.——W

Proofs that Yield Nothing But their Validity
and a Methodology of Cryptographic Protocol Design

(Extended Abstract)

Oded Goldreich

Dept. of Computer Sc.
Technion

Haifa, Israel

MIT

Silvio Micals
Lab. for Computer Sc.

Cambridge, MA 02139

Avi Wigderson

Inst. of Math. and CS
Hebrew University
Jerusalem, Israel

In this paper we demonstrate the generality and wide applicability of zero-knowledge proofs, a
notion introduced by Goldwasser, Micali and Rackoff. These are probabilistic and interactive proofs
that, for the members z of a language L, efficiently demonstrate membership in the language
without conveying any additional knowledge. So far, zero-knowledge proofs were known only for

some number theoretic languages in NP N Co -NP.

SUMMARY OF OUR RESULTS

Under the assumption that encryption
functions exist, we show that all languages in
NP have zero-knowledge proofs. That is, it is
possible to demonstrate that a CNF formula is
satisfiable without revealing any other pro-
perty of the formula. In particular, without
yielding neither a satisfying assignment nor
properties such as whether there is a satisfying
assignment in which =z etc.

The above result allows us to prove two
fundamental theorems in the field of (two-
party and multi-party) cryptographic proto-
cols. These theorems consist of automatic and
eflicient transformations that, given a protocol
that is correct with respect to an extremely
weak adversary, output a protocol correct in
the most adversarial scenario. Thus, these
theorems imply a powerful methodology for
developing secure two-party and multi-party
protocols.

Work done while first author was at the Laboratory
for Computer Science, MIT; and the third author
was at the Mathematical Sciences Research Insti-
tute, UC-Berkeley. Work was partially supported
by an IBM Postdoctoral Fellowship, NSF Grants
DCR-8509905 and DCR-8413577, and an IBM
Faculty Development Award.

0272-5428/86/0000/0174301 .00 © 1986 IEEE

174

We also demonstrate that zero-
knowledge proofs exist ‘‘independently of
cryptography ‘and number theory”. Using no
unproved assumptions, we show that both
graph isomorphism and graph non-
isomorphism possess zero-knowledge interac-
tive proofs. The mere existence of an interac-
tive proof for graph non-isomorphism is
interesting, since graph non-isomorphism is
not known to be in NP and thus did not pos-
sess so far any efficient proofs.

1. INTRODUCTION

It is traditional to view NP as the class
of languages whose elements posses short
proofs of membership. A “proof that z € L™
is a witness w, such that P; (z,w,)=1 where
P, is a polynomially computable Boolean
predicate associated to the language L such
that Py {z,y)=0 for all y if z is not in L.
The witness must have length polynomial in
the length of the input z, but needs not be
computable from z in polynomial-time. A
slightly different point of view is to consider
NP as the-class of languages L for which a
powerful prover may prove membership in L
to a polynomial-time deterministic verifier.

The interaction between the prover and the
verifier, in this case, is trivial: the prover sends
a witness (proof) and the verifier computes for
polynomial time to verify that it is indeed a
proof.

This formalism was recently generalized
by allowing more complex interaction between
the prover and the verifier and by allowing
the verifier to toss coins and to be convinced
by overwhelming statistical evidence [GMR,
B]. The prover has some computational
advantage over the verifier and for the
definition to be interesting one should assume
that this advantage is crucial for proving
membership in the language (otherwise the
verifier can do this by itself). In other words,
we will implicitly assume that there exist
interesting languages (say in PSPA CE') which
are not in BPP, and be interested in proof
systems for such languages.

A fundamental measure proposed by
Goldwasser, Micali and Rackoff [GMR)] is that
of the amount of knowledge released during
an interactive proof. Informally, a proof sys-
tem was called zero-knowledge if whatever the
verifier could generate in probabilistic
polynomial-time after “seeing” a proof of
membership, he could also generate in proba-
bilistic polynomial-time when just told by a
trusted oracle that the input is indeed in the
language. In other words, zero-knowledge
proofs have the remarkable property of being
both convincing and yielding nothing except
that the assertion is indeed valid.

Besides being a very intriguing notion,
zero-knowledge proofs promise to be a very
powerful tool for the design of secure crypto-
graphic protocol. Typically these protocols
must cope with the problem of distrustful par-
ties convincing each other that the messages
they are sending are indeed computed accord-
ing to their predetermined local program.
Such proofs should be carried out without
yielding any secret knowledge. In particular
cases, zero-knowledge proofs were used to
design secure protocols [FMRW, GMR, CF).

175

However, in order to demonstrate the general-
ity of this tool (and to utilize its full potential)
one should have come with general resylts
concerning the existence of zero-knowledge
proof systems. Until now, no such general
results were obtained.

In this paper, we present general results
concerning zero-knowledge proof systems. In
particular, we show how to give zero-
knowledge proofs to every NP-statement. A
general methodology for designing secure cryp-
tographic protocols follows. Its core is a com-
piler which, making primary use of the above
result, translates protocols correct in a weak
adversary model to protocols correct in the
most adversarial environment,.

1.1 What is an interactive proof

An interactive proof system for a
language L is a protocol (ie. a pair of local
programs) for two probabilistic interactive
machines called the prover and the verifier,
Initially both machine have access to a com-
mon input tape. The two machines send mes-
sages to one another through two communica.
tion tapes. Each machine only sees its own
tapes, the common inpus tape and the com-
munication tapes. In particular, it follows
that one machine cannot monitor the internal
computation of the other machine nor read
the other’s coin tosses, current state, program
etc. The verifier is bounded to a number of
steps which is polynomial in the length of the
common input, after which he stops either in
al accept state or in a reject state. At this
point we put no restrictions on the local com-
Putation conducted by the prover.

We require that, whenever the verifier is fol-
lowing his predetermined program, V| the fol-
lowing two conditions hold:

1) Completeness of the interactive proof sys-
tem: If the common input z is in L and
the prover runs his predetermined pro-
gram, P, then the verifier accepts £ with
probability > 1-|z |~°, for every con-
stant ¢ >0. In other words, the prover

can convince the verifierof z € L.

2) Validity of the interactive proof system: If
the common input z is NOT in L, then
for every program P*, run by the
prover, the verifier rejects z with proba-
bility > 1-]|z | (for every constant
¢ >0). In other words, the prover can-
not fool the verifier.

An important example of an interactive proof
system is presented in section 2.1.

Remark 1: Note that it does not suffice to require
that the verifier cannot be fooled by the predeter-
mined prover (such a mild condition would have
presupposed that the “prover” is a trusted oracle).

Remark 2:; As is the case with NP, the conditions
imposed on acceptance and rejection are not sym-
metric. Thus the existence of an interactive proof
for the language L does not imply its existence for
the complement of L .

Remark 8: The above “definition” follows the one
of Goldwasser, Micali and Rackoff [GMR]. A
different definition due to Babai [B], restricts the
verifier to generate random strings, send them to
the prover, and evaluate a deterministic
polynomial-time predicate at the end of the
interaction. Demonstrating the existence of proof
systems is easier when allowing the verifier to flip
private coins (i.e. [GMR] model), while relating
interactive proof systems to traditional complexity
classes seems easier if one restricts oneself to
Babai’s model. Surprisingly, these two models are
equivalent, as far as language recognition is con-
cerned [GS] (see Sec. 1.3).

Remark 4: The ability to toss coins is crucial to
the non-triviality of the notion of an interactive
proof system. If the verifier is deterministic then
interactive proof systems coincide with NP .
Remark 5: Without loss of generality, we assume
that the last message sent during an interactive
proof is sent by the prover. (A last message sent
by the verifier has absolutely no effect.)

1.2 What is a zero-knowledge proof

Intuitively, a zero-knowledge proof is a
proof which yields nothing but its validity.
This means that for all practical purposes,
“whatever” can be done after interacting with

176

a zero-knowledge prover, can be done when
just believing that the assertion he claims is
indeed valid. {In *“whatever” we mean not
only the computation of functions but also the
generation of probability distributions.) Thus,
zero-knowledge is a property of the predeter-
mined prover. It is the robustness of the
prover against attempts of the verifier to
extract knowledge via interaction. Note that
the verifier may deviate arbitrarily (but in
polynomial-time) from the predetermined pro-
gram. This is captured by the formulation
appearing in (GMR] and sketched below.
Denote by V*(z) the probability distri-
bution generated by a machine V* which
interacts with (the prover) P on input x € L.
We say that the proof system is zero-
knowledge if for all probabilistic polynomial-
time machines V¥, there exists a probabilistic
polynomial-time algorithm M. that on input
z produces a probability distribution M, .(x)
such that M, .(-) and V*(-) are polynomially-
indistinguishable.
(For every algorithm A, let p, (2) denote the
probability that A outputs 1 on input z and
an element chosen according to the probability
distribution D (z). Similarly, p,’' (z) is
defined (w.r.t. D'). The distribution ensem-

bles D() and D' (-} are polynomially-
indistinguishable if for every probabilistic
polynomial-time algorithm A,

pa(z)ps! (z)<|z |, for every constant
¢ >0 and sufficiently long z. This notion
appeared in (GM] and in [Y1)].)

Remark 6: It is not difficuit to see that if a
language L has a zero-knowledge proof system in
which only one message is sent, then L € BPP.
Thus, the non-triviality of the interaction is a
necessary condition for the non-triviality of the
notion of zero-knowledge.

1.3 Previous results concerning interac-
tive proof syastems

Let Q@ be a polynomial. Denote by
IP{@) the class of languages L such that
membership of z € L can be proved through

a general interaction consisting of Q(|z |)
message exchanges. Similarly, let AM (@)
denote languages proven through the res-
tricted type interaction in which the verifier

only tosses ‘“public coins” (ie. Babai's
Arthur-Merlin framework). Babai (B] showed
that for every polynomial Q,

AM(Q +1)=AM(Q). This means that his
finite level hierarchy collapses. (Note that this
does not imply the collapse of the unbounded
level hierarchy! For more details see [AGH].)
Goldwasser and Sipser [GS] showed that, for
every polynomial @, IP(Q)C AM(Q +2).
This means that from a complexity theoretic
point of view, the IP(-) hierarchy and the
AM(-) hierarchy essentially coincide. Both
the above results say nothing about the
preservation of zero-knowledge by the
transformations.

The bounded level IP hierarchy is
related to the polynomial-time hierarchy by
Babai's proof that AM(2) CIIf and that
AM(2) C NPB for almost all oracles B.

Several Number Theoretic languages, not
known to be in BPP, have been previously
shown to have zero-knowledge proof systems.
The first language for which such a proof sys-
tem has been demonstrated is Quadratic
Non-Residuosity [GMR]. =~ Other zero-
knowledge proof systems were presented in
[GMR], [GHY], [CF] and [G]. All these
languages are known to lie in NP N Co ~-NP .

1.4 Organization of the Paper

In Section 2 we present zero-knowledge
interactive proofs for graph isomorphism and
graph non-isomorphism. We also discuss com-
plexity theoretic implications of the existence
of an interactive proof for graph non-
isomorphism.

In Section 3 we show how to use any
one-way permutation in order to construct a
zero-knowledge interactive proof for any
language in NP. This result is extended to
any language in IP.

177

In Section 4, we outline the methodologi-
cal theorems for two-party and multi-party
cryptographic protocols.

2. Proofs of Graph Isomorphism and
Graph Non-Isomorphism

We start by presenting a (probably non-
zero-knowledge) interactive proof for graph
non-isomorphism. Next we present a zero-
knowledge interactive proof for graph isomor-
phism, and for graph non-isomorphism. Let
us set some common notations.

Let A be a set. Then Sym{A) denote
the set of permutations over A. When writ-
ing a € g A, we mean an element chosen at
random with uniform probability distribution
from the set A .

We will consider undirected graphs,
G(V,E). V will denote the vertex set, and E
the edge set of the graph G. n will denote the
size of the vertex set, and m the size of the edge
set (ie. n=|V], m=|E|) The graph
G (V ,E) will be represented by the set E,in an
arbitrary fixed order (e.g. lexicographic).

Two graphs G(V ,E) and H(V ,F) are iso-
morphic if and only if there exist a permutation
7 € Sym (V) such that

(u,v)EE iff (x{u),m(v))EF.
The graph isomorphism problem consists of two
graphs as input, and one has to determine whether
they are isomorphic. The graph isomorphism prob-
lem is trivially in NP, is not known to be in Co-
NP, and is believed not to be NP-complete.

We say that the graph H(V ,F) is a random
isomorphic copy of the graph G(V E) if H is
obtained from G by picking # € g Sym (V') and

letting
F={(n{u),m(v)): (u,v)EE}

2.1 An Interactive Proof of Graph
Non-Isomorphism

In this subsection we examplify the
notion of an interactive proof system by
presenting an interactive proof for graph non-
isomorphism. The fact that graph non-
isomorphism has interactive proofs is interest-

ing as it is not know to be in NP, and thus
has not been know previously to have any
eflicient proofs. Moreover, the existence of an
interactive proof for graph non-isomorphism
has interesting complexity theoretic conse-
quences.

In the following protocol the prover
needs only to be a probabilistic polynomial-
time machine with access to an oracle for
graph isomorphism.
common input: Two graphs G,(V ,E,) and
GV .E,).

1) The verifier chooses at random n
integers o; € p{1,2}, 1<i<n. The
verifier computes n graphs H;(V ,F;)
such that H; is a random isomorphic
copy of G, . The verifier sends the H;’s

to the prover.

2} The prover answers with a string of 5;’s
(each in {1,2}), such that H;(V ,F;) is
isomorphic to G4 (V ,E).

3) The verifier tests whether a;==8;, for
every 1<i<n. If the condition is
violated then the verifier rejects; other-
wise he accepis.

Theorem 1: The above protocol constitutes a
(two-move) interactive proof system for Graph
Non-Isomorphism.

proof: If the graphs ¢, and G4 are not iso-
morphic, and both prover and verifier follow
the protocol, then the verifier always accepts.
If on the other hand, G, and G, are iso-
morphic then, for each i, we have a; 3£ §;
with probability at least 1/2, even if the
prover does not follow the protocol. The rea-
son being that in case G; and Gy are iso-
morphic,

Prob (a; =1 verifier sent H;) = 1/2.
The probability that the verifier does not
reject two isomorphic graphs is thus at most
27",

178

The above Theorem has interesting
implications on the traditional complexity of
the graph isomorphism problem. Namely,
Corollary 1: Graph Isomorphism s in
(NP N Co-NP), for a random oracle A .
Also, Graph Non-Isomorphism can be recog-
nized by a (non-uniform) family of non-

deterministic polynomial-size circuits (i.e.
non-uniform NP).

proof: By the Theorem 1, Graph Non-
Isomorphism (GNI) is in [IP(2). Using

Goldwasser and Sipser’s transformation of
IP{k) protocols to AM{k+2) protocols,
GNI € AM(4). By Babai’s proof of the finite
AM (-} collapse, GNI € AM(2) C NP4 for a
random oracle A . Finally, it has been pointed
out by Mike Sipser that AM (2) is contained in
non-uniform NP. :

Another interesting corollary concerning
graph isomorphism is due to Boppana and

Hastad [BH].

Corollary 2 [BH|: If Graph Isomorphism is
NP-Complete then the polynomiai-time hierar-
chy collapses to its second level.

proof: Boppana and Hastad showed that if
Co-NP C IP (k) (for some fixed k) then the
entire polynomial-time hierarchy collapses to
AM{(2) C ¥, Since Theorem 1 states that
graph non-isomorphism is in IP(2), the Corol-
lary follows.

Corollary 2 may be viewed as providing
additional support to the belief that Graph
Isomorphism is rot NP-Complete.

2.2 A Zero-Knowledge Proof for Graph
Isomorphism

In this section we examplify the notion of
zero-knowledge proof systems by presenting a
zero-knowledge proof for graph isomorphism.
The fact that graph isomorphism has efficient
proofs is apparent, since it is in NP. However,
the fact that graph isomorphism can be
proved in-zero-knowledge, and in particular
without demonstrating the isomorphism is
interesting.

In the following protocol, the prover
needs only to be a probabilistic polynomial-
time machine which gets, as an auxiliary
input, the isomorphism between the input
graphs.

common input: Two graphs G (V,E,) and
GAV,E,).

Let ¢ denote the isomorphism between G,
and G2 The following four steps are exe-
cuted n times, each time using independent
random coin tosses.

1) The prover generates a graph H, a ran-
dom isomorphic copy of @,. This is
done by selecting a permutation
7€ g Sym(V), and computing H(V,F)
such that (m(u)x(v))€F iff (u,v)€E,.
The prover sends the graph H(V.,F) to
the verifier.

2) The verifier chooses at random
@ € p {1,2}, and sends « to the prover.
(Intuitively, the verifier asks the prover
to prove to him that H and G, are
indeed isomorphic.)

3) If a¢ {1,2} then the prover halts. If
a=1 then the prover sends 7 to the
verifier, else the prover sends 7¢~..

4) If the permutation received from the
prover is not an isomorphism between
G, and H then the verifier stops and
rejects; otherwise he continues.

If the verifier has completed n iterations of
the above steps then he accepts.

The reader can easily verify that the
above constitutes an interactive proof system
for graph isomorphism. Intuitively, this proof
is zero-knowledge since whatever the verifier
receives is ‘‘useless”, as he can generate ran-
dom isomorphic copies of the input graphs by
himself. This is easy to see in case the verifier
follows the protocol. In case the verifier devi-
ates from the protocol, the situation is much
more complex. The verifier may set the a’s
depending on the graphs presented to him. In

179

such a case it can not be argued that the
verifier only receives random isomorphic copies
of the input graph. The issue is fairly
mvolved, as we have to defeat a universal
quantifier which is not well understood (i.e. all
possible deviations from the protocol). We
cannot really trust our intuition in such
matters, so a formal proof is indeed required.

Theorem 2: The above protocol constitutes a
zero-knowledge interactive proof system for
Graph Isomorphism.

proof’s sketch: It is clear that the above
prover conveys no knowledge to the specified
verifier. We need however to show that our
prover conveys no knowledge to all possible
verifiers, including cheating ones that deviate
arbitrarily from the protocol.

Let V* be an arbitrary fixed program of
a probabilistic polynomial-time machine
interacting with the prover, specified by the
protocol. We will present a probabilistic
polynomial-time machine M, . that generates
a probability distribution which is identical to
the probability distribution induced on V*'s
tapes during its interaction with the prover. In
fact it suffices to generate the distribution on

the random tape and the communication tape
of V*

Our demonstration of the existence of
such M, . is constructive: given an interactive

program V*, we use it in order to construct
the machine M,,.. The way we use V* in

this construction does not correspond to the
traditional notion of (a subroutine) reduction
[K, C], but rather to a more general notion of
reduction suggested in [AHU, pp. 373-374).
Typically, we will try to guess which isomor-
phism the machine V* will ask to check. We
will construct the graph H such that we can
answer V' in case we were lucky. The cases
in which we failed will be ignored. It is crucial
that from the point of view of V* the case
which leads to our success and the case which

leads to our failure look identical. By throwing
away the instances where we failed, we only
slow down our construction, but we do not
change the probability distribution that V'*

i n
.

sees

Following is a more detailed description
of My.. On input G, and G,, the machine
M. will monitor the execution of the pro-
gram V* on this input and will “simulate”
the prover to V*. M. will start by choosing
and fixing random coin tosses r (random tape)
for V*, and placing r on a special record
tape. All subsequent coin tosses are for M,,..
(The random tape of V*, denoted r, will
remain fix and V* is “deterministic’” given its
random tape r.) Machine M. proceeds in n
rounds as follows.

1) M,. chooses at random € g {1,2} and
a permutation 7 € g Sym(V). It com-
putes H(V,F) such that
(n(u)m{v))€eF if and only if
(s,v)€EEy M. places H on the com-
munication tape of V*. (Note that H is
an isomorphic copy of G 4.)

2) M,. reads V* answer from the com-
munication tape of V*. When V*
answers with a=p (lucky for M,.),
machine M,,. places # on the communi-
cation tape of V*, appends (H,a,7) to
its record tape, and proceeds to the next
round. If a¢ {1,2} (V* is obviously
cheating) then the machine M,,. appends
(H ,a) to its record tape and stops out-
putting its record tape. If oa+f=3
(unlucky for M,.) then M,. is going to
repeat the current round. This is done by
“rewinding” V* to its configuration at
the beginning of the current round, and
by repeating Steps 1 and 2 with new ran-
dom choices. (V* configuration consists
of the contents of its tapes, the positions
of its heads and its internal state.)

If all rounds are completed then M,,. outputs
its record and halts. It should be noted that,

180

for each repetition of the ith round,
Pr{8=1| HG)=1/2, where HY) is the list of
graphs send to V* so far (this includes the
graph sent in the current repetition of round
i, but does not include graphs after which V'*
was rewound). Therefore,
Pr (8=a(r ,H'))| HO)==1/2, where
o(r ,H%)) is V*’s answer on random tape r
and communication tape H), It is left to the
reader to verify that the i th round is repeated
j times with probability at most 27,
Machine M,,. stops and outputs its record
tape after n rounds were completed or after
encountering an improper o ¢ {1,2}. In the
first case the machine outputs a sequence of n
triples of the form (H ,a,r), where 7 is an iso-
morphism between H and G,. It is left to
the reader to verify that in both cases, M.

outputs the right probability distribution. .

Remark 7: In the above proof, the probability dis-
tribution output by the simulator (M,,.) is idents-
cal to the distribution during an interaction
between V* and the prover. This is more than
required by the definition of zero-knowledge, which
only requires that these distributions be
polynomially-indistinguishable. We call a proof
system for which such a result (i.e. identical distri-
butions) is demonstrated a perfect zero-knowledge
proof system.

Remark 8: Serial erecution v. parallel execution:
the case where the intuition fails? Although one’s
intuition may insist that the above zero-knowledge
protocol, remains zero-knowledge even when exe-
cuted in parallel instead than serially, we do not
know how to prove this statement. We even doubt
this intuition, and will explain why in the full ver
sion of this paper.

2.3 Zero-Knowledge Proof of Graph
Non-Isomorphism

The interactive proof for graph non-
isomorphism presented in section 2.1 is probably
not zero-knowledge: a user interacting with the
prover may use the prover in order to test to which
of the given graphs (G, and G,) is a third graph
G4 isomorphic. The way to fix this flaw, is to let

the verifier first “prove” to the prover that he
“knows” an isomorphism between his query graph
H and one of the input graphs. The modified pro-
tocol and the proof that it constitutes a zero-
knowledge interactive-proof system, are omitted
from this extended abstract. We get

Theorem 3: There exist a zero-knowledge
inleractive proof system for Graph Non-
Isomorphism,

3. All Languages in NP Have Zero-
Knowledge Proof Systems

In this section we assume the existence of
secure encryption schemes {in the sense of
Goldwasser and Micali [GM]). Such schemes
exist if unapproximable predicates exist [GM].
The existence of unapproximable predicates
has been shown by Yao to be a weaker
assumption than the existence of one-way per-
mutations [Y1].

An encryption scheme secure as in [GM]
is a probabilistic polynomial-time algorithm f
that on input z and internal coin tosses r,
outputs an encryption f (z,r). Decryption is
unique: that is f (z,r)=f (y,s) implies
z=y.

We begin by presenting a zero-knowledge
interactive proof for graph 3-colourability.
Using this interactive proof and the power of
NP-Completeness, we present zero-knowledge
proofs for every language in NP. Finally, we
show that “everything that is efficiently prov-
able” can be proved in zero-knowledge.

3.1 A Zero-Knowledge Proof for Graph
3-Colourability

The common input to the following pro-
tocol is a graph G(V,E). In the following
protocol, the prover needs only to be a proba-
bilistic polynomial-time machine which gets a
proper 3-colouring of G' as an auxiliary input.
Let us denote this colouring by ¢
(6:V—{1,2,3}). Let n=|V |, m=|E]|.
For simplicity, let V={1,2,...,n }.

181

The following four steps are executed m?
times, each time using independent coin
tosses.

1) The prover chooses a random permuta-
tion of the 3-colouring, encrypts it, and
sends it to the verifier. More specifically,
the prover chooses a permutation
7€ p Sym ({1,2,3}), and random r,’s,
computes B, =f (x(¢(v)),r,) (for every
v € V), and sends the sequence R,,R,
yorey By to the verifier.

2) The verifier chooses at random an edge
¢ €pE and sends it to the prover.
(Intuitively, the verifier asks to examine
the colouring of the endpointsof ¢ € E)

3} If e=(u,v) € E then the prover reveals
the colouring of u and v and “proves”
that they correspond to their encryp-
tions. More specifically, the prover sends
(r(#(u))rs) and (x(¢(v)),r,) to the
verifier. If ¢ ¢ E then the prover stops.

4) The verifier checks the “proof” provided
in step (3). Namely, the verifier checks
whether R, =f (n(¢{u)),r,),
R,=f (ﬂ'(¢("))’rv)x 7r(¢(u)) 74 ﬂ(¢(”))r
and m{(¢{u)),m($(v)) € {1,2,3}. If either
condition is violated the verifier rejects
and stops. Otherwise the verifier contin-
ues to the next iteration.

If the verifier has completed all m?2 iterations
then it accepts.

The reader can easily verify the following
facts: When the graph is 3-colourable and
both prover and verifier follow the protocol
then the verifier accepts. When the graph is
not 3-colourable and the verifier follows the
protocol then no matter how the prover plays,
the verifier will reject with probability at least
(1-m ‘1)"‘2 = exp(-m). Thus, the above proto-
col constitutes an interactive proof system for
3-colourability. Proving that the above proto-
col is zero-knowledge is even more involved
that the proof of Theorem 2.

Proposition 4: If f (-} i a secure proba-
bilistic encryption, then the above protocol
constitutes a zero-knowledge interactive proof
system for 8-colourabslsty.

proof’s sketch: As in the proof of Theorem
2, we will present a machine M. for every
interactive machine V*. Typically, we will try
to guess which edge the machine V* will ask
to check. We will encrypt an illegal colouring
of G such that we can answer V* in case we
were lucky. The cases in which we failed will
be ignored. It is crucial that from the point of
view of V* the case which leads to our suc-
cess and the case which leads to our failure
are polynomially indistinguishable.

The machine M,,. monitoring V'*, starts
by choosing a random tape r for V*. M.
places r on its record tape and proceeds in m?
rounds as follows.

1) M. picks an edge (u,v)EzE and a
pair of integers
(d,b)en {('1]) 15' 74 J 53} at ran-
dom. M. chooses random r;’s and
computes R;=7f (¢;,r;), where ¢; is 0
for ieV-{u,v}, ¢,=a¢ and ¢,=b.
M,. places the sequence of R;’s on the
communication tape of V*.

2) M. reads e from the communication
tape of V*. If ¢ ¢ E (V* obviously
cheats) then M. appends the R;’s and
e to its record tape, outputs the record
tape, and stops. If e 7 (u,v) (unlucky
for M,.) then M. rewinds V* to the
configuration at the beginning of the
current round, and repeats the current
round with new random choices. If
e={u,v) (lucky for My.) then M.
proceeds as follows: First, it places (a,r,)
and (b,r,) on the communication tape of
V*. Second, it appends the R;’s, ¢,
(a,r,) and (b,r,) to its record tape; and
finally, it proceeds to the next round.

182

If all rounds are completed then M, . outputs

its record and halts. A technical lemma (to be
stated and proved in the final paper) guaran-
tees that the three possible “answers’’ of the
verifier (ie. e ¢ E, e €E-{(u,v)} and
e =(u,v)) occur with essentially the same
probability as in the interaction of V* and
the real prover. Thus, the probability that the
simulation of a particular round requires more
than k-m rewinds is smaller than 27 and
M. terminates in polynomial time. The only

difference between the probability distribution
of the true interactions and the distribution
generated by M. is that the first contain

probabilistic encryptions of colourings while
the second contains probabilistic encryptions
of mostly 0's. However, a second technical
lemma {postponed to the final paper) asserts
that this difference is indistinguishable in pro-
babilistic polynomial-time.

Remark 9: The above protocol needs m? rounds.
In the final version of our paper we will present
two alternative ways of modifying the above proto-
col so to get a four-round zero-knowledge protocol
for graph 3-colorability. In both modifications the
idea is to have the verifier commit himself to all
his queries (i.e. which edge he wants to check for
each copy of the coloured graph) before the prover
sends to the verifier the corresponding coloured
graphs. The two modifications differ by the manner
in which the verifier commits to his queries. One
modification is based on the intractability of fac-
toring. The second modification is based on a
relaxation of the definition of a proof system so
that the prover is also restricted to polynomial-
time (and his “computational advantage” over the
verifier consists of an auxiliary input). This relaxa-
tion is natural in the cryptographic applications.

3.2 Zero-Knowledge Proofs for all NP

Incorporating the standard reductions
into the protocol for graph 3-colourability, we
get

Theorem 5: If f (-,) 18 a secure probabilistic
encryption, then every NP language has a

zero-knowledge interactive proof system.

Slightly less obvious is the proof of the
following Theorem 6 that adapts Theorem 5
to a cryptographic scenario in which all
players are bounded to efficient computation.
What is needed is to notice that the standard
reductions transform efficiently also the solu-
tion to the instances.

Theorem 8: [f there exists a secure proba-
bilistic encryption, then every language in NP
has a zero-knowledge tnteractive proof system
in which the prover is a probabilistic
polynomial-time machine that gets an NP
proof as an auxiliary input.

(Namely, in case the common input z is in the
language L, the polynomial-time prover gets
an NP proof that z €L as an auxiliary
input.)

Remark 10: The number of computational
steps required by both parties in the above
interactive proof is bounded by
O(T¥n)F(n)log*n), where n=|z | is the
length of the common input z, T{n) is the
number of steps required by a non-
deterministic machine to accept z, and F(n)
is the number of steps require to encrypt a bit
when the security parameter is n .

A positive use of NP-Completeness

So far NP-completeness have mostly had
a “negative’ utility: it was (and is) the most
practical way to give evidence to the infeasi-
bility of a problem. Here we want to point
out a “positive’” use of NP-completeness: its
primary role in deriving the general results of
Theorems 5 and 8 (i.e. zero-knowledge proofs
of every NP statement) from Proposition 4

(i.e. a zero-knowledge proof of a particular
NP-Complete problem).

An Example: Verifiable Secret Sharing

83

Due to its generality, Theorem 6 has a
dramatic effect on the design of cryptographic
protocols. Let us first demonstrate this point
by using Theorem 6 to present a simple solu-
tion to a problem which until recently was
considered very complex: Verifiable Secret
Sharing. The more general implications of
Theorem 6, are outlined in Section 4.

The notion of a verifiable secret sharing was
presented by Chor, Goldwasser, Micali and Awer-
buch [CGMA], and constitutes a powerful tool for
multi-party protocol design. Loosely speaking, a
verifiable aceret sharing is a n +1-party protocol
through which a sender (S') can distribute to the
recesvers (I ’s) pieces of a secret s recognizable
through an a-priori known ‘“encryption” g (s)-
The n pieces should satisfy the following three
conditions (with respect to 1< <u <n):

1) It is infeasible to obtain any knowledge about
the secret from any / pieces;

2) Given any % messages the entire secret can
be easily computed;

3) Given a piece it is easy to verify that it

belongs to a set satisfying condition (2).

The notion of a verifiable secret sharing differs
from Shamir’s secret sharing [Sha), in that the
secret is recognizable and that the pieces should be
verifiable as authentic (i.e. condition (3)).

Following the first implementation presented
in [CGMA], improvements in efficiency and “toler
ance’”” appeared in (FM, AGY, F|. These solutions
are conceptually complicated, and rely on specific
properties of particular encryption functions.

Assuming the existence of arbitrary one-
way permutations, we present a conceptually
simple solution allowing u=I+1<n. Our
scheme combines Theorem 6 with Shamir’s
(non-verifiable) secret sharing [Sha]. To share
a secret s €Z, recognizable through
r =g (s), the sender proceeds as follows: First,
the sender chooses at random a {-degree poly-
nomial over Z, and evaluates it in n fixed
points (these are the pieces in Shamir's
scheme). Next, the sender encrypts the ith
piece using the Public encryption algorithm of
the #th receiver, and sends all encrypted
secrets to all receivers. Finally, the sender

provides each receiver with a zero-knowledge
proof that the encrypted messages correspond
to the evaluation of a single polynomial over
Z,, and that applying g to the free term of
this polynomial yields r (note that this is a
NP statement).

3.3 Everything Efficiently Provable Can
Be Proven in Zero-Knowledge

We now generalize Theorem 5 to show
that not only NP is in zero-knowledge, but
also “probabilistic NP” is. Namely,

Theorem 7: If there exzists a secure proba-
bilistic encryption, then for every fixed k every
language in IP (k) has zero-knowledge proof
systems.

proof’s sketch: Using the results of [GS] and
[B], it suffices to demonstrate zero-knowledge
proof systems for languages in AM(2). The
intuitive idea is to let the verifier send random
coins and then let the prover prove that “he
could have convinced the verifier with respect
to these coins”, which is an NP statement! To
oblige the verifier to send random coins and
not strings of his choice, coin flipping into the
well [Blu] is used. It has to be proven how-
ever, that the substitution of certified random
coins by coin flips into the well preserves
zero-knowledge. [}

Recently, Ben-Or extended Theorem 7 and
showed that every language which has an interac-
tive proof system, has a zero-knowledge one [Ben).
As above, the result of Goldwasser and Sipser [GS]
is used to restrict attention to languages in AM .
This time we can not use Babai’s result [B}, since
the number of interactions is unbounded. The idea
is to first execute the AM protocol in an encrypted
form {only the messages of the prover need to be
encrypted and this does not disturb the verifier
who only toss coins), and next have the prover con-
vince the verifier in zero-knowledge that the
encrypted interaction corresponds to an accepting
interaction in the original AM protocol.

184

The following question was raised by Leonid
Levin: Let M be a probabilistic polynomial-time
interactive machine having access to a machine P,
which is able to prove that z € L via an arbitrary
predetermined interactive proof system. Can M
prove that * € L to another machine V, in a
zero-knowledge manner? Clearly the answer is
negative if M first interact with P, and only later
interact with V5 (hint: P, may use a gero-
knowledge proof system). However, M is allowed
to interleave its interactions in an arbitrary
manner. Theorem 6 answers Levin’s question posi-
tively for the case that P, sends M an NP-proof.
(In fact this was the motivation for his question.} It
is easy to answer Levin’s question positively for the
case that P, interacts with M via an AM proto-
col. Recently, using a result of Yao [Y2], we have
answered this question positively also for the gen-
eral case {of IP protocols).

3.4 Related Results

Using the intractability assumption of g¢ua-
dratic residuosity, Brassard and Crepeau have
discovered independently (but subsequently) zero-
knowledge prool systems to all languages in NP
{BC1]. These proof systems heavily rely on parties-
lar propertics of guadratic residues and do not
seem to extend to arbitrary encryption functions.

Recently, Brassard and Crepeau showed that
if factoring s intractable then every NP language
has a perfect zero-knowledge interactive proof sys-
tem [BC2]. It should be stressed that the protocol
they proposed constitutes an interactive proof pro-
vided that factoring is intractable. In other words,
the validity of the interactive proofs depends on an
intractability assumption; while in this paper and
in [BC1] the validity of the proofs do not rely on
such an assumption.

Independently, Chaum [Cha] discovered a
protocol which is very similar to the one in [BC2].
Chaum also proposed an interesting application of
such “perfect zero-knowledge proofs”. His applica-
tion is to a setting in which the verifier may have
infinite computing power while the prover is res-
tricted to polynomial-time computations (see also
[CEGP]). In such a setting it makes no sense to
have the prover demonstrate properties (as
membership in a language) to the verifier. How-
ever, the prover may wish to demonstrate to the

verifier that he ‘“knows” something without reveal-
ing what he “knows”. More specifically, given a
CNF formulae, the prover wishes to convince the
verifier that he “knows’ a satisfying assignment in
a manner that would yield no information which of
the satisfying assignments he knows. A definition
‘of the notion of ‘“‘a program knowing a satisfying
assignment” can be derived from [GMR].

4. A Methodology of Cryptographic
Protocol Design

Assuming the existence of arbitrary
encryption functions, we will present
extremely powerful methodologies for develop-
ing secure two-party and multi-party proto-
cols. These methodology consists of efficient
“correctness and privacy preserving’’ transfor-
mations of protocols from a weak adversary
model to the most adversarial model. These
(explicit) transformations are informally sum-
marized as follows

Informal Theorem A: There exist an
efficient compiler transforming a protocol
P designed for n=2¢+1 honest players,
to a cryptographic protocol P' that
achieves the same goals even if ¢ of its n
players are faulty. Faulty players are
allowed to deviate from P’ in any arbi-
trary but polynomial-time way.

In the formal statement of the corresponding
Theorem, we avoid talking about “achieving
goals”. The “goal of a protocol” is a semantic
object that is not well understood. Instead,
we make statements about well understood
syntactic objects: the probability distribution
on the tapes of interactive machines. In the
final version of this paper we will define the
notions of a ‘“correctness preserving compiler”
and a “privacy preserving compiler”. Both
notions will be defined as relations between
the probability distribution on the tapes of
interactive machines during the execution of
protocol P (in a weak adversarial environ-
ment) and the distribution on these tapes dur-

185

ing the execution of P! (in a strong adver-
sarial environment). Loosely speaking,
“preserving correctness’’ means that whatever
a party could compute after participating in
the original protocol P, he could also compute
when following the transformed protocol P! |
properly. “Preserving privacy’” means that
whatever a set of dishonest players can com-
pute after participating in P’ , the
corresponding players in P can compute from
their joint local “histories’ after participating
in P. Similarly we formalize the following

Informal Theorem B: There exist an
efficient compiler transforming a two-
party protocol P that is correct in a
fail-stop model, to a cryptographic two-
party-protocol P! that achieves the
same goals even if one of the players
deviates from P’ in any arbitrary but
polynomial-time way.

The proofs of the above Theorems make pri-
mary use of Theorem 6 to allow a machine to
“prove” to other machines that a message it
sent is computed according to the protocol. In
addition, these proofs make innovative use of
most of the cryptographic techniques
developed in the recent years. Essential
ingredients in the proof of Theorem A are the
notions of verifiable secret sharing and simul-
taneous broadcast proposed and first imple-
mented by Chor, Goldwasser, Micali and
Awerbuch [CGMA|. An essential ingredient in
the proof of Theorem B is Blum’s ‘‘coin
flipping into the well” [Blu].

Further Improvement

Theorem A constitutes a procedure for
automatically constructing fault-tolerant pro-
tocols, the goal of which is to compute a
predetermine function of the private inputs
scattered among the players. This procedure
takes as input a distributed specification of
the function (i.e. a protocol for honest
players), not the function itself. It is

guaranteed that this procedure will output a
fault-tolerant protocol for computing this very
function {i.e. the ‘““correctness” condition) and
that the “privacy” present in the specification
will be preserved. Thus, the degree of privacy
offered by the cutput fault-tolerance protocol
depends on the specification, and not on the
function to be computed. Furthermore, for
some functions f it seems to be difficult to
write a distributed specification (protocol for
honest players) which offers the maximum
degree of privacy. Recently, assuming the
exist of an arbitrary secure encryption scheme,
we found a polynominal-time algorithm which
on input a Turing machine specification of a
n-ary function f, outputs a protocol for n
honest players which offers the maximum pos-
sible privacy. Namely, at the termination of
the protocol, each subset of players can com-
pute from their joint local history only what-
ever they could have computed from their
corresponding local inputs and the value of
the function. Essential ingredients in the algo-
rithm are the “circuit encoding” of Barrington
[Bar], a modification of the two-party protocol
of Yao [Y2], and a general implementation of
a variant of Oblivious Transfer using any
encryption function. Details will appear in a
forthcoming paper [GMW].

The algorithm claimed above can also be
applied to any Turing machine specification of
a probability distribution (depending on n
variables). Equivalently, one can- view the
algorithm as a compiler that on input a n-
party protocol (for honest players} outputs a
fault tolerant n-party protocol, for computing
the same distributed input-output relation,
which offers the maximum degree of privacy.
This compiler, which may increase the privacy
present in the input protocol, improves on and
uses as a subroutine the compiler of Theorem
A (which only preserves the privacy present in
the input). The compiler of Theorem A, ia
turn, improves on and uses as subroutine the
compiler of Chor, Goldwasser, Micali and
Awerbuch [CGMA].

186

ACKNOWLEDGEMENTS

We are very grateful to Benny Chor and
Shafi Goldwasser for many discussions con-
cerning methodologies for Cryptographic Pro-
tocol Design. We also wish to thank Baruch
Awerbuch, Manuel Blum, Mike Fischer,
Leonid Levin, Albert Meyer, Yoram Moses,
Michael Rabin, Charlie Rackoff, Ron Rivest,
and Mike Sipser for many helpful discussions
concerning this work.

REFERENCES

[AHU] Aho, A.V., J.E. Hoperoft, and J.D. Ullman,
The Dessign and Analysis of Computer Algo-
rithms, Addison-Wesley Publ. Co., 1974.

Aijello, W., S. Goldwasser, and J. Hastad,
“On the Power of Interaction’, these
proceedings.

Alon, N., Z. Galil, and M. Yung, “A Fully
Polynomial Simuitaneous Broadcast in the
Presence of Faults”, manuscript, 1985.

[B] Babai, L., “Trading Group Theory for
Randomness’’, Proc. 17th STOC, 1985, pp.
421-429.

Barrington, DA, “Bounded-Width
Polynomial-Size = Branching Programs
Recolgnize Exactly Those Languages in
NC™, Proc. 18th STOC, 1986, pp. 1-5.

Ben-Or, M., private communication, 1986.

Blum, M., “Coin Flipping by Phone",
IEEE Spring COMPCOM, pp. 133-137,
February 1982,

Boppana, R., and J. Hastad, “Does Co-NP
Have Short Interactive Proofs!”, in
preparation, 1986,

Brassard, G., and C. Crepeau, *“Zero-
Knowledge Simulation of Boolean Cir-
cuits”’, manuscript, presented in Crypto86,
19886.

Brassard, G., and C. Crepeau, “Non-
Transitive Transfer of Confidence: A Per-
fect Zero-Knowledge Interactive Protocol
for SAT and Beyond”, these proceedings.

Broder, A.Z.,, and D. Dolev, “Flipping
Coins in Many Pockets {Byzantine Agree-
ment on Uniformly Random Values”, Proc.
25th FOCS, 1984, pp. 157-170.

Chaum, D., “Demonstrating that a Public
Predicate can be Satisfied Without Reveal-

[AGH]

(AGY]

[Bar]

[Ben]
[Blu]

[BH]

[BC1]

[BC2]

[BD]

[Cha)

ing Any Information About How”,
manuscript, presented in Crypto85, 1986.

[CEGP]Chaum, D., JH. Evertse, J. van de Graal,
and R. Peralta, “Demonstrating Possession
of a Discrete Logarithm without Revealing

It”, manuscript, presented in Crypto86,
19886.

([CGMA|Chor, B., S. Goldwasser, S. Micali, and B.
Awerbuch, ‘‘Verifiable Secret Sharing and
Achieving Simultaneity in the Presence of
Faults”, Proc. 26th FOCS, 1985, pp. 383-
395.

Cohen, J.D., “Secret Sharing Homomor-
phisms: Keeping Shares of a Secret Secret”,
technical report YALEU/DCS/TR-453,
Yale University, Dept. of Computer Sci-

ence, Feb. 1986. Presented in Crypto86,
1986.

Cohen, J.D., and M.J. Fischer, ““A Robust
and Verifiable Cryptographically Secure
Election Scheme”, Proec. 26th FOCS, pp.
372-382, 1985.

Cook, S.A., “The Complexity of Theorem
Proving Procedures”, Proc. 8rd STOC, pp.
151-158, 1971.

Feldman, P., “A Practical Scheme for
Verifiable Secret Sharing’”’, manuscript,
1986.

Feldman, P., and S., Micali, in preparation,

[FM]
1985.

[FMRW|Fischer, M., S. Micali, C. Rackoff, and
D.K. Wittenberg, “An Oblivious Transfer
Protocol Equivalent to Factoring”, in
preparation. Preliminary versions were
presented in EuroCrypt8f (1984), and in
the NSF Workshop on Mathematical
Theory of Security, Endicott House (1985).

Galil, Z., S. Haber, and M. Yung, “A
Private Interactive Test of a Boolean
Predicate and Minimum-Knowledge
Public-Key Cryptosystems’, Proe. 26th
FOCS, 1985, pp. 360-371.

Garey, M.R., and D.S. Johnson, Computers
and Intractability: A Guide to the Theory of
NP-Completeness, WH. Freeman and
Company, New York, 1979.

Goldreich, O., “A Zero-Knowledge Proof
that a Two-Prime Moduli Is Not a Blum
Integer”, unpublished manuscript, 1985.
[GMW] Goldreich, O., S. Micali, and A. Wigderson,
“How to Automatically Generate Correct
and Private Fault-Tolerant Protocols”, in
preparations.

Goldwasser, 5., and S. Micali, “Probabilis-
tic Encryption”, JCSS, Vol. 28, No. 2,

[Coh]

[CF]

Y

[F}

[GHY]

(GJ]

(G}

(GM]

187

[GMR]

(@]

(K]

[L]

[Sha)

(Y1

[Y2]

1984, pp. 270-299.

Goldwasser, S., S. Micali, and C. Rackofl,
“Knowledge Complexity of Interactive
Proofs’, Proc. 17th STOC, 1985, pp. 201-
304.

Goldwasser, S., and M. Sipser, ‘‘Arthur
Merlin Games versus Interactive Proof Sys-
tems’’, Proc. 18th STOC, 1986, pp. 59-68.

Karp, RM,, “Reducibility among Com-
binatorial Problems”, Complezity of Com-
puter Computlations, R.E. Miller and J.W.
Thatcher (eds.), Plenum Press, pp. 85-103,
1972.

Levin, L.A., “Universal Search Problems”,
Problemy Peredaei Informacii 9, pp. 115
118, 1973. Translated in problems of Infor-
mation Transmission 9, pp. 265-286.

Shamir, A., “How to Share a Secret”,
CACM, Vol. 22, 1979, pp. 612-613.

Yao, A.C., “Theory and Applications of
Trapdoor Functions”, Proec. of the 23rd
IEEE Symp. on Foundation of Computer
Seience, 1982, pp. 80-91.

Yao, A.C.,, “How to Generate and
Exchange Secrets”, these proceedings.

