v0 enforces this partition
in the sense that if the graph is indeed a biclique then this is the only
partition that obeys the biclique conditions. On the other hand, recall
that if the graph is ε-far from being a biclique, then for every partition
(V1,V2) we have that |E \ V1 × V2| + |V1 × V2 \ E| > εn2. In particular
this is true of the aforementioned partition where V1 = V \ Γ(v0) and
V2 = Γ(v0) (recall that Γ(v0) denotes the set of neighbors of v0).

Therefore, with probability at least 1 − (1 − ε)s > 1 − exp(−εs) >

2/3, among the s sampled pairs (u1,w1), . . . ,(us,ws) there will be at
least one pair (uj ,wj) either in E \ V1 × V2 or in V1 × V2 \ E. In the
former case either uj and wj both belong to V1, and so the subgraph
induced by uj , wj , and v0 contains a single edge (uj ,wj), or uj and
wj both belong to V2, and so the subgraph induced by uj , wj , and
v0 contains all three edges. In the latter case this subgraph contains a
single edge (between v0 and either uj or wj). For an illustration, see
Figure 4.1.

The General Idea. As exemplified by the problem of testing
whether a graph is a biclique, the high-level idea behind the design and
analysis of algorithms that follows the “enforce-and-test” approach is
roughly the following. The algorithm takes a sample from the tested
object (e.g., a small random subgraph), and checks whether the sample
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Fig. 4.1 Illustrations of the three cases in the analysis of the biclique tester. On the left is
an illustration for the case that (uj ,wj) ∈ E \ V1 × V2 and uj ,wj ∈ V1; in the middle is an
illustration for the case that (uj ,wj) ∈ E \ V1 × V2 and uj ,wj ∈ V2; and on the right is an
illustration for the case that (uj ,wj) ∈ V1 × V2 \ E, and uj ∈ V1, wj ∈ V2. In the last case
the “missing edge” between uj and wj is marked by a dotted line.

has a particular property, which is possibly, but not necessarily, the
property tested. The analysis views the sample as consisting of two
parts. The first part is the “enforcing” part, and the second is the
“testing” part. The goal of the enforcing part is to implicitly induce
certain constraints over the structure of the (yet unseen portion) of the
object. The constraints are such that if the object is far from having the
property, then with high probability over the choice of the testing part
it will contain evidence that (together with the enforce part) “proves”
that the object does not have the tested property.

4.2 Testing Bipartiteness in the Dense-Graphs Model

Recall that a graph G = (V,E) is bipartite if there exists a partition
(V1,V2) of the vertices where there are no edges (u,w) such that u,w ∈
V1 or u,w ∈ V2. We say in such a case that the partition is bipartite.
If a partition (V1,V2) is not bipartite, then we shall say that the edges
(u,w) ∈ E such that u,w ∈ V1 or u,w ∈ V2 are violating edges with
respect to (V1,V2). Recall that we can decide (exactly) whether a graph
is bipartite in linear time by running a Breadth First Search (BFS).
By the definition of the dense-graphs model, a graph G is ε-far from
(being) bipartite in this model if (and only if) it is necessary to remove
more than εn2 edges to make it bipartite.

The algorithm is very simple and is given in Figure 4.2. Note that
the number of queries performed is independent of the size of the graph,
and only depends (polynomially) on 1/ε. Clearly, if the graph G is
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Algorithm 4.1: Bipartiteness Test

1. Take a sample S of Θ
(
ε−2 · log(1/ε)

)
vertices, selected uni-

formly at random.
2. Ask vertex-pair queries for all pairs in the sample, thus

obtaining the induced subgraph GS.
3. Run a Breadth First Search (BFS) on GS: if it is bipartite

then accept, otherwise, reject.

Fig. 4.2 The bipartiteness testing algorithm (for dense graphs).

bipartite then it is accepted by Algorithm 4.1 with probability 1, and
when the algorithm rejects a graph it provides evidence “against” the
graph in the form of a small subgraph (GS) that is not bipartite. Hence,
from this point on assume G is ε-far from being bipartite, and we will
show that it is rejected with probability at least 2/3.

If G is ε-far from bipartite then this means that for every partition
(V1,V2) of V , there are more than εn2 violating edges with respect to
(V1,V2). Consider the following initial attempt of analyzing the algo-
rithm: If we consider a single partition (V1,V2) (that has more than
εn2 violating edges, since the graph is ε-far from bipartite), then it is
easy to see that a sample of s = Θ

(
ε−1 · log(1/δ)

)
vertices will “hit”

the two end-points of such an edge (i.e., that is violating with respect
to (V1,V2)) with probability at least 1 − δ. The natural idea would be
to take a union bound over all partitions. The problem is that there
are 2n possible partitions and so in order for the union bound to work
we would have to take δ < 2−n, implying that the sample should have
size linear in n.

Instead, we shall think of the sample as consisting of two disjoint
parts, U (the “enforce” part) and W (the “test” part). The intuition
is that in some sense U will introduce constraints that will effec-
tively reduce the number of “relevant” partitions of V to a much
smaller number than 2n, and then W will be used to “test” only
them. We let |U | = Θ

(
ε−1 · log(1/ε)

)
and |W | = Θ

(
ε−1 · log2|U |) =

Θ
(
ε−2 · log(1/ε)

)
.
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We first introduce a couple of additional definitions:

Definition 4.1. For any fixed partition (U1,U2) of U , we shall say that
W is not compatible with (U1,U2) if there is no partition (W1,W2) of
W such that (U1 ∪ W1,U2 ∪ W2) is a bipartite partition.

We would like to show that (since G is ε-far from bipartite), with
high probability over the choice of U and W , no matter how we parti-
tion U into (U1,U2), the subset W will not be compatible with (U1,U2)
(implying that there is no bipartite partition of both U and W , which
causes the algorithm to reject).

Definition 4.2. Let (U1,U2) be a (bipartite) partition of U . We
shall say that a vertex w is a witness against (U1,U2) if there exist
u1 ∈ U1 and u2 ∈ U2 such that (w,u1),(w,u2) ∈ E. We shall say that
a pair w1 and w2 are witnesses against (U1,U2) if (w1,w2) ∈ E and
there exist u1,u2 ∈ U such that u1,u2 ∈ U1 or u1,u2 ∈ U2 and (w1,u1),
(w2,u2) ∈ E.

For an illustration of the notion of witnesses, see Figure 4.3.

Observation: If W contains a vertex w that is a witness against
(U2,U2) or a pair of vertices w1 and w2 that are witnesses against
(U1,U2) then W is not compatible with (U1,U2). Hence, we would like
to show that with high probability over U and W , there are witnesses
in W against every partition of U .

Simplifying assumption: We first continue the analysis under the
assumption that U is such that every v ∈ V has at least one neighbor

Fig. 4.3 An illustration of a witness w, and a pair of witnesses w1,w2, both with respect
to the partition (U1,U2) of U .
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in U . (We later remove this assumption.) Under this assumption, given
a bipartite partition (U1,U2) of U , we define a partition of all of V .
For u ∈ U we put u in V1 if u ∈ U1 and we put u in V2 if u ∈ U2. For
v ∈ V \ U (that is, almost all vertices are considered here) if v has a
neighbor in U1 then we put v in V2 and otherwise (it has a neighbor in
U2), then we put it in V1. For an illustration, see Figure 4.4.

Now, each one of these at most 2|U | partitions of V contains more
than εn2 violating edges. Since (U1,U2) is bipartite, and we put each
vertex in V \ U opposite its neighbor, these edges are of the form
(w1,w2) ∈ E where w1 and w2 both have a neighbor in U1 or both
have a neighbor in U2, or they are of the form (w,u2) where u2 ∈ U2

and w has a neighbor u1 ∈ U1 (so it was put in V2). But this exactly
coincides with our definition of witnesses against (U1,U2). Therefore, if
we catch such a vertex (pair), then W in not compatible with (U1,U2).
For simplicity of the analysis, even in the case that w is a witness
because it was put in V1 but it has a neighbor u2 ∈ U2, we shall think
of (u2,w) as a pair of witnesses, and so it won’t be considered sufficient
that w ∈ W but we’ll require that u2,w ∈ W .

We shall think of the uniform sample W as a sample over uniformly
selected pairs of vertices. Since the probability that we catch a pair of

Fig. 4.4 An illustration of the partition of V that is defined based on (U1,U2) when we
make the simplifying assumption that every vertex in V has a neighbor in U . Violating
edges (which correspond to witnesses) are marked by bold lines.
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witnesses in a single trial is more than εn2

n2 = ε, the probability that we
don’t catch any pair of witnesses in W is at most (1 − ε)|W |/2. If we take
|W | = Θ(|U |/ε) then this is less than (1/6) · 2−|U |. By a union bound
over all two-way partitions of U , the probability that for some (U1,U2),
we have that W is compatible with (U1,U2) is hence at most 1/3. In
other words, with probability at least 5/6 there is no bipartite partition
of U ∪ W .

It remains to remove the assumption that every vertex in V has a
neighbor in U .

Definition 4.3. We say that a vertex in V has high degree if its degree
is at least (ε/4)n. Otherwise it has low degree.

Lemma 4.1. With probability at least 5/6 over the choice of (4/ε) ·
log(24/ε) vertices (denoted U), all but at most (ε/4)n of the high degree
vertices in V have a neighbor in U .

We prove this lemma momentarily, but first show how to modify the
argument based on the lemma. Assume U is as stated in the lemma
(where we later take into account the probability of 1/6 that this is
not the case). Then, given a partition (U1,U2) of U , we define a par-
tition of all vertices similarly to what we did before. In particular,
the vertices in U and their neighbors are partitioned as before. All
remaining vertices, which do not have a neighbor in U and whose set
is denoted R, are put arbitrarily in V1. For an illustration, see Fig-
ure 4.5. Once again, for every bipartite partition (U1,U2), the parti-
tion of V just defined contains more than εn2 violating edges. Now,
some of these violating edges might not correspond to witnesses. In
particular, some of these edges might be incident to vertices in R.
However, the total number of edges that are incident to vertices in R

is at most n · (ε/4)n + (ε/4)n · n = (ε/2)n2. Hence, there are at least
(ε/2)n2 violating edges that correspond to witnesses, and we shall catch
one with high constant probability.

More precisely, if |W | = Θ(ε−1 · |U |) = Θ(ε−2 · log(1/ε)), then, con-
ditioned on U being as in Lemma 4.1, with probability at least 5/6
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Fig. 4.5 An illustration of the partition of V that is defined based on (U1,U2) when we
remove the simplifying assumption that every vertex in V has a neighbor in U . Violat-
ing edges that are incident to R are marked by dashed lines while violating edges which
correspond to witnesses are marked by bold lines.

over the choice of W , there is a pair of witnesses in W against every
partition of U . The probability that either U is not as in Lemma 4.1, or
W does not include a witness against some partition of U , is at most
1/3. It follows that with probability at least 2/3 (over the choice of
S = U ∪ W ) the algorithm rejects (since there is no bipartite partition
of S). It remains to prove Lemma 4.1.

Proof of Lemma 4.1. Consider any fixed high degree vertex v. The
probability that U does not contain any neighbor of v is at most
(1 − (ε/4))|U | < ε/24. Therefore, the expected fraction of high degree
vertices in V that do not have a neighbor in U is at most ε/24. By
Markov’s inequality, the probability that there is more than an ε/4
fraction of such vertices in V (that is, more than six times the expected
value), is at most 1/6.

4.2.1 Reducing the Number of Queries

We first observe that by the foregoing analysis, we can modify the
algorithm (see Figure 4.6) so as to reduce the query complexity and
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Algorithm 4.2: Bipartiteness Test (Version II)

1. Take a sample U of Θ
(
ε−1 · log(1/ε)

)
vertices, u1, . . . ,us,

selected uniformly, independently, at random, and a sample
W of Θ

(
ε−2 · log(1/ε)

)
vertices w1, . . . ,wt selected uniformly,

independently, at random.
2. Ask vertex-pair queries for all pairs (ui,uj) ∈ U × U ,

(ui,wk) ∈ U × W and for all pairs (w2�−1,w2�) where 1 ≤ � ≤
t/2�. Let the subgraph obtained be denoted H.

3. Run a Breadth First Search (BFS) on H: if it is bipartite
then accept, otherwise, reject.

Fig. 4.6 The bipartiteness testing algorithm (version II).

running time to Θ(ε−3 · log2(1/ε)). The basic observation is that we can
actually partition the sample into two parts, U and W (as described in
the analysis), and we don’t need to perform all vertex-pair queries on
pairs of vertices in W , but rather only on a linear (in |W |) number of
disjoint pairs.

A more sophisticated analysis of Alon and Krivelevich [10] shows
that a sample of vertices having size Θ(ε−1 · log(1/ε)) suffices for the
original algorithm (Algorithm 4.1), so that the number of queries per-
formed is Θ(ε−2 · log2(1/ε)). The result of Alon and Krivelevich is opti-
mal in terms of the number of vertices that the tester inspects [10].
A natural question addressed by Bogdanov and Trevisan [37] is whether
Ω(ε−2) queries are necessary. Bogdanov and Trevisan showed that
Ω(ε−2) queries are indeed necessary for any non-adaptive tester. For
adaptive testers they showed that Ω(ε−3/2) queries are necessary.1 This
result still left open the question whether an adaptive tester can indeed
have query complexity that is o(ε−2), and possibly even O(ε−3/2). This
question was answered affirmatively in [79] for the case that (almost)
all vertices have degree O(εn), where the lower bounds of [37] hold

1 A non-adaptive tester must choose all its queries in advance whereas an adaptive tester
may choose its queries based on answers to previous queries. In the dense-graphs model,
for any fixed property the gap in the query complexity between adaptive and non-adaptive
testing algorithms is at most quadratic [7, 78].
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under this condition. The algorithm of [79] works by importing ideas
from testing in the bounded-degree model to the dense-graphs model. In
[79] it was also shown that O(ε−3/2) queries are sufficient when (almost)
all vertices have degree Ω(ε1/2n). The general question regarding the
exact complexity of adaptively testing bipartiteness for general graphs
(in the dense-graphs model) is still open. We note that the power of
adaptivity in the dense-graphs model was further studied in [77].

4.2.2 Constructing an Approximately Good Bipartition

One interesting implication of the analysis of the bipartiteness tester is
that if the graph is indeed bipartite then it is possible to use the tester
to obtain (with high constant probability) auxiliary information that
lets us construct an approximately good bipartition in time linear in n.
To be precise, we say that a partition (V1,V2) is ε-good if there are at
most εn2 violating edges in G with respect to (V1,V2). Now suppose G

is bipartite and we run Algorithm 4.1, where we view the sample as
consisting of two parts: U and W (or we run Algorithm 4.2 for which
the partition of the sample is explicit).

As shown in Lemma 4.1, with high constant probability, all but
at most (ε/4)n of the high degree vertices in V have a neighbor in U

(where we said that a vertex has high degree if it has at least (ε/4)n
neighbors). We shall say in such a case that U is an (ε/4)-dominating-
set . Assume from this point on that U is indeed an (ε/4)-dominating
set (where we take into account the probability that this is not the case
in our failure probability).

For each bipartite partition (U1,U2) of U , consider the partition
(U1 ∪ (V \ Γ(U1)),U2 ∪ Γ(U1)) of V (as defined in the analysis of the
tester). By the argument used to prove the correctness of the tester
in the case that the graph is ε-far from being bipartite, we have the
following. With high constant probability over the choice of W , for
every (U1,U2) such that (U1 ∪ (V \ Γ(U1)),U2 ∪ Γ(U1)) is not ε-good,
there will be no bipartite partition (U1 ∪ W1,U2 ∪ W2) of the sample.
Assume this is in fact the case (where we add the probability that this
is not the case to our failure probability). Since G is bipartite, the BFS
executed by the tester will find a bipartite partition (U1 ∪ W1,U2 ∪
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W2), implying that the partition (U1 ∪ (V \ Γ(U1)),U2 ∪ Γ(U1)) must
be ε-good.

We can hence use the partition (U1,U2) to determine, for every
vertex v ∈ V to which side it belongs in the ε-good partition (U1 ∪
(V \ Γ(U1)),U2 ∪ Γ(U1)) by simply performing all queries between v

and u ∈ U .

4.3 Other Applications of the Enforce-and-Test Approach

There are also similar (though somewhat more complex) analyses of
algorithms in the dense-graphs model for testing k-colorability, ρ-Clique
(having a clique of size ρN), ρ-Cut (having a cut of size at least ρN2),
and in general for the family of all partition properties [72]. Namely,
these properties are defined by upper and lower bounds on the sizes of
some constant number k of parts, and upper and lower bounds on the
edge-densities between these parts and within each part. The number of
queries performed in all cases is polynomial in 1/ε and exponential in k.
The time-complexity is exponential in 1/ε, but this is inevitable (assum-
ing P �= NP) since partition problems include NP-hard problems.

As in the case of bipartiteness, for all these properties, when the
graph has the desired property, with high probability the testing algo-
rithm outputs some auxiliary information that lets us construct, in
poly(1/ε) · N time, a partition that approximately obeys the property
(recall that the number of parts, k, is assumed to be a constant). For
example, for ρ-Clique, the algorithm will find a subset of vertices of size
ρN , such that at most εN2 edges need to be added so that it becomes
a clique. In the case of ρ-Cut, the algorithm will construct a partition
with at least (ρ − ε)N2 crossing edges (so that if we run the algorithm
with ε = γ · ρ, we get a cut of size at least (1 − γ) times the optimal).
As in the case of bipartiteness, the basic idea is that the partition of
the sample that caused the algorithm to accept is used to partition the
whole graph.

Returning to the property of bipartiteness, we observe that the con-
struction algorithm for ρ-Cut (which constructs a partition with at least
(ρ − ε)N2 crossing edges) can be applied to get an ε-good bipartition
even when the graph is not bipartite but rather is close (say, ε/2-close)
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to being bipartite. More generally, the construction algorithm for the
general partition problem can be used to construct approximately good
partitions even when the graph does not have a corresponding “perfect”
partition.

Other property testing problems that are solved using the enforce-
and-test approach include testing metric properties [113] and testing of
clustering [5]. In these cases it also holds that the testing algorithms can
be extended to solve approximate versions of the corresponding search
problems (e.g., finding good clusterings of all but a small fraction of
the points). As we discuss in Section 8, the analysis of the bipartiteness
tester in the bounded-degree model can also be viewed as following the
enforce-and-test approach, though this is perhaps less evident than in
other cases.

The enforce-and-test approach is also related to a framework intro-
duced by Czumaj and Sohler [46], in which the notion of Abstract Com-
binatorial Programs is defined, and based on these programs, several
(old and new) property testing algorithms are derived.



5
Testing by Implicit Learning

In this subsection we describe the results of Diakonikolas et al. [50].
They present a general method for testing whether a function has a
concise representation (e.g., an s-term DNF or an s-node decision tree).
Here we mostly focus on the Boolean case, though the technique in [50]
extends to general domains and ranges. The query complexity is always
polynomial in the size parameter s, and is quadratic in 1/ε. The running
time grows exponentially1 with s.

The approach taken in [50] uses ideas from the junta testing algo-
rithm(s) of Fischer et al. [61] and ideas from learning theory (a k-junta
is a function that depends on at most k variables). As noted in the
introduction, it was observed in [72] that if we have a proper learning
algorithm for a class of functions F , then we can use it as a subroutine
to test the property of membership in F . However, for all the prop-
erties considered in [50], proper learning requires a number of queries
that grow at least logarithmically with the number of variables, n.
Therefore, a more sophisticated approach is required in order to obtain
algorithms whose query complexity does not depend on n.

1 In recent work [51] the dependence of the running time on s in the case of s-term polyno-
mials over GF (2) was reduced to polynomial.

121
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The first key observation behind the general algorithm of [50] is that
many classes of functions that have a concise representation are “well-
approximated” by small juntas that belong to the class. That is, every
function in the class is close to some other function in the class that
is a small junta. For example, for any choice of δ, every s-term DNF
is δ-close to an s-term DNF that depends only on at most s log(s/δ)
variables. This is true since by removing a term that has more than
log(s/δ) variables, the error incurred is at most δ/s (recall that the
underlying distribution is uniform).

Given this observation, the algorithm works roughly as follows. It
first finds a collection of subsets of variables such that each subset
contains a single variable on which the function depends (in a non-
negligible manner). If the number of such subsets is larger than some
threshold k, then the algorithm rejects. Otherwise, the algorithm cre-
ates a sample of labeled examples, where the examples are points in
{0,1}k, that is, over the variables that the function depends on. It
is important to stress that the algorithm creates this sample without
actually identifying the relevant variables. Finally, the algorithm checks
whether there exists a function of the appropriate form over the small
set of variables that is consistent with the sample. Roughly speaking,
the algorithm works by attempting to learn the structure of the junta
that f is close to (without actually identifying its variables). This is
the essence of the idea of “testing by implicit learning”.

Since the results of [51] build on testing juntas, we first describe an
algorithm for testing whether a function is a small junta [61].

5.1 A Building Block: Testing Juntas

We start with a formal definition.

Definition 5.1 (Juntas). A function f : {0,1}n → {0,1} is a k-junta
for an integer k ≤ n if f is a function of at most k variables. Namely,
there exists a set J ⊆ [n] where |J | ≤ k such that f(x) = f(y) for every
x,y ∈ {0,1}n that satisfy xi = yi for each i ∈ J . We say in such a case
that J dominates the function f .
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The main result of [61] is stated next.

Theorem 5.1. For every fixed k, the property of being a k-junta is
testable using poly(k)/ε queries.

Fischer et al. [61] establish Theorem 5.1 by describing and analyzing
several algorithms. The algorithms vary in the polynomial dependence
on k (ranging between2 Õ(k4) to Õ(k2)), and in two properties: whether
the algorithm is non-adaptive or adaptive (that is, queries may depend
on answers to previous queries), and whether it is has one-sided error
or two-sided error. They also prove a lower bound of Ω̃(

√
k) for non-

adaptive algorithms, which was later improved to an Ω(k) lower bound
for adaptive algorithms by Chockler and Guttreund [43], thus estab-
lishing that a polynomial dependence on k is necessary. While we focus
here on the domain {0,1}n and on the case that the underlying distri-
bution is uniform, Theorem 5.1 holds for other domains and when the
underlying distribution is a product distribution.

In order to describe and analyze the testing algorithm, we first intro-
duce some definitions and notations. The domain of the functions we
consider is always {0,1}n and it will be convenient to assume that the
range of the functions is {1,−1} = {(−1)0,(−1)1} (rather than {0,1}).

Partial Assignments. For a subset S ⊆ [n] we denote by A(S) the
set of partial assignments to the variables xi where i ∈ S. Each w ∈
A(S) can be viewed as a string in {0,1,∗}n, where for every i ∈ S,
wi ∈ {0,1}, and for every i /∈ S, wi = ∗. In particular, A([n]) = {0,1}n.
For two disjoint subsets S,S′ ⊂ [n], and for partial assignments w ∈
A(S) and w′ ∈ A(S′), we let w�w′ denote the partial assignment z ∈
A(S ∪ S′) defined by: zi = wi, for every i ∈ S, zi = w′

i for every i ∈ S′,
and zi = wi = w′

i = ∗ for every i ∈ [n] \ {S ∪ S′}. In particular, we shall
consider the case S′ = [n] \ S, so that w�w′ ∈ {0,1}n is a complete
assignment (and f(w�w′) is well defined). Finally, for x ∈ {0,1}n and
S ⊆ [n], we let x|S denote the partial assignment w ∈ A(S) defined by

2 The notation Õ(g(t)) for a function g of a parameter t means O(g(t) · polylog(g(t)).
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wi = xi for every i ∈ S, and wi = ∗ for every i /∈ S. For the sake of
conciseness, we shall use S as a shorthand for [n] \ S.

Variation. For a function f : {0,1}n → {1,−1} and a subset S ⊂ [n],
we define the variation of f on S (or the variation of S with respect
to f), denoted Vrf (S), as the probability, taken over a uniform choice
of w ∈ A(S) and z1,z2 ∈ A(S), that f(w�z1) �= f(w�z2). That is3:

Vrf (S) def= Prw∈A(S),z1,z2∈A(S)[f(w�z1) �= f(w�z2)]. (5.1)

The simple but important observation is that if f does not depend on
any variable xi where i ∈ S, then Vrf (S) = 0, and otherwise it must be
non-zero (though possibly small). One useful property of the variation
is that it is monotone. Namely, for any two subsets S,T ⊆ [n],

Vrf (S) ≤ Vrf (S ∪ T ). (5.2)

Another property is that it is subadditive, that is, for any two subsets
S,T ⊆ [n],

Vrf (S ∪ T ) ≤ Vrf (S) + Vrf (T ). (5.3)

As we show next, the variation can also be used to bound the dis-
tance that a function has to being a k-junta.

Lemma 5.2. Let f : {0,1}n → {1,−1} and let J ⊂ [n] be such that
|J | ≤ k and Vrf (J) ≤ ε. Then there exists a k-junta g that is dominated
by J and is such that dist(f,g) ≤ ε.

Proof. We define the function g as follows: for each x ∈ {0,1}n let

g(x) def= majorityu∈A(J){f(x|J�u)}. (5.4)

That is, for each w ∈ A(J), the function g has the same value on all
strings x ∈ {0,1}n = A([n]) such that x|J = w, and this value is simply
the majority value of the function f taken over all strings of this form.

3 We note that in [61] a more general definition is given (for real-valued functions). For the
sake of simplicity we give only the special case of {1,−1}-valued function, and we slightly
modify the definition by removing a factor of 2.
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We are interested in showing that Pr[f(x) = g(x)] ≥ 1 − ε. That is,

Prw∈A(J),z∈A(J)[f(w�z) = majorityu∈A(J){f(w�u)}] ≥ 1 − ε. (5.5)

Similarly to what was shown in the proof of Claim 3.5, this probability
is lower bounded by Prw∈A(J),z1,z2∈A(J)[f(w�z1) = f(w�z2)], which is
simply 1 − Vrf (J) ≥ 1 − ε.

5.1.1 An Algorithm for Testing Juntas

Here we describe an algorithm for testing k-juntas, which has one-sided
error, is non-adaptive, and has query complexity Õ(k4/ε). In [61] there
are actually two algorithms with this complexity. We have chosen to
describe the one on which the more efficient algorithms (mentioned pre-
viously) are based, and which also plays a role in the results described
in Section 5.2. We assume that k > 1, since 1-juntas are simply single-
tons, for which we already know there is a testing algorithm. The idea
behind the algorithm is simple: It randomly partitions the variables
into Θ(k2) disjoint subsets. For each subset it checks whether it con-
tains any variable on which the function depends. If there are more than
k subsets for which such a dependence is detected, then the algorithm
rejects. Otherwise it accepts. The algorithm is given in Figure 5.1.

Theorem 5.3. Algorithm 5.1 is a one-sided error testing algorithm for
k-juntas. Its query complexity is O(k4 logk/ε).

The bound on the query complexity of the algorithm is O(r · h) =
O(k4 logk/ε). The dependence test declares that f depends on a set Sj

only if it has found evidence of such a dependence and the algorithm
rejects only if there are more than k disjoint sets for which such evidence
is found. Therefore, the algorithm never rejects a k-junta. We next turn
to proving that if f is ε-far from being a k-junta, then it is rejected with
probability at least 2/3.

Let τ = (log(k + 1) + 4)/h and note that by the definition of h,
τ ≤ ε/(4r) (recall that r is the number of sets in the random partition
selected by the algorithm and h is the number of applications of the
dependence test). Define J = Jτ (f) def= {i ∈ [n] : Vrf ({i}) > τ}. Thus J
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Algorithm 5.1: k-Junta Test

1. For r = Θ(k2) select a random partition {S1, . . . ,Sr} of [n] by
assigning each i ∈ [n] to a set Sj with equal probability.

2. For each j ∈ [r], perform the following dependence test at
most

h = 4(log(k + 1) + 4)r/ε = Θ(k2 logk/ε)

times:

• Uniformly and independently select w ∈ A(Sj) and
z1,z2 ∈ A(Sj). If f(w�z1) �= f(w�z2) then declare
that f depends on at least one variable in Sj (and
continue to j + 1).

3. If f is found to depend on more than k subsets Sj, then output
reject, otherwise output accept.

Fig. 5.1 Testing algorithm for juntas.

consists of all i such that Vrf ({i}) ≤ τ . We claim:

Lemma 5.4. If Vrf (J) > ε then Algorithm 5.1 rejects with probability
at least 2/3.

Lemma 5.5. If |J | > k then Algorithm 5.1 rejects with probability at
least 2/3.

By Lemma 5.2, if f is ε-far from any k-junta, then either Vrf (J) > ε

or |J | > k (or both). By Lemmas 5.4 and 5.5 this implies that the
algorithm rejects with probability at least 2/3. Both lemmas rely on
the following claim regarding the dependence test.

Claim 5.6. For any subset Sj , if Vrf (Sj) ≥ τ , then the probability
that Step 2 in Algorithm 5.1 declares that f depends on at least one
variable in Sj is at least 1 − 1/(e4(k + 1)).
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Proof. By the definition of the dependence test, the probability that
a single application of the test finds evidence that f depends on Sj

is exactly Vrf (Sj). Since τ = (log(k + 1) + 4)/h, if Vrf (Sj) ≥ τ , the
probability that the test fails to find such evidence in h indepen-
dent applications is at most (1 − τ)h < exp(−τh) < e−4/(k + 1), as
claimed.

We now prove Lemma 5.5, which is quite simple, and later sketch
the proof of Lemma 5.4, which is more complex.

Proof of Lemma 5.5. First observe that if |J | > k, then the proba-
bility, over the choice of the partition, that there are fewer than k + 1
sets Sj such that Sj ∩ J �= ∅, is O(k2/r). Since r = ck2 where c is a
constant, for an appropriate choice of c, this probability is at most 1/6.
Assume from this point on that are at least k + 1 sets Sj such that
Sj ∩ J �= ∅ (where we later take into account the probability that this
is not the case).

By the monotonicity of the variation (Equation (5.2)) and since
Vrf ({i}) > τ for each i ∈ J , if a set Sj satisfies Sj ∩ J �= ∅, then
Vrf (Sj) ≥ τ . By Claim 5.6 and the union bound, the probability that
the algorithm finds evidence of dependence for fewer than k + 1 sets
is less than 1/6. Summing this probability with the probability that
there are fewer than k + 1 sets Sj such that Sj ∩ J �= ∅, the lemma
follows.

Proof Sketch of Lemma 5.4. By the premise of the lemma,
Vrf (J) > ε. Since the variation is subadditive (Equation (5.3)), for any
partition {S1, . . . ,Sr},

∑r
j=1 Vrf (Sj ∩ J) > ε. Since the subsets in the

partition are equally distributed, we have that for each fixed choice
of j, E[Vrf (Sj ∩ J)] > ε/r. The main technical claim (whose proof we
omit) is that with high probability Vrf (Sj ∩ J) is not much smaller
than its expected value. To be precise, for each fixed choice of j, with
probability at least 3/4 (over the random choice of the partition),
Vrf (Sj ∩ J) ≥ ε/(4r). Recall that by the definition of τ (and of h as a
function of r), we have that ε/(4r) ≥ τ .

Using this claim, we now show how Lemma 5.4 follows. Recall that
by monotonicity of the variation, Vrf (Sj) ≥ Vrf (Sj ∩ J). We shall say



128 Testing by Implicit Learning

that a set Sj is detectable, if Vrf (Sj) ≥ τ . Thus, the expected number
of detectable subsets is at least (3/4)r. Let α denote the probabil-
ity that there are fewer than r/8 detectable subsets. Then α ≤ 2/7
(as the expected number of detectable subsets is at most α(r/8)+
(1 − α)r). Equivalently, with probability at least 5/7, there are at least
r/8 = Ω(k2) > k + 1 detectable subsets. Conditioned on this event, by
Claim 5.6 (and the union bound), the probability that the algorithm
detects dependence for fewer than k + 1 subsets is at most 1/e4. Adding
this to the probability that there are fewer than k + 1 detectable sets,
the lemma follows.

5.1.2 More Efficient Algorithms

By allowing the algorithm to be adaptive, it is possible to reduce the
query complexity to O(k3 log3(k + 1)/ε), and by allowing the algorithm
to have two-sided error, it can be reduced to O(k2 log3(k + 1)/ε) (with-
out the need for adaptivity). Here we give the high-level ideas for the
more efficient algorithms.

Both algorithms start by partitioning the variables into r = Θ(k2)
disjoint subsets {S1,S2, . . . ,Sr} as done in Algorithm 5.1. The main idea
used in the first improvement (the adaptive algorithm) is to speed up
the detection of subsets Sj that have non-negligible variation Vrf (Sj),
in the following manner of divide and conquer. Instead of applying the
dependence test to each subset separately, it is applied to blocks, each
of which is a union of several subsets. If f is not found to depend on
a block, then all the variables in the block are declared to be “vari-
ation free”. Otherwise (some dependence is detected), the algorithm
partitions the block into two equally sized sub-blocks, and continues
the search on them.

The two-sided error test also applies the dependence test to blocks
of subsets, only the blocks are chosen differently and in particu-
lar, may overlap. The selection of blocks is done as follows. For s =
Θ(k logr) = Θ(k logk), the algorithm picks s random subsets of coordi-
nates I1 . . . , Is ⊆ [r] of size k, independently, each by uniformly selecting
(without repetitions) k elements of [n]. For each 1 ≤ � ≤ s, block B� is
defined as B� =

⋃
j∈I�

Sj . The dependence test is then applied h times
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to each block (where h is as in Algorithm 5.1). For each subset Sj , the
algorithm considers the blocks that contain it. The algorithm declares
that f depends on Sj , if it found that f depends on all blocks that
contain Sj . If there are more than k such subsets, or if f depends on at
least a half of the blocks, the algorithm rejects, otherwise, it accepts.
For further details of the analysis, see [61].

An almost optimal tester for juntas. In a recent work [34] Blais
improves the dependence on k and gives an almost optimal one-sided
error tester for k-juntas whose query complexity is O(k/ε + k logk)
(recall that there is a Ω(k) lower bound [43] for this problem). This
algorithm works for functions with arbitrary finite product domains
and arbitrary finite ranges, as well as with respect to any underlying
product distribution.

5.2 The Algorithm for Testing by Implicit Learning

Before describing the algorithm in more detail, we give a central defi-
nition, and state the main theorem.

Definition 5.2. Let F be a class of Boolean functions over {0,1}n.
For δ > 0, we say that a subclass Fδ ⊆ F is a (δ,kδ)-approximator for F
if the following two conditions hold.

• The subclass Fδ is closed under permutations of the vari-
ables.

• For every function f ∈ F there is a function f ′ ∈ Fδ such that
dist(f ′,f) ≤ δ and f ′ is a kδ-junta.

Returning to the case that F is the class of s-term DNF functions,
we may take Fδ to be the subclass of F that consists of s-term DNF
where each term is of size at most log(s/δ), so that kδ = s log(s/δ).
Note that kδ may be a function of other parameters determining the
function class F .

We shall use the notation F̂δ for the subset of functions in Fδ that
depend on the variables x1, . . . ,xkδ

. Moreover, we shall view these func-
tions as taking only kδ arguments, that is, being over {0,1}kδ .



130 Testing by Implicit Learning

We now state the main theorem of [50] (for the Boolean case).

Theorem 5.7. Let F be a class of Boolean functions over {0,1}n.
Suppose that for each choice of δ > 0, F̂δ ⊆ F is a (δ,kδ) approximator
for F . Suppose also that for every ε > 0 there is a δ satisfying

δ ≤ cε2

k2
δ · log2(kδ) · log2 |F̂δ| · log log(kδ) · log(log |F̂δ|/ε)

, (5.6)

where c is a fixed constant. Let δ∗ be the largest value of δ that satisfies
Equation (5.6). Then there is a two-sided error testing algorithm for F
that makes Õ(k2

δ∗ log2 |F̂δ∗ |/ε2) queries.

We note that Theorem 5.7 extends to function classes with domain
Ωn and any range, in which case there is a dependence on log |Ω| in
Equation (5.6) and in the query complexity of the algorithm.

All results from [50] that appear in Table 5.1 are obtained by apply-
ing Theorem 5.7. In all these applications, kδ grows logarithmically
with 1/δ, and log |F̂δ| is at most polynomial in kδ. This ensures that
Equation (5.6) can be satisfied. The most typical case in the applica-
tions is that for a class F defined by a size parameter s, we have that
kδ ≤ poly(s) log(1/δ) and log |F̂δ| ≤ poly(s)polylog(1/δ). This yields
δ∗ = Õ(ε2)/poly(s), and so the query complexity of the algorithm is
poly(s)/Θ̃(ε2).

In particular, returning to the case that F is the class of s-term
DNF, we have that kδ = s log(s/δ) and |F̂δ| ≤ (2s log(s/δ))s log(s/δ). This

Table 5.1. Results obtained by [50] using the implicit learning approach.

Class of functions Number of Queries

decision lists Õ(1/ε2)
size-s decision trees, size-s branching programs Õ(s4/ε2)
s-term DNF, size-s Boolean formulas Ω(logs/ log logs)
s-sparse polynomials over GF (2) Õ(s4/ε2), Ω̃(

√
s)

size-s Boolean circuits Õ(s6/ε2)
functions with Fourier degree ≤ d Õ(26d/ε2), Ω̃(

√
d)

s-sparse polynomials over a general field F Õ((s|F |)4/ε2), Ω̃(
√

s) for |F | = O(1)
size-s algebraic circuits and computation Õ(s4|F |3/ε2)

trees over F
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implies that δ∗ = Õ(ε2/s4), from which the upper bound of Õ(s4/ε2)
on the query complexity follows. As another example, consider the case
that F is the class of all decision lists. Then, for every δ, if we let
F̂δ be the subclass of decision lists with length log(1/δ), and we set
kδ = log(1/δ), then F̂δ is a (δ,kδ)-approximation for F . Since |F̂δ| ≤
2 · 4log(1/δ)(log(1/δ))!, we get that δ∗ = Õ(ε2), from which the bound
of Õ(1/ε2) on the query complexity follows.

The algorithm. The testing algorithm consists of three procedures.
The first procedure, named Identify-Critical-Subsets, is a slight variant of
the two-sided error junta test of [61] (described in Section 5.1.2). This
variant is executed with k = kδ∗ , where δ∗ is as defined in Theorem 5.7
and with slightly larger constants than the original [61] algorithm. The
main modification is that instead of returning accept in the case of suc-
cess, the procedure returns the at most kδ∗ subsets of variables among
S1, . . .Sr that the function f was found to depend on by the test. In
the case of failure, it outputs reject like the two-sided error junta test.

The analysis of the two-sided error test can be slightly modified so
as to ensure the following. If f ∈ F , so that it is δ∗-close to a kδ∗-junta
f ′ ∈ Fδ∗ , then with high probability, Identify-Critical-Subsets completes
successfully and outputs � ≤ kδ∗ subsets of variables Si1 , . . .Si� . On the
other hand, it is still true that if f is far from any kδ∗-junta, then
Identify-Critical-Subsets outputs reject with high probability. Moreover,
if f is such that with probability at least 1/3 the procedure completes
successfully and outputs � ≤ kδ∗ subsets Si1 , . . . ,Si� , then these subsets
satisfy the following conditions. (1) For τ = Θ(ε/kδ∗), each variable xi

for which Vrf ({i}) ≥ τ occurs in one of the subsets Sij , and each of these
subsets contains at most one such variable. (2) The total variation of
all other variables is O(ε/ log |F̂δ∗ |).

We now turn to the second procedure, which is referred to
as Construct-Sample. This procedure receives as input the subsets
Si1 , . . . ,Si� that were output by Identify-Critical-Subsets. Assume that
indeed the subsets satisfy the aforementioned conditions. For the sake of
the discussion, let us make the stronger assumption that every variable
has either non-negligible variation with respect to f or zero variation.
This implies that each subset Sij output by Identify-Critical-Subsets
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contains exactly one relevant variable (and there are no other relevant
variables).

Given a point z ∈ {0,1}n, we would like to find the restriction of
z to its � ≤ kδ∗ relevant variables (without actually determining these
variables). Consider a subset Sij output by Identify-Critical-Subsets, and
let xp, for p ∈ Sij , denote the relevant variable in Sij . We would like to
know whether zp = 0 or zp = 1. To this end, we partition the variables
in Sij into two subsets: S0

ij
(z) = {q ∈ Sij : zq = 0} and S1

ij
(z) = {q ∈

Sij : zq = 1}. Now all we do is run the dependence test (as defined
in Algorithm 5.1) sufficiently many times so as to ensure (with high
probability) that we determine whether p ∈ S0

ij
(z) (so that zp = 0), or

p ∈ S1
ij

(z) (so that zp = 1). The pseudo-code for the procedure appears
in Figure 5.2.

The third procedure, Check-Consistency, is given as input the sample
output by Construct-Sample. If some function f ′ ∈ F̂δ∗ is consistent with

Procedure Construct-Sample(Input: Si1 , . . . ,Si�)
Let m = Θ(log |F̂δ∗ |/ε). For t = 1, . . . ,m construct a labeled example
(xt,yt), where xt ∈ {0,1}kδ∗ as follows:

1. Uniformly select zt ∈ {0,1}n, and let yt = f(zt).
2. For j = 1, . . . , � do:

(a) For b ∈ {0,1}, let Sb
ij

(zt) = {q ∈ Sij : zt
q = b}.

(b) For g = Θ(kδ∗ log(m · kδ∗)/ε) =
Θ((kδ∗/ε) log(log |Fδ∗ |kδ∗/ε)), run the dependence test
on S0

ij
(zt) and on S1

ij
(zt), g times (each).

(c) If there is evidence that f depends on both S0
ij

(zt) and
S1

ij
(zt), then output reject (and exit). If there is evi-

dence that f depends on Sb
ij

(zt) for b = 0 or b = 1, then
set xt

j = b. Otherwise set xt
j uniformly at random to be

either 0 or 1.

3. For j = � + 1, . . . ,kδ∗ , set xt
j uniformly at random to be either

0 or 1.

Fig. 5.2 The procedure for constructing a labeled sample.
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the sample, then the procedure outputs accept. Otherwise it outputs
reject.

Proof Sketch of Theorem 5.7. Consider first the case that f ∈ F , so
that it is δ∗-close to some function f ′ ∈ F̂δ∗ where f ′ is a kδ∗-junta. The
parameter δ∗ is selected to be sufficiently small so that we can essen-
tially assume that f = f ′. Thus, we shall make this assumption in this
proof sketch. For τ = Θ(ε/kδ∗), each variable xi such that Vrf ′({i}) ≥ τ

will be referred to as highly relevant . As discussed previously, with high
probability, the procedure Identify-Critical-Subsets outputs � ≤ kδ∗ sub-
sets Si1 , . . . ,Si� that satisfy the following conditions: (1) each highly
relevant variable occurs in one of these subsets; (2) each of the subsets
contains at most one highly relevant variable of f ′ (in fact, exactly one
relevant variable of f ′); and (3) all other variables are “very irrelevant”
(have small total variation).

Assuming the subsets output by Identify-Critical-Subsets are as speci-
fied above, consider the construction of xt ∈ {0,1}kδ∗ for any 1 ≤ t ≤ m.
Since each Sij contains exactly one relevant variable, if this variable is
highly relevant, then the following holds with high probability: one of
the executions of the dependence test finds evidence that either this
variable is in S0

ij
(zt) or that it is in S1

ij
(zt), and xt

j is set accordingly.
If the variable is not highly relevant, then either xt

j is set correctly, as
in the highly relevant case, or xt

j is set randomly to 0 or 1. Since the
total variation of all non-highly relevant variables is small, with high
probability f ′(xt

j) = yt (recall that yt = f(zt)). Thus, with high proba-
bility, we get a random sample of points in {0,1}kδ∗ that is labeled by
the kδ∗-junta f ′. Since f ′ ∈ F̂δ∗ , in such a case the procedure Check-
Consistency will output accept, as required (recall that F̂δ∗ is closed
under permutations of the variables).

We now turn to the case that f is ε-far from F . If it is also (ε/2)-
far from every kδ∗-junta, then Identify-Critical-Subsets detect this with
high probability, and rejects. Otherwise, f is (ε/2)-close to a kδ∗-junta.
Note that f can still be rejected by either Identify-Critical-Subsets or
by Create-Sample. If this occurs with high probability, then we are
done. Otherwise, by the properties of these two procedures, with high
probability there won’t be any function in F̂δ∗ that is consistent with
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the sample output by Create-Sample (based on the subsets output by
Identify-Critical-Subsets). This is true since otherwise it would imply
that there is a function f ′′ ∈ F̂δ∗ ⊆ F that is (ε/2)-close to a kδ∗-junta
f ′ such that dist(f,f ′) ≤ ε/2. But this would contradict the fact that
f is ε-far from F .



6
The Regularity Lemma

One of the most powerful tools for analyzing property testing
algorithms in the dense-graphs model is Szemerédi’s Regularity
Lemma [124] and variants of it.

6.1 Background

The first property testing result that uses (a variant of) the Regularity
Lemma is implicit in work of Alon et al. [6]. Their result implies that
k-colorability is testable with query complexity that is independent
of n, where the dependence on 1/ε is a tower of poly(1/ε) exponents.
The first explicit testing result that uses the Regularity Lemma is in the
work of Alon et al. [7]. Alon et al. [7] give algorithms for the class of first-
order graph properties. These are properties that can be formulated by
first-order expressions about graphs. This covers a large class of graph
properties (in particular coloring and subgraph-freeness properties).
Here too the application of the Regularity Lemma implies that the
dependence on 1/ε is a tower of poly(1/ε) exponents.

A sequence of works by Alon and Shapira [18, 17, 16], together with
the work of Fischer and Newman [64] culminated in a characterization
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of all graph properties that are testable (in the dense-graphs model)
using a number of queries that is independent of n [8]. As the title of
the paper says: “It’s all about regularity”. To be a little more precise,
the characterization says (roughly) that a graph property P is testable
using a number of queries that is independent of n if and only if testing
P can be reduced to testing the property of satisfying one of a finitely
many Szemerédi-partitions [124]. A different characterization, based on
graph limits, was proved independently by Borgs et al. [40].

Variants of the regularity lemma were also used to derive property
testing results for directed graphs [15] and for hypergraphs [102, 14, 59].
In what follows we first state the lemma and then give an example of
its application by analyzing a testing algorithm for triangle-freeness.

6.2 Statement of the Lemma

In order to state the lemma, we need some definitions and nota-
tions. For any two non-empty disjoint sets of vertices, A and B, we
let E(A,B) denote the set of edges between A and B, and we let
e(A,B) = |E(A,B)|. The edge-density of the pair is defined as:

d(A,B) def=
e(A,B)
|A| · |B| . (6.1)

We say that a pair A,B is γ-regular for some γ ∈ [0,1] if for every two
subsets A′ ⊆ A and B′ ⊆ B satisfying |A′| ≥ γ|A| and |B′| ≥ γ|B| we
have that |d(A′,B′) − d(A,B)| < γ. Note that if we consider a random
bipartite graph between A and B (where there is an edge between each
pair of vertices v ∈ A and u ∈ B with constant probability p), then it
will be regular w.h.p. for some constant γ. In what follows, when we
refer to an equipartition A = {V1, . . . ,Vk} of V , we mean that for every
1 ≤ j ≤ k, ||Vi| − |Vj || ≤ 1.

Lemma 6.1(Regularity Lemma). For every integer �0 and for every
γ ∈ (0,1], there exists a number u0 = u0(�0,γ) with the following prop-
erty: Every graph G = (V,E) with n ≥ u0 vertices has an equipartition
A = {V1, . . . ,Vk} of V where �0 ≤ k ≤ u0 for which all pairs (Vi,Vj) but
at most γ · (k

2

)
of them are γ-regular.
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6.3 Testing Triangle-Freeness

For a graph G = (V,E) and a triple of distinct vertices (u,v,w), we say
that (u,v,w) is a triangle in G if all three pairs, (u,v), (u,w), and (v,w)
are edges in the graph. A graph G = (V,E) is triangle-free if it contains
no triangles. The algorithm for testing triangle-freeness simply takes a
sample of size m = m(ε) (which will be set later), queries all pairs of
vertices in the sample to obtain the induced subgraph, and accepts or
rejects depending on whether it sees a triangle in the induced subgraph.
Clearly, if the graph is triangle-free, then the algorithm accepts with
probability 1. It remains to prove that if the graph is ε-far from triangle-
free, then (for sufficiently large m = m(ε)), the sample will contain a
triangle with high constant probability.

An important note is in place concerning the size of m. Alon [3] has
shown that (as opposed to bipartiteness and other partition problems)
it does not suffice to take m that is polynomial in 1/ε. That is, there
exist graphs that are ε-far from being triangle-free but for which a
poly(1/ε)-size sample will not show any triangle. In other words, it is
possible that the fraction of edges that need to be removed in order to
make a graph triangle-free is greater than ε, but the fraction of triples of
vertices that are triangles (among all n3 triples) is smaller than poly(ε).
We discuss this in more detail in section 9.1. As we shall see, the sample
size m that we can show suffices for our needs, is significantly higher
than the lower bound, so there is quite a big gap between the upper and
lower bounds, and indeed it is an interesting open problem to reduce
this gap.

Suppose we apply the regularity lemma with �0 = 8/ε and γ = ε/8.
Our first observation is that for this setting, the total number of edges
in G that are between pairs of vertices that belong to the same part Vi

of the partition is at most

k ·
(n

k

)2
=

1
k

· n2 ≤ 1
�0

· n2 =
ε

8
n2. (6.2)

It follows that if we define G1 as the graph that is the same as G except
that we remove all edges within the parts of the regular partition, then
G1 is at least (7/8)ε-far from being triangle-free.



138 The Regularity Lemma

Next, since there are at most ε
8 · (k

2

)
< ε

16k2 non-regular pairs, the
total number of edges between non-regular pairs in the partition is at
most

ε

16
k2 ·

(n

k

)2
=

ε

16
n2. (6.3)

Therefore, if we continue by removing all these edges from G1, and let
the resulting graph be denoted G2, then G2 is at least (3/4)ε-far from
being triangle-free.

We shall perform one more step of this kind (for an illustration
of all three steps, see Figure 6.1). Consider all pairs (Vi,Vj) such that
d(Vi,Vj) < ε

2 . That is, e(Vi,Vj) < ε
2 · (n

k

)2. Since there are at most k2/2
such pairs, the total number of edges between such pairs is at most ε

4n2.
Therefore, if we remove all these edges from G2, and let the result-
ing graph be denoted G3, then G3 is at least (ε/2)-far from being
triangle-free. In particular this means that there exists at least one

Fig. 6.1 An illustration of the three steps in the modification of the graph G, given its
regular partition. In the transformation from G to G1 we remove all edges internal to the
parts in the partition. In the transformation from G1 to G2 we remove all edges between
non-regular pairs of parts (i.e., E(V1,V4) and E(V3,V5)), and in the transformation from
G2 to G3 we remove all edges between pairs of parts whose edge density is relatively small
(i.e., E(V2,V5)).
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triplet (Vi,Vj ,V�) such that all three edge-densities, d(Vi,Vj), d(Vj ,V�),
and d(Vi,V�) are at least ε/2 in G3. (If no such triplet existed then G3

would be triangle-free.) We shall show that since all three pairs are
(ε/8)-regular, there are “many real triangles” (u,v,w) ∈ Vi × Vj × V�,
so that a sufficiently large sample will catch one.

For simplicity we denote the three subsets by V1,V2,V3. For each
vertex v ∈ V1, we let Γ2(v) denote the set of neighbors that v has in V2,
and by Γ3(v) the set of neighbors that v has in V3 (for an illustration
see Figure 6.2). We shall say that v is helpful if both |Γ2(v)| ≥ ε

4

(
n
k

)
and |Γ3(v)| ≥ ε

4

(
n
k

)
. Since (V2,V3) is a regular pair,

e(Γ2(v),Γ3(v)) ≥ (d(V2,V3) − γ)
( ε

4

)2(n

k

)2 ≥ ε3

c · k2 n2 (6.4)

for some constant c. It follows that if we get a helpful vertex v from V1,
and then we take an additional sample of Θ((u0)2/ε3) pairs of vertices
(recall that k ≤ u0), then we shall obtain a triangle with high constant
probability. It remains to show that there are relatively many helpful
vertices in V1.

Consider any vertex z ∈ V1 that is not helpful. We shall say that it
is unhelpful of type 2 if |Γ2(v)| < ε

4

(
n
k

)
, and that it is unhelpful of type

3 if |Γ3(v)| < ε
4

(
n
k

)
. Without loss of generality, assume that there are

more unhelpful vertices of type 2. Suppose that at least half the vertices
in V1 are unhelpful. Then at least a fourth of the vertices are unhelpful
of type 2. Let V ′

1 consist of all these vertices, so that |V ′
1 | > γ|V1| (recall

Fig. 6.2 An illustration of three parts such that all three pairs of parts are γ-regular, and
the edge-density between each pair is at least ε/2. For every helpful vertex v in V1, there
are relatively many edges (u,w) such that u ∈ Γ2(v) and w ∈ Γ3(v).
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that γ = ε/8 ≥ 1/8). Let V ′
2 = V2. But then,

d(V ′
1 ,V2) ≤ |V ′

1 | · ε
4

(
n
k

)
|V ′

1 | · |V ′
2 |

=
ε

4
< d(V1,V2) − γ (6.5)

and we have reached a contradiction to the regularity of the pair
(V1,V2). Hence, at least a half of the vertices in V1 are helpful (that
is, Ω

(
n
k

)
vertices), and so a sample of size Θ(u0) will contain a helpful

vertex with high probability. Therefore, if we take a sample of ver-
tices having size Θ(u0) + Θ((u0)2/ε3) = Θ((u0)2/ε3), then the induced
subgraph will contain a triangle with high probability.

The above analysis may seem somewhat wasteful, but unless we
find a way to remove the dependence on the number of parts of the
partition, given that this number is a tower of height poly(1/ε), it does
not make much of a difference if our dependence on this number is
linear or quadratic.

Other results based on the Regularity lemma. As noted previ-
ously, there are many other results that build on the Regularity Lemma.
While their analysis may be more complex than that of triangle-
freeness, the core of these arguments is the same. Specifically, what the
regularity lemma essentially says is that for any given γ, every graph G

corresponds to a small graph, Gγ over k(γ) vertices whose edges have
weights in [0,1]. The correspondence is such that for every vertex in
the small graph there is a subset of vertices in G, where the subsets
have (almost) the same size, the edge-densities between the subsets in
G equal the weights of the edges in Gγ , and all but a γ-fraction of the
pairs of subsets are γ-regular. It can then be shown that: (1) If G is
ε-far from a certain property then for γ = γ(ε), Gγ is relatively far from
a related property (where the distance measure takes the edge-weights
of Gγ into account); and (2) If Gγ is far from this property then, due
to the regularity of almost all pairs of subsets in G, a sufficiently large
(i.e., that depends on k(γ)) sample in G will provide evidence that G

does not have the original property considered.



7
Local-Search Algorithms

Recall that when dealing with sparse graphs (where here this will refer
to graphs with O(n) edges, though some of the results are more gen-
eral), we consider two models. In both models the algorithm can per-
form queries of the form: “who is the i-th neighbor of vertex v”, where
if v has less than i neighbor, then a special symbol is returned. The
difference between the two models is in whether there is a fixed degree-
bound, denoted d, on the degrees of all vertices or whether no such
bound is assumed. In the first model, referred to as the bounded-degree
model, a graph is said to be ε-far from having a specified property if
more than εdn edges modifications should be performed so that the
graph obtains the property (where its degree remains bounded by d).
In the second model, referred to as the sparse-graphs model, a graph is
said to be ε-far from having a specified property if more than εm edges
modifications should be performed so that the graph obtains the prop-
erty, where m is the number of edges in the graph (or a given upper
bound on this number).

In what follows we first present what is probably the simplest local-
search type algorithm: the algorithm for testing connectivity [76]. We
then discuss the extension of this simple algorithm to testing k-edge
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connectivity, and very shortly discuss what is known about testing
k-vertex connectivity. Testing minor-closed properties [33, 87] is consid-
ered in Section 7.4, and in Section 7.5 we briefly mention other testing
algorithms that are based on local search.

7.1 Connectivity

One of the most basic properties of graphs is connectivity . A graph is
connected if there is a path between every two vertices. Otherwise, the
vertices in the graph are partitioned into connected components , which
are maximal subgraphs that are connected. The basic simple observa-
tion is that if a graph is not connected, then the minimum number
of edges that should be added to it in order to make it connected is
simply κ(G) − 1, where κ(G) is the number of connected components
in G. The implication of this simple observation for the sparse-graphs
model is:

Claim 7.1. If a graph is ε-far from being connected (as defined in the
sparse-graphs model), then it contains more than εm + 1 connected
components.

Proof. Assume, contrary to the claim that there are at most εm + 1
connected components, denoted C1, . . . ,C�. Then, by adding, for each
1 ≤ j ≤ � − 1 an edge between some vertex in Cj and some vertex in
Cj+1, we obtain a connected graph. Since the number of edges added
is at most εm, we reach a contradiction.

In the bounded-degree model there is a small subtlety: Because of
the degree constraint, we can’t immediately get a contradiction as in
the proof of Claim 7.1. That is, it might be the case that in some
connected component Cj , all vertices have the maximum degree d, and
we cannot simply add edges incident to them. However, it is not hard
to show that in such a case (since d must be at least 2 or else the graph
cannot be connected), it is possible to remove an edge from Cj without
disconnecting it, and thus obtain two vertices with degree less than d.
Therefore, in the bounded-degree model it also holds that if the graph is
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far from being connected then it contains many connected components.
For the sake of simplicity we continue with the sparse-graphs model.
Before doing so note that since κ(G) < n, so that κ(G)/n2 < 1/n, in
the dense-graphs model, every graph is ε-close to being connected for
ε > 1/n. In other words, it is trivial to test for connectivity in the
dense-graphs model.

Let davg = m
n (the average degree up to a factor of 2). Then

Claim 7.1 implies the next claim.

Claim 7.2. If a graph is ε-far from being connected, then it contains
more than ε

2davgn connected components of size at most 2
εdavg

each.

An implicit implication of Claim 7.2 is that if ε ≥ 2
davg

, then every
graph is ε-close to being connected, so that the algorithm can immedi-
ately accept. Hence we assume from this point on that ε < 2

davg
.

Proof. By Claim 7.1, the graph contains more than εdavgn connected
components. Assume, contrary to the claim, that there are at most
ε
2davgn components of size at most 2

εdavg
each. We shall refer to such

components as small components. Otherwise they are big . Consider
all other (big) components. Since they each contain more than 2

εdavg

vertices, and they are disjoint, there can be at most n
2/(εdavg) = ε

2davgn

such big connected components. Adding the number of small connected
components we get a contradiction.

Claim 7.1 suggests the algorithm given in Figure 7.1.

Correctness of the algorithm. Clearly, if the graph is connected,
then the algorithm accepts with probability 1. On the other hand, if
the graph is ε-far from being connected, then by Claim 7.2 there are
at least ε

2davgn vertices that belong to small connected components.
If the algorithm selects such a vertex in its first step, then it rejects.
The probability that the algorithm does not select such a vertex is
(1 − εdavg

2 )4/(εdavg) < e−2 < 1/3.



144 Local-Search Algorithms

Algorithm 7.1: Connectivity Testing Algorithm I

1. Uniformly and independently select 4
εdavg

vertices.a

2. For each selected vertex s perform a BFS starting from s until
2

εdavg
vertices have been reached or no more new vertices can

be reached (a small connected component has been found).
3. If any of the above searches finds a small connected compo-

nent, then the algorithm rejects, otherwise it accepts.

a If ε is so small so that the sample size is of the order of n, then the algorithm will just
run a BFS on the graph.

Fig. 7.1 Connectivity testing algorithm (version I).

The query complexity (and running time). Consider first the
case that the maximum degree in the graph is of the same order as the
average degree davg. In this case the complexity is:

O

(
1

εdavg
· 1
εdavg

· davg

)
= O

(
1

ε2davg

)
, (7.1)

and in particular, when davg = O(1) we get O(1/ε2). More generally,
the cost of the BFS is the total number of edges observed in the course
of the BFS, which is at most

( 2
εdavg

)2 and so we get an upper bound of
O
( 1

ε3(davg)3
)
.

Improving the query complexity. Note that there was a certain
“waste” in our counting. On one hand we performed, for each vertex
selected, a BFS that may go up to 2

εdavg
vertices, since in the worst case

all small components have this number of vertices. On the other hand,
when we counted the number of vertices that belong to small connected
components, then we assumed a worst-case scenario in which there is
just one vertex in each small component. These two worst-case scenar-
ios cannot occur together. Specifically, if all small components indeed
contain 2

εdavg
vertices, then (since there are at least ε

2davg
n small com-

ponents), every vertex belongs to a small component so the probability
of selecting a vertex from a small component is 1. In the other extreme,
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if all small components are of size 1, then we will need to take a sample
of size Θ(1/εdavg), but then it will be enough to ask a constant number
of queries for each of these vertices.

More generally, let us partition the (at least ε
2davg

n) small con-
nected components according to their size. Specifically, for i = 1, . . . , �

where � = log(2/(εdavg)) + 1 (where for simplicity we ignore floors and
ceilings), let Bi consist of all connected components that contain at
least 2i−1 vertices and at most 2i − 1 vertices. By our lower bound on
the total number of small connected components,

∑�
i=1 |Bi| ≥ ε

2davgn.
Hence, there exists an index j for which |Bj | ≥ 1

� · ε
2davgn. By definition

of Bj , the number of vertices that belong to connected components in
Bj is at least 2j−1 · |Bj | ≥ 2j−1 · 1

� · ε
2davgn, and if we uniformly and

independently select a vertex, then the probability that it belongs to a
component in Bj is 2j−1 · 1

� · ε
2davg. Therefore, if we select Θ

(
�

2j−1εdavg

)
vertices, uniformly at random, and from each we perform a BFS until
we reach 2j vertices or a small connected component is detected, then
we’ll find evidence of a small connected component in Bj with constant
probability.

Since we don’t know what is the (an) index j for which |Bj | ≥
1
� · ε

2davgn, we run over all possibilities. Namely, we get the algorithm
in Figure 7.2.

Algorithm 7.2: Connectivity Testing Algorithm II

1. For i = 1 to � = log(2/(εdavg)) + 1 do

(a) Uniformly and independently select ti = 4�
2i−1εdavg

vertices.

(b) For each selected vertex s perform a BFS start-
ing from s until 2i vertices have been reached or
no more new vertices can be reached (a small con-
nected component has been found).

2. If any of the above searches finds a small connected compo-
nent, then the algorithm rejects, otherwise it accepts.

Fig. 7.2 Connectivity testing algorithm (version II).
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The correctness of the algorithm follows from the foregoing discus-
sion. The query complexity is bounded as follows:

�∑
i=1

ti · 22i = c ·
�∑

i=1

�

2i−1εdavg
· 22i (7.2)

= c′ · �

εdavg

�∑
i=1

2i (7.3)

≤ c′ · �

εdavg
· 2�+1 (7.4)

= c′′ · log(1/(εdavg))
ε2davg

. (7.5)

Therefore, we have saved a factor of Θ
(

log(1/(εdavg))
εdavg

)
(as compared to

Algorithm 7.1).

7.2 k-Edge Connectivity

Recall that a graph is k-edge connected (or in short, k-connected), if
between every pair of vertices in the graph there are k edge-disjoint
paths. An equivalent definition is that the size of every cut in the
graph is at least k. Recall that the connectivity (1-connectivity) testing
algorithm is based on the observation that if a graph is far from being
connected, then it contains many small connected components (cuts
of size 0). This statement generalizes as follows to k-connectivity for
k > 1 (based on e.g., [53, 52, 109]) where we use the shorthand (C,C)
for |E(C,V \ C)|. If a graph is far from being k-connected, then it
contains many subsets C of vertices that are small and such that: (1)
(C,C) = � < k; (2) for every C ′ ⊂ C, (C ′,C ′) > �. We say in this case
that the subset C is �-extreme.

As in the case of connectivity, we shall uniformly select a sufficient
number of vertices and for each we shall try and detect whether it
belongs to a small �-extreme set C for � < k. The algorithmic question
is how to do this in time that depends only on the size of C and possibly
d (or davg) and k. There are special purpose algorithms for k = 2 and
k = 3 (that are more efficient than the general algorithm), but here we
shall discuss how to deal with the general case of k ≥ 3.
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The problem is formalized as follows: Given a vertex v ∈ C where
C is an �-extreme set for � < k and |C| ≤ t, describe a (possibly
randomized) procedure for finding C (with high probability), when
given access to neighbor queries in the graph. Here it will actually
be somewhat simpler to work in the bounded-degree model (though
the algorithm can be easily modified to work in the sparse-graphs
(unbounded-degree) model).

The suggested procedure is an iterative procedure: at each step
it has a current subset of vertices S and it adds a single vertex to S

until |S| = t or a cut of size less than k is detected. To this end the
procedure maintains a cost that is assigned to every edge incident to
vertices in S. Specifically, initially S = {v}. At each step, the procedure
considers all edges in the cut (S,S). If an edge was not yet assigned a
cost, then it is assigned a cost uniformly at random from [0,1]. Then
the edge in (S,S) that has the minimum cost among all cut edges is
selected. If this edge is (u,v) where u ∈ S and v ∈ S, then v is added
to S. The procedure is repeated Θ(t2) times. Our goal is to prove
that a single iteration of the procedure succeeds in reaching S = C

with probability at least t−2 or possibly reaching S = C ′ such that the
cut (C ′,C ′) has size less than k (recall that � may be strictly smaller
than k). Before doing so observe that the total running time is upper
bounded by O(t2 · t · d log(td)) = Õ(t3 · d). Since it is sufficient to
consider t that is polynomial in k and 1/(εd), we obtain an algorithm
whose complexity is polynomial in k and 1/ε.

For our purposes it will be convenient to represent C by a single
vertex x that has � neighbors in C. Since, if the procedure traverses an
edge in the cut (C,C), we account for this as a failure in detecting the
cut, we are not interested in any other information regarding C. Let
this new graph, over at most t + 1 vertices, be denoted by GC . Note
that since C is an �-extreme set, every vertex v ∈ C has degree greater
than �. The first observation is that though our procedure assigns costs
in an online manner, we can think of the random costs being assigned
ahead of time, and letting the algorithm “reveal” them as it goes along.

Consider any spanning tree T of the subgraph induced by C (this is
the graph GC minus the “outside” vertex x). We say that T is cheaper
than the cut (C,C) if all t − 1 edges in T have costs that are lower than
all costs of edges in the cut (C,C).
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Claim 7.3. Suppose that the subgraph induced by C has a spanning
tree that is cheaper than the cut (C,C). Then the search process suc-
ceeds in finding the cut (C,C) or a cut (C ′,C ′) that has size less than k.

Proof. We prove, by induction on the size of the current S, that S ⊆ C.
Since the procedure stops when it finds a cut of size less than k, it will
stop when S = C, if it doesn’t stop before that. Initially, S = {v} so
the base of the induction holds. Consider any step of the procedure.
By the induction hypothesis, at the start of the step S ⊆ C. If S = C,
then we are done. Otherwise, S ⊂ C. But this means that there is at
least one edge from the spanning tree in the current cut (S,S) (that is,
an edge connecting v ∈ S to u ∈ C \ S). But since all edges in (C,C)
have a greater cost, one of the spanning tree edges must be selected,
and the induction step holds.

Karger’s Algorithm. It remains to prove that with probability
Ω(t−2), the subgraph induced by C has a spanning tree that is cheaper
than the cut (C,C). To this end we consider a randomized algorithm
for finding a minimum cut in a graph known as “Karger’s min-cut
algorithm”[95], and its analysis.

Karger’s algorithm works iteratively as follows. It starts from the
original graph (in which it wants to find a min-cut) and at each step it
modifies the graph and in particular decreases the number of vertices in
the graph. An important point is that the intermediate graphs may have
parallel edges (even if the original graph does not). The modification in
each step is done by contracting two vertices that have at least one edge
between them. After the contraction we have a single vertex instead of
two, but we keep all edges to other vertices. That is, if we contract u

and v into a vertex w, then for every edge (u,z) such that z �= v we
have an edge (w,z) and similarly for (v,z), z �= u. The edges between u

and v are discarded (i.e., we don’t keep any self-loops). The algorithm
terminates when only two vertices remain: each is the contraction of
one side of a cut, and the number of edges between them is exactly the
size of the cut.

The contraction in Karger’s algorithm is performed by selecting,
uniformly at random, an edge in the current graph, and contracting its
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two end-points. Recall that we have parallel edges, so the probability of
contracting u and v depends on the number of edges between them. An
equivalent way to describe the algorithm is that we first uniformly select
a random ordering (permutation) of the edges, and then, at each step
we contract the next edge (that is still in the graph) according to this
ordering. To get a random ordering we can simply assign random costs
in [0,1] to the edges in the graph (which induces a random ordering of
the edges).

Now, as a thought experiment, consider an execution of Karger’s
min-cut algorithm on GC (whose min-cut is (C,{x})). If the algorithm
succeeds in finding this cut (that is, it ends when C is contracted into
a single vertex and no edge between C and x is contracted), then the
edges it contracted along the way constitute a spanning tree of C and
this spanning tree is cheaper than the cut. So the probability that
Karger’s algorithm succeeds is a lower bound on the probability that
there exists a spanning tree that is cheaper than the cut, which is a
lower bound on the success probability of the local-search procedure.
Hence, it remains to lower bound the success probability of Karger’s
algorithm. (Observe that our local-search procedure also defines a span-
ning tree, but its construction process is similar to Prim’s algorithm
while Karger’s algorithm is similar to Kruskal’s algorithm.)

Returning to the analysis of Karger’s algorithm, the simple key
point is that, since C is an �-extreme set, at every step of the algo-
rithm the degree of every vertex is at least � + 1 (recall that a vertex
corresponds to a contracted subset C ′ ⊂ C). Thus, at the start of the
i-th contraction step the current graph contains at least (n−(i−1))·(�+1)+�

2
edges. Hence, the probability that no cut edge is contracted is at least

t−1∏
i=1

(
1 − 2�

(t − (i − 1)) · (� + 1) + �

)

=
t−2∏
i=0

(
1 − 2�

(t − i) · (� + 1) + �

)
(7.6)

=
t−2∏
i=0

(t − i)(� + 1) − �

(t − i)(� + 1) + �
(7.7)
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=
t∏

j=2

j − �/(� + 1)
j + �/(� + 1)

(7.8)

>

t∏
j=2

j − 1
j + 1

>
6
t2

. (7.9)

(If � is small, e.g., � = 1, then the probability is even higher.) Thus, the
success probability of Karger’s algorithm, and hence of our local-search
algorithm, is Ω(t−2).

A Comment. Note that the local-search procedure does not select to
traverse at each step a random edge in the cut (S,S). To illustrate why
this would not be a good idea, consider the case in which k = 1, C is a
cycle, and there is one edge from a vertex v in C to x. If we executed the
alternative algorithm, then once v would be added to S, at each step the
probability that the cut edge is traversed, would be 1/3, and the proba-
bility this doesn’t happen would be exponential in t. On the other hand,
the way our procedure works, it succeeds with probability 1

t because
that is the probability that the cut edge gets the maximum cost.

7.3 k-Vertex Connectivity.

A graph is k-vertex connected if between every two vertices there are
k vertex-disjoint paths. First note that being 1-vertex connected is the
same as being 1-edge connected, a property we have already discussed.
Testing k-vertex connectivity for k = 2 and k = 3 was studied in the
bounded-degree model in [73], and the algorithms proposed have query
complexity (and running time) Õ(ε−2d−1) and Õ(ε−3d−2), respectively.
The general case of k > 3 was studied by Ito and Yoshida [91], and their
algorithm has complexity Õ(d(ck/(εd))k) (for a constant c).

7.4 Minor-Closed Properties

A graph property is said to be minor closed if it is closed under
removal of edges, removal of vertices, and contraction of edges.1 All

1 When an edge (u,v) is contracted, the vertices u and v are replaced by a single vertex w,
and the set of neighbors of w is the union of the sets of neighbors of u and v.
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properties defined by a forbidden minor2 (or minors) are minor closed,
and in particular this is true of planarity, outerplanarity, having a
bounded tree-width, and more. A graph property is hereditary if it
is closed under removal of vertices (so that every minor-closed prop-
erty is hereditary, but also other properties such as k-colorability).
Czumaj et al. [44] proved that every hereditary property is testable
if the input graph belongs to a family of graphs that is hereditary and
“non-expanding” (that is, it does not contain graphs with expansion
greater than 1/ log2 n). The query complexity of their testing algorithm
is doubly-exponential in poly(1/ε).

Building on some ideas from [44], Benjamini et al. [33] proved that
every minor-closed property is testable (without any condition on the
tested graph), using a number of queries that is triply-exponential in
poly(1/ε). This result was improved by Hassidim et al. [87] who reduced
the complexity to singly-exponential in poly(1/ε). We note that the spe-
cial case of testing cycle-freeness (which is equivalent to testing whether
a graph is K3-minor-free) is considered in [76]. That work includes an
algorithm for testing cycle-freeness in the bounded-degree model with
query complexity poly(1/ε). We also mention that testing cycle-freeness
in the sparse (unbounded-degree) model requires Ω(

√
n) queries [112].

All the abovementioned algorithms perform local search. The [44]
algorithm searches for evidence that the graph does not have the prop-
erty, where this evidence is in the form of a forbidden induced subgraph
(of bounded size). Thus, their algorithm has one-sided error. Finding
such evidence by performing a number of queries that does not depend
on n is not possible in general graphs (even for the simple case of
the (minor-closed) property of cycle-freeness there is a lower bound of
Ω(

√
n) on the number of queries necessary for any one-sided error algo-

rithm [76]). Instead, the algorithm of [33] uses local search in order to
estimate the number of different subgraphs of a bounded size, and it
is shown that such an estimate can distinguish (with high probability)

2 A graph H is a minor of a graph G if H can be obtained from G by vertex removals, edge
removals, and edge contractions. Robertson and Seymour [119] have shown that every
minor-closed property can be expressed via a constant number of forbidden minors (where
it is possible to find such a minor if it exists, in cubic time [118]).
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between graphs that have any particular minor-closed property and
graphs that are far from having the property.

The algorithm of [87] has both a “one-sided error part” and a “two-
sided error part”. That is, it may reject either because it found “hard”
evidence in the form of a small subgraph that contains a forbidden
H-minor, or because it found certain “circumstantial evidence”. The
latter type of evidence is based on the Separator Theorem of Alon
et al. [13]. This theorem implies that if a graph (with degree at most d)
is H-minor free, then by removing at most εdn edges it is possible to
obtain connected components that are all of size O(1/ε2) (where the
constant in the O(·) notation depends on H). The algorithm of [87]
first tries to estimate the number of edges in G between the subsets of
vertices that correspond to these connected components. This is done
by implementing what they call a Partition Oracle (where in the case
that the graph is minor closed, the parts of the partition correspond to
small connected subsets that are separated by a relatively small number
of edges).

If the graph has the minor-closed property in question, then with
high probability the estimate on the number of edges between parts
will be sufficiently small. On the other hand, if the graph is far from
the property, then one of the following two events will occur (with high
probability): (1) the estimate obtained is large, so that the algorithm
may reject; or (2) the estimate obtained is small (because the graph
can be separated to small connected components by removing few edges
(even though the graph is far from being minor closed)). In the latter
case it can be shown that in the second part of the algorithm, where the
algorithm searches for a forbidden minor in the close vicinity of a sample
of vertices, a forbidden minor will be detected with high probability
(since many forbidden minors must reside within the small parts).

7.5 Other Local-Search Algorithms

There are also local-search algorithms for the following properties:
being Eulerian, subgraph-freeness [76], and having a diameter of a
bounded size [112]. The dependence on 1/ε in all these cases is polyno-
mial (and there is no dependence on the number, n, of graph vertices).
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In some cases (subgraph-freeness) the algorithm works only in the
bounded-degree model (and there is a lower bound of Ω(

√
n) on the

number of queries required in the sparse (unbounded-degree) model).
In the other cases there are algorithms that work in both models. All of
these algorithms are based on local search, though naturally, the local
search may be somewhat different, and once the local search is per-
formed, different checks are performed. For example, in the case of the
diameter testing algorithm, it is important to account for the depth of
the BFS. That is, we are interested in the number of vertices reached
when going to a certain distance from the selected vertices.



8
Random Walks Algorithms

In this section we discuss two algorithms that work in the bounded-
degree model and are based on random walks. The first is for testing
bipartiteness and the second is for testing expansion. The algorithm
for testing bipartiteness was extended to the general model (and as a
special case, to the sparse-graphs model), in [96]. We shortly discuss
the [96] result in Section 10.

8.1 Testing Bipartiteness in Bounded-Degree Graphs

Recall that a graph G = (V,E) is bipartite if there exists a partition
(V1,V2) of V such that E(V1,V1) ∪ E(V2,V2) = ∅. A graph is ε-far from
being bipartite in the bounded-degree model if more than εdn edges
should be removed in order to make it bipartite. In other words, for
every partition (V1,V2) of V we have that |E(V1,V1) ∪ E(V2,V2)| > εdn.
It was first shown in [76] that as opposed to the dense-graphs model,
any algorithm for testing bipartiteness in the bounded-degree model
must perform Ω(

√
n) queries (for constant ε). (See Section 9.2 for a

high-level idea of the proof.)
The algorithm we present [74] almost matches this lower bound in

terms of its dependence on n. The query complexity and running time

154
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of the algorithm are O(
√

n · poly(logn/ε)). The algorithm is based on
performing random walks of the following (lazy) form: in each step
of the random walk on a graph of degree at most d, if the current
vertex is v, then the walk continues to each of v’s neighbors with equal
probability 1

2d and remains in place with probability 1 − deg(v)
2d . An

important property of such random walks on connected graphs is that,
no matter in which vertex we start, if we consider the distribution
reached after t steps, then for sufficiently large t, the distribution is
very close to uniform. The sufficient number of steps t depends on
properties of the graph (and of course on how close we need to be to
the uniform distribution). In particular, if it suffices that t be relatively
small (i.e., logarithmic in n), then we say that the graph is rapidly
mixing . In particular, expander graphs (in which subsets of vertices
have relatively many neighbors outside the subset) are rapidly mixing.
We describe the algorithm in Figure 8.1, and give a sketch of the proof
of its correctness for the case of rapidly mixing graphs.

Note that while the number of steps performed in each walk is
exactly the same (L), the lengths of the paths they induce (i.e., remov-
ing steps in which the walk stays in place) vary. Hence, in particular,
there are even-length paths and odd-length paths. Also note that if the
graph is bipartite, then it is always accepted, and so we only need to
show that if the graph is ε-far from bipartite, then it is rejected with
probability at least 2/3.

The rapidly mixing case. Assume the graph is rapidly mixing
(with respect to L). That is, from each starting vertex s in G, and
for every v ∈ V , the probability that a random walk of length L =
poly((logn)/ε) ends at v is at least 1

2n and at most 2
n — i.e., approxi-

mately the probability assigned by the stationary distribution. (Recall
that this ideal case occurs when G is an expander.) Let us fix a par-
ticular starting vertex s. For each vertex v, let p0

v be the probability
that a random walk (of length L) starting from s, ends at v, and cor-
responds to an even-length path. Define p1

v analogously for odd-length
paths. Then, by our assumption on G, for every v, p0

v + p1
v ≥ 1

2N .
We consider two cases regarding the sum

∑
v∈V p0

v · p1
v — in case

the sum is (relatively) “small”, we show that there exists a partition
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Algorithm 8.1: Test-Bipartite (for bounded-degree graphs)

• Repeat T = Θ(1
ε ) times:

1. Uniformly select s in V .

2. If odd-cycle(s) returns found, then reject.

• In case the algorithm did not reject in any one of the above
iterations, it accepts.

Procedure odd-cycle(s)

1. Let K
def= poly((logn)/ε) · √

n, and
L

def= poly((logn)/ε).

2. Perform K random walks starting from s, each of
length L.

3. If some vertex v is reached (from s) both on a prefix of
a random walk corresponding to an even-length path
and on a prefix of a walk corresponding to an odd-
length path, then return found. Otherwise, return
not-found.

Fig. 8.1 The algorithm for testing bipartiteness in bounded-degree graphs.

(V0,V1) of V that is ε-good, and so G is ε-close to being bipar-
tite. Otherwise (i.e., when the sum is not “small”), we show that
Pr[odd-cycle(s) = found] is constant. This implies that if G is ε-far
from being bipartite, then necessarily the sum is not “small” (or else
we would get a contradiction by the first case). But this means that
Pr[odd-cycle(s) = found] is a constant for every s, so that if we select a
constant number of starting vertices, with high probability for at least
one we’ll detect a cycle.

Consider first the case in which
∑

v∈V p0
v · p1

v is smaller than ε
c·n for

some suitable constant c > 1 (c > 300 should suffice). Let the partition
(V0,V1) be defined as follows: V0 = {v : p0

v ≥ p1
v} and V1 = {v : p1

v > p0
v}.

Consider a particular vertex v ∈ V0. By definition of V0 and our rapid-
mixing assumption, p0

v ≥ 1
4n . Assume v has neighbors in V0, and denote

this set of neighbors by Γ0(v), and their number by d0(v). Then for each
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such neighbor u ∈ Γ0(v), p0
u = p0

u(L) ≥ 1
4n as well. This can be shown

to imply that p0
u(L − 1) ≥ 1

32n . (The high-level idea is to map walks of
L steps that end at u and correspond to even-length paths to walks of
L − 1 steps that are obtained by removing one step of staying in place
(and hence also correspond to even-length paths).) However, since there
is a probability of 1

2d of taking a transition from u to v in walks on G,
we can infer that each neighbor u contributes 1

2d · 1
32n to the probability

p1
v. In other words,

p1
v =

∑
u∈Γ0(v)

1
2d

· p0
u(L − 1) ≥ d0(v) · 1

64dn
. (8.1)

Therefore, if we denote by d1(v) the number of neighbors that a vertex
v ∈ V1 has in V1, then∑

v∈V

p0
v · p1

v ≥
∑
v∈V0

1
4n

· d0(v)
64dn

+
∑
v∈V1

1
4n

· d1(v)
64dn

(8.2)

=
1

c′dn2 ·
∑

v∈V0

d0(v) +
∑
v∈V1

d1(v)

 , (8.3)

where c′ is a constant. Thus, if there were many (more than εdn) vio-
lating edges with respect to (V0,V1), then the sum

∑
v∈V p0

v · p1
v would

be at least ε
c′n , contradicting our case hypothesis (for c > c′).

We now turn to the second case (
∑

v∈V p0
v · p1

v ≥ c · ε
N ). For every

fixed pair i, j ∈ {1, . . . ,K}, (recall that K = Ω(
√

n) is the number of
walks taken from s), consider the 0/1 random variable ηi,j that is 1 if
and only if both the i-th and the j-th walk end at the same vertex v

but correspond to paths with a different parity (of their lengths). Then
Pr[ηi,j = 1] =

∑
v∈V 2 · p0

v · p1
v, and so E[ηi,j ] =

∑
v∈V 2 · p0

v · p1
v. What

we would like to have is a lower bound on Pr[
∑

i<j ηi,j = 0]. Since there
are K2 = Ω(n/ε) such variables, the expected value of their sum is
greater than 1. These random variables are not all independent from
each other, nonetheless it is possible to obtain a constant bound on the
probability that the sum is 0 using Chebyshev’s inequality.

We note that the above analysis can be viewed as following the
enforce-and-test approach: a selected vertex s enforces a partition, and
the walks taken from it test the partition.
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The idea for the General Case. Unfortunately, we may not
assume in general that for every (or even some) starting vertex, all
(or even almost all) vertices are reached with probability Θ(1/n).
Instead, for each vertex s, we may consider the set of vertices that
are reached from s with relatively high probability on walks of length
L = poly((logn)/ε). As was done above, we could try and partition
these vertices according to the probability that they are reached on
random walks corresponding to even-length and odd-length paths,
respectively. The difficulty that arises is how to combine the differ-
ent partitions induced by the different starting vertices, and how to
argue that there are few violating edges between vertices partitioned
according to one starting vertex and vertices partitioned according to
another (assuming they are exclusive).

To overcome this difficulty, the analysis of [74] proceeds in a different
manner. Let us call a vertex s good , if the probability that odd-cycle(s)
returns found is at most 0.1. Then, assuming G is accepted with prob-
ability greater than 1

3 , all but at most ε
16 of the vertices are good . It is

possible to define a partition in stages as follows. In the first stage we
pick any good vertex s. What can be shown is that not only is there a
set of vertices S that are reached from s with high probability and can
be partitioned without many violations (due to the “goodness” of s),
but also that there is a small cut between S and the rest of the graph.
Thus, no matter how we partition the rest of the vertices, there cannot
be many violating edges between S and V \ S. We therefore partition
S (as above), and continue with the rest of the vertices in G.

In the next stage, and those that follow, we consider the subgraph
H induced by the yet “unpartitioned” vertices. If |H| < ε

4n, then we
can partition H arbitrarily and stop since the total number of edges
adjacent to vertices in H is less than ε

4 · dn. If |H| ≥ ε
4n, then it can

be shown that any good vertex s in H that has a certain additional
property (which at least half of the vertices in H have), determines a
set S (whose vertices are reached with high probability from s) with
the following properties: S can be partitioned without having many
violating edges among vertices in S; and there is a small cut between
S and the rest of H. Thus, each such set S accounts for the violating
edges between pairs of vertices that both belong to S as well as edges
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Fig. 8.2 An illustration of several stages of the partitioning process in the case that the
graph G passes the test with sufficiently high probability. The vertices s1, s2, and s3 are
“good” vertices, where the random walks from each are used to obtain a partition with few
violating edges in a part of a graph. The “boundaries” between these parts are marked by
broken lines, where the number of edges crossing between parts is relatively small.

between pairs of vertices such that one vertex belongs to S and one to
V (H) \ S. Adding it all together, the total number of violating edges
with respect to the final partition is at most εdn. For an illustration
see Figure 8.2. The core of the proof is hence in proving that indeed
for most good vertices s there exists a subset S as defined above. The
analysis builds in part on techniques of Mihail [106] who proved that
the existence of large cuts (good expansion) implies rapid mixing.

8.2 Testing Expansion

We have seen in the previous subsection that knowing that a graph is
an expander can simplify the analysis of a testing algorithm. Here we
shortly discuss the problem of testing whether a graph is an expander
(using random walks). We say that a graph G = (V,E) is a (γ,α)-
expander if for every subset U ⊂ V such that |U | ≥ γn (where n =
|V |), we have that the number of neighbors of vertices in U that are
outside of U (i.e.,

∣∣{v : v ∈ V \ U, and ∃u ∈ U s.t. (u,v) ∈ E}∣∣) is at
least α · |U |. (A closely related definition sets a lower bound on the
number of edges going out of U relative to |U |, but here we use the
vertex-expansion definition.) When γ is not explicitly specified, then it
is assumed to be 1/2.

The first result concerning testing expansion was a negative one: it
was shown in [76] that testing expansion requires Ω(

√
n) queries (for

constant ε, γ and α). The lower bound establishes that it is hard to
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distinguish in less than
√

n/c queries (for some constant c), between
a random 3-regular graph (which is a very good expander with high
probability) and a graph that consists of several such disjoint subgraphs
(which is far from being even a weak expander).

In [75] it was conjectured that there is an almost matching upper
bound in terms of the dependence on n. Specifically, in [75] a random-
walks-based algorithm was proposed. The basic underlying idea of the
algorithm is that if a graph is a sufficiently good expander, then the
distribution induced by the end-points of random walks (of length that
grows logarithmically with n and also depends on the expansion param-
eter α) is close to uniform. The algorithm performs

√
n · poly(1/ε) ran-

dom walks, and counts the number of collisions (that is, the number of
times that the same vertex appears as an end-point of different walks).
The algorithm rejects only if this number is above a certain threshold. It
was shown in [75] that the algorithm indeed accepts every sufficiently
good expander.1 The harder direction of proving that the algorithm
rejects graphs that are far from being good (or even reasonably good)
expanders was left open.

Several years later, Czumaj and Sohler [48] made progress on this
problem and showed that the algorithm of [75] (with an appropriate set-
ting of the parameters) can distinguish with high probability between
an α-expander (with degree-bound d) and a graph that is ε-far from
being an α′ expander for α′ = O

(
α2/(d2 log(n/ε))

)
. The query complex-

ity and running time of the algorithm are O
(
d2√n log(n/ε)α−2ε−3

)
.

This result was improved by Kale and Seshadhri [94] and by Nach-
mias and Shapira [108] (who build on an earlier version of [93]) so
that α′ = O(α2/d2) (with roughly the same complexity — the depen-
dence on n is slightly higher, and the dependence on 1/ε is lower). It
is still open whether it is possible to improve the result further so that
it holds for α′ that depends linearly on α (thus decreasing the gap
between accepted instances and rejected instances).

1 The notion of expansion considered in [75] was actually the algebraic one, based on the
second largest eigenvalue of the graph, but this notion can be translated to vertex expan-
sion.



9
Lower Bounds

We have mentioned several lower bound results along the way, but
haven’t given any details. Here we give some details for two lower
bounds so as to provide some flavor of the types of constructions and
arguments used. Note that when dealing with lower bounds, there are
two main issues. One is whether or not we allow the algorithm to be
adaptive, that is, whether its queries may depend on previous answers,
and the second is whether it is allowed to have two-sided error or only
one-sided error. Clearly, the strongest type of lower bound is one that
holds for adaptive algorithms that are allowed two-sided error, though
weaker results may be informative as well.

9.1 A Lower Bound for Testing Triangle-Freeness

Recall that in Section 6 we showed that there is an algorithm for testing
triangle-freeness of dense graphs that has a dependence on 1/ε that is
quite high. While there is no known matching lower bound, we shall
show that a super-polynomial dependence on 1/ε is necessary [3]. Here
we give the proof only for the one-sided error case, and note that it can
be extended to two-sided error algorithms [15]. Namely, we shall show
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how to construct dense graphs that are ε-far from being triangle-free
but for which it is necessary to perform a super-polynomial number
of queries in order to see a triangle. As shown in [7, 78], if we ignore
quadratic factors, we may assume without loss of generality that the
algorithm takes a uniformly selected sample of vertices and makes its
decision based on the induced subgraph. This “gets rid” of having to
deal with adaptivity. Furthermore, since we are currently considering
one-sided error algorithms, the algorithm may reject only if it obtains
a triangle in the sample.

The construction of [3] is based on graphs that are known as
Behrend Graphs. These graphs are defined by sets of integers that
include no three-term arithmetic progression (abbreviated as 3AP).
Namely, these are sets X ⊂ {1, . . . ,m} such that for every three ele-
ments x1,x2,x3 ∈ X, if x2 − x1 = x3 − x2 (i.e., x1 + x3 = 2x2), then
necessarily x1 = x2 = x3. Below we describe a construction of such sets
that are large (relative to m), and later explain how such sets determine
Behrend graphs.

Lemma 9.1. For every sufficiently large m there exists a set X ⊂
{1, . . . ,m}, |X| ≥ m1−g(m) where g(m) = o(1), such that X contains no
three-term arithmetic progression.

In particular, it is possible to obtain g(m) = c/
√

logm for a
small constant c. We present a simpler proof that gives a weaker
bound of g(m) = O(log log logm/ log logm), but gives the idea of the
construction.

Proof. Let b = logm and k =
⌊

logm
logb

⌋
− 1. Since logm/ logb =

logm/ log logm we have that k < b/2 for every m ≥ 8. We arbitrarily
select a subset of k different numbers {x1, . . . ,xk} ⊂ {0, . . . , b/2 − 1}
and define

X =

{
k∑

i=1

xπ(i)b
i : π is a permutation of {1, . . . ,k}

}
. (9.1)
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By the definition of X we have that |X| = k!. By using z! > (z/e)z, we
get that

|X| = k! =
(⌊

logm

log logm

⌋
− 1

)
!

>
1

(logm/ log logm)2
· logm

log logm
! (9.2)

>

(
log logm

logm

)2

·
(

logm

e · log logm

) logm
log logm

(9.3)

= 22(log log logm−log logm) · 2logm· log logm−loge−log log logm
log logm

> m
1− log log logm+4

log logm . (9.4)

Consider any three elements u,v,w ∈ X such that u + v = 2w. By
definition of X, these elements are of the form u =

∑k
i=1 xπu(i)b

i,
v =

∑k
i=1 xπv(i)b

i, and w =
∑k

i=1 xπw(i)b
i ∈ X, where πu,πv,πw are per-

mutations over {1, . . . ,k}. Since u + v =
∑k

i=1(xπu(i) + xπv(i))bi and
xi < b/2 for every 1 ≤ i ≤ k, it must be the case that for every i,

xπu(i) + xπv(i) = 2xπw(i). (9.5)

This implies that for every i:

x2
πu(i) + x2

πv(i) ≥ 2x2
πw(i), (9.6)

where the inequality in Equation (9.6) is strict unless xπu(i) = xπv(i) =
xπw(i). (This follows from the more general fact that for every convex
function f , 1

n

∑n
i=1 f(ai) ≥ f( 1

n

∑n
i=1 ai).) If we sum over all indices i

and there is at least one index i for which the inequality in Equa-
tion (9.6) is strict we get that

k∑
i=1

x2
πu(i) +

k∑
i=1

x2
πv(i) >

k∑
i=1

2x2
πw(i), (9.7)

which is a contradiction since we took permutations of the same num-
bers. Thus, we get that u = v = w.



164 Lower Bounds

Remark. The better construction has a similar form. Define

Xb,B =

{
k∑

i=1

xib
i : 0 ≤ xi <

b

2
and

k∑
i=0

x2
i = B

}
,

where k =
⌊

logm
logb

⌋
− 1 as before. Then it can be shown that there exists

a choice of b and B for which |Xb,B| ≥ m
exp(

√
logm) = m1−Θ(1/

√
logm).

Behrend graphs. Given a set X ⊂ {1, . . . ,m} with no three-term
arithmetic progression we define the Behrend graph BGX as follows.
It has 6m vertices that are partitioned into three parts: V1, V2, and V3

where |Vi| = i · m. For each i ∈ {1,2,3} we associate with each vertex
in Vi a different integer in {1, . . . , i · m}. The edges of the graph are
defined as follows (for an illustration see Figure 9.1):

• The edges between V1 and V2. For every x ∈ X and j ∈
{1, . . . ,m} there is an edge between j ∈ V1 and (j + x) ∈ V2;

• The edges between V2 and V3. For every x ∈ X and j ∈
{1, . . . ,2m} there is an edge between (j + x) ∈ V2 and (j +
2x) ∈ V3; and

• The edges between V1 and V3. For every x ∈ X and j ∈
{1, . . . ,m} there is an edge between j ∈ V1 and (j + 2x) ∈ V3.

(It is also possible to construct a “nicer”, regular graph, by working
modulo m.) We shall say that an edge between j ∈ V1 and j′ ∈ V2 or

Fig. 9.1 An illustration of the structure of Behrend graphs.
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between j ∈ V2 and j′ ∈ V3 is labeled by x, if j′ = (j + x), and we shall
say that an edge between j ∈ V1 and j′ ∈ V3 is labeled by x, if j′ =
(j + 2x).

The graph BGX contains 3|X|m edges. Since |X| = o(m) we don’t
yet have a dense graph (or, more precisely, if ε is a constant, then the
graph is not ε-far from being triangle-free according to the dense-graphs
model), but we shall attend to that shortly. For every j ∈ {1, . . . ,m}
and x ∈ X, the graph contains a triangle (j,(j + x),(j + 2x)) where
j ∈ V1, (j + x) ∈ V2 and (j + 2x) ∈ V3. There are m · |X| such edge-
disjoint triangles and every edge is part of one such triangle. That is,
in order to make the graph triangle-free it is necessary to remove a
constant fraction of the edges.

On the other hand, we next show that, based on the assumption that
X is 3AP-free, there are no other triangles in the graph. To verify this
consider any three vertices j1, j2, j3 where ji ∈ Vi and such that there is
a triangle between the three vertices. By definition of the graph, j2 =
(j1 + x1), for some x1 ∈ X, j3 = (j2 + x2), for some x2 ∈ X, and j3 =
(j1 + 2x3), for some x3 ∈ X. Therefore, (j1 + x1 + x2) = (j1 + 2x3).
That is, we get that x1 + x2 = 2x3. Since X contains no three-term
arithmetic progression, the last implies that x1 = x2 = x3, meaning that
the triangle (j1, j2, j3) is of the form (j,(j + x),(j + 2x)).

To get a dense graph that is ε-far from triangle-free for any given ε,
we “blow up” the graph BGX . In “blowing-up” we mean that we replace
each vertex in BGX by an independent set of s vertices (where s will
be determined shortly), and we put a complete bipartite graph between
every two such “super-vertices”. We make the following observations:

• The number of vertices in the resulting graph is 6m · s, and
the number of edges is 3|X|m · s2.

• It is necessary to remove |X|m · s2 edges in order to make
the graph triangle-free. This follows from the fact that there
are |X|m edge-disjoint triangles in BGX , and when turning
them into “super-triangles” it is necessary to remove at least
s2 edges from each super-triangle.

• There are |X|m · s3 triangles in the graph (this follows from
the construction of BG(x), and the blow-up, which replaces
each triangle in the original graph with s3 triangles).
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Given ε and n, we select m to be the largest integer satisfying ε ≤
m−g(m)/36. This ensures that m is a super-polynomial function of 1/ε

(for g(m) = Θ(1/
√

logm) we get that m ≥ (c/ε)c log(c/ε) for a constant
c > 0.) Next we set s = n/(6m) so that 6m · s = n, and the number of
edges that should be removed is

|X|m · s2 ≥ m2−g(m) · s2 = (6ms)2 · m−g(m)/36 = εn2.

Finally, if the algorithm takes a sample of size q, then the expected
number of triangles in the subgraph induced by the sample is at most

q3 · |X|ms3

n3 = q3 · m2−g(m)

63m3 < q3 · 1
cm

.

If q < m1/3 then this is much smaller than 1, implying that w.h.p. the
algorithm won’t see a triangle. But since m is super-polynomial in 1/ε,
q must be super-polynomial as well.

As noted previously, this lower bound can be extended to hold for
two-sided error algorithms [15].

9.2 A Lower Bound for Testing Bipartiteness of Constant
Degree Graphs

In this subsection we give a high-level description of the lower bound
of Ω(

√
n) (for constant ε) for testing bipartiteness in the bounded-

degree model [76]. The lower bound holds for adaptive two-sided error
algorithms. We use here some notions (e.g., violating edges) that were
introduced in Section 8.1 (where we described an algorithm for testing
bipartiteness in the bounded-degree model whose complexity is O(

√
n ·

poly(logn/ε))).
To obtain such a lower bound we define two families of graphs. In

one family all graphs are bipartite, and in the other family (almost all)
graphs are ε-far from bipartite, for some constant ε (e.g., ε = 0.01). We
then show that no algorithm that performs less than

√
n/c queries (for

some constant c) can distinguish with sufficiently high success prob-
ability between a graph selected randomly from the first family and
a graph selected randomly from the second family. This implies that
there is no testing algorithm whose query complexity is at most

√
n/c.

We explain how this is proved (on a high level) momentarily, but first
we describe the two families.
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We assume that the number of vertices, n, is even. Otherwise, the
graphs constructed have one isolated vertex, and the constructions are
over the (even number of) n − 1 remaining vertices. In both families
all vertices reside on a cycle (since n is assumed to be even, the cycle
is of even length). The ordering of the vertices on the cycle is selected
randomly among all n! permutations. In both families, in addition to
the cycle, we put a random matching between the vertices (thus bring-
ing the degree to 3). The only difference between the families is that in
one family the matching is totally random, while in the other it is con-
strained so that only pairs of vertices whose orderings on the cycle have
different parity (e.g., the 2nd vertex and the 5th vertex) are allowed to
be matched. In other words, it is a random bipartite matching.

Step 1. The first claim that needs to be established is that indeed
almost all graphs in the first family are far from being bipartite. This
involves a basic counting argument, but needs to be done carefully.
Namely, we need to show that with high probability over the choice
of the random matching, every two-way partition has many (a con-
stant fraction of) violating edges. We would have liked to simply show
that for each fixed partition, since we select the matching edges ran-
domly, with very high probability there are many violating edges among
them, and then to take a union bound over all two-way partitions. This
doesn’t quite work, since the number of two-way partitions is too large
compared to the probability we get for each partition (that there are
many violating edges with respect to the partition). Instead, the count-
ing argument is slightly refined, and in particular, uses the cycle edges
as well. The main observation is that we don’t actually need to count
in the union bound those partitions that already have many violating
edges among the cycle edges. The benefit is that the union bound now
needs to be over a smaller number of partitions, and the proof of the
claim follows.

Step 2. Given an algorithm, we want to say something about the
distribution induced on “query–answer” transcripts, when the proba-
bility is taken both over the coin flips of the algorithm and over the
random choice of a graph (in either one of the two families). We want to
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show that if the algorithm asks too few queries, then these transcripts
are distributed very similarly. How is such a transcript constructed?
At each step the algorithm asks a query (based on the past, with pos-
sible randomness) and is given an answer according to the randomly
selected graph. The main observation is that for the sake of the anal-
ysis, instead of generating the graph randomly and then answering
queries, it is possible to generate the graph (according to the correct
distribution) during the process of answering the algorithm’s queries.

To first illustrate this in an easier case (in the dense-graphs model,
where the queries are vertex-pair queries), think of selecting a graph
randomly by independently letting each pair (u,v) be an edge with
probability p. In this case, whenever the algorithm asks a query, the
process that generates the graph flips a coin with bias p and answers.
Clearly, the distribution over query–answer transcripts is the same if
we first construct the graph and then let the algorithm run and perform
its queries, or if we construct the graph while answering the algorithm’s
queries.

Going back to our problem, let’s think how this can be done for
our graph distributions. In the first query (v, i), both in case the query
concerns a cycle edge or a matching edge (we can assume that the
algorithm knows the labeling of the three types of edges (e.g., 1 and
2 for cycle edges and 3 for matching edge)), the answer is a uniformly
selected vertex u, with the only constraint that u �= v. In general, at any
point in time we can define the knowledge graph that the algorithm has.
As long as the algorithm didn’t close a cycle (this will be an important
event), the knowledge graph consists of trees (for an illustration, see
Figure 9.2). Both processes will attribute to each new vertex that is
added to the graph its parity on the cycle. The only difference between
the processes is that in the process that constructs a bipartite graph,
for each matching-edge query (v,3), the parity of the matched vertex
u is determined by the parity of v, while in the other family there is
some probability for each parity (depending on the number of vertices
that already have a certain parity).

The crucial point is that for each query (v, i), the probability that
the query is answered by a vertex that already appears in the knowledge
graph is O(n′/n), where n′ is the number of vertices in the knowledge
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Fig. 9.2 An illustration of the knowledge graph, which consists of trees. The longer lines in
the figure correspond to matching edges (labeled by 3), and the shorter lines to cycle edges
(labeled by 1 and 2).

graph (and it can be at most twice the number of queries already
performed). On the other hand, if the vertex in the answer is not in the
knowledge graph, then in both cases it is a uniformly selected vertex.
Now, if the total number of queries performed is less than

√
n/4, then

the probability that the algorithm gets as an answer a vertex in the
knowledge graph, is less than (

√
n/4) · (

√
n/4)/n = 1/16. Otherwise,

the distributions on the query–answer transcripts are identical.



10
Other Results

In this section we describe several families of results that did not fall
naturally into the previous sections. The list of results is clearly not
comprehensive. In particular we note that one area that was not covered
is testing geometric properties (e.g., [45, 49, 55]). See [47] for some
works in this area (in the broader context of sublinear-time algorithms).

10.1 Testing Monotonicity

Let X be a partially ordered set (poset) and let R be a fully ordered
set. We say that a function f : X → R is monotone if for every x,y ∈ X

such that x is smaller than y (according to the partial order defined
over X) it holds that f(x) is smaller or equal to f(y) (according to the
full order defined over R). In what follows we discuss several special
case, as well as the general case.

10.1.1 Testing Monotonicity in One Dimension

We start by considering the following problem of testing monotonic-
ity in one dimension, or testing “sortedness” (first studied by Ergun
et al. [55]). Let f : [n] → R, where the range R is some fully ordered

170
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set. The function f can also be viewed as a string of length n over R. We
say that f is monotone (or sorted) if f(i) ≤ f(j) for all 1 ≤ i < j ≤ n.
There are actually several algorithms for testing this property [55, 71].
Their query complexity and running time are O(logn/ε), and Ω(logn)
queries are necessary for constant ε (by combining the non-adaptive
lower bound of Ergun et al. [55] with a result of Fischer [58]).

We first show that the “naive” algorithm, which simply takes a uni-
form sample of indices in [n] and checks whether non-monotonicity
is violated (i.e., whether in the sample there are i < j such that
f(i) > f(j)), requires Ω(

√
n) queries for constant ε. To see why this

is true, consider the function f(i) = i + 1 for odd i, 1 ≤ i ≤ n − 1, and
f(i) = i − 1 for even i, 2 ≤ i ≤ n. That is, the string corresponding to
f is (assuming for simplicity that n is even): 2,1, 4,3, . . . , n,n − 1. We
call each pair i, i + 1 where f(i) = i + 1 and f(i + 1) = i a matched
pair . Note that the algorithm rejects only if it gets a matched pair in
the sample. On one hand, this function is 1/2-far from being monotone,
because in order to make it monotone it is necessary to modify its value
on at least one member of each matched pair. On the other hand, by the
(lower bound part of the) birthday paradox, the probability that a uni-
form sample of size s ≤ √

n/2 contains a matched pair is less than 1/3.
In Figure 10.1 we give the “binary-search-based” algorithm of [55],

where we assume without loss of generality that all function values
are distinct. This assumption can be made without loss of generality
because if this is not the case then we can replace each value f(i) with

Algorithm 10.1: Testing Monotonicity for f : [n] → R

• Uniformly and independently at random select s = 2/ε

indices i1, . . . , is.
• For each index ir selected, query f(ir), and perform a

binary search on f for f(ir) (recall that f can be viewed as
a string or array of length n).

• If the binary search failed for any ir, then output reject.
Otherwise output accept.

Fig. 10.1 Monotonicity testing algorithm for f : [n] → R.
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f ′(i) = (f(i), i), where (f(i), i) < (f(j), j) if and only if either f(i) <

f(j) or f(i) = f(j) but i < j. The distance to monotonicity of the new
function f ′ is the same as the distance to monotonicity of the original
function f .

Clearly, if the function f is monotone, then the algorithm accepts
with probability 1 since every possible binary search must succeed.
Assume from this point on that f is ε-far from being monotone. We
show that the algorithm rejects with probability at least 2/3.

We say that an index j ∈ [n] is a witness (to the non-monotonicity
of f), if a binary search for f(j) fails.

Lemma 10.1. If f is ε-far from being monotone, then there are at
least εn witnesses.

Proof. Assume, contrary to the claim, that there are less than εn wit-
nesses. We shall show that f is ε-close to being monotone, in con-
tradiction to the premise of the lemma. Specifically, we shall show
that if we consider all non-witnesses, then they constitute a monotone
sequence. For each pair of non-witnesses, j,j′ where j < j′, consider
the steps of the binary search for f(j) and f(j′), respectively. Let u be
the first index for which the two searches diverge. Namely, j ≤ u ≤ j′

(where at least one of the inequalities must be strict because j < j′) and
f(j) ≤ f(u) ≤ f(j′) (where again at least one of the inequalities must
be strict since the function values are distinct). But then f(j) < f(j′),
as required. Now we are done since by modifying each witness to obtain
the value of the nearest non-witness, we can make f into a monotone
function. The total number of modifications equals the number of wit-
nesses, which is at most εn.

Corollary 10.2. If f is ε-far from monotone then Algorithm 10.1.1
rejects f with probability at least 2/3.

Proof. The probability that the algorithm does not reject (i.e., accepts)
equals the probability that no witness is selected in the sample.
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This probability is upper bounded by (1 − ε)s < e−εs = e−2 < 1/3, as
required.

10.1.2 Testing Monotonicity in Higher Dimensions

For a function f : [n]m → R (where, as before, the range R is a fully
ordered set), we say that f is monotone if f(x) ≤ f(y) for every x,y

such that x ≺ y, where ≺ denotes the natural partial order over strings
(that is, x1 . . .xm ≺ y1 . . .ym if xi ≤ yi for every i ∈ [m], and xi < yi for
at least one i ∈ [m]). Let εM(f) denote the distance of f from the closest
monotone function (with the same domain and range).

Batu et al. [28] extended the algorithm of [55] to higher dimensions,
at an exponential cost in the dimension m. The complexity of their
algorithm is O((2 logn)mε−1). Halevy and Kushilevitz [81] reduced the
complexity (for sufficiently large n) to O(m4m lognε−1), and Ailon and
Chazelle [1] further improved this bound to O(m2m lognε−1).

Dodis et al. [54] showed that it is possible to obtain a linear depen-
dence on m at a cost of a logarithmic dependence on |R|, where the
dependence on log |R| can be replaced by m logn. An outline of the
algorithm (Algorithm 10.2) is given in Figure 10.2. The complexity
of Algorithm 10.2 depends on the complexity of the test performed
in Step 1b and on the probability that it rejects a uniformly selected
fi,α,β , which is then used to set t(m,ε,n).

Algorithm 10.2: (Outline of) Testing Monotonicity for
f : [n]m → R

1. Repeat the following t(m,ε,n) times:

(a) Uniformly select i ∈ [m], α ∈ [n]i−1 and β ∈ [n]m−i.

(b) Perform a test on the one-dimensional func-
tion fi,α,β : [n] → R that is defined by fi,α,β(x) =
f(αxβ).

2. If no test caused rejection then accept.

Fig. 10.2 Monotonicity testing algorithm (outline) for f : [n]m → R.
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We note that the high-level structure of the algorithm is reminiscent
of the algorithm of [123] for testing multivariate polynomials over large
fields (shortly discussed in Section 3.2). Recall that their algorithm con-
siders restrictions of the tested function f to random lines, and checks
that each restriction is a univariate polynomial of bounded degree.

We first consider in more detail the case of testing monotonicity of
Boolean functions over m bit strings (that is, over the m-dimensional
Boolean hypercube), and later talk about the general case. That is, we
consider testing a function f : {0,1}m → {0,1} (which is equivalent to
testing f : [n]m → R for n = 2 and any R such that |R| = 2). Observe
that in this case, since the size of the domain of each fi,α,β is 2, the one-
dimensional test in Step 1b of Algorithm 10.2 simply checks whether
f(i,α,β)(0) ≤ f(i,α,β)(1), or equivalently, whether f(α0β) ≤ f(α1β)
(as must be the case if the function is monotone).

Thus, similarly to the tests for linearity and low-degree polynomials,
we consider a characterization of monotone functions and show that it
is robust (though less robust than the characterization we had for linear
functions). The characterization is that a function f is monotone if and
only if for every pair x,y ∈ {0,1}m that differ only on the i-th bit for
some 1 ≤ i ≤ m, where xi = 0 and yi = 1 (so that x ≺ y), it holds that
f(x) ≤ f(y). Clearly, if f is monotone, then the above holds, and the
other direction is also easy to verify.1 Algorithm 10.2 for the special case
of f : {0,1}m → {0,1} thus becomes the algorithm given in Figure 10.3.

As noted before, if f is monotone then the algorithm accepts with
probability 1. We would like to show that if εM(f) > ε then the algo-
rithm rejects with probability at least 2/3. To this end we define:

U
def= {(x,y) : x and y differ on a single bit and x ≺ y}, (10.1)

as the set of all neighboring pairs on the m-dimensional hypercube
(where |U | = 2m−1 · m),

V (f) def= {(x,y) ∈ U : f(x) > f(y)} (10.2)

1 Given x ≺ y that differ on more than one bit, consider a sequence of intermediate points
between x and y (according to the partial order) where every two consecutive points in
this sequence differ on a single bit.
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Algorithm 10.3: Testing Monotonicity for
f : {0,1}m → {0,1}

1. Repeat the following Θ(m/ε) times:

(a) Uniformly select i ∈ [m] and x ∈ {0,1}m such that
xi = 0.

(b) Let y = x1 . . .xi−1 1xi+1 . . .xm (that is, y is
obtained by flipping the i-th bit of x).

(c) If f(x) > f(y) then reject (and exit).

2. If no test caused rejection then accept.

Fig. 10.3 Monotonicity testing algorithm for f : {0,1}m → {0,1}.

as the set of all violating neighboring pairs, and

η(f) def=
|V (f)|

|U | = Pr(x,y)∈U [f(y) < f(x)] (10.3)

as the probability that a neighboring pair is violating. The main
lemma is:

Lemma 10.3. For every f : {0,1}m → {0,1}, η(f) ≥ εM(f)
m .

The correctness of the algorithm directly follows from Lemma 10.3,
since the algorithm uniformly selects Θ(n/ε) = Ω(1/η(f)) (assuming
εM(f) > ε) pairs (x,y) ∈ U and checks whether (x,y) ∈ V (f). We will
sketch how f can be turned into a monotone function by performing
at most m · η(f) · 2m modifications. Since εM(f) · 2m is the minimum
number of modifications required to make f monotone, Lemma 10.3
follows. We first add a few more notations and definitions.

Definition 10.1. For any i ∈ [m], we say that a function h : {0,1}m →
{0,1} is monotone in dimension i, if for every α ∈ {0,1}i−1 and β ∈
{0,1}m−i, h(α0β) ≤ h(α1β). For a set of indices T ⊆ [m], we say that
h is monotone in dimensions T , if for every i ∈ T , the function h is
monotone in dimension i.



176 Other Results

We next define a switch operator, Si that transforms any function h to
a function Si(h) that is monotone in dimension i.

Definition 10.2. Let h : {0,1}m → {0,1}. For every i ∈ [m], the
function Si(h) : {0,1}m → {0,1} is defined as follows: For every
α ∈ {0,1}i−1 and every β ∈ {0,1}m−i, if h(α0β) > h(α1β) then
Si(h)(α0β) = h(α1β), and Si(h)(α1β) = h(α0β). Otherwise, Si(h) is
defined as equal to h on the strings α0β and α1β.

Let

Di(f) def= |{x : Si(f)(x) �= f(x)}| (10.4)

so that Di(f) is twice the number of pairs in V (f) that differ on the i-
th bit (and

∑n
i=1 Di(f) = 2 · |V (f)|).

Lemma 10.4. For every h : {0,1}m → {0,1} and for every i, j ∈
[m], Di(Sj(h)) ≤ Di(h).

As a direct corollary of Lemma 10.4 (applying it to the special case
that Di(h) = 0 for every i in a subset T ) we get:

Corollary 10.5. For every h : {0,1}m → {0,1} and j ∈ [m], if h is
monotone in dimensions T ⊆ [m], then Sj(h) is monotone in dimen-
sions T ∪ {j}.

We won’t prove Lemma 10.4 here but we shall show how Lemma 10.3
(and hence the correctness of the algorithm) follows. Let g =
Sn(Sn−1(· · ·(S1(f)) · · ·). By the definition of g,

dist(f,g) ≤ 1
2m

·
m∑

i=1

Di(Si−1(· · ·(S1(f)) · · ·). (10.5)

By successive applications of Lemma 10.4,

Di(Si−1(· · ·(S1(f)) · · ·) ≤ Di(Si−2(· · ·(S1(f)) · · ·) ≤ ·· · ≤ Di(f),
(10.6)
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and so (by combining Equations (10.5) and (10.6)),

dist(f,g) ≤ 1
2m

·
m∑

i=1

Di(f). (10.7)

By successive application of Corollary 10.5, the function g is monotone,
and hence dist(f,g) ≥ εM(f). Therefore,

m∑
i=1

Di(f) ≥ dist(f,g) · 2m ≥ εM(f) · 2m. (10.8)

On the other hand, by definition of Di(f),

m∑
i=1

Di(f) = 2 · |V (f)| = 2 · η(f) · |U | = η(f) · 2m · m. (10.9)

Lemma 10.3 follows by combining Equations (10.8) and (10.9).

Extending the Result to f : [n]m → {0,1} for n > 2. In this case
it is possible to define one-dimensional tests (for Step 1b in Algo-
rithm 10.2) that select a pair of points σ < τ in [n] according to
particular distributions and check whether fi,α,β(σ) ≤ fi,α,β(τ). By
extending the analysis from the case n = 2, and in particular modify-
ing the switching operator Si(·) to a sorting operator, it can be shown
that for some distributions, Θ(m(logn)ε−1) such tests suffice (and for
another distribution, Θ((m/ε)2) tests suffice (the latter is for the uni-
form distribution on pairs)).

Extending the Result to f : [n]m → R for n ≥ 2 and R > 2.
By performing a range reduction, it is shown in [54] that
O(m logn log |R|ε−1) queries suffice.

General Posets. Fischer et al. [63] consider the more general case
in which the domain is any poset (and not necessary [n]m). They show
that testing monotonicity of Boolean functions over general posets is
equivalent to the problem of testing 2CNF assignments (namely, testing
whether a given assignment satisfies a fixed 2CNF formula or is far from
any such assignment). They also show that for every poset it is possible
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to test monotonicity over the poset with a number of queries that is
sublinear in the size of the domain poset; specifically, the complexity
grows like a square root of the size of the poset. Finally, they give some
efficient algorithms for several special classes of posets (e.g., posets that
are defined by trees).

10.2 Testing in the General-Graphs Model

Recall that in the general-graphs model the distance measure between
graphs (and hence to a property) is defined with respect to the number
of edges in the graph (or an upper bound on this number), as in the
sparse-graphs model. Since the algorithm may have to deal with graphs
of varying density, it is allowed to perform both neighbor queries and
vertex queries (as well as degree queries).

Testing Bipartiteness. The general-graphs model was first studied
by Kaufman et al. [96]. Their focus was on the property of bipartite-
ness, which exhibits the following interesting phenomenon. As shown
in Section 4.2, for dense graphs there is an algorithm whose query com-
plexity is poly(1/ε) [10, 72]. In contrast, as sketched in Section 9.2, for
bounded-degree graphs there is a lower bound of Ω(

√
n) [76] (and, as

described in Section 8.1, there is an almost matching upper bound [74]).
The question Krivelevich et al. asked is: what is the complexity of test-
ing bipartiteness in general graphs (using the general model)?

They answer this question by describing and analyzing an algorithm
for testing bipartiteness in general graphs whose query complexity (and
running time) is O(min(

√
n,n2/m) · poly(logn/ε)). Thus, as long as the

average degree of the graph is O(
√

n), the running time (in terms of the
dependence on n) is Õ(

√
n), and once the average degree goes above

this threshold, the running time starts decreasing.
Krivelevich et al. first consider the case that the graph is almost

regular . That is, the maximum degree d and the average degree davg

are of the same order. They later showed how to reduce the problem
of testing bipartiteness of general graphs (where d may be much larger
than davg) to bipartiteness of almost-regular graphs. This reduction
involves emulating the execution of the algorithm on an “imaginary”
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almost-regular graph where the queries to this imaginary graph can be
answered by performing queries to the “real” graph G.

The algorithm for almost-regular graphs builds on the testing
algorithm for bipartiteness of bounded-degree graphs [74] (which
is described in Section 8.1 and whose query complexity is O(

√
n ·

poly(logn/ε))). In fact, as long as d ≤ √
n, the algorithm is equiva-

lent to the algorithm in [74]. In particular, as in [74], the algorithm
selects Θ(1/ε) starting vertices and from each it performs several ran-
dom walks (using neighbor queries), each walk of length poly(logn/ε).
If d ≤ √

n then the number of these walks is O(
√

n · poly(logn/ε)), and
the algorithm simply checks whether an odd-length cycle was detected
in the course of these random walks.

If d >
√

n then there are two important modifications: (1) the
number of random walks performed from each vertex is reduced to
O(

√
n/d · poly(logn/ε)); and (2) for each pair of end vertices that are

reached by walks that correspond to paths whose lengths have the
same parity, the algorithm performs a vertex-pair query. Similarly to
the d ≤ √

n case, the graph is rejected if an odd-length cycle is found
in the subgraph induced by all queries performed.

Krivelevich et al. also present an almost matching lower bound of
Ω(min(

√
n,n2/m)) (for a constant ε). This bound holds for all testing

algorithms (that is, for those which are allowed a two-sided error and
are adaptive). Furthermore, the bound holds for regular graphs.

Testing Triangle-Freeness. Another property that was studied in
the general-graphs model is testing triangle-freeness (and more gener-
ally, subgraph-freeness) [9]. Recall that for this property there is an
algorithm in the dense-graphs model whose complexity depends only
on 1/ε [7] (see Section 6.3), and the same is true for constant degree
graphs [76]. Here too the question is what is the complexity of testing
the property in general graphs. In particular this includes graphs that
are sparse (that is, m = O(n)), but do not have constant degree.

The main finding of Alon et al. [9] is a lower bound of Ω(n1/3) on
the necessary number of queries for testing triangle-freeness that holds
whenever the average degree davg is upper bounded by n1−ν(n), where
ν(n) = o(1). Since when d = Θ(n) the number of queries sufficient for
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testing is independent of n [7], we observe an abrupt, threshold-like
behavior of the complexity of testing around n. Additionally, they pro-
vide sublinear upper bounds for testing triangle-freeness that are at
most quadratic in the corresponding lower bounds (which vary as a
function of the graph density).

Testing k-colorability. Finally, a study of the complexity of testing
k-colorability (for k ≥ 3) is conducted by Ben-Eliezer et al. [31]. For
this property there is an algorithm with query complexity poly(1/ε)
in the dense-graphs model [72, 10] (where the algorithm uses only
vertex-pair queries), and there is a very strong lower bound of Ω(n)
for testing in the bounded-degree model [36] (where the algorithm uses
neighbor queries). Ben-Eliezer et al. consider the complexity of test-
ing k-colorability as a function of the average degree davg in models
that allow different types of queries (and in particular may allow only
one type of query). In particular they show that while for vertex-pair
queries, testing k-colorability requires a number of queries that is a
monotone decreasing function in the average degree davg, the query
complexity in the case of neighbor queries remains roughly the same
for every density and for large values of k. They also study a new,
stronger, query model, which is related to the field of Group Testing.

10.3 Testing Membership in Regular Languages and
Other Languages

Alon et al. [12] consider the following problem of testing membership in
a regular language. For a predetermined regular language L ⊆ {0,1}∗,
the tester for membership in L should accept every word w ∈ L with
probability at least 2/3, and should reject with probability at least 2/3
every word w that differs from any w′ ∈ L on more than ε|w| bits. We
stress that the task is not to decide whether a language is regular, but
rather the language is predetermined, and the test is for membership
in the language.

The query complexity and running time of the testing algorithm for
membership in a regular language is Õ(1/ε), that is, independent of
the length n of w. (The running time is dependent on the size of the
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(smallest) finite automaton accepting L, but this size is considered to
be a fixed constant with respect to n.) Alon et al. [12] also show that
a very simple context-free language (of all strings of the form vvRuuR,
where wR denotes the reversal of a string w) cannot be tested using
o(

√
n) queries.
One important subclass of the context-free languages is the Dyck

language, which includes strings of properly balanced parentheses.
Strings such as “(( )( ))” belong to this class, whereas strings such
as “(( )” or “) (” do not. If we allow more than one type of paren-
thesis then “([ ])” is a balanced string but “([ )]” is not. Formally, the
Dyck language Dm contains all balanced strings that contain at most
m types of parentheses. Thus, for example “(( )( ))” belongs to D1

and “([ ])” belongs to D2. Alon et al. [12] show that membership in
D1 can be tested by performing Õ(1/ε) queries, whereas membership
in D2 cannot be tested by performing o(logn) queries.

Parnas et al. [114] present an algorithm that tests whether a string
w belongs to Dm. The query complexity and running time of the algo-
rithm are Õ

(
n2/3/ε3

)
, where n is the length of w. The complexity does

not depend on m, the number of different types of parentheses. They
also prove a lower bound of Ω(n1/11/ logn) on the query complexity
of any algorithm for testing Dm for m > 1. Finally, they consider the
context-free language for which Alon et al. [12] gave a lower bound
of Ω(

√
n): Lrev = {uurvvr : u,v ∈ Σ∗}. They show that Lrev can be

tested in Õ(1
ε

√
n) time, thus almost matching the lower bound.

Newman [110] extend the result of Alon et al. [12] for regular lan-
guages and give an algorithm that has query complexity poly(1/ε)
for testing whether a word w is accepted by a given constant-width
oblivious read-once branching program. (It is noted in [38] that the
result can be extended to the non-oblivious case.) On the other hand,
Fischer et al. [65] show that testing constant-width oblivious read-twice
branching programs requires Ω(nδ) queries, and Bollig [38] shows that
testing read-once branching programs of quadratic size (with no bound
on the width) requires Ω(n1/2) queries (improving on [39]).

In both [65] and [38] lower bounds for membership in sets defined
by CNF formulas are also obtained, but the strongest result is in [32]:
an Ω(n) lower bound for 3CNF (over n variables). This should be
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contrasted with an O(
√

n) upper bound that holds for 2CNF [63]. More
generally, Ben-Sasoon et al. [32] provide sufficient conditions for linear
properties to be hard to test, where a property is linear if its elements
form a linear space.



11
Extensions, Generalizations, and

Related Problems

11.1 Distribution-Free Testing

The notion of distribution-free testing was already introduced and dis-
cussed in Section 3.3.1 (in the context of applications of self-correcting).
Here we mention a few other results in this model.

In addition to the result described in Section 3.3.1, Halevy
and Kushilevitz [81, 84] describe a distribution-free monotonicity
testing algorithm for functions f : [n]m → R with query complexity
O((2 logn)m/ε). Note that the complexity of the algorithm has expo-
nential dependence on the dimension m of the input. This is in
contrast to some of the standard testing algorithms [54, 71] where
the dependence on m is linear (to be precise, the complexity is
O(m logn log |R|/ε), where |R| is the effective size of the range of the
function, that is, the number of distinct values of the function). In a fur-
ther investigation of distribution-free testing of monotonicity [83, 84],
Halevy and Kushilevitz showed that the exponential dependence on m

is unavoidable even in the case of Boolean functions over the Boolean
hypercube (that is, f : {0,1}m → {0,1}).

183
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Motivated by positive results for standard testing of several classes
of Boolean functions (as described in Section 5) Glasner and Serve-
dio [68] ask whether these results can be extended to the distribution-
free model of testing. Specifically, they consider monotone and general
monomials (conjunction), decisions lists, and linear threshold functions.
They prove that for these classes, in contrast to standard testing, where
the query complexity does not depend on the number of variables n,
every distribution-free testing algorithm must make Ω((n/ logn)1/5)
queries (for constant ε). While there is still a gap between this lower
bound and the upper bound implied by learning these classes, a strong
dependence on n is unavoidable in the distribution-free case.

Finally we note that Halevy and Kushilevitz [82] also study
distribution-free testing of graph properties in sparse graphs, and give
an algorithm for distribution-free testing of connectivity, with similar
complexity to the standard testing algorithm for this property.

11.2 Testing in the Orientation Model

In the orientation model , introduced by Halevy et al. [85], there is
a fixed and known underlying undirected graph G. For an unknown
orientation of the edges of G (that is, each edge has a direction), the goal
is to determine whether the resulting directed graph has a prespecified
property or is far from having it. Here distance is measured as the
fraction of edges whose orientation should be flipped (edges cannot be
removed or added). To this end, the algorithm may query the direction
of edges of its choice. Note that since the underlying undirected graph
G is known in advance, the model allows to perform any preprocessing
on G with no cost in terms of the query complexity of the algorithm.

Halevy et al. [85] first show the following relation between the ori-
entation model and the dense-graphs model: for every graph property
P there is a property of orientations �P together with an underlying
graph G, such that P is testable in the dense-graphs model if and only
if �P is testable in the orientation model (with respect to G). They also
study the following properties in orientation model: being drain-source-
free, being H-free for a fixed forbidden digraph H, and being strongly
connected.
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In follow-up work, Halevy et al. [86] study testing properties of con-
straint graphs. Here, each of the two orientations of an edge is thought
of as an assignment of 0 or 1 to a variable associated with the edge.
A property is defined by the underlying graph and a function on each
vertex, where the arity of the function is the degree of the vertex. An
assignment to the variables (an orientation of the graph) has the prop-
erty if the function at every vertex is satisfied by the assignment to its
incident edges. The main result in [86] is that for a certain family of
such constraint graphs it is possible to test whether an assignment to
the edges satisfies all constraints or is ε-far from any satisfying assign-
ment by performing 2Õ(1/ε) queries. This result has several implications,
among them that for every read-twice CNF formula φ it is possible to
test assignments for the property of satisfying φ by performing 2Õ(1/ε)

queries to the assignment. This positive result stands in contrast to the
negative results of [63] and [32] for testing satisfiability of slightly more
general CNF formula.

Chakroborty et al. [41] consider a property of orientations that was
proposed in [85]: testing st-connectivity. They give a one-sided error
algorithm for testing st-connectivity in the orientation model whose
query complexity is double-exponential in 1/ε2. Interestingly, the algo-
rithm works by reducing the st-connectivity testing problem to the
problem of testing languages that are decidable by branching prob-
lems, where this problem was solved by Newman [110] (as mentioned
in Section 10.3).

Another natural property of orientations, which was suggested
in [86], is testing whether an orientation is Eulerian. As mentioned
briefly in Section 7.5, it is possible to test whether an undirected graph
is Eulerian by performing poly(1/ε) queries, both in the bounded-
degree model [76] and in the sparse (unbounded-degree) model [112].
These results can be extended to directed graphs [111]. Unfortunately,
in the orientation model there is no algorithm for testing whether an
orientation is Eulerian whose query complexity is poly(1/ε) in general.
Fischer et al. [62] show that for general graphs there is a lower bound
of Ω(m) (where m is the number of graph edges) for one-sided error
testing. For bounded-degree graphs they give a lower bound of Ω(m1/4)
for non-adaptive one-sided error testing, and an Ω(logm) lower bound
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for one-sided error adaptive testing. For two-sided error testing the
lower bounds are roughly logarithmic functions of the corresponding
one-sided error lower bounds (in the case of bounded-degree graphs).

Their upper bound for general graphs is O((dm logm)2/3ε−4/3) for
one-sided error testing, and min{Õ(d1/3m2/3ε−4/3), Õ(d3/16m3/4ε−5/4)}
for two-sided error testing (where d is the maximum degree in the
graph). They also give more efficient algorithms for special cases. In
particular, if the graph is an α-expander, then the complexity depends
only on d and 1/(εα), where the dependence is linear.

11.3 Tolerant Testing and Distance Approximation

Two natural extensions of property testing, first explicitly studied
in [115], are tolerant testing and distance approximation. A tolerant
property testing algorithm is required to accept objects that are ε1-
close to having a given property P and reject objects that are ε2-far
from having property P, for 0 ≤ ε1 < ε2 ≤ 1. Standard property testing
refers to the special case of ε1 = 0. Ideally, a tolerant testing algorithm
should work for any given ε1 < ε2, and have complexity that depends
on ε2 − ε1. However, in some cases the relation between ε1 and ε2 may
be more restricted (e.g., ε1 = ε2/2). A closely related notion is that of
distance approximation where the goal is to obtain an estimate of the
distance that the object has to a property. In particular, we would like
the estimate to have an additive error of at most δ for a given error
parameter δ, or we may also allow a multiplicative error.1

In [115] it was first observed that some earlier works imply results in
these models. In particular this is true for coloring and other partition
problems on dense graphs [72], connectivity of sparse graphs [42], edit
distance between strings [24] and L1 distance between distributions [26]
(which will be discussed in Section 11.4). The new results obtained
in [115] are for monotonicity of functions f : [n] → R, and clusterability
of a set of points. The first result was later improved in [2] and extended
to higher dimensions in [56].

1 We note that if one does not allow an additive error (that is, δ = 0), but only allows a
multiplicative error, then a dependence on the distance that the object has to the property
must be allowed.
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In [60] it is shown that there exist properties of Boolean functions for
which there exists a test that makes a constant number of queries, yet
there is no such tolerant test. In contrast, in [64] it is shown that every
property that has a testing algorithm in the dense-graphs model whose
complexity is only a function of the distance parameter ε, has a distance
approximation algorithm with an additive error δ in this model, whose
complexity is only a function of δ.2 Distance approximation in sparse
graphs is studied in [105]. Guruswami and Rudra [80] present tolerant
testing algorithms for several constructions of locally testable codes,
and Kopparty and Saraf [103] study tolerant linearity testing under
general distributions and its connection to locally testable codes.

11.4 Testing and Estimating Properties of Distributions

In this subsection we discuss a research direction that is closely related
to property testing (where some of the problems can be viewed as
actually falling into the property testing framework).

Given access to samples drawn from an unknown distribution p

(or several unknown distributions, p1, . . . ,pm) and some measure over
distributions (respectively, m-tuples of distributions), the goal is to
approximate the value of this measure for the distribution p (respec-
tively, the distributions p1, . . . ,pm), or to determine whether the value
of the measure is below some threshold α or above some threshold β. In
either case, the algorithm is allowed a constant failure probability.3 For
example, given access to samples drawn according to two distributions
p and q, we may want to decide whether |p − q| ≤ α or |p − q| > β (for
certain settings of α and β). The goal is to perform the task by observ-
ing a number of samples that is sublinear in the size of the domain over
which the distribution(s) is (are) defined. In what follows, the running
times of the algorithms mentioned are linear (or almost linear) in their
respective sample complexities. We shortly review the known results

2 The dependence on δ may be quite high (a tower of height polynomial in 1/δ), but there
is no dependence on the size of the graph.

3 An alternative model may allow the algorithm to obtain the probability that the distri-
bution assigns to any element of its choice. We shall not discuss this model.
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and then give details for one of the results: approximating the entropy
of a distribution.

11.4.1 Summary of Results

Testing that distributions are close. Batu et al. [26] consider the
problem of determining whether the distance between a pair of distri-
butions over n elements is small (less than max

{
ε

4
√

n
, ε2

32n1/3

}
), or large

(more than ε) according to the L1 distance. They give an algorithm
for this problem that takes O(n2/3 logn/ε4) independent samples from
each distribution. This result is based on testing closeness according
to the L2 distance, which can be performed using O(1/ε4) samples.
This in turn is based on estimating the deviation of a distribution from
uniform (which we mentioned in Section 8.2 in the context of testing
expansion) [75].

In recent work (discussed in more detail below), Valiant [126] shows
that Ω(n2/3) samples are also necessarily for this testing problem (with
respect to the L1 distance). For the more general problem of distin-
guishing between the case that the two distributions are ε1-close and
the case that they are ε2-far, where ε1 and ε2 are both constants,
Valiant [126] proves an almost linear (in n) lower bound.

One can also consider the problem of testing whether a distribu-
tion p is close to a fixed and known distribution q, or is far from it
(letting q be the uniform distribution is a special case of this prob-
lem). Batu et al. [25] show that it is possible to distinguish between
the case that the distance in L2 norm is O

(
ε3√

n logn

)
and the case that

the distance is greater than ε using Õ(
√

npoly(1/ε)) samples from p.

Testing random variables for independence. Batu et al. [25] also
show that it is possible to test whether a distribution over [n] × [m] is
independent or is ε-far from any independent joint distribution, using
a sample of size Õ(n2/3m1/3poly(1/ε)).

Approximating the entropy. A very basic and important mea-
sure of distributions is their (binary) entropy. The main result of
Batu et al. [23] is an algorithm that computes a γ-multiplicative
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approximation of the entropy using a sample of size O(n(1+η)/γ2
logn)

for distributions with entropy Ω(γ/η) where n is the size of the domain
of the distribution and η is an arbitrarily small positive constant. They
also show that Ω(n1/(2γ2)) samples are necessary. A lower bound that
matches the upper bound of Batu et al. [23] is proved in [126].

Approximating the support size. Another natural measure for
distributions is their support size. To be precise, consider the problem
of approximating the support size of a distribution when each element
in the distribution appears with probability at least 1

n . This problem is
closely related to the problem of approximating the number of distinct
elements in a sequence of length n. For both problems, there is a nearly
linear in n lower bound on the sample complexity, applicable even for
approximation with additive error [117].

A unifying approach to testing symmetric properties of dis-
tributions. Valiant [126] obtains the lower bounds mentioned in the
foregoing discussion as part of a general study of estimating symmet-
ric measures over distributions (or pairs of distributions). That is, he
considers measures of distributions that are preserved under renaming
of the elements in the domain of the distributions. Roughly speaking,
his main finding is that for every such property, there exists a thresh-
old such that elements whose probability weight is below the threshold
“do not matter” in terms of the task of estimating the measure (with a
small additive error). This implies that such properties have a “canon-
ical estimator” that computes its output based on its estimate of the
probability weight of elements that appear sufficiently often in the sam-
ple (“heavy elements”), and essentially ignores those elements that do
not appear sufficiently often.4 In the other direction, lower bounds can

4 Valiant talks about testing, and refers to his algorithm as a “canonical tester”. We have
chosen to use the terms “estimation” and “canonical estimator” for the following reason.
When one discusses “testing” properties of distributions then the task may be to distin-
guish between the case that the measure in question is 0 (close to 0) and the case that it
is above some threshold ε, rather than distinguishing between the case that the measure
is below ε1 (for ε1 that is not necessarily close to 0) and above ε2, which is essentially an
additive estimation task. This is true for example in the case of testing closeness of distri-
butions. The two tasks just described are different types of tasks, and, in particular, for
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be derived by constructing pairs of distributions on which the value of
the estimated measure is significantly different, but that give the same
probability weight to the heavy elements (and may completely differ
on all light elements).

Other results. Other works on testing/estimating properties of dis-
tributions include [27, 4, 122].

11.4.2 Estimating the Entropy

In this subsection we give the details for the algorithm that estimates
the entropy of a distribution [23]. Consider a distribution p over the
set [n] where the probability of element i is denoted by pi. Recall that
the entropy of the distribution p is defined as follows:

H(p) def= −
n∑

i=1

pi logpi =
n∑

i=1

pi log(1/pi). (11.1)

Given access to samples i ∈ [n] distributed according to p, we would
like to estimate H(p) to within a multiplicative factor γ. That is, we
seek an algorithm that obtains an estimate Ĥ such that H(p)/γ ≤
Ĥ ≤ γ · H(p) with probability at least 2/3 (as usual, we can increase
the success probability to 1 − δ by running the algorithm O(log(1/δ))
times and outputting the median value).

We next describe the algorithm of [23] whose sample complexity

and running time are O

(
n

1+η

γ2 logn

)
conditioned on H(p) = Ω(γ/η).

If there is no lower bound on the entropy, then it is impossible to obtain
any multiplicative factor [23], and even if the entropy is quite high (i.e.,

at least logn/γ2 − 2), then n
1

γ2 −o(1) samples are necessary.
The main result of [23] is:

Theorem 11.1. For any γ > 1 and 0 < ε0 < 1/2, there exists an algo-
rithm that can approximate the entropy of a distribution over [n]

the former task, low-frequency elements may play a role (as is the case in testing closeness
of distributions where the collision counts of low-frequency elements play a role). Thus,
saying that low-frequency elements may be ignored when testing properties distributions
is not precise. The statement is true for estimating (symmetric) measures of distributions.
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whose entropy is at least 4γ
ε0(1−2ε0) to within a multiplicative factor

of (1 + 2ε0)γ with probability at least 2/3 in time O(n1/γ2
lognε−2

0 ).

The main idea behind the algorithm is the following. Elements in [n]
are classified as either heavy or light depending on their probability
mass. Specifically, for any choice of α > 0,

Bα(p) def=
{
i ∈ [n] : pi ≥ n−α

}
. (11.2)

The algorithm separately approximates the contribution to the entropy
of the heavy elements and of the light elements, and then combines the
two.

In order to describe the algorithm and analyze it, we shall need the
following notation. For a distribution p and a set T ,

wp(T ) =
∑
i∈T

pi and HT (p) = −
∑
i∈T

pi log(pi). (11.3)

Note that if T1,T2 are disjoint sets such that T1 ∪ T2 = [n] then
H(p) = HT1(p) + HT2(p). The algorithm (Algorithm 11.1) is given in
Figure 11.1.

In the next two subsections we analyze separately the contribution
of the heavy elements and the contribution of the light elements to the
estimate computed by Algorithm 11.1.

Algorithm 11.1: Algorithm Approximate-Entropy(γ,ε0)

1. Set α = 1/γ2.
2. Get m = Θ(nα lognε−2

0 ) samples from p.
3. Let q be the empirical probability vector of the n elements.

That is, qi is the number of times i appears in the sample
divided by m.

4. Let B̂α = {i : qi > (1 − ε0)n−α}.
5. Take an additional sample of size m = Θ(nα logn/ε20) from

p and let ŵ(S) be the total empirical weight of elements in
S = [n] \ B̂α in the sample.

6. Output Ĥ = H
B̂α

(q) + ŵ(S) logn
γ .

Fig. 11.1 The algorithm for approximating the entropy of a distribution.
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Approximating the Contribution of Heavy Elements

The next lemma follows by applying a multiplicative Chernoff bound.

Lemma 11.2. For m = 20nα logn/ε20 and q as defined in the algo-
rithm, with probability at least 1 − 1

n the following two conditions hold
for every i ∈ [n]:

1. If pi ≥ 1−ε0
1+ε0

n−α (in particular this is true of i ∈ Bα(p)) then
|pi − qi| ≤ ε0pi; and

2. If pi < 1−ε0
1+ε0

n−α then qi < (1 − ε0)n−α.

By Lemma 11.2, we get that with high probability, Bα(p) ⊆ B̂α, and
for every i ∈ B̂α (even if i /∈ Bα(p)), |qi − pi| ≤ ε0pi. The next lemma
bounds the deviation of HT (q) from HT (p) conditioned on qi being
close to pi for every i ∈ T .

Lemma 11.3. For every set T such that for every i ∈ T , |qi − pi| ≤
ε0pi,

|HT (q) − HT (p)| ≤ ε0HT (p) + 2ε0wp(T ) .

Proof. For i ∈ T , let εi be defined by qi = (1 + εi)pi where by the
premise of the lemma, |εi| ≤ ε0.

HT (q) − HT (p) = −
∑
i∈T

(1 + εi)pi log((1 + εi)pi)

+
∑
i∈T

pi logpi (11.4)

= −
∑
i∈T

(1 + εi)pi logpi −
∑
i∈T

(1 + εi)pi log(1 + εi)

+
∑
i∈T

pi logpi (11.5)
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= −
∑
i∈T

εipi log(1/pi)

−
∑
i∈T

(1 + εi)pi log(1 + εi). (11.6)

If we now consider the absolute value of this difference:

|HT (q) − HT (p)|

≤
∣∣∣∣∣∑
i∈T

εipi log(1/pi)

∣∣∣∣∣ +

∣∣∣∣∣∑
i∈T

(1 + εi)pi log(1 + εi)

∣∣∣∣∣ (11.7)

≤
∑
i∈T

|εi|pi log(1/pi) +
∑
i∈T

(1 + εi)pi log(1 + εi) (11.8)

≤ ε0HT (p) + 2ε0wT (p). (11.9)

Approximating the Contribution of Light Elements

Recall that S = [n] \ B̂α so that, By Lemma 11.2, with high probability
S ⊆ [n] \ Bα(p).

Claim 11.4. Let ŵ(S) be the fraction of samples, among m =
Θ((nα/ε20) logn) that belong to S (as defined in Algorithm 11.1). If
wp(S) ≥ n−α then with probability 1 − 1/n,

(1 − ε0)wp(S) ≤ ŵ(S) ≤ (1 + ε0)wp(S).

The claim directly follows by a multiplicative Chernoff bound.

Lemma 11.5. If pi ≤ n−α for every i ∈ S then

α · logn · wp(S) ≤ HS(p) ≤ logn · wp(S) + 1.
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Proof. Conditioned on a particular weight wp(S), the entropy HS(p)
is maximized when pi = wp(S)/|S| for all i. In this case

HS(p) = wp(S) log(|S|/wp(S)) (11.10)

= wp(S) log |S| + wp(S) log(1/wp(S)) (11.11)

≤ wp(S) logn + 1. (11.12)

On the other hand, HS(p) is minimized when its support is minimized.
Since pi ≤ n−α for every i ∈ S, this means that nαwp(S) of the ele-
ments have the maximum probability pi = nα, and all others have 0
probability. In this case HS(p) = αwp(S) logn.

Putting it Together

We now prove Theorem 11.1 based on Algorithm 11.1. By Lemma 11.2
we have that with high probability:

1. If i ∈ Bα(p) then i ∈ B̂α. That is, pi ≤ n−α for every i ∈ S =
[n] \ B̂α.

2. Every i ∈ B̂α satisfies |qi − pi| ≤ ε0pi.

Assume from this point on that the above two properties hold. Let B be
a shorthand for B̂α and let S = [n] \ B be as defined in Algorithm 11.1.
Assume first that wp(S) ≥ n−α. In this case, Lemma 11.5 tells us that
(since α = 1/γ2)

1
γ2 · wp(S) · logn ≤ HS(p) ≤ wp(S) logn + 1 (11.13)

or equivalently:

1
logn

· (HS(p) − 1) ≤ wp(S) ≤ 1
logn

· γ2 · HS(p). (11.14)

By Claim 11.4,

(1 − ε0)wp(S) ≤ ŵ(S) ≤ (1 + ε0)wp(S). (11.15)
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If we now use Equations (11.14) and (11.15) and apply Lemma 11.3
(using |qi − pi| ≤ ε0pi for every i ∈ B), we get:

HB(q) +
ŵ(S) logn

γ

≤ (1 + ε0)HB(p) + 2ε0 +
(1 + ε0)wp(S) logn

γ
(11.16)

≤ (1 + ε0) · (HB(p) + γHS(p)) + 2ε0 (11.17)

≤ (1 + ε0)γH(p) + 2ε0 (11.18)

≤ (1 + 2ε0)γH(p), (11.19)

where in the last inequality we used the fact that γ > 1, and H(p) ≥
4γ

ε0(1−2ε0) > 4 so that 2ε0 < ε0 · γ · H(p). Similarly,

HB(q) +
wq(S) logn

γ

≥ (1 − ε0)HB(p) − 2ε0 +
(1 − ε0)wp(S) logn

γ
(11.20)

≥ (1 − ε0) ·
(

HB(p) +
HS(p) − 1

γ

)
− 2ε0 (11.21)

≥ H(p)
γ(1 + 2ε0)

(11.22)

(the last inequality follows from the lower bound on H(p) by tedious
(though elementary) manipulations). Finally, if wp(S) < n−α then
by Claim 11.4 wq(S) ≤ (1 + ε0)n−α with high probability. Therefore,
wq(S) logn/γ is at most (1 + ε0)n−α logn/γ (and at least 0). It is not
hard to verify that the contribution to the error is negligible, assum-
ing γ is bounded away from 1.

We note that if p is monotone, that is pi ≥ pi+1 for all i, then
there is a more sophisticated algorithm that uses poly(logn, logγ)
samples [122].
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