
Using PQ Trees for Comparative Genomics

Gad M. Landau?,1,2, Laxmi Parida3, and Oren Weimann??,1

1 Department of Computer Science, University of Haifa,
Mount Carmel, Haifa 31905, Israel

landau@cs.haifa.ac.il, oweimann@cs.haifa.ac.il
2 Department of Computer and Information Science, Polytechnic University,

Six MetroTech Center, Brooklyn, NY 11201-3840, USA
landau@poly.edu

3 Computational Biology Center, IBM TJ Watson Research Center,
Yorktown Heights, New York 10598, USA

parida@us.ibm.com

Abstract. Permutations on strings representing gene clusters on genomes
have been studied earlier in [18, 14, 3, 12, 17] and the idea of a maximal
permutation pattern was introduced in [12]. In this paper, we present
a new tool for representation and detection of gene clusters in multiple
genomes, using PQ trees [6]: this describes the inner structure and the
relations between clusters succinctly, aids in filtering meaningful from
apparently meaningless clusters and also gives a natural and meaningful
way of visualizing complex clusters. We identify a minimal consensus PQ
tree and prove that it is equivalent to a maximal πpattern [12] and each
subgraph of the PQ tree corresponds to a non-maximal permutation pat-
tern. We present a general scheme to handle multiplicity in permutations
and also give a linear time algorithm to construct the minimal consensus
PQ tree. Further, we demonstrate the results on whole genome data sets.
In our analysis of the whole genomes of human and rat we found about
1.5 million common gene clusters but only about 500 minimal consensus
PQ trees, and, with E Coli K-12 and B Subtilis genomes we found only
about 450 minimal consensus PQ trees out of about 15,000 gene clusters.
Further, we show specific instances of functionally related genes in the
two cases.

Key Words: Pattern discovery, data mining, clusters, patterns, motifs,
permutation patterns, PQ trees, comparative genomics, whole genome
analysis, evolutionary analysis.

1 Introduction

Given two permutations of n distinct characters, Uno and Yagiura [18] defined
a common interval to be a pair of intervals of these permutations consisting

? Partially supported by NSF grant CCR-0104307, by the Israel Science Foundation
grant 282/01, and by IBM Faculty Partnership Award.

?? Partially supported by the Israel Science Foundation grant 282/01.

of the same set of characters, and devised an O(n + K) time algorithm for
extracting all common intervals of two permutations, where K(≤

(
n
2

)
) is the

number of common intervals. Heber and Stoye [14] extended this result to k
sequences and presented an O(nk+K) time algorithm for extracting all common
intervals of k permutations. The characters here represent genes and the string of
characters represent the genome. Bergeron, Corteel and Raffinot [3] relaxed the
“consecutive” constraint by introducing gene teams - allowing genes in a cluster
to be separated by gaps that do not exceed a fixed threshold, and presented an
O(kn log2 n) time algorithm for finding all gene teams.

A common technique of deciding whether two genes are similar is using the
biological concept of orthologs and paralogs. Two genes are matched if they
are either orthologous (appear in different organisms, but have the same evo-
lutionary origin and are generated during speciation) or paralogous (appear in
the same organism and caused by the duplication of ancestor genes). A slightly
modified model of a genome sequence, that allows paralogs, was introduced by
Schmidt and Stoye [17]. They extended the previous model of [14] by repre-
senting genomes as sequences rather then permutations, and devised a Θ(n2)
algorithm for extracting all common intervals of two sequences. He and Gold-
wasser [13] extended the notion of gene teams [3] to COG teams by allowing any
number of paralogs and orthologs, and devised an O(mn) time algorithm to find
such COG teams for pairwise chromosome comparison (where m and n are the
number of orthologous genes in the two chromosomes).

In [12], pattern discovery was formalized as the πpattern problem. Let the
pattern P=p1, p2, . . . , pm and the string S=s1, s2, . . . , sn be both sequences of
characters (with possible repeats) over a given alphabet Σ (in our case genes). P
appears in location i in S iff (p1, p2, . . . , pm) is a permutation of (si, . . . , si+m−1).
P is a πpattern if it appears at least K times in S for a given K. A nota-
tion for maximal πpatterns was introduced as a model to filter meaningful
from apparently meaningless clusters. A πpattern p1 is non-maximal with re-
spect to πpattern p2, if each occurrence of p1 is covered by an occurrence of p2

and each occurrence of p2 covers an occurrence of p1. The algorithm presented
in [12] works in two stages: In stage 1, all πpatterns of sizes ≤ L are found in
O(Ln log |Σ| log n) time, where n is the total length of all the sequences. For
every πpattern found the algorithm stores a list of all the locations where the
pattern appears, i.e, location list. In stage 2, a straightforward comparison of
every two location lists is used to extract the maximal πpatterns out of all the
πpatterns found in stage 1. Assume stage 1 outputs p πpatterns, and the max-
imum length of a location list is `, stage 2 runs in O(p2`) time. Integrating the
two stages to produce only the maximal πpatterns was introduced as an open
problem.

The common approach in practice is to output all the found patterns as sets
of genes. This approach provides no knowledge of the ordering of the genes in
each appearance of the pattern, and also outputs meaningless clusters. In this
paper we use the PQ tree data structure [6] to devise a new tool for obtaining

the maximal notation of the appearances of a pattern in linear time. A formal
definition of the maximal notation is given in [12]:

Definition 1. Maximal notation: Given k permutations on an alphabet Σ,
representing k occurrences of a pattern. The maximal notation is obtained by
using a ‘-’ between two groups of one or more genes to denote that these groups
appear as immediate neighbors in all the k permutations, and using a ‘,’ other-
wise.

Example. Consider the pattern {a, b, c, d, e, f} appearing once as abcdef and
once as bdacfe, then the maximal notation of this pattern is ((a, b, c, d)−(e−f)).

There are two main reasons for obtaining the maximal notation: (1). This
notation provides knowledge of the inner structure of a pattern. ((a, b, c, d) −
(e−f)) shows that e appears always adjacent to f , and they both appear always
adjacent to the group {a, b, c, d}. (2) This notation provides knowledge of the
non-maximal relations between patterns, and can be used to filter meaningful
from apparently meaningless clusters (non-maximal). ((a, b, c, d)−(e−f)) shows
that the patterns π1 = {e, f} and π2 = {a, b, c, d} are non-maximal w.r.t the
pattern π3 = {a, b, c, d, e, f}. Thus ((a, b, c, d)− (e−f)) holds all the information
of patterns π1, π2 and π3.

Results. Our main theoretical results are: (a) we prove that a minimal con-
sensus PQ tree is equivalent to a maximal πpattern [12] and each subgraph of
the PQ tree corresponds to a non-maximal permutation pattern, and (b) give
an algorithm that obtains the maximal notation of a πpattern p in O(nk) time,
where k is the number of appearances of p and n is the number of characters
in p (we assume all the characters in p are distinct. In section 5 we suggest a
solution for patterns containing repeats of characters). We present several uses
of this algorithm: (1) In the genome model that allows only orthologous genes
(all k sequences are permutations of {1, 2, . . . , n}), we can use this algorithm to
obtain the maximal notation of the entire πpattern {1, 2, . . . , n}. (2) In the most
general genome model that allows orthologous and paralogous genes (a gene may
appear any number of times in a sequence, and may appear in only some of the
sequences) we assume some other gene clustering algorithm found the πpattern
p. We use our tool to obtain the maximal notation of p. (3) We modify this
algorithm to an O(nk2) time algorithm that finds all maximal πpatterns in the
genome model that allows orthologous genes as well as genes that do not appear
in all the sequences. We present experimental results for the various types of
data (Section 6). Our main practical results are the use of the tool on whole
genome data sets: (1) human and rat genomes and (2) E Coli K-12 and B Sub-
tilis genomes. In both we show that the PQ trees help reduce the number of
clusters to be analyzed as well as help in visualizing the internal structures of
the clusters. We also hypothesize the function of an unknown gene in E Coli
based on the permutation pattern.

Roadmap. We begin with an introduction to the PQ tree data structure in
Section 2 and show that the minimal consensus PQ tree is indeed the maxi-
mal notation of a permutation pattern in Section 3. We present an O(kn) time
algorithm to obtain the minimal consensus PQ tree in Section 4 and present

variations of this algorithm for the different genome models in Section 5. We
conclude with experimental results in Section 6. The proofs of the theorems and
lemmas are omitted and will appear in the full version of this paper.

2 Preliminaries - PQ Tree

In this section we present the PQ tree data structure and definitions as in-
troduced by Booth and Leuker [6], as a tool to solve the general consecutive
arrangement problem. The general consecutive arrangement problem is the fol-
lowing: Given a finite set X and a collection I of subsets of X, does there exist
a permutation π of X in which the members of each subset I ∈ I appear as a
consecutive substring of π? Booth and Leuker introduced an efficient algorithm
(linear in the length of the input, O(n2) in our terms) that solves this problem
using a PQ tree. A PQ tree is a rooted tree whose internal nodes are of two
types: P and Q. The children of a P -node occur in no particular order while
those of a Q-node appear in a left to right or right to left order. We designate
a P -node by a circle and a Q-node by a rectangle. The leaves of T are labeled
bijectively by the elements of X. The frontier of a tree T , denoted by F (T), is
the permutation of X obtained by reading the labels of the leaves from left to
right.

Definition 2. Equivalent PQ trees: Two PQ trees T and T ′ are equivalent,
denoted T ≡ T ′, if one can be obtained from the other by applying a sequence
of the following transformation rules: (1) Arbitrarily permute the children of a
P -node, and (2) Reverse the children of a Q-node.

Any frontier obtainable from a tree equivalent with T is considered consistent
with T , and C(T) is defined as follows: C(T) = {F (T ′)|T ′ ≡ T}. These last
definitions are illustrated in Figure 1. We accordingly define the number of fron-
tiers obtainable from a tree equivalent with T to be |C(T)|. Clearly the equiva-

T T’

 d e e d a b c a b c

FRONTIER(T) = abcde FRONTIER(T’) = edabc

X = { a,b,c,d,e }

Fig. 1. Two equivalent PQ trees, T ′ ≡ T and their frontiers. Note that
C(T)=C(T ′)={abcde, abced, cbade, cbaed, deabc, decba, edabc, edcba}.

lence relation is reflexive, symmetric and transitive. To make it computationally

straightforward, we use a slightly stricter version of a PQ tree called the canon-
ical PQ tree.

Definition 3. Canonical PQ tree: A PQ tree that has no node with only one
child and no P node with only two children.

Note that it is straightforward to convert any PQ tree to its canonical form: a
node with a single child is merged with its immediate predecessor. This process
is continued until no such node remains. Further, any P node with exactly two
children is changed to a Q node. Through the rest of the paper, we assume a
PQ tree is a canonical PQ tree. Some PQ trees are given special names: Given
a finite set X, the PQ tree consisting of a single P node with |X| children that
are all leaves is called the universal PQ tree. We denote the universal tree as
TU . Another important PQ tree is the null tree, which has no nodes at all. By
convention the null tree has no frontier and it’s set of consistent permutations is
empty. The most important contribution of [6] is an efficient algorithm for the
REDUCE() function defined below.

Definition 4. REDUCE(I,T ′): Given a collection I of subsets of
N = {1, 2, . . . , n} and a PQ tree T ′ whose leaves are {1, 2, . . . , n}, the function
REDUCE(I,T ′) builds a PQ tree T such that f ∈ C(T) iff f ∈ C(T ′) and every
i ∈ I appears as a consecutive substring of f .

The procedure REDUCE(I,T ′) will return the null tree if no frontier f ∈ C(T ′)
is such that every i ∈ I appears as a consecutive substring of f . Note that
if TU is the universal PQ tree, then REDUCE(I,TU) builds a PQ tree T such
that f ∈ C(T) iff every i ∈ I appears as a consecutive substring of f . By [6], if
the number of subsets in I ≤ n, as in our case (see Section 4), then the time
complexity of REDUCE(I,TU) is O(n2). In Section 4.1 we present an O(n) time
complexity algorithm for the REDUCE function when I is a set of at most n
intervals, based on a data structure presented in [14].

The following observation is immediate from the definition of the REDUCE()
function. Informally, it says that if T is the PQ tree returned by REDUCE(I,TU)
then if we add more subsets of N to I then |C(T)| gets smaller.

Observation 1. Given two collections I1, I2 of subsets of N , if I1 ⊆ I2 and
T1=REDUCE(I1,TU) and T2=REDUCE(I2,TU) then C(T2) ⊆ C(T1).

3 The Minimal Consensus PQ Tree

In this section we define a minimal consensus PQ tree as a representation of the
maximal notation of the k occurrences of a πpattern. Through the rest of this
paper we define Π to be a set of k permutations π1, π2, . . . , πk representing k
occurrences of a πpattern N = {1, 2, . . . , n}.

Definition 5. Notation of a PQ tree: The notation of a PQ tree is obtained
by writing the PQ tree as a parenthesized string with different symbols encoding
P (comma separators) and Q (dash separators) nodes.

For example in Figure 1, T is denoted as ((a− b− c), (d, e)) and the PQ tree in
Figure 2 is denoted as (g− (e− (a− b− c)−d)−f). Given Π, our main goal is to
construct a PQ tree T from Π, such that the notation of T is the maximal notation
of Π. We would like to construct a PQ tree T such that C(T) = {π1, π2, . . . , πk}
however, this is not always possible. Consider a πpattern {a, b, c, d, e} appearing
four times as abcde, abced, cbade, edabc, the PQ tree T in Figure 1 is the one that
best describes these appearances. However, edcba ∈ C(T) although the πpattern
never appeared as edcba. On the other hand, notice that the universal PQ tree
over Σ, TU ,is such that {π1, π2, . . . , πk} ⊆ C(TU). Hence the idea of minimal is
introduced. In section 3.2 we suggest a way of reducing the redundant frontiers
from the minimal consensus PQ tree. We next present a way of relating a set of
permutations to a PQ tree.

Definition 6. minimal consensus PQ tree: Given Π, A consensus PQ tree
T of Π is such that Π ⊆ C(T) and the consensus PQ tree is minimal when there
exists no T ′ 6≡ T such that Π ⊆ C(T ′) and |C(T ′)| < |C(T)|.

ba

e d

g f

c

(1) Consensus Trees: If TU is the universal PQ tree, note that
π1, π2 ∈ C(T) ⊆ C(TU). Thus the consensus of two strings need
not give rise to a unique PQ tree.
(2) PQ tree expression power: Consider π3 = gdcbaef , clearly
π3 6= π1 and π3 6= π2, however π3 ∈ C(T).
(3) Height of the PQ tree: A consensus PQ tree of only two
strings (permutations) of length L can possibly be of height
O(L).

Fig. 2. Let π1 = geabcdf and π2 = fecbadg. The PQ tree T in the figure is a minimal
consensus PQ tree of {π1, π2}. We use this example to illustrate three different ideas
as shown on the right.

Figure 2 illustrates the motivation for the definition of minimal consensus. By
defining the minimal consensus PQ tree, the problem now is to devise a method
to construct the minimal consensus PQ tree given Π. Later we show that the
notation of the minimal consensus PQ tree of Π is the maximal notation of Π.
We use the following definition from [18]:

Definition 7. Common Interval (CΠ): Given Π, w.l.o.g we assume that
π1 = idn := (1, 2, . . . , n). An interval [i, j] (1 ≤ i < j ≤ n) is called a common
interval of Π iff the elements of the set {i, i + 1, . . . , j} appear as a consecutive
substring in every πi ∈ Π (i = 1, 2, . . . , k). The set of all common intervals of
Π is denoted CΠ .

 2 3 1

 5 6 4

 7

 8

 9
 The tree on the left is the minimal consen-

sus PQ tree of Π = {π1, π2, π3} where π1 =
(1, 2, 3, 4, 5, 6, 7, 8, 9), π2=(9,8,4,5,6,7,1,2,3),
and π3=(1,2,3,8,7,4,5,6,9).
CΠ = {[1,2],[1,3],[1,8],[1,9],[2,3],[4,5],[4,6],
[4,7],[4,8],[4,9],[5,6]}. The maximal pattern
whose three occurrences are given by
π1, π2, π3 is ((1-2-3)-(((4-5-6)-7)-8)-9).

Fig. 3. Maximal notation of a πpattern and the corresponding minimal consensus PQ
tree.

See Figure 3 for an example of common intervals and a minimal consensus PQ
tree. Next we state some theorems leading up to the uniqueness of a minimal
consensus tree.

Theorem 2. Given Π, TC=REDUCE(CΠ ,TU) is a minimal consensus PQ tree
of Π.

The following corollary is immediate from the proof of Theorem 2.

Corollary 1. If T1 and T2 are two minimal consensus PQ trees of Π, then
C(T1) = C(T2).

Theorem 3. For two PQ trees T1 and T ′
2, if C(T1) = C(T ′

2), then T1 ≡ T ′
2.

The following lemma is straightforward to verify.

Lemma 1. Given Π, the minimal consensus PQ tree T of Π is unique (up to
equivalence).

The minimal consensus PQ tree is not necessarily unique when a character can
appear more than once in a πpattern. We handle this problem in Section 5.

3.1 Identifying Maximal πpatterns in the Minimal Consensus PQ
Tree

In this section we describe a PQ subtree as a method for identifying non-maximal
permutation patterns, and we make the simplifying assumption that there are
no multiplicities in the πpatterns, this problem is addressed in Section 5.

Definition 8. PQ subtree: Given a PQ tree T , the variant v′ of a node v is
defined as follows: (1) If v is a P node then it’s only variant v′ is the P node
itself. (2) If v is a Q node with k children, then a variant v′ of v is a Q node
with any k′ ≤ k consecutive children of v. A PQ subtree is rooted at a variant v′

of node v and includes all its descendants in the PQ tree T .
Let L(v′) denote the set of the labels of the leafnodes reachable from v′. Fur-

ther, given the leafnode labels p = {α1, α2, . . . , αn}, the least common ancestor

(LCA) of p is that variant v′ of a node v satisfying the following: (1) p ⊆ L(v′)
and (2) there exists no variant v′′ of v or any other node such that p ⊆ L(v′′)
and |L(v′′)| < |L(v′)|.

Recall that a πpattern p1 is non-maximal with respect to πpattern p2, if
each occurrence of p1 is covered by an occurrence of p2 and each occurrence
of p2 covers an occurrence of p1 (notice that p1 ⊆ p2). Through the rest of
this section we assume p1 = {α1, α2, . . . , αn} and p2 are πpatterns such that
p1 is non-maximal with respect to p2. We denote Ti as the minimal consensus
PQ tree of the appearances of πpattern pi, and CΠi

as the set of all common
intervals of the occurrences of pi. The following definition will aid in describing
the connection between PQ subtrees and non-maximal πpatterns (Theorem 4).

Definition 9. T
pj

i : Given a PQ tree Ti, and pj = {α1, α2, . . . , αn}, let v′ be the
LCA of pj in Ti. Then T

pj

i is the PQ subtree rooted at v′.

Theorem 4. Given πpatterns p1, p2 on some S, if p1 is non-maximal w.r.t p2

then T p1
2 ≡ T1.

Notice that the converse of Theorem 4 is true only if every occurrence of p1 is
covered by an occurrence of p2. The following theorem proves that given Π, the
problem of obtaining the maximal notation of Π is equivalent to the problem of
constructing the minimal consensus PQ tree of Π.

Theorem 5. The notation of the minimal consensus PQ tree of a πpattern is
the maximal notation of the πpattern.

3.2 Specializing the PQ Tree

Given Π, we would like to construct a PQ tree T such that C(T) = Π. However,
as shown earlier this is not always possible using a PQ tree. This requires more
precise definitions of the P and the Q node. Adding restrictions to the PQ
tree will help solve the problem. We suggest the following: (1) Assigning a bi-
directional annotation to the Q node as ⇔ only when the children appear in both
directions in the strings and un-annotated otherwise. (2) The exact permutations
appearing in the strings for the P node. For example if a P node has 7 children
and the annotation is (3162574,5142736), then this implies that the P node has
three possible permutations on it’s children as 1234567, 3162574 and 5142736.
Note that the children are not necessarily leaf nodes. See Figure 4 for an example.
The advantage of this is that the PQ tree remains the same and the annotations
simply help remove the extra frontiers, C(T) \Π, where T is the un-annotated
PQ tree.

4 Constructing a Minimal Consensus PQ Tree in O(kn)
Time

In this section we devise new algorithms for computing the minimal consensus
PQ tree. The first algorithm runs in O(kn + n2) time. We then improve this
algorithm to O(kn) time, which is optimal since the length of the input is kn.

1 2 3 4

5 6

Consider Π = {123456, 241356}. The PQ tree on
the left is the minimal consensus PQ tree of Π.
Consider the following restrictions: (1) The Q node
is un-annotated (2) The exact permutations of the
P node is (2413). The restricted PQ tree is such
that C(T) = Π.

Fig. 4. The restricted PQ tree.

We first find a subset of CΠ of size O(n) that holds sufficient information
about the k permutations. For example, consider the πpattern {1, 2, 3} appear-
ing twice as Π = {123, 321}, then CΠ = {[1, 2], [2, 3], [1, 3]}. In Theorem 2 we
proved that the minimal consensus PQ tree T is such that in every f ∈ C(T)
the sets {1, 2}, {2, 3} and {1, 2, 3} appear as a consecutive substring. Notice
that the common interval [1, 3] is redundant in the sense that if the sets {1, 2}
and {2, 3} appear as a consecutive substring in every f ∈ C(T), then {1, 2, 3}
must also appear as a consecutive substring in every f ∈ C(T). The common
interval [1, 3], which is the union of [1, 2] and [2, 3], is therefore not necessary
for constructing T . We next show that the set of common intervals that are
necessary for constructing T is the set of irreducible intervals as defined in [14]:
Given Π, without loss of generality, we assume that π1 = idn := (1, 2, . . . , n).
Two common intervals c1, c2 ∈ CΠ have a non-trivial overlap if c1 ∩ c2 6= ∅ and
they do not include each other. A list p = (c1, c2, . . . , c`(p)) of common intervals
c1, c2, . . . , c`(p) ∈ CΠ is a chain (of length `(p)) if every two successive intervals
in p have a non-trivial overlap. A chain of length one is called a trivial chain. A
common interval I is called reducible if there is a non-trivial chain that generates
it (I is the union of all elements in all the intervals of the chain), otherwise it
is called irreducible. This partitions the set of common intervals CΠ into the set
of reducible intervals and the set of irreducible intervals, denoted IΠ . Obviously,
1 ≤ |IΠ | ≤ |CΠ | ≤

(
n
2

)
[14]. The set of irreducible common intervals of Π from

the example in Figure 3 is: IΠ = {[1, 2], [1, 8], [2, 3], [4, 5], [4, 7], [4, 8], [4, 9], [5, 6]}
and their chains are illustrated in Figure 5.

The algorithm. The following algorithm takes advantage of the fact that the
irreducible intervals hold as much information as CΠ .

Algorithm PQ-Construct:
Input: Π.
Output: The minimal consensus PQ tree T of Π.

1. Compute IΠ using the algorithm described in [14].
2. Compute T=REDUCE(IΠ ,TU) using the algorithm

described in [6].
3. Return T .

In Theorem 2 we proved that TC=REDUCE(CΠ ,TU) is the minimal consen-
sus PQ tree of Π. In the following lemma we prove that if TI=REDUCE(IΠ ,TU)
then TC=TI , thus proving the correctness of the algorithm.

Lemma 2. Given Π, TI=REDUCE(IΠ ,TU) is the minimal consensus PQ tree
of Π.

Time complexity of the algorithm. Given k permutations each of length n,
by [14], |IΠ | < n and further, IΠ can be computed in O(kn) time. By [6],
computing T=REDUCE(IΠ ,TU) takes O(n2) time. The minimal consensus PQ
tree can therefore be computed in O(kn + n2) time.

4.1 Computing REDUCE(IΠ ,TU) in linear time

In this section we modify step 2 of the PQ-Construct algorithm to run in O(n)
time. In [14] a data structure S was used to obtain the irreducible intervals. For
each chain of non-trivially overlapping irreducible intervals, S contains a doubly-
linked list that holds the intervals of that chain in left-to-right order. Moreover,
intervals from different lists with the same left or right end are connected by
vertical pointers yielding for each index x ∈ N a doubly-linked vertical list.
The final data structure S of the example in Figure 3 is shown in Figure 5.
We next describe a new algorithm called REPLACE that transform S to the

[1,2] [2,3] [4,5] [5,6]

[4,7]

 [4,8]

[1,8] [4,9]

1 2 3 4 5 6 7 8 9

Fig. 5. Sketch of the data structure S of the example in Figure 3. The chains
of non-trivially overlapping irreducible intervals are: ([1, 2], [2, 3]), ([4, 5], [5, 6]) and
([1, 8], [4, 9])

minimal consensus PQ tree. The general idea is to replace every chain by a Q
node where the children of the Q node are the roots of subtrees with leaves
induced by the intersection between the intervals of the chain. For example, in
Figure 5 the chain ([1, 8], [4, 9]) is replaced by a Q node of three children where
each child is the root of a subtree containing the leaves {1, 2, 3}, {4, 5, 6, 7, 8}
and {9} respectively. Then, every element that is not a leaf or a Q node and is

pointed by a vertical link is replaced with a P node. For example, in Figure 5 the
vertical links from [4, 8] to [4, 7] and 8 implies that [4, 8] is replaced by a P node
with two children where each child is the root of a subtree containing the leaves
{4, 5, 6, 7} and {8} respectively. Finally, a P node with 2 children is replaced by
a Q node. The PQ tree obtained by REPLACE on S is illustrated in Figure 3.
A similar idea, for the case of conserved intervals [2] (as opposed to irreducible
intervals) is discussed in [2, 5, 4].

The following theorem proves that we obtain the minimal consensus PQ tree
using REPLACE.

Theorem 6. If T ′ is the PQ tree obtained from S by REPLACE and
T=REDUCE(IΠ ,TU) then T ≡ T ′.

Time complexity of the algorithm. By [14], IΠ and S can be computed in
O(kn) time. REPLACE can be performed by a simple bottom up traversal of
S, therefore in O(n) time. The minimal consensus PQ tree can therefore be
computed in O(kn) time.

5 Algorithms for Various Genome Models

We next present three different genome models that use the PQ tree tool to
detect and represent the maximal patterns as PQ trees. The first model allows
only orthologous genes [18] (all the k sequences are permutations of the same
n genes, thus, every gene appears exactly once in every sequence). The second
model allows both orthologous and paralogous genes (a gene may appear any
number of times in a sequence, and may appear in only some of the sequences).
The third allows orthologous genes as well as genes that do not appear in all the
sequences (a gene can appear at most once in a sequence).

(1) Genomes as Permutations With no Multiplicity. This model is
ideal for our tool. Since the k sequences are permutations of Σ with no multi-
plicity, Σ is a πpattern (common interval) of size n. Furthermore, it is the only
maximal πpattern in the sequences. We construct the minimal consensus PQ
tree, T , of the set of sequences and obtain the maximal notation of the only
maximal πpattern in O(kn) time. Notice that by traversing T we can output
all the πpatterns (common intervals) of the sequences (every subtree of T is a
πpattern) in O(K) time, where K(≤

(
n
2

)
) is the number of πpatterns. There-

fore, in O(nk + K) time we can output all the non-maximal πpatterns, exactly
like Heber and Stoye [14] do, but we also present the maximal notation of ev-
ery πpattern found, and present the non-maximal relations between them. We
introduce experimental results of human and rat whole genome comparison for
this type of data in Section 6.

(2) Genomes as Strings With Multiplicity. In this case the input is a
set of k sequences of n genes, where a gene can appear K ≥ 0 times.

A string that has at least one character that appears more than once is termed
as a string with multiplicity. For example if p1 = abcegd and p2 = acgcab, then

p1 has no multiplicity. However that is not the case with p2 where a and c each
appear more than once.

Consider a pattern p with occurrences as acbdefc and cdabfec. Clearly p has
a unique minimal consensus PQ tree corresponding to acbdefc′ and cdabfec′ and
treating c′ as a distinct character. However, the minimal consensus PQ tree is not
necessarily unique when a character can appear more than once in a πpattern.
This is illustrated in an example in Figure 6. We handle multiplicity by reporting
the multiple minimal consensus PQ trees. This is explained using the example
of Figure 6. Each character is labeled with a distinct integer in the reference
sequence and the remaining sequences are treated as multi-sets (strings of sets
of characters). In the example, p1 = deabcxc = 1234567 and, p2 = cdeabxc =
[57]12346[57] and p3 = cxcbaed = [57]6[57]4321. If Π1 and Π2 are two choices
such that CΠ2 ⊂ CΠ1 , then clearly the choice of Π1 is made over Π2. Continuing
the example, the two choices for p2 are (1) p2 = 5123467, hence p3 = 5674321 or
p3 = 7654321 so that [6, 7] ∈ CΠ and (2) p2 = 7123465, hence p3 = 5674321 or
p3 = 7654321 so that [5, 6] ∈ CΠ . See Figure 6 for the corresponding PQ trees.
We present an experimental result for this type of data, of a pairwise comparison

T4

T2T1,3

 c

d e a b

 cx

 c

cx

d e a bd e a b

 c

 cx

Let p1=deabcxc, p2=cdeabxc and p3=cxcbaed. Then p1 = deabcxc = 1234567
and, p2 = cdeabxc = [57]12346[57] and p3 = cxcbaed = [57]6[57]4321. The two
choices for p2 are (1) p2 = 5123467, hence p3 = 5674321 or p3 = 7654321 and
(2) p2 = 7123465, hence p3 = 5674321 or p3 = 7654321. Thus the four cases are

p1 p2 p3

(1) 1234 5 67 5 1234 67 5 67 1234

(2) 1234 5 67 5 1234 67 76 5 1234

(3) 1234 56 7 7 1234 65 56 7 1234

(4) 1234 56 7 7 1234 65 7 65 1234

The trees above represent the four cases: T1,3 represents the first and third cases,
T2 and T4 represent the second and fourth cases respectfully. Notice that T2 and
T4 are both minimal consensus PQ trees of {p1, p2, p3} since |C(T2)| = |C(T4)| = 8.

Fig. 6. πpatterns with multiplicity.

between the genomes of E Coli K-12 and B Subtilis in Section 6. We used the
algorithm described in [12] to find the πpatterns and our tool to present the
maximal patterns as PQ trees (thus automatically filtering out the non-maximal
patterns).

(3) Genomes as Strings With no Multiplicity. In this case the input is a
set of k sequences of n genes, where a gene can appear K ≤ 1 times. We present
an O(nk2) time algorithm that finds all maximal πpatterns in the sequences
(notice that there can now be more then one maximal πpattern). The idea is
to transform the sequences into permutations of the same set, and then build
the minimal consensus PQ tree of these permutations. Consider the following
example where there are two sequences, 1234567 and 1824376. First we go over
the sequences and tag the genes that do not appear in all the sequences, we get
12345′67 and 18′24376. Then, for every tagged gene g′ we replace it with g′g′′ in
the sequences where g′ appears, and in the sequences where g′ doesn’t appear
we add g′ in the beginning of the sequence and g′′ in the end of the sequence.
After doing that we get 8′12345′5′′678′′ and 5′18′8′′243765′′. Now the tagged
sequences are permutations of the same set, and furthermore, every πpattern
that appeared in all the original sequences, appears in the tagged sequences, and
every πpattern that appears in the tagged sequences but doesn’t appear in the
original sequences must contain a tagged element (this is achieved by splitting the
tagged and double tagged elements). Next we construct the minimal consensus
PQ tree T , of the tagged sequences. Notice that if a subtree Ti of T has no
tagged leaves and there is no subtree Tj of T such that Ti is a subtree of Tj and
Tj has no tagged leaves, then Ti represents a maximal πpattern. The minimal
consensus PQ tree of the set of tagged sequences created from our example is
shown in Figure 7.

8’ 1 2

5’ 8’’

5’’ 6 7

3 4

Consider two sequences 1234567 and
1824376, after tagging and adding charac-
ters as explained we get the two permuta-
tions 8′12345′5′′678′′ and 5′18′8′′243765′′,
their minimal consensus PQ tree is illus-
trated above. The subtrees that have no
tagged elements (notated (2− (3− 4)) and
(6− 7)) are the only maximal πpatterns of
the original sequences.

Fig. 7. An example illustrating the use of tagged sequences.

Time complexity of the algorithm. There are initially k sequences of
length n each. It takes O(nk2) time to tag and add the elements as needed and
we get k tagged sequences of the same length (which is at most 2nk if every gene
appears in only one sequence, which rarely happens). The minimal consensus PQ

tree construction of the tagged sequences takes O(nk2) time using the O(nk)
algorithm presented in Section 4. Therefore, the algorithm takes O(nk2) time.

We present an experimental result for this type of data, of a comparison
between eight chloroplast genomes in the full version of this paper.

6 Experimental Results

Human and Rat genomes. In order to build a PQ tree for human and rat
whole genome comparisons we used the output of a program called SLAM [1,
8, 7], SLAM is a comparative-based annotation and alignment tool for syntenic
genomic sequences that performs gene finding and alignment simultaneously
and predicts in both sequences symmetrically. When comparing two sequences,
SLAM works as follows: Orthologous regions from the two genomes as specified
by a homology map are used as input, and for each gene prediction made in the
human genome there is a corresponding gene prediction in the rat genome with
identical exon structure. We used the results from SLAM of comparing human
(NCBI Build 31, November 2002) and rat (RGSC v2, November 2002) genomes,
sorted by human chromosomes. The data in every chromosome is presented as
a table containing columns: Gene name, rat coords, human coords, rat coding
length, human coding length and # Exons.

There were 25,422 genes predicted by SLAM, each gene appears exactly once
in each of the genomes. We mapped every one of the 25,422 genes to an integer,
thus, the human genome becomes the identity permutation (1, 2, 3, . . . , 25422),
and the rat genome becomes a permutation of {1, 2, 3, . . . , 25422} obtained from
the SLAM output table. The full mapping can be found in our web page:
http://crilx2.hevra.haifa.ac.il/∼orenw/MappingTable.ps.

Ignoring the trivial permutation pattern involving all the genes, there were
only 504 interesting maximal ones out of 1,574,312 permutation patterns in
this data set (we only consider patterns that do not cross chromosomes). In

19
97

19
98

20
17

20
18

20
19

20
25

20
26

20
27

20
40

20
41

20
42

20
43

20
44

20
45

21
22

21
23

21
24

21
25

Fig. 8. A PQ subtree of the minimal consensus PQ tree of the human and rat orthol-
ogous genes, as predicted by SLAM.

Figure 8 we present a subtree of the Human-Rat whole genome PQ tree. This

tree corresponds to a section of 129 genes in human chromosome 1 and in rat
chromosome 13. By our mapping, these genes appear in the human genome as
the permutation: (1997-2125) and in the rat genome as the permutation: (2043-
2041, 2025-2018, 2123-2125, 2122-2044, 2040-2026, 2017-1997). Figure 8 is the
minimal consensus PQ tree of these two permutations.

Another subtree of the Human-Rat whole genome PQ tree, corresponding
to a section of 156 genes in human chromosome 17 and in rat chromosome 10
is ((21028-21061)-(21019-21027)- (21018-20906)). The neighboring genes PMP22
and TEKTIN3 (corresponding to 21014 and 12015) are functionally related genes
as explained in [10].

E Coli K-12 and B Subtilis genomes. Here we present a simple, yet interesting
PQ tree obtained from a pairwise comparison between the genomes of E Coli
K-12 and B Subtilis. The input data was obtained from NCBI GenBank, in the
form of the order of COGs (Clusters Of Orthologous Groups) and their location
in each genome.
The data can be found in http://euler.slu.edu/∼goldwasser/cogteams/data as
part of an experiment discussed by He and Goldwasser in [13], whose goal was
to find COG teams. They extracted all clusters of genes appearing in both se-
quences, such that two genes are considered neighboring if the distance between
their starting position on the chromosome (in bps) is smaller than a chosen pa-
rameter δ > 0. One of their experimental results, for δ = 1900 was the detection
of a cluster of only two genes: COG0718, whose product is an uncharacterized
protein conserved in bacteria, and COG0353, whose product is a recombinational
DNA repair protein. They conjecture that the function of COG0353 might give
some clues as to the function of COG0718 (which is undetermined).

In our experiment we built PQ trees of clusters of genes appearing in both
sequences, such that two genes are considered neighboring if they are consecutive
in the input data irrespective of the distance between them. There were 450 max-
imal permutation patterns out of 15,000 patterns discovered by our tool. Here
we mention a particularly interesting cluster: (COG2812-COG0718-COG0353).
The product of COG2812 is DNA polymerase III, which according to [9] is also
related to DNA repair. The PQ tree clearly shows that COG0718, whose function
is undetermined is located between two genes whose function is related to DNA
repair. This observation further contributes to the conjecture that the function
of COG0718 might be also related to DNA repair. Note that the reason that
COG2812 was not clustered with COG0718 and COG0353 in [13] is because the
distance between COG2812 and COG0718 is 1984 (> δ = 1900).

Acknowledgments. We would like to thank Jens Stoye, Mathieu Raffinot and
Ross McConnell for fruitful discussions.

References

1. M. Alexandersson, S. Cawley and L. Pachter. SLAM- Cross-species gene finding
and alignment with a generalized pair hidden Markov model. In Genome Research,

13(3):496–502, 2003.
2. A. Bergeron, M. Blanchette, A. Chateau and C. Chauve. Reconstructing ancestral

gene orders using conserved intervals. In Proceedings of the Fourth Workshop on
Algorithms in Bioinformatics (WABI), 14–25, 2004.

3. A. Bergeron, S. Corteel and M. Raffinot. The algorithmic of gene teams. In
Proceedings of the Second Workshop on Algorithms in Bioinformatics (WABI),
464–476, 2002.

4. A. Bergeron, J. Mixtacki and J. Stoye. Reversal Distance without Hurdles and
Fortresses. In Proceedings of the 15th Annual Symposium on Combinatorial Pattern
Matching (CPM), 388–399, 2004.

5. A. Bergeron and J. Stoye. On the similarity of sets of permutations and its appli-
cations to genome comparison. In Proceedings of the ninth Annual International
Conference on Computing and Combinatorics (COCOON), 68–79, 2003.

6. K. Booth and G. Leuker. Testing for the consecutive ones property, interval graphs,
and graph planarity using pq-tree algorithms. In Journal of Computer and System
Sciences, 13:335–379, 1976.

7. N. Bray, O. Couronne, I. Dubchak, T. Ishkhanov, L. Pachter, A. Poliakov, E. Rubin
and D. Ryaboy. Strategies and Tools for Whole-Genome Alignments. In Genome
Research, 13(1):73–80, 2003.

8. N. Bray, I. Dubchak and L. Pachter. AVID: A Global Alignment Program. In
Genome Research, 13(1):97–102, 2003.

9. S. K. Bryan, M. E. Hagensee and R. E. Moses. DNA Polymerase III Requirement
for Repair of DNA Damage Caused by Methyl Methanesulfonate and Hydrogen
Peroxide. In Journal of Bacteriology, 16(10):4608–4613, 1987.

10. K.H. Burns, M.M. Matzuk, A. Roy and W. Yan. Tektin3 encodes an evolutionarily
conserved putative testicular micro tubules-related protein expressed preferentially
in male germ cells. In Molecular Reproduction and Development, 67:295-302, 2004.

11. G. Didier. Common intervals of two sequences. In Proceedings of the Third Work-
shop on Algorithms in Bioinformatics (WABI), 17–24, 2003.

12. R. Eres, L. Parida and G.M. Landau. A combinatorial approach to automatic
discovery of cluster-patterns. In Proceedings of the Third Workshop on Algorithms
in Bioinformatics (WABI), Lecture Notes in Bioinformatics, 2812:139–150, 2003.

13. X. He and M.H. Goldwasser. Identifying conserved gene clusters in the presence of
orthologous groups. In Proceedings of the Eighth Annual International Conferences
on Research in Computational Molecular Biology (RECOMB), 272–280, 2004.

14. S. Heber and J. Stoye. Finding all common intervals of k permutations. In Proceed-
ings of the 12th Annual Symposium on Combinatorial Pattern Matching (CPM),
207–218, 2001.

15. R.M. McConnell. A certifying algorithm for the consecutive-ones property. In Pro-
ceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 15:761–770, 2004.

16. J. Mulley, P. Holland. Small genome, big insights. In Nature, 431:916-917, 2004.
17. T. Schmidt and J. Stoye. Quadratic time algorithms for finding common intervals

in two and more sequences. In Proceedings of the 15th Annual Symposium on
Combinatorial Pattern Matching (CPM), 347–358, 2004.

18. T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two
permutations. In Algorithmica, 26(2):290-309, 2000.

