

For my precious children, Sarit, Hadas, Efrat, Yair and Tamar,
with whom playing has always been so much fun.

And for my beloved wife Michal,
soul-mate, playmate, teammate and partner.

(D.H.)

For my dear parents, Terry and Aaron Marelly,
who taught me how to play.

And for my beloved wife and daughters, Tali, Noa and Adi,
with whom I enjoy playing each and every day.

(R.M.)

Preface

This book does not tell a story. Instead, it is about stories. Or rather, in
technical terms, it is about scenarios. Scenarios of system behavior. It con-
centrates on reactive systems, be they software or hardware, or combined
computer-embedded systems, including distributed and real-time systems.

We propose a different way to program such systems, centered on inter-
object scenario-based behavior. The book describes a language, two tech-
niques, and a supporting tool. The language is a rather broad extension of
live sequence charts (LSCs), the original version of which was proposed
in 1998 by W. Damm and the first-listed author of this book. The first of
the two techniques, called play-in, is a convenient way to ‘play in’ scenario-
based behavior directly from the system’s graphical user interface (GUI).
The second technique, play-out, makes it possible to execute, or ‘play out’,
the behavior on the GUI as if it were programmed in a conventional intra-
object state-based fashion. All this is implemented in full in our tool, the
Play-Engine.

The book can be viewed as offering improvements in some of the phases of
known system development life cycles, e.g., requirements capture and anal-
ysis, prototyping, and testing. However, there is a more radical way to view
the book, namely, as proposing an alternative way to program reactivity,
which, being based on inter-object scenarios, is a lot closer to how people
think about systems and their behavior.

We are excited by the apparent potential of this work. However, whether
or not it is adopted and becomes really useful, what kinds of systems are the
ideas most fitting for, and how we should develop methodologies for large-
scale applications, all remain to a large extent open questions. Whatever the
case, we hope that the book triggers further research and experimentation.

David Harel and Rami Marelly
Rehovot, February 2003

Note on the Software

The Play-Engine tool is available with the book for free, and the attached
CD contains most of the files needed for using the software. However, some
of the ideas behind the play-in and play-out methods are patent-pending,
and both the relevant intellectual property and the Play-Engine software
itself are owned by the Weizmann Institute of Science. In order to ob-
tain the remaining parts of the software, please visit the book’s website,
www.wisdom.weizmann.ac.il/∼playbook, where you will be asked to sign
an appropriate license agreement and to register your details.

A reservation is in order here: the Play-Engine is not a commercial product
(at least at the time of writing), and should be regarded as a research-level
tool. Thus, its reliability and ease of use are less than what would be expected
from professional software, and we cannot be held responsible for its perfor-
mance. Nevertheless, we will make an effort to correct bugs and to otherwise
improve and modify the tool, posting periodical updates on the website. In
fact, we have already made some slight changes in the software since the
text of the book was finalized a few weeks ago; these are all documented in
the User Guide that is attached to the software. We would be very grateful
if readers would use the appropriate locations on the website to report any
errors, both in the software and in the text of the book.

So, please do come and visit the site, sign in, download, play, and enjoy. . .

Acknowledgments

Our first thanks go to Werner Damm from the University of Oldenburg. His
1997–98 collaboration with the first-listed author — to which he brought
both the scientist’s skill and the pragmatist’s insight — yielded the original
version of the LSCs language, which turned out to be the crucial prerequisite
of our work.

A very special thanks goes to Hillel Kugler and Na’aman Kam for being
such demanding, yet tolerant users of the Play-Engine. Many of their com-
ments and suggestions have found their way into the material presented here.
Hillel’s work on smart play-out (cosupervised by Amir Pnueli) is the most
promising follow-up research project related to the topic of this book, and
we would like to further thank him for his help in our research on symbolic
instances, and for his dedication in the effort of writing Chap. 18. Na’aman
also supplied the examples from the C. elegans nematode model given in that
chapter.

We received helpful suggestions and insightful comments from several
other people during our work. They include Liran Carmel, Sol Efroni, Yael
Kfir, Jochen Klose, Yehuda Koren, Anat Maoz, David Peleg, Amir Pnueli,
Ehud Shapiro, Gera Weiss and an anonymous referee.

Thanks go to Dan Barak for his work on connecting multiple Play-Engines
(the SEC project) and for helping with the implementation of external ob-
jects. Evgeniy Bart and Maksim Frenkel helped develop an early version of
GUIEdit.

The first-listed author would also like to thank the Verimag research center
in Grenoble, and its director, Joseph Sifakis, for a generous part-time visiting
position in 2002, during which parts of the book were written.

The second-listed author would like to thank Orna Grumberg and Moti
Kehat for helping him make the right choices at the right times.

Contents

Part I. Prelude

1. Introduction . 3
1.1 What Are We Talking About? . 3
1.2 What Are We Trying to Do? . 6
1.3 What’s in the Book? . 7

2. Setting the Stage . 9
2.1 Modeling and Code Generation . 9
2.2 Requirements . 12
2.3 Inter-Object vs. Intra-Object Behavior . 14
2.4 Live Sequence Charts (LSCs) . 16
2.5 Testing, Verification and Synthesis . 17
2.6 The Play-In/Play-Out Approach . 21

3. An Example-Driven Overview . 25
3.1 The Sample System . 25
3.2 Playing In . 26
3.3 Playing Out . 39
3.4 Using Play-Out for Testing . 43
3.5 Transition to Design . 44
3.6 Time . 46
3.7 Smart Play-Out . 47

Part II. Foundations

4. The Model: Object Systems . 55
4.1 Application Types . 55
4.2 Object Properties . 56
4.3 And a Bit More Formally ... 58

XIV Contents

5. The Language: Live Sequence Charts (LSCs) 59
5.1 Constant LSCs . 60
5.2 Playing In . 62
5.3 The General Play-Out Scheme . 65
5.4 Playing Out . 68
5.5 Combining Locations and Messages . 71
5.6 And a Bit More Formally ... 73
5.7 Bibliographic Notes . 81

6. The Tool: The Play-Engine . 83
6.1 Bibliographic Notes . 87

Part III. Basic Behavior

7. Variables and Symbolic Messages . 91
7.1 Symbolic Scenarios . 91
7.2 Enriching the Partial Order . 94
7.3 Playing Out . 97
7.4 And a Bit More Formally ... 99
7.5 Bibliographic Notes . 103

8. Assignments and Implemented Functions 105
8.1 Using Implemented Functions . 105
8.2 Assignments . 108
8.3 Playing Out . 111
8.4 And a Bit More Formally ... 114

9. Conditions . 119
9.1 Cold Conditions . 119
9.2 Hot Conditions . 120
9.3 Playing In . 121
9.4 Playing Out . 126
9.5 And a Bit More Formally ... 128
9.6 Bibliographic Notes . 132

10. Branching and Subcharts . 133
10.1 The If-Then-Else Construct . 133
10.2 Subcharts . 134
10.3 Nondeterministic Choice . 135
10.4 Playing In . 136
10.5 Playing Out . 138

Contents XV

10.6 And a Bit More Formally ... 141
10.7 Bibliographic Notes . 146

Part IV. Advanced Behavior: Multiple Charts

11. Executing Multiple Charts . 149
11.1 Simultaneous Activation of Multiple Charts 149
11.2 Overlapping Charts . 154
11.3 And a Bit More Formally ... 157

12. Testing with Existential Charts . 159
12.1 Specifying Test Scenarios . 159
12.2 Monitoring LSCs . 160
12.3 Recording and Replaying . 162
12.4 On-line Testing . 164
12.5 Executing and Monitoring LSCs in the Play-Engine 165
12.6 And a Bit More Formally ... 166
12.7 Bibliographic Notes . 171

Part V. Advanced Behavior: Richer Constructs

13. Loops . 175
13.1 Using Loops . 175
13.2 Playing In . 176
13.3 Playing Out . 178
13.4 Using Variables Within Loops . 179
13.5 Executing and Monitoring Dynamic Loops 181
13.6 And a Bit More Formally ... 183
13.7 Bibliographic Notes . 187

14. Transition to Design . 189
14.1 The Design Phase . 189
14.2 Incorporating Internal Objects . 190
14.3 Calling Object Methods . 193
14.4 Playing Out . 196
14.5 External Objects . 198
14.6 And a Bit More Formally ... 201
14.7 Bibliographic Notes . 205

XVI Contents

15. Classes and Symbolic Instances . 209
15.1 Symbolic Instances . 209
15.2 Classes and Objects . 210
15.3 Playing with Simple Symbolic Instances . 212
15.4 Symbolic Instances in the Main Chart . 213
15.5 Quantified Binding . 215
15.6 Reusing a Scenario Prefix . 216
15.7 Symbolic Instances in Existential Charts 218
15.8 An Advanced Example: NetPhone . 218
15.9 And a Bit More Formally ... 220
15.10Bibliographic Notes . 227

16. Time and Real-Time Systems . 229
16.1 An Example . 229
16.2 Adding Time to LSCs . 230
16.3 Hot Timing Constraints . 231
16.4 Cold Timing Constraints . 234
16.5 Time Events . 235
16.6 Playing In . 236
16.7 Playing Out . 237
16.8 Unification of Clock Ticks . 239
16.9 The Time-Enriched NetPhone Example . 240
16.10And a Bit More Formally ... 242
16.11Bibliographic Notes . 247

17. Forbidden Elements . 251
17.1 Example: A Cruise Control System . 251
17.2 Forbidden Messages . 252
17.3 Generalized Forbidden Messages . 255
17.4 Symbolic Instances in Forbidden Messages 256
17.5 Forbidden Conditions . 258
17.6 Scoping Forbidden Elements . 262
17.7 Playing Out . 264
17.8 Using Forbidden Elements with Time . 266
17.9 A Tolerant Semantics for LSCs. 266
17.10And a Bit More Formally ... 268
17.11Bibliographic Notes . 278

Part VI. Enhancing the Play-Engine

Contents XVII

18. Smart Play-Out (with H. Kugler) . 281
18.1 Introduction . 281
18.2 Being Smart Helps . 283
18.3 The General Approach . 287
18.4 The Translation . 289
18.5 Current Limitations . 299
18.6 Satisfying Existential Charts . 301
18.7 Bibliographic Notes . 307

19. Inside and Outside the Play-Engine . 309
19.1 The Engine’s Environment . 309
19.2 Playing In . 310
19.3 Playing Out . 311
19.4 Recording Runs and Connecting External Applications 313
19.5 Additional Play-Engine Features . 313

20. A Play-Engine Aware GUI Editor . 317
20.1 Who Needs a GUI Editor? . 317
20.2 GUIEdit in Visual Basic . 318
20.3 What Does GUIEdit Do? . 318
20.4 Incorporating Custom Controls . 321
20.5 GUIEdit As a Proof of Concept . 322
20.6 Bibliographic Notes . 322

21. Future Research Directions . 325
21.1 Object Refinement and Composition . 325
21.2 Object Model Diagrams, Inheritance and Interfaces 327
21.3 Dynamic Creation and Destruction of Objects 328
21.4 Structured Properties and Types . 329
21.5 Linking Multiple Engines . 330

Part VII. Appendices

A. Formal Semantics of LSCs . 335
A.1 System Model and Events . 335
A.2 LSC Specification . 338
A.3 Operational Semantics . 344

B. XML Description of a GUI Application 359

XVIII Contents

C. The Play-Engine Interface . 363
C.1 Visual Basic Code . 363

D. The GUI Application Interface . 365
D.1 Visual Basic Code . 366

E. The Structure of a (Recorded) Run . 369

References . 371

Index . 377

Part I

Prelude

1. Introduction

1.1 What Are We Talking About?

What kinds of systems are we interested in? Well, first and foremost, we have
in mind computerized and computer embedded systems, mainly those that
are reactive in nature. For these reactive systems, as they are called, the
complexity we have to deal with does not stem from complex computations
or complex data, but from intricate to-and-from interaction — between the
system and its environment and between parts of the system itself.

Interestingly, reactivity is not an exclusive characteristic of man-made
computerized systems. It occurs also in biological systems, which, despite
being a lot smaller than us humans and our homemade artifacts, can also be
a lot more complicated, and it also occurs in economic and social systems,
which are a lot larger than a single human. Being able to fully understand and
analyze these kinds of systems, and possibly to predict their future behavior,
involves the same kind of thinking required for computerized reactive systems.

When people think about reactive systems, their thoughts fall very natu-
rally into the realm of scenarios of behavior. You do not find too many peo-
ple saying things like “Well, the controller of my ATM can be in waiting-for-
user-input mode or in connecting-to-bank-computer mode or in delivering-
money mode; in the first case, here are the possible inputs and the ATM’s
reactions, . . .; in the second case, here is what happens, . . ., etc.”. Rather,
you find them saying things like “If I insert my card, and then press this
button and type in my PIN, then the following shows up on the display, and
by pressing this other button my account balance will show”. In other words,
it has always been a lot more natural to describe and discuss the reactive
behavior of a system by the scenarios it enables rather than by the state-
based reactivity of each of its components. This is particularly true of some
of the early and late stages of the system development process — e.g., during
requirements capture and analysis, and during testing and maintenance —
and is in fact what underlies the early stage use case approach. On the other
hand, it seems that in order to implement the system, as opposed to stat-
ing its required behavior or preparing test suites, state-based modeling is

4 1. Introduction

needed, whereby we must specify for each component the complete array of
possibilities for incoming events and changes and the component’s reactions
to them.

This is, in fact, an interesting and subtle duality. On the one hand, we
have scenario-based behavioral descriptions, which cut across the boundaries
of the components (or objects) of the system, in order to provide coherent and
comprehensive descriptions of scenarios of behavior. A sort of inter-object,
‘one story for all relevant objects’ approach. On the other hand, we have state-
based behavioral descriptions, which remain within the component, or object,
and are based on providing a complete description of the reactivity of each
one. A sort of intra-object, ‘all pieces of stories for one object’ approach.
The former is more intuitive and natural for humans to grasp and is therefore
fitting in the requirements and testing stages. The second approach, however,
has always been the one needed for implementation; after all, implementing
a system requires that each of the components or objects is supplied with its
complete reactivity, so that it can actually run, or execute. You can’t capture
the entire desired behavior of a complex system by a bunch of scenarios. And
even if you could, it wouldn’t be at all clear how you could execute such a
seemingly unrelated collection of behaviors in an orderly fashion. Figure 1.1
visualizes these two approaches.

This duality can also be explained in day-to-day terms. It is like the
difference between describing the game of soccer by specifying the complete
reactivity of each player, of the ball, of the goal’s wooden posts, etc., vs.
specifying the possible scenarios of play that the game supports. As another
example, suppose we wanted to describe the ‘behavior’ of some company
office. It would be a lot more natural to describe the inter-object scenarios,
such as how an employee mails off 50 copies of a document (this could involve
the employee, the secretary, the copy machine, the mail room, etc.), how the
boss arranges a conference call with the project managers, or how information
on vacation days and sick leave is organized and forwarded to the payroll
office. Contrast this with the intra-object style, whereby we would have to
provide complete information on the modes of operation and reactivity of the
boss, the secretary, the employees, the copy machine, the mail room, etc.

We are not claiming that scenario-based behavior is technically superior
in some global sense, only that it is a lot more natural. In fact, now is a good
time to mention that mere isolated scenarios of behavior that the system
can possibly give rise to are far from adequate. In order to get significant
mileage out of scenario-based behavior, we need to be able to attach various
modalities to the scenarios we are specifying. We would like to distinguish
between scenarios that may occur and those that must, between those that
occur spontaneously and those that need some trigger to cause them to occur.

1.1 What Are We Talking About? 5

Fig. 1.1. Inter-object vs. intra-object behavior

We would like to be able to specify multiple scenarios that combine with each
other, or even with themselves, in subtle sequential and/or concurrent ways.
We want generic scenarios that can be instantiated by different objects of
the same class, we want to be able to use variables to store and retrieve
values, and we want means for specifying time. Significantly, we would also
like to be able to specify anti-scenarios, i.e., ones that are forbidden, in the
sense that if they occur there is something very wrong: either something in
the specification is not as we wanted, or else the implementation does not
correctly satisfy the specification.

Obviously, it would also be very nice if we could actually ‘see’ scenario-
based behavior in operation, before (or instead of?) spending lots of time,
energy and money on intra-object state-based modeling that leads to the
implementation. In other words, we could do with an approach to inter-object
behavior that is expressive, natural and executable.

This is what the book is about.

6 1. Introduction

1.2 What Are We Trying to Do?

We propose a powerful setup, within which one can conveniently capture
scenario-based behavior, and then execute it and simulate the system under
development exactly as if it were specified in the conventional state-based
fashion. Our work involves a language, two techniques with detailed under-
lying algorithms, and a tool. The entire approach is made possible by the
language of live sequence charts, or LSCs, which is extended here in a
number of ways, resulting in a highly expressive medium for scenario-based
behavior. The first of our two techniques involves a user-friendly and natu-
ral way to play in scenario-based behavior directly from the system’s GUI
(or some abstract version thereof, such as an object-model diagram), during
which LSCs are generated automatically. The second technique, which we
consider to be the technical highlight of our work, makes it possible to play
out the behavior, that is, to execute the system as constrained by the grand
sum of the scenario-based information. These ideas are supported in full by
our tool — the Play-Engine.

There are essentially two ways to view this book. The first — the more
conservative one — is to view it as offering improvements to the various stages
of accepted life-cycles for system development: a more convenient way to cap-
ture behavioral requirements, the ability to express more powerful scenario-
based behavior, a fully worked-out formalization of use cases, a means for
executing use cases and their instantiations, tools for the dynamic testing of
requirements prior to building the actual system model or implementation, a
highly expressive medium for preparing test suites, and a means for testing
systems by dynamic and run-time comparison of two dual-view executables.

The second way to view our work is less conservative. It calls for consid-
ering the possibility of an alternative way of programming the behavior of a
reactive system, which is totally scenario-based and inter-object in nature.
Basic to this is the idea that LSCs can actually constitute the implementa-
tion of a system, with the play-out algorithms and the Play-Engine being a
sort of ‘universal reactive mechanism’ that executes the LSCs as if they con-
stituted a conventional implementation. If one adopts this view, behavioral
specification of a reactive system would not have to involve any intra-object
modeling (e.g., in languages like statecharts) or code.

This of course is a more outlandish idea, and still requires that a num-
ber of things be assessed and worked out in more detail for it to actually
be feasible in large-scale systems. Mainly, it requires that a large amount of
experience and modeling wisdom be accumulated around this new way of
specifying executable behavior. Still, we see no reason why this ambitious
possibility should not be considered as it is now. Scenario-based behavior is

1.3 What’s in the Book? 7

what people use when they think about their systems, and our work shows
that it is possible to capture a rich spectrum of such behavior conveniently,
and to execute it directly, resulting in a runnable artifact that is as powerful
as an intra-object model. From the point of view of the user, executing such
behavior looks no different from executing any system model. Moreover, it
is hard to underestimate the advantages of having the behavior structured
according to the way the engineers invent and design it and the users compre-
hend it (for example, in the testing, maintenance and modifications stages, in
sharing the specification process with less technically oriented people, etc.).

In any case, the book concentrates on describing and illustrating the ideas
and technicalities themselves, and not on trying to convince the reader of this
or that usage thereof. How, in what role, and to what extent these ideas will
indeed become useful are things that remain to be seen.

1.3 What’s in the Book?

Besides this brief introductory chapter, Part I of the book, the Prelude, con-
tains a chapter providing the background and context for the rest of the
book, followed by a high-level overview of the entire approach, from which
the reader can get a pretty good idea of what we are doing.

Part II, Foundations, describes the underlying basics of the object model,
the LSCs language and the Play-Engine tool.

Parts III, IV and V treat in more detail the constructs of the enriched
language of LSCs, and the way they are played in and played out. Almost
every chapter in these three parts contains a section named “And a Bit
More Formally . . .”, which provides the syntax and operational semantics
for the constructs described in the chapter. As we progress from chapter to
chapter, we use a blue/black type convention to highlight the additions to,
and modifications of, this formal description. (Appendix A contains the fully
accumulated syntax and semantics.)

Part VI describes extensions and enhancements, with chapters on the
innards of the Play-Engine tool, particularly the play-out algorithms, on the
GUI editor we have built to support the construction of application GUIs, on
the smart play-out module, which uses formal verification techniques to drive
parts of the execution, and on future research and development directions.

Part VII contains several technical appendices, one of which is the full
formal definition of the enriched LSCs language.

2. Setting the Stage

In this chapter we set the stage for the rest of the book, by describing some
of the main ideas in systems and software engineering research that lead
to the material developed later. We discuss visual formalisms and model-
ing languages, model execution and code generation, the connection between
structure and behavior, and the difference between implementable behav-
ior and behavioral requirements. We then go on to describe in somewhat
more detail some of the basic concepts we shall be expanding upon, such
as the inter-/intra-object dichotomy, MSCs vs. LSCs, the play-in and play-
out techniques, and the way all these fit into our global view of the system
development process.

2.1 Modeling and Code Generation

Over the years, the main approaches to high-level system modeling have
been structured-analysis and structured-design (SA/SD), and object-
oriented analysis and design (OOAD). The two are about a decade apart
in initial conception and evolution. Over the years, both approaches have
yielded visual formalisms for capturing the various parts of a system model,
most notably its structure and behavior. A recent book, [120], nicely surveys
and discusses some of these approaches.

SA/SD, which started in the late 1970s, is based on raising classic pro-
cedural programming concepts to the modeling level and using diagrams for
modeling system structure. Structural models are based on functional de-
composition and the flow of information, and are depicted using hierarchi-
cal dataflow diagrams. Many methodologists were instrumental in setting the
ground for the SA/SD paradigm, by devising the functional decomposition
and dataflow diagram framework, including DeMarco [31], and Constantine
and Yourdon [25]. Parnas’s work over the years was very influential too.

In the mid-1980s, several methodology teams enriched this basic SA/SD
model by providing a way to add state-based behavior to these efforts, us-
ing state diagrams or the richer language of statecharts (see Harel [42]).

10 2. Setting the Stage

These teams were Ward and Mellor [117], Hatley and Pirbhai [54], and the
Statemate team [48]. A state diagram or statechart is associated with each
function or activity, describing its behavior. Several nontrivial issues had
to be worked out to properly connect structure with behavior, enabling the
modeler to construct a comprehensive and semantically rigorous model of the
system; it is not enough to simply decide on a behavioral language and then
associate each function or activity with a behavioral description.1 The three
teams struggled with this issue, and their decisions on how to link structure
with behavior ended up being very similar. Careful behavioral modeling and
its close linking with system structure are especially crucial for reactive
systems [52, 93], of which real-time systems are a special case.

The first commercial tool to enable model execution and full code gen-
eration from high-level models was Statemate, built by I-Logix and released
in 1987 [48, 60]. (Incidentally, the code generated need not necessarily result
in software; it could be code in a hardware description language, leading to
hardware.) A detailed summary of the SA/SD languages for structure and
behavior, their relationships and the way they are embedded in the Statemate
tool appears in [53].

Of course, modelers need not adopt state machines or statecharts to de-
scribe behavior. There are many other possible choices, and these can also be
linked with the SA/SD functional decomposition. They include such visual
formalisms as Petri nets [101] or SDL diagrams [110], more algebraic ones
like CSP [59] or CCS [88], and ones that are closer in appearance to pro-
gramming languages, like Esterel [14] and Lustre [41]. Clearly, if one does
not want to use any such high-level formalisms, code in an appropriate con-
ventional programming language could be written directly in order to specify
the behavior of a function in an SA/SD decomposition.

The late 1980s saw the first proposals for object-oriented analysis and de-
sign (OOAD). Just like in the SA/SD approach, here too the basic idea
in modeling system structure was to lift concepts up from the program-
ming level — in this case object-oriented programming — to the modeling
level and to use visual formalisms. Inspired by entity-relationship (ER)
diagrams [21], several methodology teams recommended various forms of
class diagrams and object model diagrams for modeling system struc-
ture [16, 26, 105, 111]. To model behavior, most object-oriented modeling
approaches also adopted statecharts [42]. Each class is ‘programmed’ using a
statechart, which then serves to describe the behavior of any instance object
of that class; see, e.g., [105, 16, 44].
1 This would be like saying that when you build a car all you need are the structural

things — body, chassis, wheels, etc. — and an engine, and you then merely stick the
engine under the hood and you are done.

2.1 Modeling and Code Generation 11

In the OOAD world, the issue of connecting structure and behavior is
subtler and a lot more complicated than in the SA/SD one. Classes represent
dynamically changing collections of concrete objects. Behavioral modeling
must thus address issues related to object creation and destruction, message
delegation, relationship modification and maintenance, aggregation, inheri-
tance, and so on. The links between behavior and structure must be defined
in sufficient detail and with enough rigor to support the construction of tools
that enable model execution and full code generation. See Fig. 2.1.

Fig. 2.1. Object-oriented system modeling with code generation

Obviously, if we have the ability to generate full code, we would eventually
want that code to serve as the basis for the final implementation. In the
OOAD world, a few tools have been able to do this. One is Rhapsody, also
from I-Logix [60], which is based on the work of Harel and Gery in [44] on
executable object modeling with statecharts. Another is ObjectTime, which
is based on the ROOM method of Selic et al. [111], and is now part of the
Rose RealTime tool from Rational [100]. There is no doubt that techniques
for this kind of ‘super-compilation’ from high-level visual formalisms down
to programming languages will improve in time. Providing higher levels of
abstraction with automated downward transformations has always been the
way to go, as long as the abstractions are ones with which the engineers who
do the actual work are happy.

12 2. Setting the Stage

In 1997, the Object Management Group (OMG) adopted as a standard
the unified modeling language (UML), put together by a large team led by
Booch, Rumbaugh and Jacobson; see [115, 106]. The class/object diagrams,
adapted from the Booch method [16] and the OMT (object modeling tech-
nique) method [105], and driven by statecharts for behavior [44], constitute
that part of the UML that specifies unambiguous, executable (and therefore
implementable) models. It has been termed XUML, for executable UML.
The UML also has several means for specifying more elaborate aspects of
system structure and architecture (for example, packages and components).
Large amounts of further information on the UML can be found in OMG’s
website [115].

2.2 Requirements

So much for modeling systems in the SA/SD and OO worlds. However, the
importance of executable models lies not only in their ability to help lead to
a final implementation, but also in testing and debugging, the basis of which
are the requirements. These constitute the constraints, desires, dreams and
hopes we entertain concerning the behavior of the system under development.
We want to make sure, both during development and when we feel develop-
ment is over, that the system does, or will do, what we intend or hope for it
to do.

Requirements can be formal (rigorously and precisely defined) or infor-
mal (written, say, in natural language or pseudocode). An interesting way
to describe high-level behavioral requirements is the idea of use cases; see
Jacobson [62]. A use case is an informal description of a collection of possible
scenarios involving the system under discussion and its external actors. Use
cases describe the observable reactions of a system to events triggered by its
users. Usually, the description of a use case is divided into the main, most fre-
quently used scenario, and exceptional scenarios that give rise to less central
behaviors branching out from the main one (e.g., possible errors, cancelling
an operation before completion, etc.). However, since use cases are high-level
and informal by nature, they cannot serve as the basis for formal testing and
verification. To support a more complete and rigorous development cycle,
use cases must be translated into fully detailed requirements written in some
formal language.

Ever since the early days of high-level programming, computer science
researchers have grappled with requirements; namely, with how to best state
what we want of a complex program or system. Notable efforts are those em-
bodied in the classic Floyd/Hoare inductive assertions method, which uses

2.2 Requirements 13

invariants, pre- and post-conditions and termination statements [12], and in
the many variants of temporal logic [82]. These make it possible to express
different kinds of requirements that are of interest in reactive systems. They
include safety constraints, which state that bad things will not happen;
for example, this program will never terminate with the wrong answer, or
this elevator door will never open between floors. They also include liveness
constraints, which state that good things must happen. For example, this
program will eventually terminate, or this elevator will open its door on the
desired floor within the allotted time limit.

A more recent way to specify requirements, which is popular in the realm
of object-oriented systems, is to use message sequence charts (MSCs),
which are used to specify scenarios as sequences of message interactions be-
tween object instances. This visual language was adopted as a standard long
ago by the International Telecommunication Union (the ITU; formerly the
CCITT) [123], and it also manifests itself in the UML as the language of
sequence diagrams (see [115]). MSCs combine nicely with use cases, since
they can specify the scenarios that instantiate the use cases. Sequence charts
thus capture the desired interrelationships between the processes, tasks, com-
ponents or object instances — and between them and the environment — in
a way that is linear or quasilinear in time.2 In other words, the modeler uses
MSCs to formally visualize the actual scenarios that the more abstract and
generic use cases were intended to denote.

Objects in MSCs are represented by vertical lines, and messages between
these instances are represented by horizontal (or sometimes down-slanted)
arrows. Conditional guards, showing up as elongated hexagons, specify state-
ments that are to be true when reached. The overall effect of such a chart
is to specify a scenario of behavior, consisting of messages flowing between
objects and things having to be true along the way.

Figure 2.2 shows a simple example of an MSC for the quick-dial feature
of a cellular telephone. The sequence of messages it depicts consists of the
following: the user clicks the ∗ key, and then clicks a digit on the Keyboard,
followed by the Send Key, which sends a Sent indication to the internal Chip.
The Chip, in turn, sends the digit to the Memory to retrieve the telephone
number associated with the clicked digit, and then sends out the number to
the external Environment to carry out a call. A signal is then received from
the environment, guarded by a condition asserting that it is not a busy signal.
2 Tasks, processes and components are mentioned here too, since although the book is

couched in the terminology of object-orientation, many of the ideas apply also to other
ways of structuring systems.

14 2. Setting the Stage

Fig. 2.2. A message sequence chart (MSC)

2.3 Inter-Object vs. Intra-Object Behavior

The style of behavior captured by sequence charts is inter-object, to be con-
trasted with the intra-object style of statecharts. Whereas a sequence chart
captures what goes on in a scenario of behavior that takes place between
and amongst the objects, a statechart captures the full behavioral specifica-
tion for one of those objects (or tasks or processes). Statecharts thus provide
details of an object’s behavior under all possible conditions and in all the
possible ‘stories’ described previously in the inter-object sequence charts.

Two points must now be made regarding sequence charts. The first is one
of exposition: by and large, the subtle difference in the roles of sequence-based
languages for behavior and component-based ones is not made clear in the
literature. Again and again, one comes across articles and books (many of
them related to UML) in which the very same phrases are used to introduce
sequence diagrams and statecharts. At one point such a publication might say
that “sequence diagrams can be used to specify behavior”, and later it might
say that “statecharts can be used to specify behavior”. Sadly, the reader is
told nothing about the fundamental difference in nature and usage between
the two — that one is a medium for conveying requirements, i.e., the inter-
object behavior required of a model, and the other is part of the executable
model itself. This obscurity is one of the reasons many naive readers come
away confused by the multitude of diagram types in the full UML standard
and the lack of clear recommendations about what it means to specify the
behavior of a system in a way that can be implemented and executed.

2.3 Inter-Object vs. Intra-Object Behavior 15

The second point is more substantial. As a requirements language, the
many variants of MSCs, including the ITU standard [124] and the sequence
diagrams adopted in the UML [115], as well as versions enriched with timing
constraints and co-regions, and the high-level MSCs that make it possible
to combine charts using the power of regular expressions, have very limited
expressive power. Their semantics is intended to support the specification
of possible scenarios of system behavior, and is therefore usually given by a
set of simple constraints on the partial order of possible events in a system
execution: along a vertical object line higher events precede lower ones, and
the sending of a message precedes its receipt.3 Virtually nothing can be said
in such diagrams about what the system will actually do when run. They
can state what might possibly occur, not what must occur. In the chart of
Fig. 2.2, for example, there is nothing to indicate whether some parts of
the scenario are mandatory. For example, can the Memory ‘decide’ not to
send back a number in response to the request from the Chip? Does the
guarding condition stating that the signal is not busy really have to be true?
What happens if it is not? If one wants to be puristic, then, under most
definitions of the semantics of message sequence charts, an empty system
— one that doesn’t do anything in response to anything — satisfies such a
chart. Hence, just sitting back and doing nothing will make your requirements
happy. (Usually, however, there is a minimal, often implicit, requirement that
each one of the specified sequence charts should have at least one run of the
system that winds its way correctly through it.)

MSCs can be used to specify expected scenarios of behavior in the re-
quirements stage, and can be used as test scenarios that will be later checked
against the executing behavior of the final system. However, they are not
enough if we want to specify the actual behavior of a reactive system in a
scenario-based fashion. We would like to be able to say what may happen
and what must happen, and also what is not allowed to happen. The latter
gives rise to what we call anti-scenarios, in the sense that if they occur
something is very wrong: either something in the specification is not as we
wanted, or else the implementation does not correctly satisfy the specifica-
tion. We would like to be able to specify multiple scenarios that combine
with each other, or even with themselves, in subtle ways. We want to be able
to specify generic scenarios, i.e., ones that stand for many specific scenar-
ios, in that they can be instantiated by different objects of the same class.
We want variables and means for specifying real time, and so on.
3 There can also be synchronous messages, for which the two events are simultaneous.

16 2. Setting the Stage

2.4 Live Sequence Charts (LSCs)

In 1998 Damm and Harel addressed many of these deficiencies, resulting in
an extension of MSCs, called live sequence charts (or LSCs); see [27].
The name comes from the ability to specify liveness, i.e., things that must
occur. Technically, LSCs allow a distinction between possible and necessary
behavior, both globally, on the level of an entire chart, and locally, when
specifying events, guarding conditions, and progress over time within a chart.

LSCs have two types of charts: universal (enclosed within a solid bor-
derline) and existential (enclosed within a dashed borderline). Universal
charts are the more interesting ones, and are used to specify scenario-based
behavior that applies to all possible system runs. A universal chart has two
parts, turning it into a kind of if-then construct.4 It has a prechart that
specifies the scenario that, if satisfied, forces the system to also satisfy the
actual chart body, the main chart. Thus, such an LSC induces an action-
reaction relationship between the scenario appearing in its prechart and the
one appearing in the chart body. Taken together, a collection of LSCs pro-
vides a set of action-reaction pairs of scenarios, and the universal ones must
be satisfied at all times during any system run.

Fig. 2.3. A live sequence chart (LSC)

4 This structure is actually very much like a [α]〈β〉true construct in dynamic logic, eval-
uated in each system run.

2.5 Testing, Verification and Synthesis 17

Within a chart, the live elements, termed hot, signify things that must
occur, and they can be used to specify various modalities of behavior, in-
cluding anti-scenarios. The other elements, termed cold, signify things that
may occur, and they can be used to specify control structures like branch-
ing and iteration. In subsequence chapters we will see numerous examples of
the expressive power of these two kinds of elements, and the subtlety of the
differences between them.

Figure 2.3 shows a universal LSC that is an enriched version of the MSC
in Fig. 2.2. The first three events are in the prechart, and the others are in the
main chart. Hence, the LSC states that whenever the user clicks ∗, followed by
a digit, followed by the Send Key, the rest of the scenario must be satisfied.
The messages in the main chart are hot (depicted by solid red arrows, in
contrast to the dashed blue ones in the prechart), as are the vertical lines.
Thus progress along all lines in the main chart must occur and the messages
must be sent and received in order for the chart to be satisfied. In addition,
a loop has been added, within which the chip can make up to three attempts
to get a non-busy signal from the environment.

The loop is controlled by the cold (blue dashed line) guarding condition,
which means that as long as the signal is busy the 3-round loop continues.
The semantics of a cold condition, however, is such that if it is false nothing
bad has happened, and execution simply moves up one level, out of the
innermost chart or subchart. In our case, if the signal is not busy the loop
is exited (which means that the entire chart has been satisfied). In contrast
to this, a hot condition must be true when reached during a system run, and
if it is not the system must abort, since this is an unforgivable error. One
way to specify an anti-scenario using hot conditions (e.g., an elevator door
opening when it shouldn’t, or a missile firing when the radar is not locked
on the target) is to include the entire unwanted scenario in the prechart,
followed by a main chart that contains a single false hot condition.

2.5 Testing, Verification and Synthesis

Since they are more expressive than MSCs,5 LSCs also make it possible to
have a closer look at the aforementioned dichotomy of reactive behavior,
namely, the relationship between the inter-object requirements view and the
intra-object implementable model view.

If we now extend Fig. 2.1, adding to it the requirements, we obtain Fig.
2.4. Its right-hand side is the implementable intra-object system model, which
5 The expressive power of LSCs is actually very close to that of statecharts as embedded

in the object-oriented paradigm — what we called earlier XUML.

18 2. Setting the Stage

leads to the final software or hardware, and will consist of the complete be-
havior coded for each object. In contrast, it is common to assume that the
left-hand side, the set of requirements, is not implementable or executable. A
collection of scenarios cannot be considered an implementable model of the
system: How would such a system operate? What would it do under general
dynamic circumstances? How would we decide what scenarios would be rele-
vant when some event suddenly occurs out of the blue? How should we deal
with the mandatory, the possible and the forbidden, during execution? And
how would we know what subsequent behaviors these and other modalities
of behavior might entail?

Fig. 2.4. Conventional system development

One of the main messages of this book is that this assumption is no longer
valid. Scenario-based behavior need not be limited to requirements that will
be specified before the real executable system is built and will then be used
merely to test that system. Scenario-based behavior, we claim, can actually
be executed. Furthermore, we predict that in many cases such behavior will
become the implemented system itself. This will be illustrated and discussed
in detail as the book progresses.

For now, let us discuss the relations and transitions between the different
parts of the conventional setup of system development, as shown in Fig. 2.4.
The arrow between the use cases and the requirements is dashed for a reason:
it does not represent a ‘hard’ computerized process. Going from use cases to

2.5 Testing, Verification and Synthesis 19

formal requirements is a ‘soft’ methodological process performed manually by
system designers and engineers. It is considered an art or a craft and requires
a good understanding of the target formal requirements language and a large
amount of creativity.

The arrow going from the system model to the requirements depicts test-
ing and verifying the model against the requirements. Here is a nice way to
do testing using an automated tool.6 Assume the user has specified the re-
quirements as a set of sequence diagrams, perhaps instantiating previously
prepared use cases. For simplicity, let us say that this results in a diagram
called A. Later, when the executable intra-object system model has been
specified, the user can execute it and ask that during execution the system
should automatically construct an animated sequence diagram, call it B, on
the fly. This diagram will show the dynamics of object interaction as it ac-
tually happens during execution. When this execution is completed, the tool
can be asked to compare diagrams A and B, and to highlight any inconsisten-
cies, such as contradictions in the partial order of events, or events appearing
in one diagram but not in the other. In this way, the tool helps debug the
behavior of the system against the requirements.

A recently developed tool, called TestConductor, which is integrated into
Rhapsody [60], enables a richer kind of testing using a subset of LSCs. The
test scenarios can describe scenarios of interaction between the environment
and the system under development. The tool then runs the tests, and simu-
lates the behavior of the environment by monitoring the test scenarios and
sending messages to the system on behalf of the environment, when required.
The tool determines the results of such a test by comparing the sequence dia-
grams produced by the system with those that describe the tests using visual
comparison, as described above.

Note that even these powerful ways to check the behavior of a system
model against our expectations are limited to those executions that we actu-
ally carry out. They thus suffer from the same drawbacks as classic testing
and debugging. Since a system can have an infinite number of runs, some
will always go unchecked, and it could be those that violate the requirements
(in our case, by being inconsistent with diagram A). As Dijkstra famously
put it years ago, “testing and debugging cannot be used to demonstrate the
absence of errors, only their presence”.

One remedy is to use true verification. This is not what CASE-tool people
in the 1980s often called “validation and verification”, which amounted to
little more than checking the consistency of the model’s syntax. What we
have in mind is a mathematically rigorous and precise proof that the model
6 Rhapsody supports this technique.

20 2. Setting the Stage

satisfies the requirements, and we want this to be done automatically by a
computerized verifier. Since we would like to use highly expressive languages
like LSCs (or the analogous temporal logics [82] or timing diagrams [108]) for
requirements, this means far more than just executing the system model and
making sure that the sequence diagrams you get from the run are consistent
with those you prepared in advance. It means making sure, for example, that
the things an LSC says are not allowed to happen (the anti-scenarios) will
indeed never happen, and the things it says must happen (or must happen
within certain time constraints) will indeed happen. These are facts that, in
general, no amount of execution can fully verify.

Although general verification is a non-computable algorithmic problem,
and for finite-state systems it is computationally intractable, the idea of rig-
orously verifying programs and systems — hardware and software — has
come a long way since the pioneering work on inductive assertions in the late
1960s and the later work on temporal logic and model checking. These days
we can safely say that true verification can be carried out in many, many
cases, even in the slippery and complex realm of reactive real-time systems.

So much for the arrow denoting checking the model against the require-
ments. In the opposite direction, the transition from the requirements to a
model is also a long-studied issue. Many system development methodologies
provide guidelines, heuristics, and sometimes carefully worked-out step-by-
step processes for this. However, as good and useful as these processes are,
they are ‘soft’ methodological recommendations on how to proceed, not rig-
orous and automated methods. Here too, there is a ‘hard’, computerized way
to go: Instead of guiding system developers in informal ways to build models
according to their dreams and hopes, the idea is to automatically synthesize
an implementation model directly from those dreams and hopes, if they are
indeed implementable. (For the sake of the discussion, we assume that the
structure — for example, the division into objects or components and their
relationships — has already been determined.) This is a whole lot harder than
generating code from a system model, which is really but a high-level kind of
compilation. The duality between the inter-object scenario-based style (re-
quirements) and the intra-object state-based style (modeling) in saying what
a system does over time renders the synthesis of an implementable model
from the requirements a truly formidable task. It is not too hard to do this
for the weak MSCs, which can’t say much about what we really want the
system to do. It is a lot more difficult for far more realistic requirements
languages, such as LSCs or temporal logic.

How can we synthesize a good first approximation of the statecharts from
the LSCs? Several researchers have addressed such issues in the past, result-
ing in work on certain kinds of synthesis from temporal logic [98] and timing

2.6 The Play-In/Play-Out Approach 21

diagrams [108]. In [46], there is a first-cut attempt at algorithms for syn-
thesizing state machines and statecharts from simple LSCs. The technique
therein involves first determining whether the requirements are consistent
(i.e., whether there exists any system model satisfying them), then proving
that being consistent and having a model (being implementable) are equiva-
lent notions, and then using the proof of consistency to synthesize an actual
model. The process just outlined yields unacceptably large models in the
worst case, so that the problem cannot yet be said to have been solved sat-
isfactorily. We do believe, however, that synthesis will eventually end up like
verification — hard in principle but not beyond a practical and useful solution
in practice. This is the reason for the solid arrow in Fig. 2.4.

2.6 The Play-In/Play-Out Approach

To complete a full rigorous system development cycle we need to bridge the
gap between use cases and the more formal languages used to describe the
different scenarios. How should the more expressive requirements themselves
be specified? One cannot hope to have a general technique for synthesizing
LSCs or temporal logic from the use cases automatically, since use cases
are informal and high level. This leaves us with having to construct the
LSCs manually. Now, LSCs constitute a formal (albeit, visual) language, and
constructing them requires the skill of working in an abstract environment,
and detailed knowledge of the syntax and semantics of the language. In a
world in which we would like as much automation as possible we would like
to make this process more convenient and natural, and accessible to a wider
spectrum of people.

This problem was addressed towards the end of [43], and a higher-level ap-
proach to the problem of specifying scenario-based behavior, termed play-in
scenarios, was proposed and briefly sketched. The methodology, supported
by a tool called the Play-Engine was presented in more detail by the present
authors in [49]. The main idea of the play-in process is to raise the level of ab-
straction in requirements engineering, and to work with a look-alike version
of the system under development. This enables people who are unfamiliar
with LSCs, or who do not want to work with such formal languages directly,
to specify the behavioral requirements of systems using a high-level, intuitive
and user-friendly mechanism. These could include domain experts, applica-
tion engineers, requirements engineers, and even potential end-users.

What ‘play-in’ means is that the system’s developer (we will often call
him/her a user — not to be confused with the eventual end-users of the
system under development, which are sometimes called actors in the litera-

22 2. Setting the Stage

ture) first builds the GUI of the system, with no behavior built into it, with
only the basic methods supported by each GUI object. This is given to the
Play-Engine. In systems for which there is a meaning to the layout of hidden
objects (e.g., a board of an electrical system), the user may build the graph-
ical representation of these objects as well. In fact, for GUI-less systems, or
for sets of internal objects, we simply use the object model diagram as a
GUI. In any case, the user then ‘plays’ the incoming events on the GUI, by
clicking buttons, rotating knobs and sending messages (calling functions) to
hidden objects, in an intuitive drag & drop manner. (With an object model
diagram as the interface, the user clicks the objects and/or the methods and
the parameters.) By similarly playing the GUI, often using right-clicks, the
user then describes the desired reactions of the system and the conditions
that may or must hold. As this is being done, the Play-Engine does essen-
tially two things continuously: it instructs the GUI to show its current status
using the graphical features built into it, and it constructs the corresponding
LSCs automatically. The engine queries the application GUI (that was built
by the user) for its structure and methods, and interacts with it, thus ma-
nipulating the information entered by the user and building and exhibiting
the appropriate formal version of the behavior. So much for play-in.

After playing in (a part of) the behavior, the natural thing to do is to
make sure that it reflects what the user intended to say. Instead of doing
this the conventional way, by building an intra-object model, or prototype
implementation, and using model execution to test it, we would like to test
the inter-object behavior directly. Accordingly, we extend the power of our
GUI-intensive play methodology, to make it possible not only to specify and
capture the required behavior but to test and validate it as well. And here is
where our complementary play-out mechanism enters.

In play-out, which was first described in [49], the user simply plays the GUI
application as he/she would have done when executing a system model, or
the final system, limiting him-/herself to end-user and external environment
actions. As this is going on, the Play-Engine keeps track of the actions and
causes other actions and events to occur as dictated by the universal charts in
the specification. Here too, the engine interacts with the GUI application and
uses it to reflect the system state at any given moment. This process of the
user operating the GUI application and the Play-Engine causing it to react
according to the specification has the effect of working with an executable
model, but with no intra-object model having to be built or synthesized.

Figure 2.5 shows an enhanced development cycle, which includes the play-
in/play-out methodology inserted in the appropriate place.

We should emphasize that the behavior played out need not be merely
the scenarios that were played in. The user is not just tracing previously

2.6 The Play-In/Play-Out Approach 23

Fig. 2.5. Play-in/play-out in the system development cycle

thought-out stories, but is operating the system freely, as he/she sees fit. The
algorithmic mechanism underlying play-out is nontrivial, especially when we
extend LSCs with symbolic instances, time and forbidden elements, and will
be described in more detail later on.

We should also remark that there is no inherent difficulty in modifying
the Play-Engine so that play-in produces the formal version of the behavior
in languages other than LSCs, such as appropriate variants of temporal logic
[92] or timing diagrams [108]. The same applies to the play-out process, which
could have been applied to carefully defined versions of such languages too.

As discussed in the previous chapter, we believe that the LSC specifica-
tion, together with the play-in/play-out approach, may be considered to be
not just the system’s requirements but actually its final implementation. A
more modest goal would be to build system prototypes by first creating the
application GUI and then playing in the behavior, instead of coding it. The
same holds for constructing tutorials for system usage prior to actual system
development. Thus, we strongly believe there is a potential to use the Play-
Engine and its underlying ideas not only for isolated parts of a development
cycle, but throughout the entire cycle. Figure 2.6 shows the parts of the de-
velopment cycle that could become eliminated for certain kinds of systems.

Figure 2.7 shows a futuristic development cycle, where the played-in be-
havior is not considered merely as requirements, but is actually used as the

24 2. Setting the Stage

Fig. 2.6. Eliminating parts of the system development cycle

only behavior that needs to be specified for the system. We believe that the
vision depicted in this figure is not as far-fetched as it might seem. Of course,
we don’t really mean that intra-object style will disappear; but we do believe
that the behavior of complex systems will be designed in the future using
a mix of ideas, with both intra-object and inter-object styles being used in
tandem.

Fig. 2.7. A futuristic system development cycle

3. An Example-Driven Overview

In this chapter, we overview the main ideas and principles of our work. The
purpose of the overview is to give a broad, though very high-level, view of the
LSC language, the play-in methodology for specifying inter-object scenario-
based behavior, and the play-out mechanism for executing such behavior. We
will touch upon many issues, but will not dwell on the details of the language
constructs, nor the methodology, nor the tool. The overview is presented as
a guided walk-through, using a simple example of a reactive system.

3.1 The Sample System

Consider a bakery, in which different kinds of bread, cakes and cookies are
baked in three ovens. Suppose Ms. B., the owner of the bakery, wants to
automate the bakery by adding a bakery panel that will control and monitor
the three ovens. According to the play-in approach, the first thing to do is to
ask our user, Ms. B, to describe the desired panel. In this preliminary phase, a
very high-level description, focusing on the panel’s graphical user interface
(GUI), is sufficient. The panel, coded using some rapid development language
(or a special-purpose tool, as we discuss later) is shown in Fig. 3.1. The panel

Fig. 3.1. A central panel controlling the bakery’s ovens

26 3. An Example-Driven Overview

has a main switch and a main light in its top-left corner. On the top right,
there is a console display, which is used to show textual messages. The rest
of the GUI contains three 3-state switches, three thermometers and three
warning lights. Each set of switch, thermometer and light is used to control
and monitor a different oven.

Note that this bakery panel is nothing but a graphical user interface. No
behavior is programmed into it, and all it can do is interact with the Play-
Engine tool in a rather trivial way. All the behavioral requirements of this
panel will be defined as we go along. As we progress with the example, we
may add more graphical elements to the panel and define their behavior as
well.

3.2 Playing In

Having the GUI application at hand, Ms. B. is ready to specify the required
behavior of the bakery panel. She wants to add a new LSC and give it a
name. Figure 3.2 shows the Play-Engine with the empty LSC just added.
The top blue dashed hexagon is the LSC’s prechart and the bottom solid
rectangle is its main chart. The prechart should contain a scenario, which,
if satisfied, forces the satisfaction of the scenario given in the main chart.
The relation between the prechart and the chart body can be viewed as an
action-reaction; if and when the scenario in the prechart occurs, the system
is obligated to satisfy the scenario in the main chart.

The first thing our user would like to specify is what happens when the
bakery panel is turned on. Since this is done using a switch, the action of
clicking the switch is put in the prechart, and the appropriate system re-
actions are put in the chart body. In our case, we want the system, as a
response, to turn on the light and to change the display’s color to green.

The process of specifying this behavior is very simple. First, the user clicks
the switch on the GUI, thus changing its state1 from Off to On. When the
Play-Engine is notified of this event, it adds the appropriate message in the
(initially empty) prechart of the LSC from the user instance to the main
switch instance. See Fig. 3.3.

The user then moves the cursor (a dashed purple line) into the chart body
and right-clicks the light on the GUI. The engine knows the properties of the
light (in this case, there is just one) and pops up a menu, from which the user
chooses the State property and sets it to On. Figure 3.4 shows the popup
menu that is opened after the light is right-clicked, and the dialog that opens
1 We use the word ‘state’ to describe a property of the switch. This should not to be

confused with the term ‘state’ from finite state machines and statecharts.

3.2 Playing In 27

Fig. 3.2. An empty universal LSC in the Play-Engine

after the State property is chosen. A similar process is then carried out for
the background property of the display. After each of these actions, the engine
adds a self-message in the LSC from the instance representing the selected
object, showing the change in the property. The Play-Engine also sends a
message to the GUI application, telling it to change the object’s property in
the GUI itself so that it reflects the correct value after the actions have been
taken. Thus, when this stage is finished, the GUI shows the switch on, the
light on, and the display colored green. Figure 3.5 shows the resulting LSC
and the status of the GUI panel.

Suppose now that the user wishes to specify what happens when the switch
is turned off. In this case we want the light to turn off and the display to
change its color to white and erase any displayed characters. The user may,
of course, play in another scenario for this, but these two scenarios will be
very similar, and they are better represented in a single LSC. This can be
done using symbolic messages. We play a scenario as before, with the switch
being clicked as part of the prechart, and the system’s reactions being played
in as the chart’s body. However, this time we do it with the symbolic flag on.

28 3. An Example-Driven Overview

Fig. 3.3. The results of clicking the main switch to On

Fig. 3.4. Changing the light state to On

When in symbolic mode, the values shown in the labels of messages are the
names of variables (or functions), rather than actual values. So the user will
now not say that the light should turn on or off as a result of the prechart,
but that it should take on the same state as the switch did in the prechart.
The Play-Engine provides a number of ways of doing this. A variable can
be selected from a table of predefined variables or, as shown in Fig. 3.6, we

3.2 Playing In 29

Fig. 3.5. LSC: Turning on the panel

can indicate that the value should be the same as in some message in the
LSC. Here Xs is a variable. For the second option, the user simply clicks the

Fig. 3.6. Symbolic mode: the light takes on the same state as the switch

30 3. An Example-Driven Overview

desired message inside the LSC and its variable will be attached to the new
message as well.

This takes care of turning the light on or off. We now want to deal with
the display’s color. In one case it should become green and in the other white.
We use an if-then-else construct for this. The user clicks the If-Then button
on the toolbar and in response a wizard and a condition form are opened.
Many kinds of conditions can be specified directly via the GUI, except that, in
contrast to simple GUI-based actions, here several kinds of relation operators
can be used (e.g., <,≤, >, etc.). Figure 3.7 shows the system after the wizard
opens and the user clicks the switch on the GUI. Note that in the condition

Fig. 3.7. Specifying if-then-else using a wizard

form, the value of the switch is specified, and the switch itself is highlighted
in the GUI. Conditions may refer to properties of GUI objects, to values of
variables, or may even contain free expressions that the user will be requested
to instantiate during play-out.

After the if-then condition is specified, the user continues playing in the
behavior of the If part in the usual way. When this is completed, he/she clicks

3.2 Playing In 31

the Specify the ELSE part on the wizard and plays in the behavior for the
Else part. The resulting LSC is shown in Fig. 3.8.

Fig. 3.8. An if-then-else construct

We could have specified in the Else part that the display should also
be cleared (e.g., by asking to show an empty string). However, in order to
introduce and exemplify stand-alone conditions we do it in a different way.
We already saw that conditions may serve in if-then-else constructs, but they
can also serve as stand-alone guards, either hot or cold. If a cold condition
is true, the chart progresses to the location that immediately follows the
condition, whereas if it is false, the surrounding (sub)chart is exited. A hot
condition, on the other hand, must always be met, otherwise the requirements
are violated and the system aborts. We will use a cold condition to check
whether the switch is Off. If this is the case, the display is cleared, otherwise
the chart is gracefully exited and the display’s text does not change. A stand-
alone condition can be inserted into the chart at any moment by clicking an
appropriate button on the toolbar. After the button is clicked, the same
condition dialog that was used in the if-then-else construct is opened.

An object can participate in a condition without being actually con-
strained. This is usually done when we want the object’s progress to be
synchronized with the condition’s evaluation, but to have no effect on its
value. Synchronizing an object with a condition (i.e., making the object a
non-influential part of the condition) is done by right-clicking the object and
choosing Synchronize from the popup menu. In our example, we want the
console object to be synchronized with the condition but to have no effect
on its value. Figure 3.9 shows how this is done.

32 3. An Example-Driven Overview

Fig. 3.9. Specifying a stand-alone condition guard

A condition hexagon will be stretched along the LSC, reaching all the
instances to which it refers. To distinguish such instances from those that do
not participate in the condition’s definition or are not to be synchronized with
it, the engine draws small semicircular connectors at the intersection points
of the condition with the participating instance line. Figure 3.10 shows the
final LSC and the way conditions are rendered.

One aspect of the LSC language that contributes to its flexibility is the fact
that behaviors can be given in separate charts, and these can each describe
a fragment of a more complex behavior. When these fragments become rele-
vant during execution is a consequence of their precharts, and thus no explicit
order is imposed on the charts (in contrast to the mechanism for combining
charts in high-level MSCs, for example). So, suppose that our user has just
decided that when the switch is turned on, the three warning lights should
flicker (by changing colors from green to red and back) three times, termi-

3.2 Playing In 33

Fig. 3.10. A symbolic LSC for turning the panel on or off

nating in green. One way to capture that is to go back to the LSC shown
before and add this ‘piece’ of behavior in its correct place (i.e., in the ‘then’
part of the if-then-else construct). Alternatively, we can create another LSC,
which is activated only when the switch is turned On.

To do this, the user clicks the switch on the GUI to On while the cursor is
in the prechart, in the same way as described earlier. We now want to specify
the three-fold flickering itself. Of course, we could simply play in the six
color changes for every light. It is better, however, to use the loop construct
of LSCs. As with the if-then-else construct, a loop is inserted by clicking a
button on the toolbar, which causes a wizard to open. Figure 3.11 shows the
wizard and the LSC during the process of specifying a loop.

Fig. 3.11. Specifying loops in LSCs

34 3. An Example-Driven Overview

There are three types of loops in LSCs. This one is a fixed loop; it is
annotated by a number or a variable name, and is performed a fixed number
of times.

After selecting the desired type of loop using the loop wizard, the user
continues playing in the required behavior in the same way as before. The
loop is ended by clicking the End Loop button in the loop wizard. Figure
3.12 shows the resulting LSC. Note the special use of a cold condition in

Fig. 3.12. An LSC with a fixed loop

the middle of the loop. A condition with the reserved word SYNC is always
evaluated to true. (Actually, the reserved word TRUE could have been used
instead, but SYNC reflects better the underlying intuition.) Placing such a
condition where it is, and synchronizing the three lights with it has the effect
of synchronizing the lights and forbidding a light to change its color to green
before the others have changed their color to red.

Thinking a bit more about the bakery panel, Ms. B. now decides that she
would like to be able to probe the thermometers for their exact temperature.
To do that, some additional graphical objects should be added to the panel.
Figure 3.13 shows the modified panel. Two selectors and one Probe button
have been added. One selector is used to select a thermometer and the other
to select the units for displaying the temperature (i.e., Celsius or Fahrenheit).

We now specify the following requirement:

3.2 Playing In 35

Fig. 3.13. The modified bakery panel

When the Probe button is clicked, the console should display the tem-
perature of the thermometer selected using the thermometer selector.
The temperature should be displayed in Celsius or Fahrenheit degrees,
according to the units in the units selector.

The prechart is quite simple, and contains a single message denoting the
event of the user clicking the Probe button. In the chart body, we first want to
store the temperature of the selected thermometer. We do this using three if-
then constructs. The temperature is stored in a variable using an assignment
construct. Assignments are internal to a chart, and can be used to save values
of the properties of objects, or of functions applied to variables holding such
values. The assigned-to variable stores the value for later use in the LSC. The
expression on the right-hand side contains either a reference to a property of
some object (this is the typical usage) or a function applied to some predefined
variables. It is important to note that the assignment’s variable is local to
the containing chart and can be used in that chart only, as opposed to the
system’s state variables, which may be used in several charts. Figure 3.14
shows how an object property can be stored, by right-clicking the desired
object, choosing Store and then the desired property name. It also shows the
resulting assignment, drawn as a rectangle folded in its top-right corner. Since
after storing a value we might like to refer to it later, and for this a meaningful
name is helpful, the Play-Engine lets the user name the assigned variable; here
we use Tc (since the original temperature is given in Celsius). Figure 3.15
shows an LSC in which the variable Tc stores the required temperature.

Next, the console should display Tc according to the selected units. If
Celsius is selected, then Tc should be displayed as is. If Fahrenheit is selected,
the temperature should be converted. This is an example of the need to use
data manipulation algorithms and functions that are applied to specified
variables. Such functions cannot (and should not) be described using LSC-

36 3. An Example-Driven Overview

Fig. 3.14. Using assignments to store the temperature

style interactions between objects, but rather should be imported as external
artifacts that have to be worked into the requirements. The Play-Engine
allows the specification of an event value as a function applied to variables.
These functions are user-implemented and their declarations are obtained
from the GUI application. Figure 3.16 shows the final LSC. Using an if-then-
else construct, which depends on the units selector value, the console displays
the temperature in the correct units, using the function Cels2Fahr to convert
Celsius to Fahrenheit.

The next requirement our user wishes to express is the following:

If the temperature in one of the ovens gets below 30 degrees Celsius,
the console should display a “Cold Oven!” warning message.

The temperature is a property of a thermometer, which is not changed by the
user or by the system. It is actually changed by the environment. Often, a
reactive system works in the presence of other elements, apart from the user
who interacts with it. Such elements might include other machines, comput-
ers, sensors, and even Mother Nature. The collection of all these elements

3.2 Playing In 37

Fig. 3.15. Storing the temperature of the selected thermometer

Fig. 3.16. Probing and displaying a thermometer temperature

is referred to as the system’s environment. When playing in the required
behavior of a reactive system, it is necessary to be able to express its interac-
tion with this environment. The Play-Engine allows the user to specify how

38 3. An Example-Driven Overview

the environment reacts with the system in a way similar to the interaction
with the end-user.

Figure 3.17 shows an LSC that describes the above requirement for ther-
mometer]1. When the temperature of thermometer]1 is changed (by the

Fig. 3.17. Interacting with the external environment

environment) to some value T , and T is less than 30 degrees Celsius, then
the console displays the required warning message.

We could have created two more charts for the other two thermometers,
yet there is a more elegant way to do this. Many systems feature multiple
objects that are instances of the same class. This is one of the central maxims
of the object-oriented paradigm. For example, a communication system con-
tains many phones, a railroad control system may have not only many trains
and terminals but also many distributed controllers, etc. We would like to
be able to specify behavioral requirements in a general way, on the level of
classes and their parameterized instances, not necessarily restricting them to
concrete objects. In our example, since the three thermometers are actually
three instances of the same thermometer class, we would like to take the LSC
shown in Fig. 3.17 and generalize it so that it deals with all the thermometers
in the system. We can do this using an extension we have defined for LSCs,
involving classes and symbolic instances. A symbolic instance is associ-
ated with a class rather than with an object, and may stand for any object
that is an instance of the class. Figure 3.18 shows the generalized version of
the LSC of Fig. 3.17. In our example, a CTherm class was created and all
the thermometers were defined as instances thereof. In Fig. 3.18, the instance
representing thermometer]1 was turned into a symbolic instance, and thus
now represents any object that is an instance of class CTherm.

Symbolic instances constitute a rather complex topic, raising several in-
teresting and non-trivial issues that we deal with later in the book.

3.3 Playing Out 39

Fig. 3.18. Using symbolic instances to represent classes

3.3 Playing Out

After playing in the required behavior so far, Ms. B. is ready to check her
model, and she therefore moves to play-out mode. Playing out is the process
of testing the behavior of the system by providing any user actions, in any
order, and checking the system’s ongoing responses. The play-out process
calls for the Play-Engine to monitor the applicable precharts of all universal
charts, and if successfully completed to then execute their bodies. As dis-
cussed earlier, the universal charts contain the system’s required reactions to
other actions. By executing the events in these charts and causing the GUI
application to reflect the effect of these events on the system objects, the user
is provided with a simulation of an executable application.

Note that in order to play out scenarios, the user does not need to know
much about LSCs or even about the use cases and requirements entered so
far. All he/she has to do is to operate the GUI application as if it were a final
system and check whether it reacts according to the expectations.

We should emphasize that the possible runs of the system are not sim-
ply different orders of the same sequences of inputs, but can include totally
different runs that contain unexpected events and messages. This is doubly
true in the presence of symbolic instances, symbolic messages and unbounded
loops.

The underlying play-out mechanism can be likened to an over-obedient
citizen who walks around with the Grand Book of Rules on him at all times.2

He doesn’t lift a finger unless some rule in the book says he has to, never does
anything if it violates some other rule, and always carries out — to the letter
— what he was asked to do, as well as anything else that doing so entails.
He constantly scans and monitors all rules at all times. Clearly, in so acting,
2 Chapter 5 contains this idea applied to a female citizen too.

40 3. An Example-Driven Overview

he might have choices to make, and could also discover inconsistencies in the
rules. More about that later.

Back now to Ms. B. The first thing she would like to do is to turn on the
panel. She therefore clicks the switch to On. The Play-Engine can react to
user and environment actions in two modes: step and super-step. When in
step mode, the user is prompted before each event, each condition evaluation,
etc., and the next event to be carried out is marked on all relevant charts. In
the super-step mode, the Play-Engine carries out as many events as possible,
until it reaches a ‘stable’ state, in which the system can do nothing and waits
for some input from the user. Figure 3.19 shows one of two charts that are

Fig. 3.19. Clicking the switch: first effect

activated by the Play-Engine as a response to the event of the user clicking
the switch. In this LSC, the message in the prechart is symbolic and its
variable Xs is therefore bound to the value On, remaining with this value
until the chart completes. The Play-Engine progresses through the chart and
continuously interacts with the GUI application, causing it to reflect the
changes prescribed by the executed events. As this is happening, the user may
examine values of assignments, conditions and message variables, by moving

3.3 Playing Out 41

the mouse over them in the chart. In this example, the mouse is located over
the cold condition. As a result, the condition is evaluated and a tooltip shows
the valuation result (false). At the same time, the GUI objects participating
in the condition are highlighted in the panel and each one displays a tooltip
with its relevant constraints. Since this cold condition evaluates to false, the
chart completes (denoted by the surrounding blue thick frame).

Figure 3.20 shows the second chart that is activated as a result of clicking
the switch to On. In this figure, the Play-Engine is in step mode, after some

Fig. 3.20. Clicking the switch: second effect

steps have already been taken. The next step to be taken is circled in red.
The number in the top-right corner of the loop shows how many iterations
have already been performed; the numbers in the top-left corner denote the
current and total iteration numbers. Note that in the bakery panel the first
warning light has already changed to green while the other two are still red.

42 3. An Example-Driven Overview

After turning on the panel, our user, Ms. B., wishes to test the effect of
one thermometer going below 30 degrees Celsius. To do that, she has to play
the role of the environment. Figure 3.21 shows how this is done. The user

Fig. 3.21. Playing out the environment

right-clicks the desired object (in this case thermometer]2), selects External
Change and then chooses the property to be changed. Here, Ms. B. chooses
Temp and then enters a value of 20 degrees (not shown in the figure). As a
result, the chart in Fig. 3.22 is activated and is completed. Recall that the

Fig. 3.22. Play-out: binding symbolic instances

scenario in this chart was played in using thermometer]1, and the instance
representing it was turned symbolic. Now, since Ms. B. played out using
thermometer]2, the symbolic instance is bound to this thermometer for the
rest of the scenario.

Thus, as explained earlier, playing out enables the user to actually activate
the specified system directly from the scenario-based inter-object behavioral

3.4 Using Play-Out for Testing 43

specification — possible and mandatory scenarios, forbidden scenarios and
other constraints — without the need to prepare statecharts, to write or
generate code, or to carry out any other detailed intra-object thinking. The
process is simple enough for many kinds of end-users and domain experts,
and can greatly increase the chance of finding errors early on.

3.4 Using Play-Out for Testing

Universal charts ‘drive’ the model by their action-reaction nature, whereas
existential charts can be used as system tests or as examples of required
interactions. Rather than serving to drive the play-out, existential charts are
monitored; that is, the Play-Engine simply tracks the events in the chart
as they occur. When (and if) a traced chart reaches its end, it is highlighted,
and the user is informed that it was successfully traced to completion. The
user may select the charts to be monitored, thus saving the Play-Engine the
need to track charts that might currently not be of interest.

Figure 3.23 shows an existential chart that was successfully traced to
completion. This chart represents a test (as indicated by the “T” in the top-
left corner), stating that after the switch is turned on, the light should be

Fig. 3.23. Monitoring existential charts

44 3. An Example-Driven Overview

on and the console and the three warning lights should all be green. As a
test, this LSC is not required to explicitly show how the required result is
accomplished but only that it is eventually accomplished. The required test
results are specified using a hot condition, thus enabling the chart to complete
only if the condition evaluates to true.

When playing out the GUI application, a run trace is produced, which
includes all the user actions and the system reactions. These runs can be
recorded, to provide testimonies (that can be replayed) for fulfilling existential
LSCs. Recorded runs can be saved (in XML format) and then reloaded. More
importantly, runs can be imported from different sources and then be replayed
in the same manner. These external sources can be different implementations
of the specification, either given as executable programs or as more detailed
design models, (e.g., statecharts, labeled transition systems, etc.). Importing
a run from an implementation and replaying it, while tracing all charts, can
be used to show that the implementation is consistent with the requirements
in the sense that existential charts are successfully traced and universal charts
are not violated.

3.5 Transition to Design

After playing in the requirements using the GUI application, and validating
them using play-out, the Play-Engine can be used to make a smooth transi-
tion into the design phase. In many development methodologies, the designer
begins the design phase with a requirements specification, usually given as
a text document, and then constructs scenarios (say, in some variant of se-
quence diagrams) to show the interaction between the objects comprising
the system, and to become convinced that these scenarios satisfy the original
requirements.

Using the play-in methodology, the designer can begin the design phase
with a set of given (and debugged) LSCs that describe the requirements
in terms of allowed and forbidden interactions between the system and its
users and environment. The design phase would then consist of going through
the universal charts and refining them by adding internal objects and the
interactions between these objects and the GUI objects and other internal
objects. Adding this information to the charts fills the gap between what the
system should do and how it does it. Note that by starting with LSCs created
by, or on behalf of, the user, we achieve near-perfect traceability between
the requirements and the design. Moreover, by leaving the existential charts
unmodified, the designer may prove the correctness of the modified LSCs by
performing regression testing to satisfy the original existential charts.

3.5 Transition to Design 45

The Play-Engine provides means for adding internal objects on the fly. It
also enables the addition of properties and methods to the new objects and
also to the objects exported by the GUI application. The internal objects are
drawn in an object map, which is a kind of object model diagram. In this
diagram, each object is shown with all its methods, its properties and their
values.

Suppose that in our bakery panel example the designer wants to specify
how the light is turned on or off after the switch is clicked. He/she decides
that a new switch controller, Sw-Ctrl, will be used. Figure 3.24 shows an
object map with the new object and an LSC that shows how the information
is transferred from the switch to the light.

Fig. 3.24. Playing out internal objects

When LSCs containing method calls are played out, the Play-Engine ani-
mates them by drawing arrows between the involved objects and highlighting
them. Thus, the play-out mechanism can be used not only to help end-users
validate requirements but also as a useful tool for demonstrating, reviewing
and debugging a design. Figure 3.24 shows how interaction between objects
is animated in the Play-Engine. Note that the arrows are not limited to being
internal to the GUI application or to the object map themselves, but can run
from one to the other.

46 3. An Example-Driven Overview

3.6 Time

Many kinds of reactive systems must explicitly refer to and react to time.
Suppose that Ms. B. is not satisfied with the standard way the lights have
been made to flicker as the panel is turned on (Fig. 3.25(a)), but wants them
to remain red for one second and green for two seconds.

We have extended the LSCs to handle time by adding a single clock object
with one property, time, and one method,Tick.

Using the clock object together with the existing constructs of LSCs, we
can specify a wide variety of timing constraints and time-driven events. Figure
3.25(b) shows an LSC that describes the modified requirement. Before the
lights change to red, the time is stored in a variable T . Before they change to
green, the hot condition Time > T must first be satisfied, and this happens
only after the elapse of one second. The same goes for the change from green
to red, except that in this case the condition forces a delay of two seconds.

Reactive real-time systems are often required to react to the passage of
time and not only to refer to it when constraining the intervals between
actual events. Suppose that in our case Ms. B. wishes to continuously probe
the selected thermometer at a rate of one probe per second. For this we add
a new internal object, Prb-Ctrl, which will be responsible for the probing
process. This probe-controller object has one Boolean property, IsProbing,
that shows whether the object is probing, and two methods, ToggleProbe to
start and stop the probing process and ProbeOnce to activate a single probe.
Figure 3.26 shows the object map with the new object and an LSC that
describes how Prb-Ctrl is stimulated by the Probe button.

Figure 3.27(a) shows how the clock ticks can be referred to in LSCs. The
LSC in this figure specifies that if the probe controller is probing and a clock
tick occurs, then the probe controller calls itself to perform a single probe.
Figure 3.27(b) shows that when Prb-Ctrl calls its Probe method, it performs
a single probe as described earlier. Hence, when the probe controller is in
probing mode, each clock tick activates the ‘Probe Tick’ LSC, and this in
turn activates the ‘One Probe’ LSC in a chain reaction.

The play-out mechanism supports LSCs that refer to time. Specifications
can be executed in manual clock mode, where the user advances the clock
by clicking a Tick button, or in automatic clock mode, where the clock
ticks are performed by the Play-Engine at fixed intervals (which can be de-
termined by the user).

3.7 Smart Play-Out 47

Fig. 3.25. Specifying time constraints

3.7 Smart Play-Out

As described earlier, play-out is actually an iterative process, where after
each step taken by the user, the Play-Engine computes a super-step, which
is a sequence of events carried out by the system as the response to the event

48 3. An Example-Driven Overview

Fig. 3.26. Toggling the probe controller using the Probe button

input by the user. However, the ‘obedient citizen’ mechanism of the play-
out process is rather naive, for several reasons. For example, there can be
many sequences of events possible as a response to a user event, and some
of these may not constitute a ‘correct’ super-step. We consider a super-step
to be correct if when it is executed no active universal chart is violated. By
acting blindly according to the ‘Grand Book’ of requirements, reacting to a
user-generated event with the first action it finds that is a possible reaction
to that event, the naive play-out process could very well follow a sequence
of events that eventually causes violation, whereas another sequence could
have been chosen that would have completed successfully. The multiplicity
of possible sequences of reactions to a user event is due to the fact that a
declarative, inter-object behavior language, such as LSCs, enables the formu-
lation of high-level requirements in pieces (e.g., scenario fragments), leaving
open details that may depend on the implementation. The partial order se-
mantics among events in each chart, and the ability to separate scenarios in
different charts without saying explicitly how they should be composed are
very useful in early requirement stages, but can cause underspecification and
nondeterminism when one attempts to execute them.

Consider, for example, the two charts given in Fig. 3.28. ‘LSC1’ says that
when the main switch is turned on, the first warning light turns green, the
first switch is automatically set to Med and the console displays the string
Switch1 Med. Note that the LSC does not enforce any particular order on
these three events, so that there are several possibilities for the order in
which they execute, and the play-out mechanism will choose one, in a way
that is not controllable by the user.

3.7 Smart Play-Out 49

Fig. 3.27. Periodic probing

‘LSC2’ says that whenever the state of the first switch is set to Med, the
first light should not yet be green. Then this light turns green, and only then
does the console display the string Switch1 Med.

If these are the only two specified charts, and the user turns the switch
to On during play-out, the play-out mechanism chooses the events in an
order that results in the charts shown in Fig. 3.29. The first event to be
taken is the top-most, i.e., changing the color of the first light to green. The
second is setting the state of Switch1 to Med. As this event occurs, ‘LSC2’
is activated but cannot progress, since the warning light is green. ‘LSC1’

50 3. An Example-Driven Overview

Fig. 3.28. Nondeterministic choice during play-out

is also not allowed to progress, since the event of showing Switch1 Med on
the console violates ‘LSC2’. Therefore, no progress is allowed at all and the
super-step terminates.

The smart play-out approach focuses on executing the behavioral re-
quirements with the aid of formal analysis methods, mainly model-checking.
The smart play-out process finds a ‘correct’ super-step if one exists, or proves
that such a super-step does not exist. This is achieved using model-checking
at the occurrence of each user event, in order to examine the different poten-
tial super-steps and to find a correct sequence of system reactions if there is
one. Model-checking thus drives the execution. Another way of putting it is
that the ‘smartness’ in smart play-out works as an aid, helping the objects
in the system cooperate in fulfilling the requirements.

In our example, the result of applying the smart play-out algorithm for
finding the correct super-step is shown in Fig. 3.30. In this case, the first
event taken after the main switch is turned on is that of changing the state
of Switch1 to Med. This event activates ‘LSC2’, but this time the warning
light is not green yet. The hot condition is thus evaluated to true and is

3.7 Smart Play-Out 51

Fig. 3.29. Standard play-out

propagated. Now the event of changing the warning light to green can be
carried out, affecting both charts. Next the cold condition is successfully
passed, and again the event of showing Switch1 Med on the console can be
performed, causing the successful completion of both charts.

Smart play-out illustrates the power of putting formal verification meth-
ods to use in early stages of the development process, with the potential of
impacting the development of reactive systems. More ways of utilizing smart
play-out in the Play-Engine and the details of the smart play-out algorithms
are discussed in Chap. 18.

Fig. 3.30. Using smart play-out

Part II

Foundations

4. The Model: Object Systems

Scenario-based languages, such as LSCs, are not restricted to particular sys-
tems, architectures or modeling techniques. They can serve to specify the
behavior of either sequential or parallel systems, based on either centralized
or distributed architectures, and they can be used to describe the interaction
between processes, tasks, functions and objects. The same applies to virtu-
ally all the ideas and techniques described in this book. However, it will be
convenient for us to use a single system model throughout the book. Since
object-orientation appears to be the most dominant development methodol-
ogy today, we will use the basic OO notions and terminology in our system
model as well.

To describe the structure of a reactive system within the play-in/play-out
methodology and the supporting Play-Engine tool, we use object systems.
In our setting, a system consists of an arbitrary number of objects, each
of which embodies an arbitrary number of properties. Since the approach is
not restricted to modeling applications and systems from a specific domain
or field, the object’s properties are based upon application types, which are
also considered part of the system model. Each object may be an instance
of some defined class. An object that is not explicitly associated with a class
is considered to be the single object in a special singleton class having the
same properties as the object itself.

In this chapter, we describe the various elements comprising a system
model. As we continue our description of the more advanced elements and
features of the language and the play-in/play-out approach, the system model
will be extended appropriately.

4.1 Application Types

The most basic element in our models is an application type. When clear
from the context, we will refer to application types simply as types. There
are three kinds of types:

Enumeration type – defined by a finite set of values.

56 4. The Model: Object Systems

Discrete type – defined by a minimum value, a maximum value and a step
(delta) that defines the interval between two consecutive values. For ex-
ample, a discrete type having 0, 10 and 1 as its minimum, maximum and
delta, respectively, contains the integers between 0 and 10, inclusive.

String type – defined by a maximal length.

Each type is identified by a name and a unique ID, and may be provided
with a description. Here are some examples of application types.

Color – The possible colors that can be used in an application can be de-
scribed using an enumeration type that consists of the different color
names (e.g., {Red, Blue, Green, White, Black, ...}). To represent a 24-bit
color we could use a discrete type with integer numbers ranging from
0 to 224 − 1, with a delta of 1, thus representing all the possible RGB
combinations.

Boolean – The Boolean type is defined simply as an enumeration containing
the values {True, False}.

Character – Characters can be defined using a string type of length 1. An
alternative way would be to use a discrete type, with the characters en-
coded by their ASCII codes.

Byte – A byte can be represented by a discrete type ranging from 0 to 127
with a delta of 1, or by a string type of length 8, which would explicitly
show the bits constituting the byte.

The choice of the type for a particular application should be made so that
its representation is the most convenient for the way it will be used.

4.2 Object Properties

Every object in the application is associated with a set of properties. The
values of the properties for GUI objects are usually reflected in the way
these objects are rendered in the application, but this is not mandatory.1

A property has a name and is identified by a unique ID (unique within the
object scope). Each property is based on a type, from which its values can be
selected.

In order to provide an intuitive and user-friendly support for play-in and
play-out, we require object properties to also have the following characteris-
tics:

Prefix – The property prefix is a verb used to describe the action of changing
the property’s value (e.g., show a value, turn the light on/off, etc.). This
feature is used mainly to help make the specification clear and intuitive.

1 In Chap. 14 we discuss how GUI-less objects display their property values.

4.2 Object Properties 57

Is default – If a property is default, its name is not shown in the LSC mes-
sages. Let us take for example, a light object with one property, State,
that can be on or off. If the property is not declared as default, then
when the light is turned on the message in the chart will read “Turn
State(On)”, whereas if it is declared as default the message will read
“Turn(On)”. Again, this feature is used to make the requirements clearer
by hiding redundant information in the charts.

In only – Object properties are usually changed by either operating the ob-
ject (e.g., clicking a switch, moving a slider, etc.), or by right-clicking
it and then choosing a property from a popup menu and specifying its
new value. The first method is used to demonstrate user actions while
the second is used to specify system reactions. An in only property can
be changed only using the first of these, and therefore is not shown on
the object’s right-clicked popup menu (e.g., a button in a GUI is usu-
ally clicked by the user, hence there is no reason why one would want to
specify that the button was clicked by the system).

Can be changed externally – This indicates that the property can be changed
by the system’s environment (i.e., some external element other than the
end-user). When playing in behavior, changes caused by the environment
are played by right-clicking an object, choosing “External Change” and
then selecting the property to be changed. Only properties that can be
changed externally are shown on that menu.

Affects – When the value of an object’s property is changed, a message is
drawn in the LSC. The value of the Affects flag shows how this arrow is
drawn; the possibilities are User, Env and Self, and the arrow is drawn
towards the user, towards the environment, or as a self arrow, respectively.

Synchronous – A message referring to a synchronous property may be prop-
agated only if both the sender of the message and its receiver are ready.
The arrowhead of a synchronous message is different too.

Examples of object properties are the state of a light or a switch, the value
shown in a display, the background color of a display, and the temperature
shown on a thermometer.

The current implementation of our Play-Engine calls for a GUI application
to be described as an XML application description file. Appendix B gives the
detailed structure of such files. This method of describing the system model
is merely an implementation issue, and it can be carried out in various other
ways.

58 4. The Model: Object Systems

4.3 And a Bit More Formally ...

An object system Sys is defined as

Sys = 〈D, C,O〉

where D is the set of application types (domains), C is the set of classes and
O is the set of objects. We refer to the user of the system as User and to the
external environment as Env.

A class C is defined as

C = 〈Name,P〉

where Name is the class name and P is the set of class properties. An object
O is an instance of some class and is therefore defined as

O = 〈Name, C,PV〉

where Name is the object’s name, C is its class and PV : C.P → ⋃
i Di is a

function assigning a value to each of the object’s properties. We define the
function class : O → C to map each object to the class it is an instance of.
We will also use the shortcut V alue(O.P) = O.PV(O.C.P) to denote the
current value of property P of object O.

An object property P is defined as

P = 〈Name,D , InOnly ,ExtChg ,Affects,Sync〉

where Name is the property name and D is the type it is based on. In-
Only, ExtChg and Sync range over {true, false}, and Affects ranges over
{User,Env,Self}, as explained earlier. The IsDefault and Prefix characteris-
tics are purely cosmetic and do not affect the semantics of the model. We do
not formalize the different kinds of application types, but rather view a type
D as a finite set of values.

5. The Language: Live Sequence Charts (LSCs)

Message sequence charts (MSCs) were discussed in Chap. 2. They were
adopted long ago by the International Telecommunication Union (the ITU,
formerly the CCITT), and constitute a visual scenario-based language that
is popular in the realm of object-oriented systems for capturing behavioral
requirements. The language also manifests itself in the UML, somewhat mod-
ified, and is referred to there as sequence diagrams.

Objects in MSCs are represented by vertical lines, called instances,1 and
messages going between these instances are represented by horizontal (or
sometimes down-slanted) arrows. Every instance line contains locations. An
instance progresses from one location to the next by participating in some
activity associated with the location. Such an activity could, for example,
be the sending or receiving of a message. Every instance has also an initial
location and a final location, in which the instance begins and terminates,
respectively.

As explained in Chap. 2, the semantics of all known versions of MSCs,
including the ITU standard and the UML sequence diagrams, is a set of
simple constraints on the partial order of possible events in some possible
system execution, i.e., a partial order among the instance locations. This
partial order is determined by two simple rules. First, time is assumed to go
from top to bottom, so the partial order restricts the locations along a single
instance to be processed in that order. Second, for asynchronous messages
(most uses of MSCs are restricted to such messages), the send event of the
message precedes the receive event. For synchronous messages the two events
are simultaneous. The partial order is essentially the transitive closure of
these two rules. For a given chart L, we refer to the partial order it induces
by ≤L. Virtually nothing can be said in MSCs about what the system will
actually do when run. The charts can state what might possibly occur, but
not what must occur, and neither can MSCs specify anti-scenarios, whose
occurrence we want to forbid.
1 The term instance is given in the MSC standard to describe the vertical line representing

an object, a process or a task. It should not be confused with class instances, a term
used in object-oriented methods.

60 5. The Language: Live Sequence Charts (LSCs)

5.1 Constant LSCs

We now describe the basic version of live sequence charts (LSCs), pro-
posed in 1998 by W. Damm and the first-listed author of this book. They
eliminate the above deficiencies by their ability to specify liveness, i.e., things
that must occur. This is done by allowing the distinction between possible
and necessary behavior both globally, on the level of an entire chart, and
locally, when specifying events, conditions and progress over time within a
chart.2

LSCs have two types of charts: universal (annotated with a solid border-
line) and existential (annotated with a dashed borderline). Universal charts
are used to specify restrictions that apply to all possible system runs. Each
universal chart is associated with a prechart that specifies the scenario that,
if successfully executed, forces the system to satisfy the scenario given in the
actual chart body. Existential charts are more like MSCs and UML sequence
diagrams. They are used in LSCs to specify sample interactions between the
system and its environment and must be satisfied by at least one system run.
They thus do not force the application to behave in a certain way in all cases,
but rather state that there is at least one set of circumstances under which
a certain behavior occurs. Existential charts can be used to specify system
tests, or simply to illustrate longer (non-restricting) scenarios that provide a
broader picture of the behavioral possibilities to which the system gives rise.
We will see more on this later, particularly in Chaps. 12 and 18.

Figure 5.1 shows a universal chart and an existential chart. Although the

Fig. 5.1. Universal and existential charts

2 Recently, there has been an attempt to adopt some of the ideas of LSCs in an extension
of UML sequence diagrams, which will feature certain constructs that specify mandatory
behavior. We are not familiar with the details of this extension, nor with the level of
rigor of its semantics, but some variant of the extension will probably become part of
the UML 2.0 standard.

5.1 Constant LSCs 61

two contain the same events, their semantics are very different. The universal
chart (Fig. 5.1(a)) says that every time the user clicks the switch to on, the
light should turn on. Hence, a universal chart induces an action-reaction
relationship between the scenarios in its prechart and the scenarios in the
chart body, and these action-reaction pairs must be satisfied during the entire
system run. The existential chart merely says that there is at least one run of
the system, and one point during that run, in which the user clicks the switch
to on and the light indeed turns on. It is important to note that there is no
causality between the two events in the existential chart. Actually, in this
chart the events are not even restricted by the partial order, and therefore a
scenario in which the light turns on and then the user clicks the switch to on
also satisfies the chart.

The small circles shown in the charts are the instance locations. All in-
stances have at least three locations: an initial location, a location associated
with the beginning of the main chart, and a final location. In the universal
chart, all the instances that participate in the prechart have also a location
for the prechart start. The beginnings of the prechart and the main chart
are synchronization points; all instances enter the prechart simultaneously,
while the main chart may be entered only after all instances have successfully
completed their activities in the prechart.

A location may be either hot, thus forcing the instance to progress, or
cold, thus enabling the instance to remain in its location without violating
the chart. A hot location is denoted by a red circle and a solid line from the
location to its successor. A cold location is denoted by a blue circle and a
dashed line.

As we shall see later, locations may be attached to various kinds of events,
but in this chapter we restrict our discussion to LSCs that contain only the
most basic events — sending and receiving constant messages.

Messages in LSCs may also be hot or cold. A hot message must be
received after it is sent. A cold message may be sent and not received (which
can be viewed as expressing a communication failure). Hot messages are
denoted by red solid lines and cold messages are denoted by blue dashed
lines.

Messages can represent synchronous or asynchronous interactions. Self
messages are always synchronous, so properties that have their Affects at-
tribute set to Self are always represented by synchronous messages. Since
the user and the environment are external to the system and therefore in-
teract with the GUI objects directly, and not by sending messages over a
communication channel, most properties are defined as synchronous. When
it is important to show that the interaction of the user or the environment
with an object may take time from the moment the action is performed until

62 5. The Language: Live Sequence Charts (LSCs)

the object notices it, asynchronous properties can be used. We use closed
triangular arrowheads to denote synchronous messages, see Fig. 5.2(a), and
open arrowheads for asynchronous ones, see Fig. 5.2(b).

Fig. 5.2. Synchronous vs. asynchronous messages

5.2 Playing In

Messages in LSCs are used to indicate different kinds of events and interac-
tions in the system. Here, we further restrict our discussion to messages that
reflect changes in property values only. Other kinds of messages are discussed
in Chap. 14.

As an example system we use the bakery panel described in Chap. 3.
Suppose we wish to specify that every time the main switch is clicked to On,
the main light should turn On. The LSC in Fig. 5.3 describes this requirement.
The text in the small box on the right is a natural language description,
generated automatically from the LSC by the Play-Engine.

Fig. 5.3. Turning the bakery panel on

5.2 Playing In 63

In this example, the value of the switch’s state property is changed to On
by the user simply clicking it as is done with a working system. In response,
the state property of the light is also changed to On, this time by the system
(i.e., the object itself). Note that the locations along the light’s instance line
are hot (denoted by solid line segments), thus forcing the light to be turned
on if the prechart is successfully completed. Each of the two messages in the
chart is a constant message (sometimes referred to as an exact message). A
constant message is parameterless, i.e., is one for which all the information
it represents — the identities of the sender and receiver and the message
content — is known and fixed.

The value of an object’s property can be changed by the end-user of the
system (e.g., by clicking a switch, rotating a knob, typing text in a text box,
etc.). When specifying behavioral requirements, these kinds of events are
played in using the same actions, i.e., operating the GUI objects as is done
in the final system.

Typically, the system responses are also reflected by changes in the values
of object properties (e.g., a light turns on, a console displays some text, etc.).
Since these kinds of objects and properties cannot be directly operated by the
user to specify the desired value, the changes are specified by right-clicking
the target object. The Play-Engine then shows a popup menu, which shows
all the properties of the selected object according to the system model (see
Fig. 5.4(a)). After selecting a property from the menu (in this example, the

Fig. 5.4. Specifying the system’s response

light has only one property — state), a dialog opens where the user can
specify the new value. If the property is based on an enumeration type, the
list of values is shown and the user may select a value from there (see Fig.
5.4(b)).

64 5. The Language: Live Sequence Charts (LSCs)

A property value of an object can be changed not only by the end-user or
by the system but also by the system’s external environment. In the bakery
panel example, one may wish to specify that when the temperature of ther-
mometer]1 reaches 100 degrees, the system should react in some specified
way. A thermometer is a sensor that indicates the value of some property
(temperature), which is controlled neither by the user nor by the system.
Therefore, there should be a way to express changes in this property caused
by the external environment. Figure 5.5 illustrates how this is done and shows
the resulting message. In order to specify a change in one of the properties

Fig. 5.5. Referring to the environment

of an object, caused by the environment, the object is right-clicked, and the
user chooses External Change. Then, from the sub-menu, he/she chooses
the property to be changed (in this example Temp), and the property’s value
is inserted in the same way as for other changes. The Play-Engine then in-
serts into the LSC a special instance representing the environment, and an
appropriate message going from it to the target object.

When a property is changed by the user or the environment, the message
indicating the change goes from the user or the environment instances to the
instance representing the affected object. When specifying a system response,
the resulting message originates from the changing object and arrives at
one of three possible instances, determined by the Affects attribute of the
changed property, which ranges over {User, Self, Env}. Typically, properties
have their Affects property set to Self, since it is common to view a change
in the state of an object as a local event involving no other object or entity.

5.3 The General Play-Out Scheme 65

However, when we wish to emphasize that the change in the property is to
be seen by the user or the environment, the other options are used. Note,
however, that the choice of the instance receiving the message may affect the
partial order induced by the LSC.

5.3 The General Play-Out Scheme

Like MSCs and UML sequence diagrams, LSCs can be used to specify re-
quirements that serve later in the process of testing and validating more
detailed executable models or implementations. The set of events produced
by a monitored system consists of property changes triggered by the user
and the environment, as well as property changes triggered by the system’s
objects. A system event is identified by a message and an indication as to
whether the message is being sent or received. The message contains the in-
formation regarding the originator, the target object, the changed property
and the new value for that property. When a run is being traced, the events
from the run are continuously checked against the events in the LSCs to
verify that the order induced by the LSCs in the specification is not violated.

This usage of LSCs is beneficial, and the language’s added expressive
power makes it possible to test and validate more powerful requirements.
However, while the precursors of LSCs — MSCs and UML sequence diagrams
— are used essentially only in this capacity, the expressive power of LSCs
opens up a new and powerful possibility: executing them directly, without
the need for an intra-object model or implementation. This idea is one of the
main issues this book attempts to cover in detail.

Behavioral requirements for a reactive system specify constraints on how
the system reacts with respect to external stimuli such as user actions, events
coming from the external environment, timing events, etc. By way of execut-
ing such behavior, we would like to enable the user to specify end-user or
environment actions and for him/her to then be able to observe the system
responses to these stimuli.

One must realize, however, that it is much harder to execute the behavior
given in an inter-object language, such as sequence diagrams or LSCs, than
it is to do so for intra-object languages such as statecharts, or for code. The
latter provide clear information on each object’s reactions to every possible
event. Thus, executing a system whose objects are described in an intra-
object fashion is easy (at least in principle). In contrast, inter-object scenario-
based languages do not contain explicit instructions for the behavior of each
object under any given set of circumstances. If we want to be able to execute
behavior given in such a language, the instructions for each object must be

66 5. The Language: Live Sequence Charts (LSCs)

figured out in runtime by considering all the relevant scenarios combined.
This is the central issue that our execution mechanism has to address.

Before describing in detail how this is done, it is worth repeating verbatim
(except for a gender change) the informal explanation given in the overview
chapter, Chap. 3: The underlying play-out mechanism can be likened to an
over-obedient citizen who walks around with the Grand Book of Rules on her
at all times. She doesn’t lift a finger unless some rule in the book says she
has to, never does anything if it violates some other rule, and always carries
out — to the letter — what she was asked to do, as well as anything else that
doing so entails. She constantly scans and monitors all rules at all times.

More technically, our approach for executing LSCs can be described using
the following general set of capabilities that an execution mechanism for
inter-object behavior should supply:

1. Identify an external stimulus and find all the requirements that should
be considered when resolving the system’s response to it (e.g., identify
the event of flipping a switch and find all the requirements that specify
the system’s responses to the switch being flipped).

2. Apply the relevant requirements to create the sequence of system reac-
tions. This is done iteratively, and thus includes identifying additional
requirements that become relevant as the system is responding and ap-
plying them too (e.g., after the switch is flipped, send a signal to the
controller, which, in turn, may result in sending a signal to the light and
turning it on).

3. Identify scenarios that are forbidden according to the requirements, and
avoid generating them (e.g., make sure that if the requirements say that
a certain signal cannot be sent to the light while it is on, it will indeed
not be sent when the light is on).

4. In case a forbidden scenario actually occurs (e.g., because some other
mandatory scenario forces it to, or as a result of a user action or an
external action), indicate a violation.

Playing out is the process of testing the behavior of the system by provid-
ing any user or environment actions, in any order, and checking the system’s
ongoing responses. The play-out process calls for the Play-Engine to monitor
the applicable precharts of all universal charts, and if successfully completed
to then execute their bodies. By executing the events in these charts and caus-
ing the GUI application to reflect the effect of these events on the system
objects, the user is provided with a simulation of an executable application.

When a universal LSC is activated, it can be in one of two activation
modes. As long as execution is in the prechart, the mode is said to be
preactive, and as soon as the prechart successfully completes, the mode

5.3 The General Play-Out Scheme 67

changes to active. After an LSC becomes activated, in either mode, each of its
instances begins at its initial location and progresses as the run continues. The
mapping of each instance of an LSC L to its current location is called a cut
of L. A cut is hot if at least one of the instances is in a hot location and cold
if all the instances are in cold locations. Cuts are drawn in the diagrams as
thick comb-like lines (see Fig. 5.6). Note that in executing LSCs (and also in
using them for testing), a single universal chart may become activated several
times during a system run. Thus, we have to cater for multiple incarnations
of LSCs.

Fig. 5.6. An LSC cut

A run is consistent with an LSC if the events in the run occur in the
order dictated by the LSC. When referring to this order, one must be precise
as to when an event is allowed to happen. According to our semantics, events
that do not appear in an LSC are not restricted by it and can therefore
occur at any point. (This principle is modified in Chap. 17, where we extend
the language with the ability to specify forbidden elements.) An event that
appears in an LSC is enabled with respect to the current cut of the LSC if
it appears immediately after the cut, that is, all the events that should have
occurred prior to this event have already occurred. An event is violating
an LSC if it appears in the LSC but is not enabled by the current cut (an
alternative semantics, in which such an event is not violating, is also given
in Chap. 17).

In order to correctly identify the full status of a chart, as soon as it becomes
activated a copy of the chart is created, termed a live copy. A live copy of an
LSC contains a copy of the original LSC, its activation mode and its current
cut. The basic life cycle of a live copy of a universal LSC is illustrated in Fig.
5.7. (We defer the discussion of existential LSCs until later on.)

Initially, the copy does not exist. Whenever a minimal event (i.e., min-
imal in the partial order induced by the LSC) that appears in L’s prechart
occurs, the copy is created in preactive mode. As long as events occur in an
order consistent with that of the LSC, the cut of the copy is propagated.
When all locations in the prechart have been traversed, the copy moves into
active mode. Here too, as long as events occur in a consistent order, the cut is
propagated. If all locations in the chart are reached, the copy terminates and

68 5. The Language: Live Sequence Charts (LSCs)

Fig. 5.7. Basic life cycle of the live copy of a universal LSC

stops existing. If the LSC is violated while its cut is still in the prechart, the
copy terminates and stops existing, causing no error. Such a violation only
indicates that the triggering scenario was not fully completed, and there is
no longer an obligation to carry out the main chart. If the chart is violated
by an event (i.e., sending or receiving a message) while its cut is in the main
chart, and the temperature of the current cut is cold, the copy terminates
and stops existing. This kind of termination also causes no error, since all the
instances are in cold locations and are therefore not obligated to progress. If
the main chart is violated by an event and the temperature of the current
cut is hot, the chart aborts causing an error, since an illegal run has been
identified.

The play-out execution mechanism works in iterations, each of which con-
sists of an action, called a step, which is an event initiated by the user, followed
by a reaction, called a super-step, which is a sequence of events selected from
the set of enabled events that are not violating. As this is going on, minimal
events are identified and new LSC copies are created. The reaction ends when
there are no more enabled events that can be carried out.

5.4 Playing Out

Figure 5.8 shows what happens when the switch is turned on while the Play-
Engine is in play-out mode. The event of the user clicking the switch to On

5.4 Playing Out 69

Fig. 5.8. Playing out in step mode

is sought for in all the precharts of universal charts.3 As the event is found
in the LSC “Switch On”, this LSC becomes activated, and a live copy of it is
created in preactive mode. Since the message in the prechart is synchronous,
the send and receive events occur simultaneously, and then, because there is
only one message in the prechart, the prechart is successfully completed and
the mode of the LSC copy is set to active. Now, the Play-Engine chooses one
event from the set of currently enabled events. In this case the only event is
that of the light changing its state to on. Note that although the locations
of the light and the message in the main chart are cold, so that according
to pure LSC semantics execution doesn’t necessarily have to progress from
them, in actuality the Play-Engine executes the event of turning the light to
on. This is because according to our operational semantics, the Play-Engine
takes a greedy approach, trying to execute as many events as it can, and it
does not stop in its tracks just because elements are cold. This issue will be
discussed in more detail later in the book.

The Play-Engine can be set to react to user and environment actions in
two modes: step and super-step. When in step mode, the user is prompted
before each event, and the next event to be carried out is marked on all
relevant charts. In super-step mode, the Play-Engine carries out as many
events as possible, until it reaches a ‘stable’ state, in which the system can
do nothing but wait for some input from the user. In this example, the Play-
Engine is shown running in step mode. The event is circled in red and the
user is prompted for confirmation before it is taken.

After the user clicks OK in the popup prompt, the event is carried out.
Since this is the last event in the chart, the Play-Engine realizes that the chart
has successfully completed, marks it with a solid blue frame and notifies the
user of its completion. Figure 5.9 shows the completed chart. Once the user
3 In this chapter we deal with a single active LSC at a time. Chapter 11 discusses in detail

how the Play-Engine handles multiple charts.

70 5. The Language: Live Sequence Charts (LSCs)

Fig. 5.9. A successfully completed LSC

confirms the popup message, the chart is closed and removed from the set of
live copies.

It is quite natural to have a prechart started but not successfully com-
pleted; that is, cases where the triggering scenario does not occur in full.
Consider the following requirement:

When the three switches are set to their Med state in reverse order
(i.e., starting with switch 3 and ending with 1), the system should
enter master mode and indicate it by displaying “MASTER” on the
console.

Fig. 5.10. Monitoring a chart in preactive mode

Suppose now that in play-out the user moves switch 3 to Med. The event is
identified by the Play-Engine, and the LSC is activated, as shown in Fig. 5.10.
At this stage, the prechart is not yet completed, so the Play-Engine awaits
the next event. The user now moves switch 1 to Med. This event appears in
the chart but is currently not enabled. The prechart is thus violated, but this
is not a big deal since the system is not committed to any behavior dictated

5.5 Combining Locations and Messages 71

Fig. 5.11. Violating a prechart

by that main chart. Consequently, the LSC is marked by a red frame and is
crossed out in blue. The violating event is circled in red, thus enabling the
user to examine the reason for the violation. See Fig. 5.11. After confirming
the popup message, the chart is closed and is removed from the set of live
copies.

Were such a violation to occur while the LSC copy was in active mode
and the cut was hot, the cross would have been red and the popup message
would have shown that a violation of the requirements was detected.

5.5 Combining Locations and Messages

Consider the LSC given in Fig. 5.12, in which object O1, being at location l1,

Fig. 5.12. Temperatures of messages and locations

sends a message M to O2, who receives the message at location l2. As denoted

72 5. The Language: Live Sequence Charts (LSCs)

by the solid lines, the message and the locations are all hot, meaning that
O1 must send the message, the message must arrive, and O2 must receive it.
In the following, we discuss some less trivial combinations of temperatures
for messages and locations. The discussion is relevant to asynchronous mes-
sages only, since in the synchronous case the message is sent and received
simultaneously.

There are eight different cases, each indicating a different combination of
temperatures for l1,M and l2. We point out any conflicts they introduce, and
discuss how these conflicts are handled by our proposed LSC semantics.

1. l1 is hot M is hot l2 is hot
This is the case discussed above. It is rather intuitive and causes no
semantical conflicts.

2. l1 is cold M is cold l2 is hot
In this scenario, O2 must progress beyond l2, but O1 is not obligated to
send the message M , and even if it indeed sends M , M itself may not
arrive. According to our semantics, an LSC cut is hot if at least one of
the instances is in a hot location. In this case, as long as O2 remains in l2
the cut stays hot, and therefore any event not allowed by the LSC that
is triggered will cause a violation of the specification. Therefore, the fact
that O2 is in a hot location implicitly forces O1 to send the message and
M to arrive. Hence, this case is semantically equivalent to the first case
discussed, where the two locations and the message are all hot.

3. l1 is cold M is hot l2 is hot
Since l2 is hot, and M is hot anyway, this case is equivalent to case 2.

4. l1 is hot M is cold l2 is hot
Again, O1 must send M and O2 must receive it. However, the message
is cold and therefore may not arrive. Like in case 2, having l2 hot affects
the message and forces it to arrive. Non-arrival is therefore a violation.

5. l1 is cold M is cold l2 is cold
In this scenario, O1 is not obligated to send M . If it chooses to do so, M
may or may not be received by O2. If M does not arrive, O2 is allowed
to remain in l2 without violating the scenario.

6. l1 is cold M is hot l2 is cold
In this scenario, O1 is not forced to send M and O2 is not forced to
receive it. However, once M is sent, the definition of a hot message forces
it to be received, but this conflicts with l2 being cold. According to our
semantics, assuming that the location following l1 in O1 is also cold, after
M is sent the cut is still cold and the chart may terminate without causing
a violation. As opposed to the previous case, where the temperature of a
location caused a change in the declared nature of a message, the converse

5.6 And a Bit More Formally ... 73

— i.e., the temperature of a message changing the nature of a location
— does not apply.

7. l1 is hot M is cold l2 is cold
This case also conforms with the intuition underlying the formal seman-
tics: O1 is indeed forced to send M , but M may not arrive, and even if
it does O2 is not obligated to accept it and proceed.

8. l1 is hot M is hot l2 is cold
Here, O1 must send the message and the message must arrive. However,
O2 may decide not to receive the message. Following the same consider-
ations as in case 6, we derive that in this case too the temperature of l2
overrides that of M .

This eight-way analysis leads to an interesting observation. According
to our semantics, the temperatures of instance locations are actually given
higher priority than those of messages. This means that message tempera-
tures really serve only to graphically emphasize communication failures; the
temperature of a message has no semantic meaning and it is totally deter-
mined by the temperature of the receiving object.

We have chosen this semantics as it seems to us to be the most intuitive,
but we do not rule out an alternative semantics in which the hot tempera-
ture of a message overrides the cold temperature of the receiving location.
To achieve this change would merely require changing the definition of the
temperature of a cut to be hot not only if one of its locations is hot but also
if it “crosses” a hot message, i.e., the send event has already occurred but
the receive event has not. In any case, we recommend using only the simpler
and more intuitive combinations from among the eight; they should suffice
for all practical purpose.

This situation is, in fact, typical of many of the semantic decisions we
have taken in our work, and which we describe as we progress. As with
any language, there could be several valid ways to define meanings for the
various parts of our charts. In each case we adopt the one we felt to be the
most practical and intuitive for use by engineers who want to build reactive
systems. By no means do we say that the semantics we provide is the only
one possible; nor do we claim it to be the best. As the topics unfold, we
will try to justify these decisions and describe the considerations that led to
them.

5.6 And a Bit More Formally ...

In this chapter we provide the operational semantics of basic LSCs. This
semantics will be extended and modified in the chapters to come, and the

74 5. The Language: Live Sequence Charts (LSCs)

parts repeated will be shown in blue, with the new additions being given in the
regular font. The semantics here, and in each of the subsequent extensions,
will be organized into three parts:

System Model and Events – This part contains definitions of the events that
can be generated by the system model.

LSC Specification – This part contains definitions of the various LSC con-
structs.

Operational Semantics – This part contains a description of the operational
semantics of LSCs with respect to the system model.

System Model and Events

Given a system model Sys, we define a system message Ms as

Ms = 〈Src,Dst, P, V 〉

where Src is the object sending the message, Dst is the object receiving the
message (which could be the same as Src), P is the property changed, and
V ∈ P.D is the new value for the property, taken from the set of values
defined by the property type D.

Definition 5.6.1 (synchronous system messages). A message Ms is
synchronous if Ms.P.Sync = true. A self message is also synchronous.

The alphabet of possible messages of Sys, denoted by Σ, is defined as

Σ = ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv ∪ΣSelf

ΣFromUser = {Ms | Src = User ∧ P ∈ class(Dst).P}
ΣToUser = {Ms | Dst = User ∧ P ∈ class(Src).P ∧ P.Affects = User

∧ P.InOnly = False}
ΣFromEnv = {Ms | Src = Env ∧ P ∈ class(Dst).P ∧ P.ExtChg = True

∧ P.InOnly = False}
ΣToEnv = {Ms | Dst = Env ∧ P ∈ class(Src).P ∧ P.Affects = Env

∧ P.InOnly = False}
ΣSelf = {Ms | Dst = Src ∧ P ∈ class(Src).P ∧ P.Affects = Self

∧ P.InOnly = False}

where ΣFromUser is the set of messages representing a property change in
some object caused by the user, ΣToUser captures the messages represent-
ing a property change caused by the system and directed towards the user,
ΣFromEnv are those messages representing a property change in some object
caused by the external environment, ΣToEnv are property changes caused by

5.6 And a Bit More Formally ... 75

the system and directed towards the environment, and, finally, ΣSelf is the
set of messages representing a property change caused locally by the system.

The set of system events, E , is defined as

E = ((ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv)× {Send,Recv})
∪ (ΣSelf × {Send})

LSC Specification

Now, given a system model Sys and the possible events it may generate, an
LSC specification for Sys is defined as the disjoint union

S = SU ∪ SE

where SU is a set of universal charts and SE is a set of existential charts.
An LSC L is defined to be:

L = 〈IL,ML, [PchL], evnt, temp〉

Here, IL is the set of instances in L, ML is the set of messages in L, PchL is
the prechart of L (in universal charts), and evnt and temp are functions that
will be discussed shortly.

An instance I is defined as

I = 〈`,O〉

where ` is the set of instance locations and O ∈ O is the object represented
by I.

We denote by lix the xth location of instance Ii, and by `(I) = I.` the set
of locations of instance I. We use `(L) as an abbreviation for

⋃
I∈L `(I).

We define the function AppObj to map each instance to the object it
represents

AppObj :
⋃

L∈S
IL → O

and we require that a single object cannot be represented by more than one
instance in an LSC

∀I, I ′ ∈ IL : AppObj(I ′) 6= AppObj(I)

A message M ∈ ML is defined as

M = 〈ISrc, IDst,Ms〉

76 5. The Language: Live Sequence Charts (LSCs)

where ISrc ∈ IL is the instance representing the sender, IDst ∈ IL is the
instance representing the receiver, and Ms ∈ Σ is the system message repre-
sented by M , so that Ms.Src = AppObj(ISrc) and Ms.Dst = AppObj(IDst).
The message M is synchronous if and only if M.Ms is synchronous.

The temperature function temp assigns temperatures to some of the LSC
constructs:

temp : `(L) ∪ML → {hot, cold}
We denote by EL the set of LSC events in L, which consists of two disjoint

sets. An LSC event can be an actual system event of sending or receiving a
message, or it can be one of the acts of entering the prechart, exiting it or
reaching the end of the chart body. We will refer to the first kind of event as
visible events and to the second as hidden events. The set of visible events is
defined as

({m ∈ ML | m.Ms ∈ ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv}
× {Send,Recv})

∪ ({m ∈ ML | m.Ms ∈ ΣSelf} × {Send})
The set of hidden events is defined as

(PchL × {Start, End}) ∪ {Completed}
The function evnt : `(L) → EL maps a location to the event it is associated
with. Its inverse, loc : EL → 2`(L) = evnt−1, maps an event to the set of
locations associated with it. Note that when restricting the domain of loc to
ML × {Send,Recv}, loc becomes single-valued.

Every LSC induces a partial order among instance locations, which is the
central aspect in determining the order of execution. The partial order, ≤L,
induced by a chart L, is obtained by the following relations:

Instance line – The locations along a single instance line are ordered top-
down, beginning with the prechart start and ending with the chart end.
Thus, things higher up are carried out earlier:

x < y ⇒ lix <L liy

Send-Receive – For an asynchronous message m ∈ ML, the location of the
〈m, Send〉 event precedes the location of the 〈m, Recv〉 event. Thus, an
asynchronous message is sent before it is received. For synchronous mes-
sages, the two events take place simultaneously:

∀m ∈ ML :
(async(m) ⇒ loc(〈m,Send〉) <L loc(〈m,Recv〉))
∧ (sync(m) ⇒ loc(〈m,Send〉) =L loc(〈m,Recv〉))

5.6 And a Bit More Formally ... 77

Prechart – All the instances participating in the prechart are synchronized
at the beginning of the prechart and at its end. That is, no instance is
allowed to move into the prechart before all other instances have arrived
at their prechart entry points, and no instance is allowed to exit the
prechart (and enter the main chart) before all other instances have arrived
at their prechart exit points.

∀lix, ljy ∈ loc((Pch, Start)) : lix =L ljy

∀lix, ljy ∈ loc((Pch, End)) : lix =L ljy

Chart completion – In order for a chart to complete, all the instances must
reach their final location.

∀lix, ljy ∈ FinalLocations(L) : lix =L ljy

We extend the partial order ≤L to events in the following way: e′ <L e if
∃l ∈ loc(e), ∃l′ ∈ loc(e′) such that l′ <L l.

Operational Semantics

In order to describe the operational semantics of LSCs, we must define the
notions of an LSC cut, minimal, enabled and violating events, and an LSC
live copy.

Definition 5.6.2 (LSC legal cut). An LSC cut of L is a tuple of locations
mapping every instance of L to one of its possible locations:

CutL ∈
∏

I∈IL

`(I)

A set of locations S is down-closed if

lix ∈ S ⇒ ∀y ≤ x, liy ∈ S

The down-closure of an LSC cut C, denoted by ¼C, is the minimal down-
closed set that contains C.

An LSC legal cut C is an LSC cut that satisfies:

∀l ∈ C, ∀l′ ≤L l : l′ ∈¼C

The top-line of a down-closed set S, denoted by »S, is a set of locations
obtained by:

lix ∈»S ⇐⇒ lix ∈ S ∧ @liy ∈ S s.t. y > x

78 5. The Language: Live Sequence Charts (LSCs)

Note that C =»¼C. From now on we will refer only to LSC legal cuts and
denote by Cut(I) the location of instance I in Cut.

The following utility functions dealing with cuts are used as we continue:

• The function InitialCut(L) returns a legal cut of L containing the initial
location for each instance.

• The function BeginMainCut(L) returns the cut containing for each in-
stance the location associated with the beginning of the main chart.

• The function AdvanceCut(C, e) =»(¼C ∪ loc(e)) is defined for a legal cut
C and an event e that is enabled with respect to C, and returns a legal cut
that is the result of advancing the cut C beyond e.

Definition 5.6.3 (temperature of a cut). The temperature of a cut is
hot if at least one of the instances is in a hot location and cold otherwise. We
use temp(C) to denote the temperature of cut C.

Definition 5.6.4 (minimal event). An event e is minimal in a chart L if
there is no event e′ in L such that e′ <L e.

Definition 5.6.5 (enabled event). An event e is enabled with respect to
a cut C if »(¼C ∪ loc(e)) is a legal cut; that is, if the location in C of every
instance4 participating in the event e is the one exactly prior to e, and there
is no e′ <L e that is not already in the down-closure of C. If e = 〈m,Send〉,
m is synchronous and e′ = 〈m, Recv〉, we require also that ¼C∪loc(e)∪loc(e′)
is down-closed, thus making sure that a synchronous message will not be sent
unless it can be received.

Definition 5.6.6 (violating event). An event e violates a chart L in a cut
C if e ∈ ML × {Send, Recv} but e is not enabled with respect to C.

There is one point to be clarified regarding the relation between sys-
tem events and LSC events. A system event es is defined over the set
Σ×{Send, Recv}. When such an event is generated by the system, it has to
be matched with LSC events that are defined over the set ML×{Send,Recv}.
As we shall see later, we also want to be able to match two LSC events (usu-
ally in different charts). These two kinds of matching are captured in the
following definition.

Definition 5.6.7 (level0-unification).

1. A system event es = 〈ms, t〉 and an LSC event el = 〈ml, t
′〉, with t, t′ ∈

{Send,Recv}, are level0-unifiable if t = t′, ml.Ms = ms,
AppObj(ml.ISrc) = ms.Src, and AppObj(ml.IDst) = ms.Dst.

4 Usually, there will be only one such instance, but precharts (and other constructs, as we
shall see later) may have several participating instances.

5.6 And a Bit More Formally ... 79

2. Two LSC events e = 〈m, t〉 and e′ = 〈m′, t′〉, with t, t′ ∈ {Send, Recv},
are level0-unifiable if t = t′, m.Ms = m′.Ms, AppObj(m.ISrc) =
AppObj(m′.ISrc), and AppObj(m.IDst) = AppObj(m′.IDst).

From now on, we will use the expression e = 〈m, t〉 both for system events
and for LSC visible events. Note that in the first case m ∈ Σ and in the
second m ∈ ML. In both cases t ∈ {Send,Recv}.
Definition 5.6.8 (LSC live copy). Given an LSC L, a live copy of L,
denoted by CL, is defined as

CL = 〈LSC,Mode, Cut〉,

where LSC is a copy of the original chart, Mode ∈ {PreActive, Active} is
the execution mode of this copy, and Cut is some legal cut of L representing
the current location of the instances of L in this particular copy.

We can now turn to the operational semantics for an LSC specification
S. We present the semantics as a state transition system Sem(S). As we
progress through the book and more elements are added to the language, the
definition of Sem(S) will be extended and modified.

Sem(S) = 〈V, V0,∆〉

where V is the set of possible configurations (states) of Sem(S), V0 is the
initial configuration and ∆ ⊆ V × (E ∪ ⋃

L∈S EL) × V is the set of allowed
transitions.

A state V ∈ V is defined as

V = 〈RL,Violating〉

where RL is the set of currently running LSCs, that is, the set of existing
live copies, and Violating indicates by True or False whether the state is a
violating one. The initial configuration is V0 = 〈φ, False〉.

We describe ∆ as a set of rules to be applied to the RL and Violating
components of a given state V with respect to a given event e. The result
is a new state V ′ consisting of the modified components. Given an event, all
the applicable rules are applied before the next event is considered. Also, ∆
handles hidden events with higher priority than visible events. Therefore, in
order for a visible event to be handled, all hidden events must be processed
first. Other than that, the semantics imposes no order on the particular event
to be processed, and is thus nondeterministic.

• If e = 〈M, t〉 (where t ∈ {Send, Recv}) then:

80 5. The Language: Live Sequence Charts (LSCs)

1. If ∃CL ∈ RL and ∃e′ ∈ CL.LSC such that e and e′ are level0-unifiable
and e′ violates CL, then set RL ← RL \ {CL}. If temp(CL.Cut) = hot,
set Violating ← True.

2. For every universal LSC L ∈ SU which has in its prechart a minimal
event e′ that is level0-unifiable with e, create a copy of L, CL, and set
RL ← RL ∪ {CL}. Set CL.Mode = PreActive and set its cut by
CL.Cut ← AdvanceCut(InitialCut(L), 〈PchL, Start〉).

3. For every copy CL ∈ RL which has an enabled event e′ level0-unifiable
with e, set its cut by CL.Cut ← AdvanceCut(CL.Cut, e′). Then, if
e′ = 〈M, Send〉, M is synchronous and e′′ = 〈M, Recv〉, set the cut
by CL.Cut ← AdvanceCut(CL.Cut, e′′).

• If e = Completed(CL) for some CL ∈ RL, then set RL ← RL \ {CL}.
• If e = 〈PchL, End〉 for some CL ∈ RL, then set

CL.Cut ← BeginMainCut(CL.LSC) and CL.Mode ← Active.

Definition 5.6.9 (violating transition). A transition in ∆ is violating if
it sets Violating to false.

Definition 5.6.10 (run/trace). A run or trace is a sequence of visible
events.

Definition 5.6.11 (consistent run). A run R is consistent with an LSC
specification S if, starting from V0, the rules of ∆ can be applied iteratively
to the events in R, and to the hidden events generated between them, without
reaching a violating transition.

One of the main purposes of our Play-Engine is to make it possible to
execute the specification directly. The engine’s execution mechanism, the
play-out, works in phases of step and super-step. The input to a step is a
system event e. The procedure for a step phase is then simply:

step(e)

1. Apply ∆(e).
2. Change the property value according to the value in the message:

a)

O ←
{

e.M.Src if M ∈ ΣToUser ∪ΣToEnv

e.M.Dst otherwise

b) P ← e.M.P
c) V alue(O.P) ← e.M.V

In the super-step phase, the Play-Engine continuously executes the steps
associated with internal events, i.e., those that do not originate with the

5.7 Bibliographic Notes 81

user or the environment, until it reaches a ‘stable’ state where no further
such events can be carried out. The external events are those with Src ∈
{User,Env}. Thus, we define:

External = {
⋃

L∈S
〈m,Send〉 | m.Ms.Src ∈ {User,Env}}

A super-step phase is therefore given as:

super-step

1. Compute the set of enabled events:

Enabled ←
⋃

CL∈RL
{e ∈ EL| enabled(e)}

Enabled ← Enabled \ External

2. If there are hidden enabled events in Enabled, then choose one, e,
and propagate it:
a) Apply ∆(e).
b) Go back to 1.

3. If there are visible enabled events in Enabled that do not violate
any copy in active mode, then choose one, e, and propagate it:
a) step(e).
b) Go back to 1.

4. Terminate super-step.

5.7 Bibliographic Notes

The original definition of the MSC standard, published in 1996, is given in
[123] and its algebraic semantics in [124]. In 1999 the MSC’96 standard was
extended to MSC 2000 [91]. A detailed history of the MSC standard can be
found in [102]. UML sequence diagrams and their equivalent collaboration
diagrams are presented in [115, 106]. There are many other variants of se-
quence diagrams in the literature. Some of these are object MSCs (OMSC)
[19], extended event traces (EET) [78], interworkings [85], high-level MSCs
[123] and hybrid sequence charts (HySC) [39].

Symbolic timing diagrams (STD) [28] is another visual formalism for the
specification of VHDL-based hardware, which is successfully used in industry
[109]. STDs also utilize the notion of possible and mandatory constraints with
a semantics similar to that of LSCs. The STD constraints, however, can only
limit the temporal relation between events and are not used to constrain the
system state.

82 5. The Language: Live Sequence Charts (LSCs)

A number of variants of temporal logic [82] are used in industry for spec-
ifying the requirements of reactive systems. Tempura [90] is an executable
language consisting of statements that are actually formulas in a variant of
temporal logic called interval temporal logic (ITL) [89], and it thus bridges
the gap between the requirements language and the language used to define
the model. A visual representation of interval logic, supported by a tool set
for creating and analyzing graphical interval logic specifications, is presented
in [32]. Another formalism for specifying requirements in a variant of tem-
poral logic is the temporal logic of actions (TLA) [75], which can be used
for specifying and reasoning about concurrent systems. In TLA, systems and
their properties are represented in the same logic, so the assertion that a
system meets its specification and the assertion that one system implements
another are both expressed by logical implication.

In [71] an extensive discussion of several MSC dialects is presented, and
a comparison is carried out. Another survey of scenario-based languages can
be found in [11], where the formalisms are also discussed within the con-
text of the possible transition from scenario-based languages to state-based
behavioral descriptions.

The original definition of live sequence charts appears in [27]. An alter-
native semantics for LSCs, based on timed Büchi automata, is given in [65].
The semantics is given there for a single LSC, since it is used to monitor
an LSC with respect to a given run and not to execute an LSC specification
consisting of many charts. The LSC language subset described in [65] uses
activation conditions for triggering universal charts, rather than the more
general precharts. As mentioned in a footnote in the text, the UML 2.0 stan-
dard will probably contain an extension of UML sequence diagrams that
incorporates some ideas taken from LSCs.

The idea of playing in scenarios was discussed in [43]; it was worked out
and described in detail in [49]. Play-out was first described in [49].

The use of a partial order in the context of system execution was first
proposed in [74]. Our formal definitions of legal cuts and enabled events are
inspired by [104].

6. The Tool: The Play-Engine

In the previous two chapters we introduced two basic foundations of our ap-
proach, the system model and the language, and our goal is to use the latter
to describe the behavior of the former, by playing in. The result of the play-in
process is a formal specification in the language of LSCs, and this specifica-
tion can then be executed and tested by playing out different scenarios and
observing system responses. The link between the two foundations of lan-
guage and model and the play-in/play-out methodology is provided by the
Play-Engine tool.

We have constructed the Play-Engine in order to cater for both play-in
and play-out, utilizing the system model and supporting all the LSC features
that will be described in this book. The Play-Engine in its current guise does
not support the process of building a GUI application as the front end to
some system model. This is mainly because we did not want to restrict the
methodology or the tool to work with a specific technology for building user
interfaces, since such technologies constantly develop, providing increasingly
faster ways of constructing ever nicer-looking applications. In Chap. 20 we
describe a separate tool we have built, GUIEdit, with which one can build
GUI applications that are ‘aware’ of the Play-Engine, in that they provide
all the information required by the engine and can interact with it as needed.
GUIEdit should be considered as an add-on to the Play-Engine, and as such
it is not perfect. Using it is not as easy as using the Play-Engine itself, but
we expect this to change as the ideas and the tool mature and evolve.

As the book progresses, we shall describe how simple and less simple LSC
constructs can be played in, and we shall illustrate the different options for
playing out. The purpose of the present chapter is to describe the basics of
the Play-Engine itself and to give the look-and-feel of the environment in
which the play-in and play-out occur.

We shall use the screen shot in Fig. 6.1 to describe the main elements
involved in the Play-Engine’s development environment. They are numbered
here to match the numbers overlaying the figure.

84 6. The Tool: The Play-Engine

Fig. 6.1. The Play-Engine

1. The GUI application
This is the GUI application (in our example, the bakery panel), which is
provided by the user. It may be constructed using any means, providing
it supports the interface required by the Play-Engine. Our bakery panel
(as well as most of the examples shown in the book) was written in Visual
Basic using the GUIEdit tool, described in Chap. 20.

2. The application section
This section contains the elements defined in the system model. The
information contains:
• The classes defined in the system model (e.g., 3-Switch, CTherm, etc.).
• The GUI objects defined in the system model (e.g., MainSwitch, Main

Light, Switch3, etc.).

6. The Tool: The Play-Engine 85

• The internal objects defined in the system model (this figure shows
none). Internal objects are discussed in Chap. 14.

• The application types (e.g., Boolean, Button, Color, etc.).
• The functions implemented by the application (this figure shows none).

Implemented functions are described in Chap. 8.
3. The specification section

This section contains the behavioral elements specified by the user:
• The use cases and LSCs. This is the main part of the requirements

specification, and it consists of the LSCs (constructed by the engine
as a result of the play-in), clustered into use cases. The idea is that
the LSCs associated with a use case capture the behaviors that im-
plement/instantiate it. As in many methodologies, the user starts by
identifying a use case and giving it a name and a short description.

• Jump starts. Users often describe different scenarios, assuming different
initial system configurations. The Play-Engine allows the definition of
jump starts, which can be used to move the system to one of its initial
configurations by a single mouse click. A jump start is a set of the
properties of objects that are associated with initial values.

4. The LSCs
This area shows the LSC that is currently being constructed by the Play-
Engine during play-in, or the LSCs that are currently being executed
during play-out.

5. Play-in button
This button is used to enter play-in mode. Other toolbar buttons that
are used in the process of playing in behavior are introduced throughout
the book as new LSC constructs are presented.

6. Play-out button
This button is used to enter play-out mode. Other buttons and options
used to determine the play-out configuration are described together with
the play-out mechanism.

After playing in (part of) the behavioral specification of the target sys-
tem, the specification can be saved into a specification file. Separating the
behavioral specification from the application enables the user to create and
test several specifications for a single GUI. Moreover, the same behavioral
specification can be used with different GUI applications, given that they
consist of the same set of objects. Actually, it will turn out that if we use
classes even the set of objects need not be identical. Also, as we show later,
the system model itself can be extended on the fly by adding objects, classes,
properties and methods. This type of information is considered part of the
system structure, rather than the behavior. However, the Play-Engine cannot

86 6. The Tool: The Play-Engine

override the application file since it is provided by the user. Therefore, all the
extensions to the application are saved in a different application extension
file. Combining the same GUI with different application extensions can be
used, for example, to describe different designs for the similar-looking GUI
applications.

Although the different combinations of GUI applications, application ex-
tensions and behavioral specifications are very useful, at any given time one
usually works with a single set, consisting of an application and its exten-
sions, and the behavior of the extended system. To simplify the process of
saving and loading this combination of files, the Play-Engine uses workspace
files. A workspace contains references to all the other files and the user’s
preferred values for the various Play-Engine options. A workspace file can be
saved and loaded as an integrated unit, although each of its components can
be opened and saved separately.

In order for a GUI application to interact with the Play-Engine, it must
implement the IUserApp interface, and use the IPlayEngine interface. The
former allows the Play-Engine to interact with the application (e.g., set the
values of object properties, query the application for the geometric location
of objects, etc.). The latter allows the application to notify the Play-Engine
of different events (e.g., an object was clicked, an object value was changed by
the user, etc.). Appendix C describes the IPlayEngine interface and Appendix
D describes the IUserApp interface.

The first thing the Play-Engine does upon loading a GUI application is
to query it for the name of its application description file. The Play-Engine
then reads the file and builds the application section in the project explorer
tree. The structure of the application description file is given in Appendix B.

The procedures for playing in scenarios and playing out behavioral spec-
ifications, together with some other useful features that are not in the main
core of the play-in/play-out approach, have all been implemented in the Play-
Engine. Chapter 19 describes the high-level architecture of the Play-Engine
and the main components it is composed of. Chapter 19 also provides an
overview of some of the less major features that help make the Play-Engine
a user-friendly means for specifying and executing behavioral specifications.

6.1 Bibliographic Notes 87

6.1 Bibliographic Notes

The Play-Engine was first described in [49]. Short animations demonstrating
some capabilities of the Play-Engine tool are available on the Web:
http://www.wisdom.weizmann.ac.il/∼rami/PlayEngine.
All the files that are saved and loaded by the Play-Engine are in XML format
[122]. A detailed discussion of the advantages of XML as an interchange
format is given in [113].

Part III

Basic Behavior

7. Variables and Symbolic Messages

In this chapter we present our first extension to the basic constant-message
LSCs discussed in Chap. 5. It involves the simplest means LSCs have for
specifying generalized scenarios, namely, variables and symbolic messages.

7.1 Symbolic Scenarios

Often it is natural to specify a small number of sample cases that represent
more general scenarios. Suppose, for example, that we wish to model the
behavior of a cellular phone. One of the things we require is that when the
cover is opened, the antenna should automatically open too. We can describe
this requirement using the LSC in Fig. 7.1.

Fig. 7.1. The antenna opens automatically

This example also shows the possibility of using some of the more ‘cos-
metic’ features that we have incorporated into the engine. The structure of a

92 7. Variables and Symbolic Messages

message label is of the general form Prefix Property-Name(Value). The words
“Open” and “Close” serve to describe the state of the cover, but they can
also serve as verbs describing user actions. Since, we would like to refer to the
state of the cover (e.g., in conditions), the state property of the cover (and
the antenna) is defined over a type containing the values {Open,Close}. Had
we used the messages in Fig. 7.1 in the standard way, the labels along the
transitions would have read “Set State(Open)” and “Set State(Close)”. How-
ever, the double usage of the words as states and verbs describing the actions
makes it possible to specify this in a simpler way. What we did in this case
was to set the Is Default attribute of the property (for both the cover and the
antenna) to true and the Prefix attribute to the empty string. This tells the
engine that since the property is a default, its name need not be explicitly
stated, and also that there is no need for the “Set” prefix, thus yielding the
simple label Open.

Suppose now that the user wishes to specify that when the cover is closed
the antenna should automatically close too. This could, of course, be played
in as a separate scenario, very similar to the previous one. However, the two
are better represented by a single LSC, which we can specify using symbolic
messages. We play a scenario as before, with the cover being opened as part
of the prechart, and the antenna’s reaction being played in as the chart’s
body. However, this time we do it with the symbolic flag on. When in symbolic
mode, the values shown in message labels are names of variables rather than
actual values. The user does not say that the antenna should open or close as
a result of the prechart, but that it should take on the same state as the cover
did in the prechart. As shown in Fig. 7.2, we do this here by indicating that
the value should be the same as that of the prechart message in the LSC.
The user simply clicks the desired message inside the LSC, and its variable
will be attached to the new message as well. The resulting LSC is shown in
Fig. 7.3. (This variable could have been selected from a list that would have
popped up had the user selected <Variable> rather than <From LSC> in the
menu appearing Fig. 7.2.)

A variable is local to an LSC, and therefore can be referred to only within
the chart in which it is defined. An occurrence of a variable in an LSC means
that it may take on any value from the variable’s type, and using the same
variable in different places in a chart allows the user to specify that the same
value will occur in these places in a specific run (not necessarily the same
value in all runs, of course). Variables can be given meaningful names; in this
example the variable was named Xop/cl, to capture the fact that it can take
on the values Open and Close.

7.1 Symbolic Scenarios 93

Fig. 7.2. Play-in in symbolic mode

Fig. 7.3. Symbolic (generic) linking between the states of the cover and antenna

The Play-Engine’s symbol table points to all the variables in all the
LSCs of the current workspace, and can be used to view and modify the
variable names and values (see Fig. 7.4).

Messages within an already generated LSC can be made symbolic or
exact even after they have been played in using the opposite mode. This is
done by right-clicking the message and choosing the appropriate option from

94 7. Variables and Symbolic Messages

Fig. 7.4. A view of the symbol table

the popup menu, as shown in Fig. 7.5. Since a message can be either symbolic
or exact, regardless of the way it was played in, we associate each message
with a variable that is assigned the value that was used when the message
was played in. When the message is exact we can refer only to the variable’s
value, and when it is symbolic we refer to the fact that the variable may be
assigned other values. More about this later.

Fig. 7.5. Making a message exact/symbolic

7.2 Enriching the Partial Order

Figure 7.6(a) shows a simple example of using variables to link messages with
different verbs but the same state space. We have a switch that can be clicked

7.2 Enriching the Partial Order 95

On or Off by the user, and a light that is required to be in the same state as
the switch; when one is On, so is the other, and the same for Off. In this case,
the variable Xpower is of type Power which was defined as an enumeration
containing the values On and Off.

Fig. 7.6. The effects of variables on LSCs partial order

A careful look at Fig. 7.6(a) reveals an interesting issue concerning the
partial order defined by the chart. There is no prechart here, but the way the
chart is displayed seems to say that “the user changes the state of the switch
to On or Off, and the light then changes its state to be the same as that
of the switch”. However, the partial order of this LSC does not restrict the
clicking of the switch to only come before the light changes its state, since
they are not related to some common instance. This is a problem if we really
want the first to happen before the second.

We can resolve this by introducing a control object that receives the state
from the switch and sends it to the light (Fig. 7.6(b)), thus restricting the
partial order, as required.1 However, we most often wish to remain on a
higher, more abstract, level of specification. On the one hand we do not want
to get into the details of how information about the value of the variable
is actually transferred between the objects, but on the other hand we do
want some initial event to be the first, and hence to determine the value of
the variable, so that subsequent uses of the same variable in different places
will have the same value. We make this possible by a slight extension of the
partial order <L induced by an LSC L, which takes into account the vertical
placing of locations that are not on the same instance line.
1 Although we have not yet discussed messages going from one object to another, the given

scenario should be clear. Messages representing interactions of that kind are discussed
in Chap. 14.

96 7. Variables and Symbolic Messages

If we imagine a vertical line T aligned with an LSC L, we may consider the
ordering of locations from top to bottom, as projected on T . See Fig. 7.7, in
which locations l1 and l2 are not ordered by <L but are vertically ordered; we
may write l1 <V l2 for this. The partial order <L is now extended to handle

Fig. 7.7. Vertical order: l1 <V l2

the order induced by the variables. A location is said to affect a variable
X if it is associated with a message that has X as its variable. A location l
is the first to affect X if it is associated with the send event of a message
that affects X, and for every other location l′ that affects X either l <L l′ or
l <V l′. Now, for a location l that is the first in L to affect the variable X,
we add the relation l <L l′ to the partial order <L for every other location l′

in L that affects X.
This extension thus causes the first occurrence of a variable to come be-

fore all the others, but no new order is imposed on subsequent occurrences.
We have decided to do this, despite the fact that one of the basic maxims of
sequence charts prescribes that the vertical order between locations on dif-
ferent instance lines does not influence the semantics. However, we find that
it is very natural for users building LSCs to specify dependent events in the
order they occur, and to cause this order to be reflected in the geometry of
their LSCs. While we do not go as far as to attach significance to the entire
vertical ordering, we do think that the first occurrence of each variable is a
significant aspect of the way the user chose to enter the information, and that
if the intention is to use the element in question as a symbolic one then the
user probably meant to say “this is the first occurrence of this symbolic value,
and the value given here during execution should impact later occurrences”.
And, incidentally, if the requirements are played in, events that are played in
first will appear higher up in the generated LSC anyway, which is consistent
with this philosophy.

Having said all this, we should note that this decision is not sacred, and
was made for convenience. We could have required the user to specify sepa-

7.3 Playing Out 97

rately which of the minimal occurrences of each variable is the dominating
one for the purpose of receiving and distributing a value.

7.3 Playing Out

As we have seen, when playing out behavior, the user operates the GUI ap-
plication and inserts various external events. These events are then matched
with events that appear in the different LSCs and thus force the application
to react. In the presence of symbolic variables, events cannot be matched
simply by straightforward identification, but, rather, should be unified in a
more sophisticated way.

Recall that every message is defined as having a single variable. A variable
can be either bound or free. Initially, all the variables that appear in exact
messages are bound to their initial values and all other variables are free. We
say that a message is bound if its variable is bound, and an event is bound
if its message is bound. The same goes for free messages and events. Now,
in order for two events to be matched, it is not enough for them to be of
the same type (i.e., send/recv) and to be associated with the same system
message; their variables should be unifiable.

Here is how the unification of two variables works: If X and Y are both
bound to the same value, they are successfully unified and if they are bound
to different values, they cannot be unified. If X is bound and Y is free,
then after the variables are unified Y will be bound to the value of X. The
same applies to the case where Y is bound and X is free. If both X and
Y are free, they are connected via a connection list. Later, when one of the
variables in the connection list is bound to some value, all other variables in
the connection list will be bound to the same value.

Figure 7.8 shows the symbolic LSC that was previously played in, as it
is activated by the user opening the cover. When placing the mouse over a
message, the current value of its variable is shown in a tooltip, and the figure
shows this happening for the message in the prechart.

As a simple example, suppose one chart that contains an event e =
〈m(X), Send〉, where m(X) is a message going from O1 to O2 and is as-
sociated with variable X. A second chart contains e′ = 〈m(Y), Send〉, also
from O1 to O2. Now, suppose that the event of O1 sending m(3) to O2 has
occurred. There are a number of cases to consider:

• If both e and e′ are enabled in their charts, and X and Y are free, we bind
X and Y to 3 and advance both charts.

• Suppose Y is already bound to the value 4. Clearly, after binding X to 3,
the messages are not the same and therefore they cannot be unified. In this

98 7. Variables and Symbolic Messages

Fig. 7.8. Binding variables during play-out

case, e will be advanced and e′ will neither be advanced nor be considered
violating.

• The last and most interesting case is when Y is free and e′ is currently
not enabled. There are really two possibilities we could adopt here. The
first is to succeed in unifying e and e′, thus advancing the first chart and
causing violation of the second, and the second possibility is to fail in the
unification, thus advancing the first chart and leaving the second as is.
The first approach maintains that if it is possible for an event to cause
a violation it should be handled as if it indeed will, and the second says
that if it is possible that an event will not cause a violation, it should be
handled as if it won’t.

We have to make a decision regarding the two possible approaches in this
third case. Our experience with many examples shows that the second ap-
proach is significantly more practical. For example, suppose there is a system
with a display that shows several warnings while running, using messages of
the form “show(Xi)” where the Xi’s are assigned values during the execu-
tion. These messages are spread throughout several charts and should not
necessarily be synchronized with each other. If the first approach is taken,
whenever the display tries to show something as dictated by one chart, it will
cause a violation of other charts. This limits the specification in a way that
is very difficult to overcome. Hence, we adopt the second approach.

This decision causes a distinction between positive unification, in which
we allow variables to be bound, and negative unification, in which variable
binding is forbidden. Positive unification is used to find minimal events in
precharts that will cause the activation of new LSC copies, and also to find
events in different active charts that should be propagated simultaneously.
Negative unification is used to find violating events in active LSCs, so that
only if a violating event is already bound to a violating value will it cause a

7.4 And a Bit More Formally ... 99

violation. If the event is not yet bound, it means that we currently do not
know that it will cause a violation, and we therefore leave it as is.

With this settled, we can now describe the relevant parts of our execution
algorithm. When a user initiates an event e, this event is by its very nature
bound (e.g., the user has clicked the digit 7, turned the switch On, etc.).
The universal charts are scanned for minimal events that are unifiable with
e and are then unified with it, thus (possibly) causing their variables to be
bound. Once these variables are bound, new events that depend on these now
definitely valued variables may become enabled (e.g., asking for the display
of a 7, for a light to turn On, etc.). A super-step is then performed, where
enabled events that are positively-unifiable are carried out simultaneously.
Before triggering any event, however, the active LSC copies are scanned for
events that are negatively-unifiable with this event. If such a violating event
is found, the original event is not taken at all.

7.4 And a Bit More Formally ...

Following the skeleton described in Chap. 5, we show the extensions and
modifications to the different parts of the semantics. Recall that the blue
parts are those repeated verbatim.

System Model and Events

A variable is defined as

V = 〈D, ω〉

where D ∈ D is the variable’s type, and ω ∈ D∪{⊥} is the value assigned to
V . For a free variable we have ω = ⊥. We shall use simple predicate notation
for notions like free and bound, as in free(x).

A system message Ms was previously defined as

Ms = 〈Src,Dst, P, V 〉

where V ∈ P.D represented the value associated with the message. We now
redefine a system message Ms as follows:

Ms = 〈Src,Dst, P, V, Symbolic〉

where Src, Dst and P represent the source object, destination object and
property as before. V is now the variable associated with the message and
Symbolic is a Boolean flag that indicates whether the message is symbolic.

100 7. Variables and Symbolic Messages

LSC Specification

We denote by VL the set of variables that appear in an LSC L.

L = 〈IL, VL, ML, [PchL], evnt, temp〉

As shown earlier, variables have an important role in determining the
partial order of the LSC. This is captured in the following definition.

Definition 7.4.1 (affecting a variable). An LSC message M ∈ ML affects
a variable X if M.Ms.V = X.2

The notion of affecting a variable is extended to LSC events and locations
in the natural way, and we use the predicates affects(l,X) and affects(e,X)
with the appropriate meanings.

We say that lix is the first location in L to affect the variable X if it affects
X, and for any other location ljy that affects X either lix <L ljy or lix <V ljy
(where <V is the vertical order in L). The predicate first(l,X) is true iff l is
the first location that affects X. The partial order <L is now extended to
handle the order induced by variables as follows:

∀l, l′ ∈ `(L) : first(l, X) ∧ affects(l′, X) ⇒ l <L l′

Operational Semantics

The operational semantics remains basically the same, except that now events
have to be unified taking variables into consideration. In Chap. 5 we defined
level0-unifiable events.

Definition 7.4.2 (level0-unification).

1. A system event es = 〈ms, t〉 and an LSC event el = 〈ml, t
′〉, with t, t′ ∈

{Send,Recv}, are level0-unifiable if t = t′, ml.Ms = ms,
AppObj(ml.ISrc) = ms.Src, and AppObj(ml.IDst) = ms.Dst.

2. Two LSC events e = 〈m, t〉 and e′ = 〈m′, t′〉, with t, t′ ∈ {Send, Recv},
are level0-unifiable if t = t′, m.Ms = m′.Ms, AppObj(m.ISrc) =
AppObj(m′.ISrc), and AppObj(m.IDst) = AppObj(m′.IDst).

This definition is now modified so that instead of checking for equality of
messages, the messages are checked as to whether they can be unified.
2 The symbol ‘=’ is used here to denote the fact that the two arguments point to the same

variable, rather than to the fact that two different variables have the same value.

7.4 And a Bit More Formally ... 101

Definition 7.4.3 (variable unification). We say that the two variables X
and Y are positively-unifiable if X.ω = Y.ω or free(X) or free(Y). We say
that X and Y are negatively-unifiable if X.ω = Y.ω 6= ⊥.

Definition 7.4.4 (message unification). Two system messages Ms =
〈Src,Dst, P, V, Symbolic〉 and M ′

s = 〈Src′, Dst′, P ′, V ′, Symbolic′〉 are Q-
unifiable, where Q is ‘positively’ or ‘negatively’, if Src = Src′, Dst =
Dst′, P = P ′, and V and V ′ are Q-unifiable.

Definition 7.4.5 (level1-unification).

1. A system event es = 〈ms, t〉 and an LSC event el = 〈ml, t
′〉, with

t, t′ ∈ {Send, Recv}, are Q-level1-unifiable (where Q is ‘positively’ or
‘negatively’) if t = t′, and ml.Ms and ms are Q-unifiable.

2. Two LSC events e = 〈m, t〉 and e′ = 〈m′, t′〉, with t, t′ ∈ {Send, Recv},
are Q-level1-unifiable if t = t′, and m.Ms and m′.Ms are Q-unifiable.

¿From now on, when we use the term unification without specifying whether
it is positive or negative, it should be read as positive unification.

As events occur in the system, LSC events are checked to see if they
can be unified, and if so their variables are actually bound to new values
according to the unification process. If both variables are free, no binding
occurs and the two variables are connected in a connection set, as described
below. Such a set contains variables that should be assigned to the same value.
The connection sets are stored in collections called unification contexts until
they can be bound to some value. Here is how a pair of variables is added to
such a context:

Connect(X, Y, Context)

1. Create a connected pair in the context:

S ← {X,Y }; Context ← Context ∪ {S}

2. If X or Y are already connected, join the sets:

if ∃SX ∈ Context, s.t. X ∈ SX , then S ← S ∪ SX ;
Context ← Context \ {SX}

if ∃SY ∈ Context, s.t. Y ∈ SY , then S ← S ∪ SY ;
Context ← Context \ {SY }

Binding a variable in Context with a given value entails binding all the
variables in its connection set, and is done as follows:

102 7. Variables and Symbolic Messages

Bind(X, Val, Context)

1. Let SX be the set in Context s.t. X ∈ SX .
2. Assign values to all variables in the set:

∀U ∈ SX : U.ω ← V al

Context ← Context \ {SX}
With these last two definitions in mind, we now describe the unification

procedure:

Unify(X, Y, Context)

1. If X.ω = ⊥ ∧ Y.ω 6= ⊥ then set X.ω ← Y.ω.
2. If X.ω 6= ⊥ ∧ Y.ω = ⊥ then set Y.ω ← X.ω.
3. If X.ω = ⊥ ∧ Y.ω = ⊥ then Connect(X, Y, Context).
4. If X.ω 6= ⊥ then Bind(X, X.ω,Context).
5. If Y.ω 6= ⊥ then Bind(Y, Y.ω, Context)

We use Unify(M,M ′, Context) as an abbreviation of
Unify(M.V,M ′.V ′, Context), and Unify(e, e′, Context) as an abbreviation of
Unify(e.M, e′.M ′, Context).

Finally, the transition relation ∆ is modified to consider variables and to
assign values to them as a part of executing events.

• If e = 〈M, t〉 (where t ∈ {Send, Recv}) then:
1. Set Context ← ∅.
2. If ∃CL ∈ RL and ∃e′ ∈ CL.LSC such that e and e′ are negatively

level1-unifiable and e′ violates CL, then set RL ← RL \ {CL}. If
temp(CL.Cut) = hot, set Violating ← True.

3. For every universal LSC L ∈ SU which has in its prechart a minimal
event e′, positively level1-unifiable with e, create a copy of L, CL, and
set RL ← RL ∪ {CL}. Set CL.Mode = PreActive and set its cut by
CL.Cut ← AdvanceCut(InitialCut(L), 〈PchL, Start〉). Unify the vari-
ables of e and e′, by Unify(e, e′, Context).

4. For every copy CL ∈ RL which has an enabled event e′, positively level1-
unifiable with e, set its cut by CL.Cut ← AdvanceCut(CL.Cut, e′).
Then, if e′ = 〈M,Send〉, M is synchronous and e′′ = 〈M,Recv〉, set
the cut by CL.Cut ← AdvanceCut(CL.Cut, e′′). Unify the variables of e
and e′, by Unify(e, e′, Context).

• If e = Completed(CL) for some CL ∈ RL, then set RL ← RL \ {CL}.
• If e = 〈PchL, End〉 for some CL ∈ RL, then set

CL.Cut ← BeginMainCut(CL.LSC) and CL.Mode ← Active.

7.5 Bibliographic Notes 103

7.5 Bibliographic Notes

The notion of unification was first described by Robinson in [103]. The proce-
dures for message unification described in this chapter are somewhat similar
to the unification of clauses in Prolog [23, 69, 118].

8. Assignments and Implemented Functions

We often want to use data manipulation algorithms and functions that are
applied to specified variables. These algorithms and functions usually cannot
(and should not) be described using LSC-style interactions between objects
but are better viewed as external pieces of computation or logic to be worked
into the scenarios. In this chapter we discuss these, and the assignment state-
ments that can be used to apply them.

8.1 Using Implemented Functions

The Play-Engine allows for GUI applications to provide implemented func-
tions, each of which is identified by its name, the names and types of its
formal parameters and the type of the returned result. These functions are
described in the application description file (see Appendix B) and are imple-
mented in the code of the GUI application. The IUserApp interface, which
is implemented by all GUI applications, allows the Play-Engine to query the
GUI application for the result of applying a function to specified values.

Consider the following example of a pocket calculator (Fig. 8.1). Now,
suppose the user would like to specify that when clicking the following se-

Fig. 8.1. A pocket calculator GUI

106 8. Assignments and Implemented Functions

quence of keys, ‘X1’, ‘+’, ‘X2’ and ‘=’ in that order, where X1 and X2 are
any digits, the display should show the value of X1 + X2.

The prechart is specified by entering symbolic mode and clicking the above
sequence using any digits for X1 and X2. The result is shown in Fig. 8.2.

Fig. 8.2. Prechart for summing two digits

In the main chart, the user now has to specify how the display shows X1
+ X2. He/she right-clicks the GUI’s display and chooses the Value property
from the popup menu. Now, instead of entering a fixed value or choosing an
existing variable, the user clicks the Function button. As a result, a list of
all the functions is shown and the user may choose one of them (see Fig. 8.3).

Continuing with our example, the user chooses the ‘+’ function,1 and
the Function button is replaced with a description of the selected function,
consisting of its name and formal parameters. The user now instantiates each
of the formal parameters with an actual one, by placing the mouse cursor on
the parameter and selecting an option from the list that appears (see Fig.
8.4).

The options From LSC and Variable allow the user to select a variable
from the current LSC or from the symbol table, as described in Chap. 7.
The New Value option will be discussed shortly. The user instantiates the
two formal parameters Num1 and Num2 with the actual parameters X1 and
X2, respectively, and clicks on OK. Figure 8.5 shows the final LSC for the
summation of two digits.

Recall that in Chap. 7 we said that the two messages containing X1 and
X2 were affecting the variables X1 and X2, respectively. In contrast to the
1 Even though the summation operation is simple and could have been provided by the

Play-Engine itself, we consider it, for the sake of the example, as a function taken from
the application domain, which could not be provided by a general purpose tool.

8.1 Using Implemented Functions 107

Fig. 8.3. Choosing an implemented function

Fig. 8.4. Options for instantiating a function parameter

notion of affecting a variable, we introduce the notion of using a variable. A
message is using a variable X if X must be bound before the message can
be sent. In our example, the last message, showing X1 + X2 on the display,
uses the variables X1 and X2. The difference between affecting a variable
and using it is that in the first case the variable can be bound to a concrete
value as the message occurs, because of unification, whereas in the second
case the value has to be known for the message to take place.

Note that the label of the last message shows X1+X2 and not +(X1, X2).
An implemented function that has exactly two parameters may be referred
to as a binary operation. This is done by setting an attribute — IsBinary —
to true. This attribute has no semantical meaning and is cosmetic. Binary

108 8. Assignments and Implemented Functions

Fig. 8.5. Summing two digits

operations are written as Arg1 Op Arg2 instead of the standard function
representation Op(Arg1, Arg2).

8.2 Assignments

Suppose the user wishes to specify now that when the ‘×’ button is clicked
twice, the value that is currently displayed is squared and the result is shown.
For the purpose of this example, we assume that the behavior for displaying
numbers as digit keys are clicked is handled by different LSCs (i.e., we are
guaranteed that after clicking ‘1’, ‘2’ and ‘3’, the display will show “123”).

The user begins playing in, and while in the prechart he/she clicks the ‘×’
button twice. Now, the user has to somehow refer to the currently displayed
value. Note that the events that cause the display to change as digits are
clicked are not in this LSC and therefore there is no predefined variable that
can be referred to.

For this purpose, we introduce an assignment construct into the LSC
language. Using an assignment, the user may save values of the properties of
objects, or of functions applied to variables holding such values. The assigned-
to variable stores the value for later use in the LSC. The expression on the
right-hand side of the assignment contains a constant value, a reference to a
property of some object (this is the typical usage) or a function applied to
some predefined variables.

In our case, we would like to store the current value property of the display.
This is done by right-clicking the GUI’s display, and choosing Store and then
Value from the popup menu. Since after storing a value we might like to
refer to it later, and for this a meaningful name is helpful, the Play-Engine
allows the user to name the assigned variable; here we use Num (see Fig.

8.2 Assignments 109

8.6). Figure 8.7 shows the appropriate assignment statement generated in
the LSC’s prechart.

Fig. 8.6. Storing the value of an object’s property

Fig. 8.7. The assignment construct

In order to specify the result of the computation, the user moves to the
main chart and, as described earlier, selects the display’s value property to
show the PowerOf function. This function has two parameters, Base and Exp,
and it returns BaseExp as a result. The user instantiates the first parameter
by choosing From LSC and clicking on the assignment. As a result, the Base

110 8. Assignments and Implemented Functions

parameter is replaced by Num. For the second parameter, we wish to specify
the constant ‘2’. To do this, the user places the mouse over Exp and chooses
New Value (see Fig. 8.8). As a result, a dialog is opened where a new value

Fig. 8.8. Binding a parameter to a constant

can be entered, in this case 2. After closing the dialog, the user is prompted
for a meaningful name for the variable holding this value. The name may be
any string, and in this case we simply set the variable’s name to “2”.

After naming the variable, a final popup message appears, in which the
user is asked whether this variable should be treated as a non-symbolic con-
stant? By saying ‘yes’ (as should be done in this example), the user specifies
that this variable should remain bound to its original value, even if the mes-
sage it appears in is symbolic. The final LSC for raising a number to the
power of 2 is shown in Fig. 8.9.

Fig. 8.9. An LSC for Num2

It is important to note that the assignment’s variable is local to the con-
taining chart and can be used in the specification of that chart only, as
opposed to the system’s state variables (i.e., object properties), which may
be used to communicate values between charts.

8.3 Playing Out 111

Assignments can also be used to store constant values or values returned
by implemented functions. To insert such assignments, the user clicks the
appropriate button on the toolbar, chooses a name for the assigned-to variable
and fills the assignment details in the dialog that is opened (see Fig. 8.10).
Using this dialog, the user may specify a function, as described earlier, or

Fig. 8.10. Storing fixed values or function results

just enter a fixed value. Since the creation procedure of assignments of this
kind is not started by clicking a GUI object, the assignment is not associated
automatically with an object instance. In order to associate the assignment
with an object, the user right-clicks the object that should be synchronized
with this assignment and chooses Synchronized from the popup menu.

Each assignment may have several participating objects that synchronize
at the location of the assignment. Synchronizing at an assignment means that
none of the synchronized instances may progress beyond the assignment until
all of them reach it and it is actually performed.

8.3 Playing Out

When playing out behavior, assignments are performed according to the par-
tial order induced by the LSC. In assignments, like in messages, we distinguish
between affecting a variable and using a variable. An assignment affects its
assigned-to variable and uses all the variables in its right-hand side expres-
sion. The location of an assignment in the partial order is determined by the
vertical order of the instance locations attached to it and by the variables
used by it (e.g., S := X + 1 comes after the first message that affects X or

112 8. Assignments and Implemented Functions

after the first assignment that assigns a value to X, so that when it is eval-
uated X is already bound). Since assignments are now another legal form of
binding a variable to a value, an assignment that affects a variable X is also
considered when looking for the first location that affects this variable.

Assignments are hidden events, since they do not correspond directly to
events carried out by the system. Therefore, when building a tool that mon-
itors system runs and/or executes the LSC specification, one has to decide
when to perform assignments. The three options considered were:

1. Perform the assignment as soon as it is enabled; that is, when all instances
that are synchronized with the assignment have reached it and all the
variables in the right-hand side expression are bound.

2. Perform the assignment as late as possible, where the latest point an
assignment can be performed is immediately before one of its subsequent
events occurs. For example, if an assignment is synchronized with two
instances I1 and I2, and if the event following the assignment in I1 is
receiving a message and that message is indeed received, then only at
that time will the assignment be performed.

3. Choose at random a point in the interval starting when the assignment is
enabled and ending when one of its subsequent events occurs, and perform
the assignment at that time.

We decided on the first of these. In many examples of systems we have
modeled, performing the assignment as soon as possible seemed to be the
most intuitive interpretation of the LSC. This is because when specifying
reactivity, most of the time a value is stored immediately after some event
occurs (e.g., clicking a button), and therefore performing the assignment as
soon as possible guarantees that the value is not changed before it is stored.
Another argument that supports this choice is that the first option is the
most deterministic one, and is therefore easier to understand and follow.

We should comment, however, that by choosing the first option (or for that
matter, any other option) as the one driving the operational semantics for
the Play-Engine, we rule out possible behaviors that would have been allowed
by making other semantic choices, both when executing a model and when
monitoring an implementation with respect to a given model. Hence there is
often more than one way to go. This is true for other such dilemmas later in
the book too. Nevertheless, such decisions are necessary when building tools
for model execution.

Now consider the LSC in Fig. 8.11. We would like this chart to mean the
following:

When the light changes its state, the display should show the previous
state of the light.

8.3 Playing Out 113

Fig. 8.11. Assignments as minimal events

In the prechart of this LSC, there is one minimal event — the assignment.
Again, the question of when to perform the assignment and activate the LSC
arises. Since an assignment is a hidden event, we do not consider it an event
that can activate a prechart. This is because there is no strong intuition as
to when to take such a step, and a policy that tries to cover all possible
assignment values is impractical. We have therefore decided to perform the
assignment ‘just before’ the next visible event occurs. Recall that a chart is
activated when one of the minimal events in it occurs.

We now refine the definition of a minimal event to include all events that
have no visible events before them according to the partial order. When such
an event is detected, the hidden events that precede it are performed and only
then is the visible event itself considered. To sum up, LSCs are activated only
by visible events. A visible event may activate a prechart if it is minimal with
respect to other visible events, but as soon as such an event is detected all
the hidden events that can be performed are carried out before the visible
event is.

Performing an assignment during play-out has the effect of binding the
assigned-to variable with the value of the right-hand side expression at the
point of evaluation. If the assignment stores a value of an object’s property,
the application is queried for that value. If the assignment stores the value
returned by an implemented function, the function information (containing
its name and the values of the actual parameters) is packed and sent to the
GUI application, which in turn computes the function and returns the value
to the Play-Engine. The same mechanism for function evaluation applies also
when functions are used directly in messages.

Messages that use implemented functions should normally be symbolic.
However, if the message is exact, the value returned by the function during
play-in is kept with the message and is used in play-out, without reevaluating
the function. The label of such an exact message will contain the value itself

114 8. Assignments and Implemented Functions

and not the string describing the function and its parameters. Assignments
are by definition symbolic, and therefore a function on the right-hand side of
an assignment will always be reevaluated during play-out.

During play-out, symbolic messages are matched using the unification
algorithms described in Chap. 7. Messages containing implemented functions
are unified according to the value returned by the function and not according
to the structure of the function. Therefore, as an example, the following
messages are all unifiable: M(4),M(X1+X2),M(Y),M(PowerOf(Y, X1)),
where X1 = 1, X2 = 3 and Y = 4.

8.4 And a Bit More Formally ...

We now show the extensions and modifications to the semantics needed to
support implemented functions and assignments.

System Model and Events

An implemented function is defined as:

Func = Name : D1 ×D2 × . . .×Dn → DF

where Name is the function name, Di ∈ D is the type of its ith formal
parameter and DF ∈ D is the type of its returned value.

An object system Sys is modified to also contain a set of implemented
functions F :

Sys = 〈D, C,O,F〉
We redefine a system message Ms to also contain function information if

a function is used:

Ms = 〈Src,Dst, P, V, f, λF
f , Symbolic〉

where f ∈ F ∪ {⊥} is a function describing a new value for P , and λF
f is a

function information structure, defined for f as follows:

λF
f =

{
(V1 ∈ f.D1, . . . , Vn ∈ f.Dn) if f ∈ F
⊥ if f = ⊥

If the message uses a function f ∈ F , the structure λF
f will contain variables

as actual parameters replacing the function’s formal parameters. If Ms does
not use an implemented function, λF

f = ⊥.
At this point, a message can represent a change in a property’s value using

a variable or a function to describe the new value. This variable or function
is called the message content.

8.4 And a Bit More Formally ... 115

Definition 8.4.1 (message content). The message content Λ of a message
Ms is defined as:

Ms.Λ =
{

Ms.λ
F
f if λF

f 6= ⊥
Ms.V otherwise

LSC Specification

An LSC L is extended to contain assignments:

L = 〈IL, VL,ML, [PchL], AL, evnt, temp〉

An assignment is defined as

A = 〈V, IA, C, P, f, λF
f 〉

where V is the assigned-to variable, IA ⊆ IL is the set of instances that
are synchronized with the assignment, C ∈ (

⋃
D∈D D) ∪ {⊥} is a constant

of some type in case the assignment stores a constant, and C is ⊥ if not,
P ∈ (

⋃
I∈IA

I.AppObj.P)∪{⊥} is the property stored in case the assignment
stores a property value, and P is ⊥ if not, f ∈ F ∪ {⊥} is a function in case
the assignment stores some function, and f is ⊥ if not, and λF

f is a function
information structure in case f 6= ⊥. We require that one and only one of
the following expressions holds for each assignment:

(C 6= ⊥), (P 6= ⊥) and (f 6= ⊥)

We say that the assignment type (or simply type) of A is constant if C 6= ⊥,
property if P 6= ⊥, and function if f 6= ⊥.

We extend EL, the set of LSC events in L, to contain also hidden events
of performing assignments:

EL = ({m ∈ ML | m.Ms ∈ ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv}
× {Send, Recv})

∪ ({m ∈ ML | m.Ms ∈ ΣSelf} × {Send})
∪ (PchL × {Start, End}) ∪ {Completed} ∪ {perform(A) | A ∈ AL}

We extend the notion of affecting a variable, and distinguish between
affecting a variable and using a variable.

Definition 8.4.2 (affecting a variable). An LSC message M ∈ ML affects
a variable X, if M.Ms.V = X. An assignment A ∈ AL affects a variable X
if A.V = X.

116 8. Assignments and Implemented Functions

Definition 8.4.3 (using a variable). An LSC message M ∈ ML uses a
variable X if X ∈ M.Ms.λ

F
f , and an assignment A ∈ AL uses a variable X

if X ∈ A.λF
f .

The notions of affecting and using a variable are extended to LSC events and
locations in the natural way. By extending the above definitions to locations,
the definition of the first location that affects a variable X now refers to
assignments without any change.

The partial order <L is extended with the following two rules:

Variables - The first location that affects a variable precedes all other loca-
tions that affect or use the variable:

∀l, l′ ∈ `(L) : first(l, X) ∧ (affects(l′, X) ∨ uses(l′, X)) ⇒ l <L l′

Synchronize at assignments - All the instances that participate in an assign-
ment are synchronized there:

∀A ∈ AL, ∀lix, ljy ∈ loc(A) : lix =L ljy

Operational Semantics

The first change we apply to our operational semantics is the redefinition
of minimal events, to consider only visible events, but to also allow hidden
events to precede them.

Definition 8.4.4 (minimal event in a chart). An event e is minimal in
a chart L if there is no visible event e′ in L such that e′ <L e.

We now extend the notion of unification to apply also to functions.

Definition 8.4.5 (function unification). Two function information struc-
tures λF

f and λF
g are unifiable (both positively and negatively) if f(λF

f) =
g(λF

g) (where f(λF
f) is the value of f applied to the actual parameters in λF

f).

Definition 8.4.6 (variable-function unification). A variable X and a
function information structure λF

f are positively-unifiable if X.ω = f(λF
f) or

free(X). They are negatively-unifiable if X.ω = f(λF
f).

Definition 8.4.7 (message unification). Two system messages
Ms = 〈Src, Dst, P, V, f, λF

f , Symbolic〉 and
M ′

s = 〈Src′, Dst′, P ′, V ′, f ′, λF
f ′ , Symbolic′〉 are Q-Unifiable (where Q is ‘pos-

itively’ or ‘negatively’) if Src = Src′, Dst = Dst′, P = P ′ and their contents
Ms.Λ and M ′

s.Λ are Q-Unifiable.

8.4 And a Bit More Formally ... 117

Since message variables may bind to values returned by functions during
execution, we add another unification procedure to handle these cases:

Unify(X, λF
f , Context)

1. If X.ω = f(λF
f) then return.

2. X.ω ← f(λF
f).

3. Bind(X, X.ω, Context).

For two unifiable messages M and M ′, we use Unify(M, M ′, Context)
as an abbreviation of Unify(M.Λ,M ′.Λ, Context), and Unify(e, e′, Context)
remains an abbreviation of Unify(e.M, e′.M ′, Context).

Having these definitions at hand, the transition relation ∆ supports imple-
mented functions with no modifications required. However, for ∆ to support
assignments, two modification are needed: (1) When a minimal visible event
is detected, all the assignments that come before it are carried out before the
event may be considered. (2) After an assignment is performed, its assigned-
to variable is bound to an appropriate value according to the assignment
type.

• If e = 〈M, t〉(where t ∈ {Send,Recv}) then:
1. set Context ← ∅.
2. If ∃CL ∈ RL and ∃e′ ∈ CL.LSC such that e and e′ are negatively

level1-unifiable and e′ violates CL, then set RL ← RL \ {CL}. If
temp(CL.Cut) = hot, set Violating ← True.

3. For every universal LSC L ∈ SU which has an event e′, positively level1-
unifiable with e, as a minimal event in its prechart, create a copy of L,
CL, and set RL ← RL ∪ {CL}. Set CL.Mode = PreActive and set its
cut by CL.Cut ← AdvanceCut(InitialCut(L), 〈PchL, Start〉). Unify the
variables of e and e′, by Unify(e, e′, Context).
For each hidden event e′′ <L e′, apply ∆(e′′).

4. For every copy CL ∈ RL which has an enabled event e′, positively level1-
unifiable with e, set its cut by CL.Cut ← AdvanceCut(CL.Cut, e′).
Then, if e′ = 〈M,Send〉, M is synchronous and e′′ = 〈M,Recv〉, set
the cut by CL.Cut ← AdvanceCut(CL.Cut, e′′). Unify the variables of e
and e′, by Unify(e, e′, Context).

• If e = Completed(CL) for some CL ∈ RL, then set RL ← RL \ {CL}.
• If e = 〈PchL, End〉 for some CL ∈ RL, then set

CL.Cut ← BeginMainCut(CL.LSC) and CL.Mode ← Active.
• If e = perform(A) for some A ∈ AL s.t. CL ∈ RL, then set CL.Cut ←

AdvanceCut(CL.Cut, e) and set

118 8. Assignments and Implemented Functions

A.V ←




A.C if A.Type = constant
V alue(A.P) if A.Type = property
A.f(A.λF

f) if A.Type = function

After having thus modified ∆, the procedures for step should be slightly
modified so that if the new value for a property is given as a function, that
function is computed and the new value is reflected in the system. The pro-
cedure for super-step remains unchanged.

step(e)

1. Apply ∆(e).
2. Change the property value according to the value in the message:

a)

O ←
{

e.M.Src if M ∈ ΣToUser ∪ΣToEnv

e.M.Dst otherwise

b) P ← e.M.P
c)

V alue(O.P) ←
{

e.M.f(e.M.λF
f) if e.M.f 6= ⊥

e.M.V.ω otherwise

9. Conditions

In this chapter we discuss guarding conditions in LSCs, and the way their
being true or false impacts execution.

9.1 Cold Conditions

Returning to the bakery panel application, suppose our user wishes to specify
the following requirement:

When the temperature indicated by thermometer]1 changes, it should
be shown on the console. If it increases beyond 70 degrees, the console
background color should turn red.

The LSC describing this requirement is shown in Fig. 9.1.

Fig. 9.1. Using a cold condition

The temperature is changed by the environment in the prechart, and as a
result the console shows the new temperature in the chart body. The hexagon
that follows is a condition. This one is a cold condition, denoted by a blue
dashed line, and it requires the number displayed on the console to be greater
than 70. If a cold condition is true, the chart progresses to the location that

120 9. Conditions

immediately follows the condition, whereas if it is false, the surrounding chart
(or subchart; see later) is exited. In this example, if the temperature is indeed
greater than 70 degrees, execution of the chart will progress and the console
will change to red. If the temperature is less than or equal to 70 degrees, the
chart will be exited and the console will take no action.

A condition hexagon can be stretched along several instances in the LSC
in order to reach those that it refers to. To distinguish these from the in-
stances that do not participate in the condition’s definition or are not to be
synchronized with it, we draw small semicircular connectors at the intersec-
tion points of a participating instance line with the condition.

9.2 Hot Conditions

Consider now a second requirement, stating the following:

When the main switch is turned on, the first 3-state switch is auto-
matically set to Med, thus activating the first oven. As a result, the
temperature must rise above 50 degrees, and only then should the first
warning light change to green.

Fig. 9.2. Using a hot condition: first try

As a first try, consider the LSC in Fig. 9.2. In the prechart, the user clicks
the main switch to on, and as a response, in the main chart, the first switch is
set to Med. A condition then follows, constraining the temperature of the first
thermometer to be greater than 50 degrees. This condition is hot, denoted
by a red solid line. A hot condition must be true, otherwise the requirements
are violated. Following this condition, the first warning light changes its color
to green.

9.3 Playing In 121

Note, however, that there is no partial order between the events and the
condition in the chart body. Therefore, a scenario in which the main switch
is clicked to on and as a result the light turns green, the switch is set to Med
and only then does the temperature rise above 50 degrees, is a permissable
one. This, of course, is not what we had in mind. We would like to impose a
strict order, in which the light turns green only after the switch is set to Med
and the temperature rises. We do this by synchronizing. Like assignments,
conditions can also synchronize several instances. Synchronizing at a condi-
tion means that none of the synchronized instances may progress beyond the
condition until all of them reach it and it is actually evaluated. In this case
we synchronize the 3-state switch and the light with the condition (see Fig.
9.3). Now, there is a strict order that forces the condition to be evaluated

Fig. 9.3. Using a hot condition with synchronization

only after the switch is set to Med, and forces the light to turn green only
after the condition evaluates to true.

9.3 Playing In

In order to play in a condition, the user clicks on the appropriate Condition
button on the toolbar. In response, a condition dialog opens (see Fig. 9.4).
In our current implementation, we support conjunctive-query conditions,
namely ones that are conjunctions of basic expressions. Accordingly, each
expression that is played in is attached as a new conjunct to the condition
being constructed.

There are several kinds of basic expressions and different ways of playing
them in, but the play-in methods are similar to the way properties are played
in outside conditions. For example, to specify that the switch should be on,

122 9. Conditions

Fig. 9.4. A condition dialog

the user simply clicks it to on (if it is already on, the user can turn it off and on
again). When operating objects that way, the resulting expression is always
generated as an equality. To specify other kinds of relations, or to constrain
objects that cannot be operated by the user (e.g., light, thermometer, etc.)
the user right-clicks the object and selects the property to be constrained. In
response, a basic expression dialog opens, in which the user may specify the
value and the Boolean operator. Figure 9.5 shows the condition dialog after
the switch was clicked to on, and the basic expression dialog, in which the
color of the first warning light is constrained to be anything but green.

Fig. 9.5. Specifying a basic expression

9.3 Playing In 123

As described earlier, an object can participate in a condition without
having any of its property values actually constrained. This is usually done
when we want the object’s progress to be synchronized with the condition’s
evaluation, but to have no effect on its value. Synchronizing an object with
a condition (i.e., making the object a non-influential part of the condition) is
done by right-clicking the object and choosing Synchronized from the popup
menu (see Fig. 9.6). Figure 9.7 shows the resulting condition in the LSC.

Fig. 9.6. Synchronizing an object with a condition

Since we attach importance to the intuitive manner of the play-in process,
we have tried to have the user interact directly with the GUI application as
much as possible. One example of this is in the way conditions are shown.
When the user points to a condition in an LSC, several things show up; see
Fig. 9.7. Within the LSC itself the condition is highlighted, as are all the
participating instances, and the current true/false value of the condition is
shown. At the same time, the GUI application (the bakery panel in our case)
highlights the objects that participate in the condition, and each of them
displays a tool tip that contains a description of the object’s part in the
condition. Since the rectangular tool tips may overlap, we have used a layout
algorithm to arrange them nicely on the screen. This is done by defining an
attractive force between each object and its tip and a repulsive force between
every two tips, and then letting the physics of equilibrium do the rest.

Conditions may also contain basic expressions that do not refer directly
to object properties. To specify such an expression, the user clicks on the New
button in the condition dialog and as a result a condition expression dialog
opens (see Fig. 9.8). Using this dialog, the user may constrain the value

124 9. Conditions

Fig. 9.7. Pointing to a condition

Fig. 9.8. Possible expressions in a condition

of some variable in the LSC. A variable (like an object property) can be
constrained with respect to a constant value, another variable or a function
applied to some variables. In this example, T1 is required to be greater than
the value of 50 degrees Celsius converted to Fahrenheit.

In addition, there are some reserved words that can be used in conditions.
A condition consisting only of the reserved word TRUE, synchronized with
several instances, can be used to create a synchronization point for these
instances with no other effect, because it is guaranteed to evaluate to true.
Since this method for synchronizing objects is quite useful, we allow the use
of the word SYNC, which is semantically equivalent to TRUE but better reflects
the purpose of the condition.

9.3 Playing In 125

A condition consisting of the reserved word FALSE is guaranteed to fail,
and as such is useful in specifying anti-scenarios, i.e., scenarios that are not
allowed to happen. This is achieved by placing the forbidden scenario in the
prechart and the hot condition FALSE as the sole element in the chart body.
If the forbidden scenario is successfully completed, the chart is activated and
the hot condition is encountered. Since this hot condition can never be met, it
causes a violation. The overall effect is to forbid the scenario in the prechart.

In addition to reserved words, one can write any string expression as
a conjunct within a condition. Since such expressions have no semantical
meaning, when such a condition is encountered during play-out, the user is
asked whether the condition holds or not, and the run progresses accordingly.
(The Time option shown in the dialog of Fig. 9.8 is discussed in Chap. 16.)

A condition may contain a SELECT basic expression, which is associated
with a probability. During play-out it evaluates to true with that probability
and to false with the complement probability. Although the main use of
the select statement is within if-then-else constructs, as discussed in Chap.
10, it can be useful also in stand-alone guards. The LSC in Fig. 9.9 shows
such an example. In this LSC, after the switch is clicked to on, the light

Fig. 9.9. Specifying nondeterministic behavior

turns on with a probability of 50%. Combining a select expression with a
standard expression as a conjunctive condition results in a guarded select, in
which progress is allowed with a given probability only if the guard (i.e., the
standard expression) holds.

Expressions that do not refer to object properties are not automatically
associated with object instances, and therefore a condition consisting solely
of such expressions must be explicitly synchronized with some object.

126 9. Conditions

9.4 Playing Out

When playing out behavior, conditions are very much like assignments. They
are performed according to the partial order induced by the LSC, and are
also considered hidden events.

In contrast with assignments and messages, conditions cannot affect vari-
ables but can only use them. A condition uses all the variables that appear
in its basic expressions. The location of a condition in the partial order is
determined therefore by the vertical order of the instance locations attached
to it and by the variables it uses. For example, X > f(Y) can be evaluated
only after the messages that affect X and Y are sent or after the assignments
that assign values to them are performed, so that when the expression is
evaluated, X and Y are already bound.

Conditions are hidden, since they do not correspond directly to events
carried out by the system. Therefore, the same decisions we had to make for
the execution of assignments must be made for conditions. With conditions,
the number of options is even greater since the temperature of the condition
and its value may affect the decision about whether to advance it or not.

The case of hot conditions is easy. Since a hot condition must be true, when
it is reached it is constantly evaluated and is advanced if and when it becomes
true. The execution will remain stuck at that point if the specification is
incorrect and the condition indeed never becomes true. Recalling that anti-
scenarios are expressed using a hot false condition in the main chart, there
is no point in the engine waiting for a hot condition consisting of the word
FALSE to become true; the chart is therefore viewed as causing an immediate
violation, and in the Play-Engine implementation it is crossed out and a
violation message pops up (see Fig. 9.10).

Obviously, we could have used theorem-proving techniques to find other,
less trivial, everywhere-false conditions and treat them as immediate viola-
tions too, but this is beyond the scope of our research. We have implemented
only the most basic and practical feature needed to support the expression
and detection of anti-scenarios.

Turning now to cold conditions, one can think of several possible policies
for executing them, such as waiting for them to be true if they are currently
false or waiting for them to be false if currently true, and deciding at random
whether to evaluate them or evaluating them immediately. We have chosen
the policy where cold conditions are evaluated immediately, mainly because
this seems more intuitive for users to follow. In Chap. 16 we shall see that
there are ways to explicitly require a condition to be evaluated only after a
certain delay.

Let us consider now the two LSCs of Fig. 9.11. Both of these LSCs state

9.4 Playing Out 127

Fig. 9.10. Detecting anti-scenarios

Fig. 9.11. Conditions in precharts

that if the Probe button is clicked while the switch is on, the console should
show “Probing ...”.

There is however a difference between the charts. In ‘LSC1’ the minimal
event is the message (this is a synchronous message and therefore we refer
to it as an event consisting of both the sending and the receiving), while
in ‘LSC2’ the minimal event is that of evaluating the condition. If we use
‘LSC1’, the chart will be activated as soon as the button is clicked, and if
the switch is Off the prechart is violated, which means that the chart stops
existing since its triggering scenario is not fulfilled (see Fig. 9.12).

Conditions appearing as minimal events are treated again like assign-
ments, because of the same considerations of intuition and practicality. When
a visible event is detected, the conditions that precede it are evaluated and
only then is the event considered. There is however a difference between as-
signments and conditions. A minimal assignment can always be performed,
thus allowing the visible event to be considered, while in order for a condition

128 9. Conditions

Fig. 9.12. Prechart violation

to be advanced its value must be true. Returning to ‘LSC2’ in Fig. 9.11, if
the button is clicked while the switch is Off, the visible event of clicking the
button in the chart cannot be reached because the instances cannot progress
beyond the condition, and therefore the chart will not be activated at all.
Actually, in order to evaluate the condition, assignments that may precede it
should be performed. It is thus semantically inaccurate to say that the chart
is not activated at all; it is better to say that the actions are taken ‘behind
the scenes’ without the user being aware of them.

A prechart with the event coming before the condition, as in ‘LSC1’, can
be used to indicate that after some visible event occurs progress depends
on some condition, while a prechart like ‘LSC2’ is used to indicate that a
pre-condition must hold in order for the event to even be considered.

9.5 And a Bit More Formally ...

Following the semantics skeleton, we show the extensions and modifications
needed to support conditions.

System Model and Events

Conditions are entirely specification oriented, and therefore do not affect the
system model.

LSC Specification

An LSC L is extended to contain conditions:

L = 〈IL, VL,ML, [PchL], AL, CL, evnt, temp〉
A condition C in an LSC L is defined as

9.5 And a Bit More Formally ... 129

C = 〈IC , Ψ〉

where IC ⊆ IL is the set of instances that are synchronized with the condition
and Ψ is the set of basic expressions. A basic expression ψ ∈ Ψ is defined
over the following alphabet:

ψ ∈ {LHS ×Oper ×RHS} ∪ {TRUE, FALSE, SELECT(P),⊥}
where

LHS ∈ {O.P |O ∈ O, P ∈ O.P} ∪ VL

Oper ∈ {=, <,≤, >,≥, 6=}
RHS ∈ (

⋃

D∈D
D) ∪ VL ∪ {(f, λF

f)|f ∈ F}

The first kind of expression is used to constrain a property or a variable, by
comparing it via some comparison operator with a constant value, another
variable or a function. The second kind of expression consists of the reserved
words (SYNC is really just an abbreviation for TRUE), the SELECT statement
with probability P , and free expressions (all free expressions are reduced to
⊥). We denote by value(ψ) the result of evaluating ψ in the natural way.
If ψ is of the form SELECT(P), a Boolean value is chosen at random with
probability P for true, and if ψ is ⊥ the user is prompted for a value. The
value of a condition C is defined as:

value(C) =
∧

ψ∈Ψ

value(ψ)

Since conditions may also be cold or hot, the domain of the function temp
should be modified:

temp : `(L) ∪ML ∪ CL → {hot, cold}

We extend EL, the set of LSC events in L, to contain also hidden events
of evaluating conditions:

EL = ({m ∈ ML | m.Ms ∈ ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv}
× {Send,Recv})
∪ ({m ∈ ML | m.Ms ∈ ΣSelf} × {Send})
∪ (PchL × {Start, End}) ∪ {Completed} ∪ {perform(A) | A ∈ AL}
∪ {eval(C) | C ∈ CL}

The definition of using variables is modified to reflect the way conditions use
them.

130 9. Conditions

Definition 9.5.1 (using a variable). An LSC message M ∈ ML uses a
variable X if X ∈ M.Ms.λ

F
f , and an assignment A ∈ AL uses a variable X

if X ∈ A.λF
f .

A condition basic expression ψ uses a variable X if at least one of the
following holds:

1. ψ.LHS ∈ VL and ψ.LHS = X.
2. ψ.RHS ∈ VL and ψ.RHS = X.
3. ψ.RHS = (f, λF

f) and X ∈ λF
f .

A condition C uses a variable X if one of its basic expressions uses it.

The partial order <L is now extended with the following rule:

Synchronize at conditions - All the instances that participate in a condition
are synchronized there:

∀C ∈ CL, ∀lix, ljy ∈ loc(C) : lix =L ljy

Operational Semantics

Since conditions are pretty much like assignments in the sense that they
are hidden events that are not considered as minimal events, most of the
definitions remain unchanged.

There is however one change in the definition of enabled events, which
makes sure that false hot conditions are not evaluated unless they explicitly
contain the basic expression FALSE.

Definition 9.5.2 (enabled event). An event e is enabled with respect to
a cut C if »(¼C ∪ loc(e)) is a legal cut. That is, if the location in C of every
instance participating in the event e is the one exactly prior to e, and there
is no e′ <L e that is not already in the down-closure of C.

• If e = 〈m,Send〉, m is synchronous and e′ = 〈m,Recv〉, we require also
that ¼C∪loc(e)∪loc(e′) is down-closed, thus making sure that a synchronous
message will not be sent unless it can be received.

• If e = eval(C), temp(C) = hot and FALSE /∈ C.Ψ , we require also that
value(C) = true.

Next, ∆ is extended with transitions for handling the evaluation of con-
ditions:

• If e = 〈M, t〉 (where t ∈ {Send, Recv}) then:
1. Set Context ← ∅.

9.5 And a Bit More Formally ... 131

2. If ∃CL ∈ RL and ∃e′ ∈ CL.LSC such that e and e′ are negatively
level1-unifiable and e′ violates CL, then set RL ← RL \ {CL}. If
temp(CL.Cut) = hot, set Violating ← True.

3. For every universal LSC L ∈ SU which has an event e′, positively level1-
unifiable with e, as a minimal event in its prechart, create a copy of L,
CL, and set RL ← RL ∪ {CL}. Set CL.Mode = PreActive and set
its cut by CL.Cut ← AdvanceCut(InitialCut(L), 〈PchL, Start〉). Unify
the variables of e and e′, by Unify(e, e′, Context). For each hidden event
e′′ <L e′, apply ∆(e′′).

4. For every copy CL ∈ RL which has an enabled event e′, positively level1-
unifiable with e, set its cut by CL.Cut ← AdvanceCut(CL.Cut, e′).
Then, if e′ = 〈M,Send〉, M is synchronous and e′′ = 〈M,Recv〉, set
the cut by CL.Cut ← AdvanceCut(CL.Cut, e′′). Unify the variables of e
and e′, by Unify(e, e′, Context).

• If e = Completed(CL) for some CL ∈ RL, then set RL ← RL \ {CL}.
• If e = 〈PchL, End〉 for some CL ∈ RL, then set

CL.Cut ← BeginMainCut(CL.LSC) and CL.Mode ← Active.
• If e = perform(A) for some A ∈ AL s.t. CL ∈ RL, then set CL.Cut ←

AdvanceCut(CL.Cut, e) and set

A.V ←




A.C if A.Type = constant
V alue(A.P) if A.Type = property
A.f(A.λF

f) if A.Type = function

• If e = eval(C) for some C ∈ CL s.t. CL ∈ RL, then
1. If value(C) = true then set CL.Cut ← AdvanceCut(CL.Cut, e);
2. If value(C) = false then set RL ← RL \ {CL}. If temp(C) = hot, set

Violating ← True.

Since false hot conditions that do not explicitly contain the expression
FALSE are not enabled, and all other conditions should be evaluated as soon
as they are enabled, the procedure super-step remains unchanged, with the
emphasized part taking care also of conditions:

132 9. Conditions

super-step

1. Compute the set of enabled events:

Enabled ←
⋃

CL∈RL
{e ∈ EL|enabled(e)}

Enabled ← Enabled \ External

2. If there is a hidden enabled event e ∈ Enabled, then
a) Apply ∆(e).
b) Go back to 1.

3. If there is a visible enabled event e ∈ Enabled, such that e does
not violate any copy which is in active mode, then
a) step(e).
b) Go back to 1.

4. Terminate super-step.

9.6 Bibliographic Notes

Conjunctive queries were first defined in [20]. An algorithm for synthesiz-
ing UML statecharts from UML sequence diagrams is presented in [119]. It
makes use of constraints written in OCL [115] (the UML object constraints
language), which are of the form V ar = V alue. These constraints are used
to resolve conflicts arising from different scenarios and to join system states
that identify over these variables; they can be viewed as a sort of combination
of our assignments and conditions.

The layout algorithm we have used for the tool tips is a variant of the
non-uniform vertex graph layout algorithm of [45], adapted to arrange a set
of arbitrary rectangles in the plane.

10. Branching and Subcharts

In this chapter we discuss ways of using conditions to help control the exe-
cution flow of a chart, and how this works with the main LSC structuring
mechanism — the subchart.

10.1 The If-Then-Else Construct

Consider the bakery panel with the following requirement:

When the main switch is clicked to on, the main light should turn on
and the console’s background should change to green. When the switch
is clicked to off, the light should turn off and the console’s background
should change to white.

In Chap. 7 we saw how variables and symbolic messages can be utilized to
capture several scenarios in a single LSC. Figure 10.1 shows how a part of the
above requirement is captured in a symbolic LSC. Using symbolic messages

Fig. 10.1. Using symbolic messages to generalize scenarios

here is fine, since the light takes on the same state as the switch. There
is, however, a problem with the background color of the console because

134 10. Branching and Subcharts

there is no direct link between the state of the switch and the color of the
console.1 What we need here is a construct for conditional choice, which will
make it possible to perform different scenario fragments, depending on some
condition. Figure 10.2 shows how the problem is solved using an if-then-else
construct.

Fig. 10.2. Conditional choice using if-then-else

An if-then-else construct consists of two adjacent subcharts — the ‘then’
part and the ‘else’ part — and a controlling condition that is located at the
top of the first subchart. The operational semantics is the standard condi-
tional branching. The ‘else’ part is not mandatory and may be omitted.

10.2 Subcharts

A subchart, as its name suggests, is a well-formed fragment of a chart. It
is rendered as a thick solid rectangle stretching over all the instances that
are involved in the scenarios it contains, and is not restricted to appear as
part of an if-then-else construct. Lines of instances that are geometrically
located in the area of the subchart but do not participate in it are not shown
in the subchart (they are hidden behind it). The beginning and end of a
subchart are synchronization points for all participating instances. Thus, a
subchart is entered only after all the instances that participate in it arrive at
the locations associated with the subchart start.
1 In this case such a link could be represented by an implemented function that takes

an On/Off value as a parameter and returns a green/white color as a result, yet this is
cumbersome and there are many cases where such links cannot be established.

10.3 Nondeterministic Choice 135

This fact can be reason enough to use the subchart construct in the first
place. For example, Fig. 10.3 shows an LSC containing two subcharts. By
surrounding the pairs of events with subcharts, we guarantee that the two
events in the first pair will both occur before those in the second pair. A

Fig. 10.3. Subcharts in LSCs

subchart is exited only after all the instances have completed their activities
in it, with one exception, which we discuss next.

In the previous chapter, we said that when a cold condition evaluates to
false the chart is exited. We now extend this definition. If a cold condition
residing within a subchart evaluates to false, the closest surrounding subchart
is exited. If there is no surrounding subchart, the chart itself is exited (as in
the original definition).

Entering a subchart and exiting it are considered hidden events that are
performed as soon as possible. Carrying out these events has no effect on the
system model or on the values of LSC variables. Their only effect is to move
the cut beyond the subchart start/end line for all participating instances.

10.3 Nondeterministic Choice

In Chap. 9 we introduced the select statement, used as a basic expression in
conditions. In this section we show how a select statement within an if-then-
else construct can be used to specify nondeterministic choice.

136 10. Branching and Subcharts

Fig. 10.4. Specifying a nondeterministic choice

The LSC in Fig. 10.4 specifies that when the user clicks the switch to
on, the background color of the console turns green with probability 50%
and blue with probability 50%. When executing this LSC, the Play-Engine
randomly picks a value from {true, false} with the specified probabilities,
executing the ‘then’ part or the ‘else’ part accordingly.

10.4 Playing In

To play in a subchart construct, the user clicks the Subchart button on the
toolbar. In response, the Play-Engine opens a subchart wizard and places
the cursor automatically in the subchart rectangle (see Fig. 10.5). The user

Fig. 10.5. A wizard for specifying subcharts

then simply continues playing in the scenario fragment that should be lo-
cated in the subchart. Clicking the End Subchart button closes the subchart
construct and the cursor is placed immediately after it.

10.4 Playing In 137

In order to play in an if-then-else construct, the user clicks the If-Then-Else
button on the toolbar. In response, the Play-Engine opens an if-then-else wiz-
ard and a condition dialog (see Fig. 10.6). The first thing the user does is

Fig. 10.6. A wizard for specifying if-then-else constructs

to specify the condition using the methods and techniques described in the
previous chapter. The Play-Engine then places the cursor automatically in
the ‘then’ part and the user simply continues playing in the subchart that
should be satisfied when the condition holds (see Fig. 10.7(a)). To specify the

Fig. 10.7. Playing in an if-then-else

138 10. Branching and Subcharts

‘else’ part, the user clicks on Specify the ELSE part in the wizard and the
engine creates the ‘else’ subchart and moves the cursor there in preparation
for playing in the rest of the construct (see Fig. 10.7(b)). Clicking the END IF
button closes the if-then-else construct and the cursor is placed immediately
after it.

10.5 Playing Out

When executing an LSC specification, the condition of an if-then-else con-
struct is evaluated as soon as all the instances that participate in the con-
struct have reached it, assuming that the condition itself can be evaluated
(all the variables it uses are bound). If the condition evaluates to true the
Play-Engine executes the ‘then’ subchart, and if it evaluates to false the ‘else’
subchart is executed. In the example given in Fig. 10.2, as soon as the light
changes its state, the condition is evaluated and the background color of the
console changes to green or white, depending on the state of the light.

If-then-else constructs are handled somewhat differently when they appear
in precharts. Consider the LSC in Fig. 10.8. The scenario in the prechart can

Fig. 10.8. An if-then-else in a prechart

be read in two different ways. According to the execution semantics described
above, it reads:

Wait for the user to click the main switch to on. Immediately after
that, check the temperature indicated by thermometer]1. If it is below
50 degrees, (enter the ‘then’ part and) wait for the user to set the

10.5 Playing Out 139

state of the first 3-state switch to High. If the temperature is at least
50 degrees, (enter the ‘else’ part and) wait for the user to set the state
of the first 3-state switch to Med.

Thus, the condition of the if-then-else is evaluated an a priori unknown period
of time before any of the events in the ‘then’ or ‘else’ parts occur.

We have chosen a different semantics for an if-then-else appearing in the
prechart. According to our proposed semantics, the scenario of Fig. 10.8
reads:

Wait for the user to click the main switch to on. Then, wait for the
user to (i) set the state of the first 3-state switch to High while the
temperature indicated by thermometer]1 is below 50 degrees, or (ii)
set the state of the first 3-state switch to Med while the temperature
is at least 50 degrees.

Here, we evaluate the condition as the event occurs, thus linking the event
to a context in which the condition holds. The approach is similar to and
consistent with the one we adopted for evaluating minimal cold conditions
in precharts. We believe that this interpretation of if-then-else constructs
appearing in precharts is more intuitive and fits better with the way people
think when specifying conditional choices in a triggering scenario.

If-then-else constructs are the first constructs we have seen so far that
behave differently when monitored in a prechart and when executed in the
chart body. This subtle difference in the semantics, and hence in the execution
mechanism, evolves from the poignant difference between monitoring and
execution.

When executing an LSC specification, the play-out mechanism is respon-
sible for generating visible events, and in the case of the Play-Engine also
for reflecting the effects of these events in the GUI representation of the sys-
tem model. Hence, when an if-then-else construct is encountered in a chart
body, the execution mechanism should evaluate the condition and continue
generating any events that depend on the condition’s value.

In contrast, events in precharts are monitored in order to see if the prechart
can be successfully completed. Since the order of events and their timing
is a priori unknown, the prechart monitoring mechanism should enable the
prechart to be completed if possible. The evaluation of a condition is a hidden
event and its timing is not dictated by the system itself, therefore choosing
to evaluate it as soon as possible will eliminate one of the courses that can
be taken by the system (e.g., evaluating a condition when it is true, and the
system later producing an event matching the case of the condition being
false). When monitoring a system, the visible events are produced by the
system itself. Therefore, the monitoring mechanism should wait for the next

140 10. Branching and Subcharts

event from the system and let that event dictate the choice between the ‘then’
and the ‘else’ parts, since it is that event that reflects the choice made by the
system.

One could argue that there are more options for the scheduling of condi-
tion evaluation, which our semantics does not cover. For example, there could
be a case where the condition holds at time T1, later at time T2 it becomes
false, and at T3 becomes true again. Finally, at time T4, the system generates
an event that belongs to the ‘else’ part. In this case, neither of the policies
of evaluating the condition as soon as possible or as late as possible will
monitor the if-then-else construct to completion. To overcome this, we could
set things up so that the monitoring mechanism continuously monitors the
condition and probably maintains two copies for the two options. However,
since a prechart can have more than one if-then-else construct enabled simul-
taneously (referring to different objects), the number of copies needed to be
maintained can easily blow up. Apart from the fact that monitoring mecha-
nisms that try to cover all options are not practical, they lack the intuition,
according to which the event is linked with the system context (condition
value) in which it occurs.

Figure 10.9 shows a nondeterministic choice in the prechart. As discussed

Fig. 10.9. Nondeterministic choice in a prechart

above, a condition in an if-then-else construct that appears in a prechart
is evaluated only when one of the minimal events in the ‘then’ part or the
‘else’ part occurs. The same holds for nondeterministic choice in precharts
too, but with one exception. When the Play-Engine monitors a prechart
with a nondeterministic choice, it does not randomly choose the part to
be monitored, but, rather, ‘agrees’ with any choice made by the system.

10.6 And a Bit More Formally ... 141

Therefore, in this example, the Play-Engine waits for the console to change
its background to green or blue, and according to the event taken by the
system the Play-Engine enters the correct part of the choice. Note that when
it comes to monitoring charts, the actual value of the probability that is
attached to a select statement has no meaning; it just states that the two
options are possible.2

The differences between monitoring an LSC specification and executing it
are discussed in more detail in Chap. 12.

10.6 And a Bit More Formally ...

Following the semantics skeleton, we show the extensions and modifications
needed to support branching and subcharts.

System Model and Events

Subcharts and if-then-else constructs are entirely specification oriented and
therefore do not affect the system model.

LSC Specification

An LSC L is now extended to contain subcharts and if-then-else constructs:

L = 〈IL, VL,ML, [PchL], AL, CL, SUBL, ITEL, evnt, subchart, temp〉

where SUBL is the set of subcharts in L, ITEL is the set of if-then-else
constructs in L and subchart is a mapping function.

Every LSC construct can be contained in at most one immediately sur-
rounding subchart. The function subchart returns for each construct the in-
nermost subchart to which it belongs (if there is no such subchart it returns
⊥). The domain of subchart includes SUBL, thus enabling nested subcharts:

subchart : ML ∪AL ∪ CL ∪ SUBL → SUBL ∪ {⊥}

The function subchart is extended to events and to instance locations in the
natural way. We will also use the notation e ∈ Sub as an abbreviation of
subchart(e) = Sub.

The set of instances ISub participating in a subchart Sub is defined as the
set of all instances that are involved in some activity in Sub:
2 If, however, a probability of 0% or 100% is specified, then only the events in the corre-

sponding subchart are allowed to occur.

142 10. Branching and Subcharts

ISub = {I ∈ IL| ∃M ∈ ML s.t. (subchart(M) = Sub
∧ (I = M.ISrc ∨ I = M.IDst))
∨ ∃A ∈ AL s.t. (subchart(A) = Sub ∧ I ∈ IA)
∨ ∃C ∈ CL s.t. (subchart(C) = Sub ∧ I ∈ IC)
∨ ∃Sub′ ∈ SUBL s.t. subchart(Sub′) = Sub ∧ I ∈ ISub′}

An if-then-else construct ITE in L is defined as:

ITE = 〈IITE , C, SubT , SubE〉
where IITE = IC ∪ ISubT

∪ ISubE
is the set of instances participating in the

if-then-else construct, C is the main condition of the if-then-else construct,
SubT ∈ SUBL is the subchart containing the ‘then’ part and SubE ∈ SUBL∪
{⊥} is the subchart containing the ‘else’ part (and if there is no such part,
SubE = ⊥).

We extend EL, the set of LSC events in L, to contain also hidden events
of entering subcharts and exiting them and a special event for branching in
an if-then-else construct:

EL = ({m ∈ ML | m.Ms ∈ ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv}
× {Send,Recv})

∪ ({m ∈ ML | m.Ms ∈ ΣSelf} × {Send})
∪ (PchL × {Start, End}) ∪ {Completed}
∪ {perform(A) | A ∈ AL} ∪ {eval(C) | C ∈ CL}
∪ (SUBL × {Start, End}) ∪ {branch(ITE)| ITE ∈ ITEL}

We have to cater for the need to exit an if-then-else construct from
somewhere within one of its subcharts. For this we use the virtual event
(ITE, End), defined as:

(ITE, End) ,
{

(ITE.SubE , End) if ITE.SubE 6= ⊥
(ITE.SubT , End) if ITE.SubE = ⊥

The partial order <L is extended with the following rules:

Synchronize at subcharts - All the instances that participate in a subchart
are synchronized at its start and end.

∀Sub ∈ SUBL, ∀lix, ljy ∈ loc((Sub, Start)) : lix =L ljy

∀lix, ljy ∈ loc((Sub,End)) : lix =L ljy

If-then-else branch - All the events in an if-then-else construct may be carried
out only after the main condition has been evaluated and one of the ‘then’
or ‘else’ branches has been selected.

∀ITE ∈ ITEL, ∀e ∈ ITE.SubT ∪ ITE.SubE : branch(ITE) <L e

10.6 And a Bit More Formally ... 143

We must also remove from the relation <L all the pairs of locations that
belong to different parts of an if-then-else construct, so that events that are
in the ‘else’ part are not considered as coming after events in the ‘then’ part:

Disconnect If and Else - Events in ‘then’ subcharts should not be considered
as preceding events in ‘else’ subcharts.

∀ITE ∈ ITEL, ∀lix, liy s.t. lix ∈ ITE.SubT ∧ liy ∈ ITE.SubE : lix ≮L liy

Operational Semantics

If-then-else constructs are the first constructs we have seen so far that behave
differently when monitored in a prechart and when executed in the chart
body. To correctly monitor if-then-else constructs within precharts, we should
allow the execution mechanism to ‘wait’ outside the construct until a minimal
event in the ‘then’ part or the ‘else’ part occurs. In order to allow waiting
outside the if-then-else construct but to enable events inside its subcharts to
occur, we extend the range of occurrences of events allowed, to include more
than the set of directly enabled ones.

Definition 10.6.1 (reachable event). A visible event e is reachable from
a cut C if:

1. The event e is enabled with respect to C, or
2. There exists a hidden event e′ such that e is reachable from the cut C ′ =

AdvanceCut(C, e′).

The reachable events are therefore all the events that are enabled, or can
become enabled by propagating some hidden events.

The transition relation ∆ is therefore extended with transitions for han-
dling if-then-else constructs and with transitions allowing reachable events
to occur, even if they are not directly enabled:

• If e = 〈M, t〉 (where t ∈ {Send, Recv}) then:
1. Set Context ← ∅.
2. If ∃CL ∈ RL and ∃e′ ∈ CL.LSC such that e and e′ are negatively

level1-unifiable and e′ violates CL, then set RL ← RL \ {CL}. If
temp(CL.Cut) = hot, set Violating ← True.

3. For every universal LSC L ∈ SU which has an event e′, positively level1-
unifiable with e, as a minimal event in its prechart, create a copy of L,
CL, and set RL ← RL ∪ {CL}. Set CL.Mode = PreActive and set
its cut by CL.Cut ← AdvanceCut(InitialCut(L), 〈PchL, Start〉). Unify
the variables of e and e′, by Unify(e, e′, Context). For each hidden event
e′′ <L e′, apply ∆(e′′).

144 10. Branching and Subcharts

4. For every copy CL ∈ RL which has a reachable event e′, positively level1-
unifiable with e, set its cut by CL.Cut ← AdvanceCut(CL.Cut, e′).
Then, if e′ = 〈M,Send〉, M is synchronous and e′′ = 〈M,Recv〉, set
the cut by CL.Cut ← AdvanceCut(CL.Cut, e′′). Unify the variables of
e and e′, by Unify(e, e′, Context). For each hidden event e′′ <L e′, apply
∆(e′′).

• If e = Completed(CL) for some CL ∈ RL, then set RL ← RL \ {CL}.
• If e = 〈PchL, End〉 for some CL ∈ RL, then set

CL.Cut ← BeginMainCut(CL.LSC) and CL.Mode ← Active.
• If e = perform(A) for some A ∈ AL s.t. CL ∈ RL, then set

CL.Cut ← AdvanceCut(CL.Cut, e) and set

A.V ←




A.C if A.Type = constant
V alue(A.P) if A.Type = property
A.f(A.λF

f) if A.Type = function

• If e = eval(C) for some C ∈ CL s.t. CL ∈ RL, then
1. If value(C) = true then set CL.Cut ← AdvanceCut(CL.Cut, e);
2. If value(C) = false then

a) If subchart(C) ∈ {ITE.SubT , ITE.SubE} for some ITE then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

b) If subchart(C) = Sub ∈ SUBL then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

c) If subchart(C) = ⊥ then set RL ← RL \ {CL};
d) If temp(C) = hot, set Violating ← True.

• If e = branch(ITE) for some ITE ∈ CL s.t. CL ∈ RL then
1. If value(ITE.C) = true then set

CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubT , Start));
2. If value(ITE.C) = false then

set CL.Cut ←
{

AdvanceCut(CL.Cut, (ITE.SubE , Start)) if ITE.SubE 6= ⊥
AdvanceCut(CL.Cut, (ITE.SubT , End)) if ITE.SubE = ⊥

• If e = (ITE.SubT , End) for some ITE ∈ CL s.t. CL ∈ RL then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

• If e = (ITE.SubE , End) for some ITE ∈ CL s.t. CL ∈ RL then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubE , End))

10.6 And a Bit More Formally ... 145

• If e = (Sub, End) for some Sub ∈ CL s.t. CL ∈ RL then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

Finally, we modify super-step so it does not attempt to evaluate conditions
of if-then-else constructs that are located in precharts (i.e., within copies that
are preactive).

super-step

1. Compute the set of enabled events:

Enabled ←
⋃

CL∈RL
{e ∈ EL | enabled(e)}

Waiting ←
⋃

CL ∈ RL,
CL.Mode = PreActive

{e | e = branch(ITE)}

Enabled ← Enabled \ (External ∪Waiting)

2. If there is a hidden enabled event e ∈ Enabled, then
a) Apply ∆(e).
b) Go back to 1.

3. If there is a visible enabled event e ∈ Enabled, such that e does
not violate any copy which is in active mode, then
a) step(e).
b) Go back to 1.

4. Terminate super-step.

146 10. Branching and Subcharts

10.7 Bibliographic Notes

The MSC standard also describes a higher-level way of connecting MSCs,
termed hierarchical MSCs (HMSCs). An HMSC is a directed graph with one
initial node and one final node. Each node in the graph is associated with a
basic MSC (bMSC). Using HMSCs, one can specify the order in which differ-
ent scenario fragments are to be considered, similar to the way it is done with
subcharts in LSCs. HMSCs also allow one to define conditions as nodes of the
underlying graph, thus allowing for conditional branching, where each branch
is given as a bMSC or an HMSC. A major difference between a subchart in
an LSC and a bMSC in an HMSC lies in the synchronization requirement.
In LSCs, all the instances that participate in a subchart synchronize at its
beginning and end, while in HMSCs there is no such requirement. The fact
that an instance is allowed to proceed to the next bMSC without having to
synchronize with other instances has some significant effects on behavior, as
discussed in Chap. 13.

Part IV

Advanced Behavior: Multiple Charts

11. Executing Multiple Charts

In previous chapters we presented various LSC constructs. Besides discussing
the play-in process for each construct, we also discussed its semantics when
monitoring a system against an LSC specification, and then showed how it
can be played out directly within its host LSC. However, the focus so far was
on the semantics of the construct within a single LSC. An LSC specification
will typically consist of a number (often a large number) of charts, and play-
out’s most subtle issues arise from their combination and interaction. In this
chapter we focus on executing multiple LSCs, as well as on overlapping
incarnations of a single LSC.

11.1 Simultaneous Activation of Multiple Charts

Consider the two LSCs of Fig. 11.1. They describe different actions required
to be taken by the system when the main switch is clicked to on. ‘LSC1’
states that the main light should turn on, and ‘LSC2’ states that the first
switch should be set to Med and the first warning light should turn green.

As the user plays out a scenario in which the main switch is clicked to on,
both charts are activated. Suppose that these charts are not to be executed,
but rather are viewed as a test of a system, meaning that they are to be
monitored against a sequence of events generated by the system. In this case,
all the Play-Engine has to do is to wait for the next event, advance the
charts accordingly and check that the partial order induced by the charts is
not violated. In contrast, suppose that the charts are to be executed by the
Play-Engine, and there is no other system against which we are testing. In
this case, the engine has to choose the next event and must then proceed to
carry it out. In the above example, the three events can be chosen in any
order, since they are not constrained by the LSC partial order.

Suppose now that, in addition to the two LSCs of Fig. 11.1, the specifi-
cation also contains the LSC shown in Fig. 11.2, stating that when the user

150 11. Executing Multiple Charts

Fig. 11.1. Activating two LSCs as a result of a single event

clicks the main switch to on, the main light turns on, and only after that can
the first switch and the warning light take their actions.1

Fig. 11.2. Constraining events in other charts

1 This kind of phenomenon, where different scenarios refer to the same set of actions
and reactions in a somewhat different way, is quite common when preparing system
requirements, where it is often the case that they are written by more than one person
or in several phases.

11.1 Simultaneous Activation of Multiple Charts 151

Now, when the user clicks the switch to on, the three charts are activated.
In this case, the only event that can be carried out without getting into
trouble is that of turning on the light, since selecting any one of the other two
events will cause a violation of ‘LSC3’. Accordingly, the algorithm underlying
the play-out mechanism has been designed to allow the choice of the next
event to be carried out only from among the set of events that are both
enabled and do not violate any other chart.

We have seen several examples of LSCs that were activated by (i.e., their
precharts contained) user actions. LSCs can also be activated by system
events, thus enabling the specification of scenario fragments that may
be shared by more than one scenario. The LSC ‘Med-Green1’ in Fig. 11.3(a)
states that when the first 3-state switch is set to Med, the first warning light
changes to green. Another LSC, ‘Green1-Console’, shown in Fig. 11.3(b),
states that every time the first warning light changes to green, a correspond-
ing message appears on the console.

Fig. 11.3. Activation of one LSC by another

When the user sets the state of the first 3-state switch to Med during play-
out, ‘Med-Green1’ is activated. Since its prechart contains only one message,
it is successfully completed and the Play-Engine executes the event in the
chart body. As this event is fired, it is identified as a minimal event in the
prechart of ‘Green1-Console’ and this chart is activated too (see Fig. 11.4).
The LSC event selected by the Play-Engine is marked by a thick red circle
and all the events that are advanced simultaneously with it (in this case there
is only one) are marked by thin red circles.

Sometimes, in order to progress with the execution dictated by the body of
certain LSCs, we must violate the precharts of others. Consider for example a
specification that contains an LSC for each pair of switch and warning light,
saying that when the former is set to Med, the latter turns green. Suppose we
have another chart saying that if the warning lights turn green in ascending

152 11. Executing Multiple Charts

Fig. 11.4. Chain of activations in play-out

order, from 1 to 3, the console should display some message. Now, assume
that the user clicks switch number 1 and then switch number 3. Figure 11.5
shows the result. After setting the first switch to Med, the first light turns

Fig. 11.5. Violating a prechart

green and activates the LSC ‘All Green’ (on the right). When the user then
sets the state of the third switch to Med, the Play-Engine has to select an
event to carry out. In this case, the only enabled event is that of changing
the third light to green, but clearly this event is not enabled in the LSC ‘All
Green’. Precharts can obviously stay active without being completed, and
unless and until a prechart is completed, the system is not constrained by
the corresponding LSC at all. Thus, the Play-Engine is allowed to change

11.1 Simultaneous Activation of Multiple Charts 153

the color of the third light to green and terminate the prechart before it is
completed.

A careful examination of the issue of violating an LSC before its prechart
completes raises the following question: why not try to violate all precharts
as soon as possible, thus minimizing the set of constraints imposed on the
execution. Indeed, this is a legitimate question, and a policy that selects
events based on this criteria would have been a legitimate one. This kind
of policy is minimal, in the sense that it minimizes the set of events that
should be carried out, by trying to ‘cut off’ LSCs that do not yet obligate
the execution.

We have chosen a maximal policy; i.e., our algorithm tries to avoid vio-
lating precharts as long as it can. Only if there is no choice left and the only
events that can be carried out are ones that violate some prechart, is such
an event taken and the prechart terminated. This rule applies not only to
precharts. The play-out algorithm may also violate LSC copies that are in
active mode and are located in a cold cut. Again, we allow this, since violat-
ing an LSC in a cold cut is not considered a violation, due to the fact that
none of the instances is obligated to progress. Therefore, when an event vio-
lating such a chart is taken, it can be viewed as though the instances decided
to stay in their locations and the chart could have been terminated earlier.
Similarly, our reluctance to violate precharts also carries over to cold cuts of
the main chart. This is also due to the maximal approach we take.

The principle behind the maximal approach is the following: We believe
that users specify behavior for a reason, and they want the behavior to be
executed if possible. Cold cuts are means to allow scenarios to end before
they are expected, due to possible interactions with other scenarios.

To summarize, the play-out execution mechanism searches for enabled
events to be carried out according to the following order:

1. If there is an enabled event that does not violate any prechart or any
LSC in a cold cut, select it.

2. If there is an event that violates some prechart but does not violate any
LSC in a cold cut, select it.

3. If there is an enabled event that violates an LSC in a cold cut but does
not violate any LSC in a hot cut, select it.

4. Otherwise, no event can be carried out.

In the Play-Engine, the user is given full control over whether or not to
allow violation of precharts and whether to allow violation of cold cuts when
looking for the next event (i.e., whether to allow the Play-Engine to use steps
2 and 3 when it looks for the next event to be carried out).

154 11. Executing Multiple Charts

11.2 Overlapping Charts

We have just seen how several LSCs can be activated simultaneously. In
this section we show how the same LSC can be activated more than once
simultaneously, resulting in several overlapping copies of the same original
chart.

Suppose the user would like to click digits and have the display continu-
ously show the sum of the last two digits clicked. This behavior is captured
by the single LSC in Fig. 11.6.

Fig. 11.6. Continuous two-digit summation

Consider the scenario in which the user clicks ‘2’ and then ‘3’. Figure 11.7
shows the LSC copies that are active at the end of this scenario. The one on

Fig. 11.7. Overlapping charts during play-out

the left is activated by the click on ‘2’. Then, when the user clicks ‘3’, the
prechart completes and the display is instructed to show “5”. Note that the
yellow label at the bottom (displayed when the mouse is placed over the last

11.2 Overlapping Charts 155

message) shows that X1 and X2 are bound to 2 and 3, respectively. Another
thing that occurs as a result of the user clicking ‘3’ is the activation of a new
copy of the same LSC, the reason being that clicking ‘3’ is unifiable with a
minimal event in the chart. The new copy is shown on the right in Fig. 11.7,
and, as can be seen, it is waiting for the next digit to be clicked before its
prechart can be completed. The tool tip in this LSC copy shows that X1 is
bound to 3 and X2 is still unbound.

The fact that an LSC can be active simultaneously in several copies,
each in a different cut, can be used for several purposes. One interesting
use involves recursive calls. Consider the LSCs in Fig. 11.8, which consti-
tute a scheme of a recursive computation consisting of a start, a recursive
call guarded by a termination condition, and some way of specifying the re-
turned value. Figure 11.8(a) shows that when a digit is clicked, the display’s
background changes to white and it then shows the digit itself. Figure 11.8(b)

Fig. 11.8. Recursion in LSCs

156 11. Executing Multiple Charts

consists of the recursive call. It says that every time the display shows some
value, if this value is greater than 1 a new value equal to the previous value
minus two is shown. The recursion stems from the fact that the event of
decreasing the digit in the body of the chart of Fig. 11.8(b) triggers a rein-
carnation of that very chart, as long as the digit shown is larger than 1.
Finally, the LSC of Fig. 11.8(c) says that when the display shows the value
0 or 1 its background changes to green or red, respectively. Besides looping
down and decreasing the display digit, this combination of LSCs checks par-
ity without the use of odd or even predicates: when an even digit is clicked
the display turns green, and when the digit clicked is odd the display turns
red.

Figure 11.9 shows a snapshot of the active LSCs towards the end of a run.
Figure 11.9(a) shows the ‘Recursive Call’ LSC that was activated when the

Fig. 11.9. Recursive LSCs during play-out

display showed “2”. Since the variable X5 in this copy is bound to 2, the
cold condition holds and the display is instructed to show “0” (marked by a
thick red circle). As a result of this event, two more charts are activated. A
new copy of ‘Recursive Call’ is created, this time with X5 bound to 0 (Fig.
11.9(b)). In this LSC the cold condition does not hold and therefore the chain
of recursive calls terminates. In addition, the LSC ‘Terminate’ is activated
with D = 0. The cold condition in the prechart of this LSC is true and
the main chart is entered. The main condition of the if-then-else evaluates
to true, causing the background of the display to change to green and the
scenario to end.

11.3 And a Bit More Formally ... 157

Figure 11.10 shows how the two LSCs of Fig. 11.8(b) and 11.8(c) can be
combined using nested if-then-else constructs. It is clear that this LSC can

Fig. 11.10. More compact recursion

replace the two original charts, but what is particularly interesting is the
fact that all three can be executed together, synchronizing on all the visible
events they share.

In the above examples we saw that a single LSC can be active in more
than one copy simultaneously. We should emphasize that different copies of
the same LSC do not differ only in their cuts but also in the values assigned
to their variables. Thus, an LSC live copy consists of a fully cloned chart,
including an independent copy of its variables. We would also like to note
that although the example of recursion seems a bit coarse, it is because we
have used messages that denote property changes. In Chap. 14 we refine the
system model with messages that better capture the notion of calling an
object or sending it a control signal.

11.3 And a Bit More Formally ...

The issue of executing multiple charts is not related to the system model
or to the LSC language, and is therefore relevant only to the operational
semantics.

158 11. Executing Multiple Charts

Operational Semantics

The notions of enabled events and violating events were defined in previous
chapters and remain unchanged. The procedure for performing a super-step
referred to these definitions too and avoided carrying out events that violated
other LSCs. We now refine super-step so that it tries to avoid selecting events
that violate other precharts or LSCs in cold cuts. The operational semantics
assumes that both kinds of violation are permissable and does not refer to
the option of the user controlling these parameters. The extension is quite
straightforward.

super-step

1. Compute the set of enabled events:

Enabled ←
⋃

CL∈RL
{e ∈ EL|enabled(e)}

Waiting ←
⋃

CL ∈ RL,
CL.Mode = PreActive

{e | e = branch(ITE)}

Enabled ← Enabled \ (External ∪Waiting)

2. If there is a hidden enabled event e ∈ Enabled, then
a) Apply ∆(e).
b) Go back to 1.

3. If there is a visible enabled event e ∈ Enabled, such that e does
not violate any copy that is in active or preactive mode, then
a) step(e).
b) Go back to 1.

4. If there is a visible enabled event e ∈ Enabled, such that e does
not violate any copy that is in active mode, then
a) step(e).
b) Go back to 1.

5. If there is a visible enabled event e ∈ Enabled, such that e does
not violate any copy that is in active mode with a hot cut, then
a) step(e).
b) Go back to 1.

6. Terminate super-step.

12. Testing with Existential Charts

Universal charts, which must be satisfied by any run that satisfies their
prechart, ‘drive’ the model by their action/reaction nature. In contrast, ex-
istential charts, which can get by with only a single satisfying run, can be
used as system tests or as examples of object interactions. In this chapter,
we deal with the uses of existential charts and the way they are monitored
by the Play-Engine.

12.1 Specifying Test Scenarios

Consider Fig. 12.1, which describes the following scenario-based test:

Fig. 12.1. Specifying tests with existential charts

The user first opens the cover and dials 911 (by clicking the digit
keys in that order). At this point, the display is expected to change its

160 12. Testing with Existential Charts

mode from Date to Number and should display the number “ 911”.
Next, the user clicks the Send button. At this point the speaker should
emit an outgoing dial tone. Then, when a signal indicating that the
call was answered (denoted by the word ACK) is received from the
environment, the speaker becomes silent.

In contrast to universal charts, this LSC does not specify how and when
the system actions are carried out (e.g., displaying a number, making a sound,
etc.), but rather constrains the behavior of the system to satisfy a set of
conditions that are expected to hold at different points in the run. We are
using it to define a test scenario. The required test results are specified using
hot conditions, thus enabling the chart to complete only if the conditions all
evaluate to true.

Although system tests can be described using existential charts, it is im-
portant to remember that a system can satisfy an existential LSC by produc-
ing but a single run in which the LSC is successfully traced to completion.
Therefore, in the case of nondeterministic systems, satisfying an existential
LSC cannot be considered as proving that the system always behaves in some
way, but only that it may behave in some way. To show that a system al-
ways behaves in a specified manner, one should monitor the system against
a universal LSC.

12.2 Monitoring LSCs

Rather than serving to drive the play-out, existential charts are monitored
and checked for their successful completion. To integrate the monitoring capa-
bilities into our execution mechanism, recall from Sect. 5.3 that an execution
engine had to satisfy the first four requirements. We now add a fifth, yielding
the following list:

1. Identify an external stimulus and find all the requirements that should
be considered when resolving the system’s response to it (e.g., identify
the event of flipping a switch and find all the requirements that specify
the system’s responses to the switch being flipped).

2. Apply the relevant requirements to create the sequence of system reac-
tions. This is done iteratively, and thus includes identifying additional
requirements that become relevant as the system is responding and ap-
plying them too (e.g., after the switch is flipped, send a signal to the
controller, which in turn may result in sending a signal to the light and
turning it on).

12.2 Monitoring LSCs 161

3. Identify scenarios that are forbidden according to the requirements, and
avoid generating them (e.g., make sure that if the requirements say that
a certain signal cannot be sent to the light while it is on, it will indeed
not be sent when the light is on).

4. If a forbidden scenario actually occurs (e.g., because some other manda-
tory scenario forces it to), indicate a violation.

5. Indicate when an existential (provisional) scenario successfully completes.

When monitoring a chart, the Play-Engine simply tracks the events in
the chart as they occur, and is not required to initiate any visible events
while doing so. Existential charts are monitored in a way similar to that
for monitoring precharts of universal charts. Conditions and assignments are
performed and evaluated as soon as they are enabled, while the choices be-
tween ‘then’ and ‘else’ subcharts of if-then-else constructs are delayed until
an event in one of the two subcharts occurs.

When (and if) a traced chart reaches its end, it is highlighted, and the
user is informed that it was successfully traced to completion. The user may
select the charts to be monitored in advance, thus saving the Play-Engine
the need to track charts that might currently be of no interest. Figure 12.2
shows the chart from Fig. 12.1 after it was successfully traced to completion.

As with universal charts, there could be cases where a single existential
chart is activated in several overlapping copies, and at a given time during
execution each one is in a different tracking status (i.e., in a different cut).
This is fine, since one does not know a priori when a satisfying scenario
begins, and it could be the case that such a scenario begins after some prefix
of it has already been monitored. Had we allowed only a single copy for each
LSC active at a time, we would definitely have missed some of the satisfying
scenarios, and erroneously concluded that some existential scenario is not
satisfiable.

Universal LSCs go through a PreActive → Active → Terminate life cycle.
Existential LSCs go through a similar, though simpler, life cycle. When one of
the minimal visible events in the chart occurs, the copy is created and enters
the Check state. If the chart is violated, it is simply exited and deleted. If it
completes successfully, it moves through a temporary Completed state where
various registration and management actions are taken, and it is then exited
and deleted. Figure 12.3 shows the full life cycle of LSC copies.

Having existential LSCs at hand makes it possible to consider the notion
of consistency between a system and a specification. Earlier, we defined a
consistent run as one that does not violate any universal LSC in the spec-
ification. A system is consistent with a specification if all its runs are

162 12. Testing with Existential Charts

Fig. 12.2. Monitoring existential charts

consistent with the specification and, in addition, each existential LSC is sat-
isfied by some run. Note that without existential LSCs, and with a passive
user, a system could be easily consistent by simply doing nothing, since an
empty run trivially satisfies all the universal charts. Of course, since univer-
sal charts can have user events in their precharts, the system can be forced
to react even if no existential charts are present. However, in principle, if
we somehow prevented the user from taking any action (e.g., by initiating
the system with locked switches, buttons, etc.), then, in the absence of exis-
tential charts, the system could do nothing and still be consistent with the
specification.

12.3 Recording and Replaying

When playing out the GUI application, a run trace is produced, which in-
cludes all the user actions and the system reactions. These runs can be
recorded, to provide testimonies for fulfilling existential LSCs. Figure 12.4
shows a fragment of a recorded run.

Recorded runs can be saved (in XML format) and then reloaded and
replayed. In replaying a run, the user may select both existential and universal

12.3 Recording and Replaying 163

Fig. 12.3. Life cycle of LSC copies, including existential charts

charts to be traced. Existential LSCs can thus be shown to be fulfilled, and
with universal charts the run shows when the charts were activated and

Fig. 12.4. A recorded run

164 12. Testing with Existential Charts

how they participated in creating the system’s reactions. And, of course, the
engine notifies us if a universal chart is violated.

More importantly, runs can be imported from different sources and re-
played in the same manner. These external sources can be different imple-
mentations of the specification, either given as executable programs or as
more detailed design models (e.g., statecharts, labeled transition systems,
etc.). Importing a run from an implementation and replaying it, while trac-
ing all charts, can be used to show that the implementation is consistent with
the requirements, in the sense that existential charts are successfully traced
and universal charts are not violated.

Recorded runs can be manipulated by the user, by changing the order
of events and checking whether the resulting run is also a legal one. One of
the interesting possibilities that we have built into the Play-Engine is that of
deleting all system reactions and leaving only user and environment actions.
After applying this modification, the resulting run can be replayed. The user
can then specify that universal charts should also be activated (and not only
monitored). In this case, events from the recorded run are injected as before,
but now the selected universal charts activate the system and trigger events
as specified in their bodies.

This feature may be used for regression testing, in the following way.
While fulfilling (part of) the existential LSCs, the runs are recorded. Later
on, if some of the universal charts change, the runs can be modified to contain
only user actions and can then be replayed to verify that existential LSCs are
still successfully fulfilled and no universal charts are violated in the process.

12.4 On-line Testing

As discussed in the previous section, in order to test an intra-object model or
an actual system implementation with respect to a given LSC specification,
the system should record the generated events, and the recorded run can then
be loaded into the Play-Engine and replayed.

The Play-Engine provides another, more convenient, way for testing sys-
tem models and implementations. Using an External Event Manager, the
Play-Engine can be connected through a TCP/IP connection to other pro-
grams. To test a system, we would connect it to the Play-Engine and have
it send the generated events along the communication line. These events, in
the format of recorded events, would be received by the Play-Engine and
injected into the execution and monitoring mechanisms, in a way similar to
how recorded events are injected.

12.5 Executing and Monitoring LSCs in the Play-Engine 165

The Play-Engine enables the user to inject the events upon their arrival
or to have them accumulate in a queue and then inject them manually. By
asking the engine to monitor all the LSCs in the specification, the user can
test the system and verify that all the existential charts can be satisfied and
no universal charts are violated in the process. By having it activate universal
LSCs, the Play-Engine can operate in a mode where the external events are
actually received from an external source and are used to trigger the system’s
reactions, which are generated by the engine itself.

The Play-Engine can also be instructed to send the generated events back
to the communication line, and thus affect the connected program in any
desired way. This feature also makes it possible to connect two Play-Engines,
each executing its own specification and serving as the external environment
of the other; see Sect. 21.5.

12.5 Executing and Monitoring LSCs in the Play-Engine

Prior to LSCs, scenario-based languages were used mainly to express require-
ments, which are later verified against system runs. The semantics of these
languages is therefore oriented towards testing, and it specifies whether a set
of runs generated by the system satisfies the specification. Obviously, since
the language of LSCs can serve for testing as well, we would like to support
this kind of semantics too. However, the fact that our main interest in this
book is in executing some LSCs, the ones that drive the execution, while only
monitoring others, affects the language’s operational semantics.

Figure 12.5 illustrates how an LSC specification can be used both for
driving a model and for monitoring it. When executing an LSC specification,
the user may choose the LSCs that drive the model and those that will be
monitored. The driving LSCs must all be universal, while the set of moni-
tored LSCs may include both existential and universal charts. To keep the
semantics clean, we require that the two sets be disjoint. In practice, the
Play-Engine allows a universal LSC to both drive the model and be moni-
tored at the same time, and we refer to such cases as if there are two identical
but distinct LSCs, one in each set.

According to the conventional semantics of scenario-based languages, the
set of driving LSCs is empty and all the LSCs are monitored. In this setting,
events generated by the system are monitored one after the other (using
monitor event), by applying track event to these events and to hidden events
between them. The track event procedure is the basis of the LSC semantics
and it computes all the actions that should be taken as a result of firing an

166 12. Testing with Existential Charts

Fig. 12.5. Executing and monitoring LSCs

LSC event (e.g., advancing cuts, creating new copies, closing copies, unifying
events, etc.).

As we saw in earlier chapters, the Play-Engine’s execution mechanism
consists of the two procedures step and super-step. These are defined at a
higher level than track event and use the basic semantics to execute the
specification. After some external event occurs, the procedure step monitors
it as described above, except that the event is now monitored with respect
to the set of driving LSCs. The event is also sent to monitor event, so that
it affects monitored LSCs as well. Then, super-step searches through the
driving LSCs for events that can be executed. As long as such events exist
they are sent to step, thus monitoring them in both the driving LSCs and
the monitored LSCs.

12.6 And a Bit More Formally ...

In previous chapters we defined a system model and an LSC specification.
The system model is not affected by existential LSCs, and the LSC specifica-

12.6 And a Bit More Formally ... 167

tion was already defined with existential LSCs in mind. Therefore, the only
modifications that are required here are in the operational semantics.

Operational Semantics

An LSC copy of an existential LSC is in Check mode as long as it exists.

Definition 12.6.1 (LSC live copy). Given an LSC L, a live copy of L,
denoted by CL, is defined as

CL = 〈LSC,Mode, Cut〉,
where LSC is a copy of the original chart, Mode ∈ {PreActive, Active,
Check} is the execution mode of this copy, and Cut is some legal cut of
L representing the current location of the instances of L in this particular
copy.

When executing an LSC specification, the user may choose the LSCs that
drive the model and those that should be monitored. These two sets are
required to be disjoint. The operational semantics is therefore given as:

Sem(S) = 〈V, V0,SD,SM , ∆[SO,SC]〉
A state V ∈ V is modified to contain not only live copies of driving LSCs

(RL) but also a set of live copies of monitored LSCs (ML):

V = 〈RL,ML,Violating〉
The initial configuration contains no copies of driving LSCs and no copies of
monitored LSCs, and is defined as:

V0 = 〈∅, ∅, False〉
SD ⊆ SU is the set of driving LSCs, SM ⊆ SU ∪ SE is the set of LSCs the

user wishes to monitor, and the two sets satisfy SD ∩ SM = ∅.
The transition relation ∆ is no longer applied automatically to all the

LSCs in the specification and to the sets of running copies RL, but is pa-
rameterized with two sets. The first set, SO, contains original LSCs that are
subject to ∆. The second set, SC , contains the live copies that currently exist.
This set contains only copies of LSCs from SO. The two sets are instantiated
with either (SD,RL) or (SM ,ML).

Note that if one cares only about the ‘standard’ part of the semantics,
i.e., the part that enables a system to be tested and verified against an
LSC specification, and not in executing the specification directly, this can
be achieved by setting SM = S and SD = ∅.

The transition relation ∆[SO,SC] is modified so that it refers to its pa-
rameters and is extended to consider existential charts.

168 12. Testing with Existential Charts

• If e = 〈M, t〉 (where t ∈ {Send, Recv}) then:
1. Set Context ← ∅.
2. If ∃CL ∈ SC and ∃e′ ∈ CL.LSC, such that e and e′ are nega-

tively level1-unifiable and e′ violates CL, then set SC ← SC \ {CL}.
If temp(CL.Cut) = hot, set Violating ← True.

3. For every universal LSC L ∈ SO which has an event e′, positively level1-
unifiable with e, as a minimal event in its prechart, create a copy of
L, CL, and set SC ← SC ∪ {CL}. Set CL.Mode = PreActive and set
its cut by CL.Cut ← AdvanceCut(InitialCut(L), 〈PchL, Start〉). Unify
the variables of e and e′, by Unify(e, e′, Context). For each hidden event
e′′ <L e′, apply ∆(e′′).

4. For every existential LSC L ∈ SO which has an event e′, positively level1-
unifiable with e, as a minimal event in the chart body, create a copy of
L, CL, and set SC ← SC ∪{CL}. Set CL.Mode = Check, and set its cut
to the beginning of the chart by CL.Cut ← BeginMainCut(CL.LSC).
Unify the variables of e and e′, by Unify(e, e′, Context). For each hidden
event e′′ <L e′, apply ∆(e′′).

5. For every copy CL ∈ SC which has a reachable event e′, positively level1-
unifiable with e, set its cut by CL.Cut ← AdvanceCut(CL.Cut, e′).
Then, if e′ = 〈M,Send〉, M is synchronous and e′′ = 〈M,Recv〉, set
the cut by CL.Cut ← AdvanceCut(CL.Cut, e′′). Unify the variables of
e and e′, by Unify(e, e′, Context). For each hidden event e′′ <L e′, apply
∆(e′′).

• If e = Completed(CL) for some CL ∈ SC , then set SC ← SC \ {CL}.
• If e = 〈PchL, End〉 for some CL ∈ SC , then set

CL.Cut ← BeginMainCut(CL.LSC) and CL.Mode ← Active.
• If e = perform(A) for some A ∈ AL s.t. CL ∈ SC , then set CL.Cut ←

AdvanceCut(CL.Cut, e) and set

A.V ←




A.C if A.Type = constant
V alue(A.P) if A.Type = property
A.f(A.λF

f) if A.Type = function

• If e = eval(C) for some C ∈ CL s.t. CL ∈ SC then
1. If value(C) = true then set CL.Cut ← AdvanceCut(CL.Cut, e).
2. If value(C) = false then

a) If subchart(C) ∈ {ITE.SubT , ITE.SubE} for some ITE then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

b) If subchart(C) = Sub ∈ SUBL then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

12.6 And a Bit More Formally ... 169

c) If subchart(C) = ⊥ then set SC ← SC \ {CL}.
d) If temp(C) = hot then set Violating ← True.

• If e = branch(ITE) for some ITE ∈ CL s.t. CL ∈ SC then
1. If value(ITE.C) = true then set

CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubT , Start))
2. If value(ITE.C) = false then

set CL.Cut ←
{

AdvanceCut(CL.Cut, (ITE.SubE , Start)) if ITE.SubE 6= ⊥
AdvanceCut(CL.Cut, (ITE.SubT , End)) if ITE.SubE = ⊥

• If e = (ITE.SubT , End) for some ITE ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

• If e = (ITE.SubE , End) for some ITE ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubE , End))

• If e = (Sub, End) for some Sub ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

In Chap. 5 we defined a consistent run as one that does not cause any
violations.

Definition 12.6.2 (consistent run). A run R is consistent with an LSC
specification S if, starting from V0, the rules of ∆ can be applied to the events
in R and to the hidden events generated between them, without reaching a
violating transition.

We can now define a consistent system with respect to an LSC specifica-
tion.

Definition 12.6.3 (consistent system). A system Sys is consistent with
an LSC specification S if all the runs of Sys are consistent with the specifica-
tion, and if for every existential LSC L ∈ SE there exists a run that satisfies
L.

The difference between executing a specification and monitoring it is re-
flected in the three high-level procedures. The step and super-step procedures
are used for executing the driving LSCs and the new monitor-event proce-
dure is used to monitor the monitored LSCs. The procedure step is modified
so that ∆ is applied to the event to be executed, just as before, thus affect-
ing the driving LSCs, but then the event is sent to monitor-event, so that it

170 12. Testing with Existential Charts

affects the monitored LSCs too. Thus, a model that is driven by some charts
can simultaneously monitor other charts.

step(e)

1. Apply ∆[SD,RL](e).
2. Change the property value according to the value in the message:

a)

O ←
{

e.M.Src if M ∈ ΣToUser ∪ΣToEnv

e.M.Dst otherwise

b) P ← e.M.P
c)

V alue(O.P) ←
{

e.M.f(e.M.λF
f) if e.M.f 6= ⊥

e.M.V.ω otherwise

3. monitor-event(e).

Since the procedure super-step triggers the execution of events by send-
ing them to step, and step already sends them to monitor-event, super-step
remains unchanged from its latest definition in Chap. 11.

In case a sequence of visible events is to be monitored against an LSC
specification, as in replaying a run, for example, the events are sent one by
one to monitor-event. This procedure is a simple combination of a single step
and a super-step which is allowed to propagate only hidden events. The input
to monitor-event is a single event and it advances all the hidden events until
none is enabled:

monitor-event(ev)

1. Apply ∆[SM ,ML](ev).
2. Compute the set of enabled events:

Enabled ←
⋃

CL∈ML
{e ∈ EL|enabled(e)}

Waiting ←
⋃

CL∈ML
{e | e = branch(ITE)}

Enabled ← Enabled \Waiting

3. If there is a hidden enabled event e ∈ Enabled, then
a) Apply ∆[SM ,ML](e).
b) Go back to 2.

4. Terminate monitor-event.

12.7 Bibliographic Notes 171

12.7 Bibliographic Notes

The notion of a consistent system with respect to an LSC specification was
given in [27]. In [46] a consistent LSC specification is defined as a specification
for which there exists a set of runs such that every existential chart is satisfied
by at least one run and every universal chart is satisfied by all runs. It is
proved in [46] that an LSC specification is consistent if and only if it is possible
to synthesize a statechart model for it, such that the model is consistent with
the specification. We should remark that the results in [46] were defined for a
subset of the LSC language described here that does not contain assignments
and conditions, for example.

In [76] a methodology is described, supported by a tool called TestConduc-
tor, which is integrated into Rhapsody [60]. The tool is used for monitoring
and testing a model using a subset of LSCs. The charts can be monitored in a
way that is similar to the way we trace existential charts. Sequence diagrams
created using the TestConductor allow the use of variables. However, when
such a chart is to be used, the user has to manually bind the variables in the
chart with concrete values. Therefore, runtime unification is not performed,
and if a general scenario needs to be verified for a priori unknown objects
and values, the diagram must be manually instantiated for all possible com-
binations.

In [29] a verification environment is described, in which LSCs are used to
express requirements that can be verified against a Statemate model. The
tool is commercially available with the Statemate tool. The verification is
based on translating an LSC into a timed Büchi automaton, as described in
[65], and it also handles timing issues. In both [29] and [76], the underlying
assumption is that a system model whose reactive parts are described by
statecharts has already been constructed, and the aim is to test or verify
that model using sequence charts.

Part V

Advanced Behavior: Richer Constructs

13. Loops

In this chapter, we discuss how to specify iteration in LSCs, in the form of
the various kinds of looping constructs the language supports.

13.1 Using Loops

Continuing with our bakery panel example, consider the following require-
ment:

If the temperature of thermometer]1 rises above 50 degrees, its asso-
ciated warning light should flicker five times.

This requirement can be described using an LSC with the rising of the tem-
perature in the prechart and five pairs of messages, each denoting the change
of the light to green and back to white. Clearly, to cater for larger or varying
numbers of iterations, this method becomes impractical, and a loop con-
struct becomes essential. Figure 13.1 shows an LSC with a simple fixed
loop, in which the light changes color to green and back to white five times.

Fig. 13.1. A loop with a constant number of iterations

176 13. Loops

Now, suppose we want the light to flicker as long as the temperature
remains above 50 degrees, rather than a fixed number of times. Here, the
number of iterations is a priori unknown and depends on the dynamic be-
havior of the system. Figure 13.2 shows an LSC for this, in which the loop is
unbounded (denoted by a ‘*’). An unbounded loop iterates forever, and can

Fig. 13.2. An unbounded loop

be exited, like any other subchart, if a cold condition inside it evaluates to
false. In this case, the loop will iterate and the light will keep flickering, as
long as the condition is true, i.e., until the temperature decreases to below
50 degrees.

13.2 Playing In

Playing in loops is done in a way similar to that for if-then-else constructs.
Here too, when the user wishes to play in a loop he/she clicks the loop
icon on the toolbar and a loop wizard opens (see Fig. 13.3). As long as the
wizard is open, the user can keep on playing in behavior as usual and all
the generated constructs (e.g., messages, assignments, etc.) are placed inside
the loop. When the user clicks End Loop, the loop is closed and the cursor
is placed immediately after it. If elements are to be added inside the loop
after it is closed, the user can drag the cursor and drop it anywhere inside
the loop. The elements played in from that point on will be located inside
the loop, immediately prior to the cursor.

Figure 13.4 shows an example in which the loop is fixed but the number
of iterations is not given as a constant but is represented by a variable T . In

13.2 Playing In 177

Fig. 13.3. Playing in loops

Fig. 13.4. Using a variable as the number of iterations

play-out, the loop will iterate T times, where T is the number of the currently
selected thermometer in the thermometer selector. Had T changed its value
within the loop body, this could not have changed the number of iterations,
which is fixed in advance based on the value of T when the loop is started.

Three kinds of loops are defined in our extended language of LSCs. As we
have seen, a fixed loop is performed a fixed number of times, which can be
given as either a constant or as the value of a variable in the chart.

The second kind of loop is the unbounded loop we have seen, which is
performed an a priori unknown number of times and is exited only when a
cold condition in it evaluates to false. Note that placing a cold condition C
at the beginning or end of an unbounded loop creates a while C do or repeat
until ¬C construct, respectively. One can also place a cold condition with a
SELECT statement in the loop, thus specifying that it should be iterated a
nondeterministic number of times, governed by the probability given therein.

178 13. Loops

Having unbounded loops as part of the language is not only a matter of
convenience, it increases the computational power of the language so that
in the presence of integer variables it can express the full range of recursive
functions; bounded loops can express only primitive recursive ones.

The third kind of loop is the dynamic loop, annotated with a ‘?’, for
which the user determines the number of iterations at run time.

13.3 Playing Out

During play-out, a loop can be entered, like any other subchart, only if all
the instances that participate in it have reached their locations at the loop
start. Before entering the loop, its maximal number of iterations is stored.
If the loop is fixed, this number is known; if the loop is unbounded, the
maximal number of iterations is set to infinity. If the loop is dynamic, the
user is prompted on the fly for the desired number of iterations (see Fig.
13.5). The user specifies the desired number, and can also indicate whether

Fig. 13.5. Setting up a dynamic loop

he/she would like to be prompted again after that number of iterations is
over. Dynamic loops are quite powerful when it comes to testing different
behaviors of the system.

As the execution progresses and the loop is iterated, the Play-Engine
provides runtime information to help the user monitor the course of exe-
cution. Figure 13.6 shows an example of such runtime information. In the
top-left corner of the loop subchart, the Play-Engine indicates that the loop
is currently in its second iteration out of three (denoted by 2/3), and in the
top-right corner it shows the number of already completed iterations. The

13.4 Using Variables Within Loops 179

Fig. 13.6. Runtime information during loop execution

second number is important mainly because it is shown also after the loop
has completed. Thus, one can know how many times each of the loops was
actually performed, regardless of its expected, prescribed or maximal number
of iterations. Recall that even fixed loops can be exited prior to completion
due to cold conditions, so this information is never really redundant.

13.4 Using Variables Within Loops

Let us consider the LSC in Fig. 13.7. It states that after the user changes the

Fig. 13.7. Binding variables in loops

state of the first switch three times, the console should display an appropriate
message. Since we do not really care to what state the switch is set we have

180 13. Loops

used a symbolic message with a variable S. But using a naive semantics here
is problematic: Recall that as the execution progresses, variables in symbolic
messages are bound to concrete values as a result of the various events being
carried out. Suppose the user sets the first switch to High. As a result, a copy
of this LSC is created, in which S is bound to High. If the user then changes
the state of the switch to Med, this event will not be unified with the message
in the LSC, since S is already bound to a different value. This is clearly not
what we had in mind when playing in the LSC. And, indeed, we have chosen
a semantics different from the one just described for variables within loops.
According to the proposed semantics, every time the loop body is re-entered,
all the variables that occur for the first time inside the loop (in the sense of
Sect. 7.2) are freed from their bindings, thus enabling rebinding with new
values. This way, the LSC of Fig. 13.7 behaves exactly as desired.

We free only variables that occur for the first time inside the loop, since
if the variable used in the loop is the same as one used prior to the loop, the
intention is to restrict its value in the loop to the one it was bound to before
the loop was started. Figure 13.8 shows a similar LSC, except that now S is

Fig. 13.8. Using an already bounded variable in a loop

bound outside the loop with the first state to which the switch is changed.
In this case the two remaining occurrences can be unified only with events
that change the switch to the same state, which is quite different from the
meaning the semantics assigns to the LSC of Fig. 13.7.

13.5 Executing and Monitoring Dynamic Loops 181

13.5 Executing and Monitoring Dynamic Loops

In this section we discuss some of the delicate aspects concerning the differ-
ences between executing a loop in an LSC and monitoring it with respect to
a given system run.

When it comes to fixed and unbounded loops, the mechanisms for exe-
cuting and monitoring the loops are quite similar. In both cases, the loop is
entered, and is iterated a fixed number of times, or until a false cold condi-
tion is encountered. The main difference is that when it is executing an LSC
specification, the Play-Engine selects the events to be carried out, whereas
when it is monitoring, the sequence of events is provided externally.

The major differences between executing and monitoring loops arise for
dynamic loops. As explained, when a dynamic loop is encountered in a uni-
versal chart, the user is prompted for the desired number of iterations. This
is true not only for loops within the main chart but also in the prechart. This
may be somewhat counterintuitive, since in the prechart the Play-Engine
monitors events and does not initiate them. So why can’t the Play-Engine
monitor a dynamic loop and determine on its own when the loop is over?
Well, consider Fig. 13.9, in which, after the user flips the switch between
on and off a number of times that is to be determined at runtime, the light
should turn on. Suppose now that the user flips the switch to on and a copy

Fig. 13.9. A dynamic loop in the prechart

of this LSC is created. If the user now flips the switch to off, the Play-Engine
faces the following dilemma: Should it wait for the user to continue flipping
the switch or should it proceed to the main chart and initiate the event of
turning the light on? Since the Play-Engine cannot resolve this dilemma on

182 13. Loops

its own, the user is prompted for the number of iterations as soon as the loop
is reached, even though we are in the prechart.

When a user is prompted for the number of iterations he/she may specify
‘0’ to indicate that in the current run the loop should not be executed at
all. In this case the loop is skipped and the Play-Engine continues executing
the events that follow it. There could be cases, like the one in Fig. 13.9,
where the loop is reached only after one of its minimal events has already
occurred (since it is a minimal visible event in the prechart). In such cases
the Play-Engine enters the loop and then prompts the user post factum for
the desired number of iterations. If the user chooses ‘0’, the chart is closed
since the prechart was violated.

In contrast to executing universal charts, when it monitors an LSC the
Play-Engine does not have to initiate execution of events at any point. Hence,
dynamic loops can be used to further extend the expressive power of LSCs
and to indicate sequences of events that repeat an a priori unknown number of
times (including 0) but for which the number of iterations is not determined
by any constant, variable or condition. Figure 13.10 shows an example of an
existential LSC with two dynamic loops. This LSC can be activated either

Fig. 13.10. A dynamic loop in a monitored LSC

by the user changing the state of the first switch, in which case the first loop
is entered, or by the user clicking the Probe button, in which case the first
loop is skipped, i.e., it is carried out 0 times. If the chart was started by the
user changing the state of the switch, the Play-Engine will keep monitoring
the incoming events and will exit the loop upon receiving the event of the
probe button being clicked. In the same spirit, two probe-clicks alone also

13.6 And a Bit More Formally ... 183

satisfy the chart, since both of the loops are carried out 0 times and the LSC
completes.

Besides these differences between monitoring and executing dynamic
loops, the Play-Engine is required to handle loop endings differently when
they are executed and when they are monitored. During execution, when a
loop reaches its end, the Play-Engine can immediately determine whether to
exit the loop or return to its beginning. When monitoring dynamic loops,
the Play-Engine waits before the loop end until the next event arrives. If the
event matches a minimal event in the body of the loop, the execution con-
tinues from the loop’s start. If it matches an event that immediately follows
the loop, the loop is exited and execution continues from there.1

13.6 And a Bit More Formally ...

Following the semantics skeleton, we show the extensions and modifications
needed to support the various kinds of loop constructs.

System Model and Events

Loop constructs are entirely specification oriented and therefore do not affect
the system model.

LSC Specification

An LSC L is extended to contain loop constructs as follows:

L = 〈IL, VL,ML, [PchL], AL, CL, SUBL, ITEL, LOOPL, evnt, subchart, temp〉

where LOOPL is the set of loops in L.
A loop construct Loop in LOOPL is defined as:

Loop = 〈Kind, µ, Sub〉

where Kind ∈ {Fixed, Unbounded, Dynamic} is the loop’s kind, µ ∈ N ∪
{∞} is the loop’s number of iterations, and Sub ∈ SUBL is the subchart
containing the loop events to be iterated. We denote by ILoop = ISub the set
of instances participating in the loop.

For the rest of this chapter, we use the term dynamic loops only for dy-
namic loops that appear in monitored LSCs. Dynamic loops in executable
1 If the event matches both a minimal event in the loop’s body and an event that follows

the loop, our implementation chooses to go back to the loop start.

184 13. Loops

universal LSCs are considered to be fixed loops and we omit the technical
details of the user being prompted (and reprompted) for their number of
iterations.

We now extend EL, the set of LSC events, with the hidden events of
entering, exiting and iterating loops, and with the hidden event of skipping
a dynamic loop:

EL = ({m ∈ ML | m.Ms ∈ ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv}
× {Send, Recv})

∪ ({m ∈ ML | m.Ms ∈ ΣSelf} × {Send})
∪ (PchL × {Start, End}) ∪ {Completed}
∪ {perform(A) | A ∈ AL} ∪ {eval(C) | C ∈ CL}
∪ (SUBL × {Start, End}) ∪ {branch(ITE)| ITE ∈ ITEL}
∪ (LOOPL × {Start, End})
∪ {skip(Loop)| Loop ∈ LOOPL ∧ Loop.Kind = Dynamic}

Operational Semantics

As explained in the text, dynamic loops can be skipped (i.e., iterated 0 times),
even if they contain visible events. When tracking a prechart of an executed
universal chart or when monitoring any other chart, we have to be able to
skip such loops at the occurrence of an event that follows. For this, we must
refine the definition of a reachable event.

Definition 13.6.1 (reachable event). A visible event e is reachable from
a cut C if:

1. The event e is enabled with respect to C, or
2. There exists an enabled hidden event e′ such that e is reachable from the

cut C ′ = AdvanceCut(C, e′), or
3. There exists an enabled dynamic loop, Loop, such that e is reachable from

the cut C ′ = AdvanceCut(C, (Loop,End)), or
4. There exists an enabled dynamic loop, Loop, such that (Loop,End) is

currently enabled from C and e is reachable from the cut
C ′ = AdvanceCut(C, (Loop, Start)).

The reachable events are therefore the events that: (1) are currently enabled;
or (2) can become enabled by propagating some hidden events; or (3) can
become enabled by skipping a dynamic loop; or (4) are minimal events in a
dynamic loop, which is waiting just before its end location.

The transition relation ∆[SO,SC] is now extended with transitions for
handling loop iterations and skipping (monitored) dynamic loops:

13.6 And a Bit More Formally ... 185

• If e = 〈M, t〉 (where t ∈ {Send, Recv}) then:
1. Set Context ← ∅.
2. If ∃CL ∈ SC and ∃e′ ∈ CL.LSC, such that e and e′ are nega-

tively level1-unifiable and e′ violates CL, then set SC ← SC \ {CL}.
If temp(CL.Cut) = hot, set Violating ← True.

3. For every universal LSC L ∈ SO which has an event e′, positively level1-
unifiable with e, as a minimal event in its prechart, create a copy of
L, CL, and set SC ← SC ∪ {CL}. Set CL.Mode = PreActive and set
its cut by CL.Cut ← AdvanceCut(InitialCut(L), 〈PchL, Start〉). Unify
the variables of e and e′, by Unify(e, e′, Context). For each hidden event
e′′ <L e′, apply ∆(e′′).

4. For every existential LSC L ∈ SO which has an event e′, positively level1-
unifiable with e, as a minimal event in the chart body, create a copy of
L, CL, and set SC ← SC ∪{CL}. Set CL.Mode = Check, and set its cut
to the beginning of the chart by CL.Cut ← BeginMainCut(CL.LSC).
Unify the variables of e and e′, by Unify(e, e′, Context). For each hidden
event e′′ <L e′, apply ∆(e′′).

5. For every copy CL ∈ SC which has a reachable event e′, positively level1-
unifiable with e, set its cut by CL.Cut ← AdvanceCut(CL.Cut, e′).
Then, if e′ = 〈M,Send〉, M is synchronous and e′′ = 〈M,Recv〉, set
the cut by CL.Cut ← AdvanceCut(CL.Cut, e′′). Unify the variables of
e and e′, by Unify(e, e′, Context). For each hidden event e′′ <L e′, apply
∆(e′′).

• If e = Completed(CL) for some CL ∈ SC , then set SC ← SC \ {CL}.
• If e = 〈PchL, End〉 for some CL ∈ SC , then set

CL.Cut ← BeginMainCut(CL.LSC) and CL.Mode ← Active.
• If e = perform(A) for some A ∈ AL s.t. CL ∈ SC , then set CL.Cut ←

AdvanceCut(CL.Cut, e) and set

A.V ←




A.C if A.Type = constant
V alue(A.P) if A.Type = property
A.f(A.λF

f) if A.Type = function

• If e = eval(C) for some C ∈ CL s.t. CL ∈ SC then
1. If value(C) = true then set CL.Cut ← AdvanceCut(CL.Cut, e).
2. If value(C) = false then

a) If subchart(C) ∈ {ITE.SubT , ITE.SubE} for some ITE then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

b) If subchart(C) = Sub ∈ SUBL then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

186 13. Loops

c) If subchart(C) = ⊥ then set SC ← SC \ {CL}.
d) If temp(C) = hot then set Violating ← True.

• If e = branch(ITE) for some ITE ∈ CL s.t. CL ∈ SC then
1. If value(ITE.C) = true then set

CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubT , Start)).
2. If value(ITE.C) = false then

set CL.Cut ←
{

AdvanceCut(CL.Cut, (ITE.SubE , Start)) if ITE.SubE 6= ⊥
AdvanceCut(CL.Cut, (ITE.SubT , End)) if ITE.SubE = ⊥

• If e = (ITE.SubT , End) for some ITE ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

• If e = (ITE.SubE , End) for some ITE ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubE , End))

• If e = (Sub, End) for some Sub ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

• If e = skip(Loop) for some Loop ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop,End))

• If e = (Loop, Start) for some Loop ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop, Start))

For every variable V ∈ VL that is used in Loop for the first time, set
V.ω ← ⊥.

• If e = (Loop, End) for some Loop ∈ CL s.t. CL ∈ SC and Loop.Kind 6=
Dynamic then
1. Set µ ← µ− 1.
2. If µ > 0 then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop, Start))

For every variable V ∈ VL that is used in Loop for the first time, set
V.ω ← ⊥.

3. If µ = 0 then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop,End))

13.7 Bibliographic Notes 187

Since the events of entering, exiting and iterating loops are additional
forms of hidden events, the procedures step and super-step handle them with
no modifications. The procedure monitor-event has to be modified so that it
does not propagate the hidden event of ending a dynamic loop, but rather
leaves the cut positioned just prior to the loop end in order to be able to
accept events that appear after the loop start as well as ones that appear
after the loop end.

monitor-event(ev)

1. Apply ∆[SM ,ML](ev).
2. Compute the set of enabled events:

Enabled ←
⋃

CL∈ML
{e ∈ EL | enabled(e)}

Waiting ←
⋃

CL∈ML
{e | e = branch(ITE)}

∪
⋃

CL∈ML
{e | e = (Loop,End) ∧ Loop.Kind = Dynamic}

Enabled ← Enabled \Waiting

3. If there is a hidden enabled event e ∈ Enabled, then
a) Apply ∆[SM ,ML](e).
b) Go back to 2.

4. Terminate monitor-event.

13.7 Bibliographic Notes

The original definition of the MSC standard [123] allows the specification of
repeated interactions by means of a loop expression. The number of possi-
ble repetitions can be constrained by upper and lower bounds. Setting both
bounds to be the same causes the loop to iterate an exact number of times,
and setting the upper bound to infinity yields an unbounded loop. The num-
ber of iterations of fixed loops in MSCs can be specified with a constant only
and not with a variable. Since conditions are not given a precise semantics
with regard to the scope they are defined in, they cannot be used in MSCs
to construct ‘while-do’ and ‘repeat-until’ constructs.

If an MSC contains a loop with proper upper and lower bounds, meaning
that the former is larger than the latter, a system would satisfy this MSC
only if the loop is iterated for a number of times that is in the specified
range. However, the MSC standard does not say anything about the number

188 13. Loops

of iterations that such a loop should be performed had we wished to take an
executable approach like the one we have for LSCs. This is fine for MSCs,
since they are oriented towards testing, but it is not enough for LSCs, which
have to be executable.

As discussed in the bibliographic notes for Chap. 10, the MSC standard
also describes a higher-level way of connecting MSCs, hierarchical MSCs
(HMSCs). The underlying graph of an HMSC may contain cycles, thus al-
lowing for the specification of loops, which are repeated sequences of bMSCs
(basic MSCs). As is the case with subcharts, a major difference between a
loop in an LSC and in an HMSC lies in the synchronization requirement. In
LSCs, all the instances that participate in a loop synchronize at the beginning
and end of the loop, while in HMSCs there is no such requirement. It has
been observed in several papers, e.g., [10], that allowing processes to progress
along the HMSC with each object being in a different node may introduce
irregular behavior, and is the cause of undecidability of certain properties.
Undecidability results and ways to restrict HMSCs in order to avoid such
problems can be found in [9, 40, 57, 56].

14. Transition to Design

So far, we have seen how the play-in/play-out approach and its implemen-
tation in the Play-Engine help in the process of capturing and validating
scenario-based behavioral requirements. As we have seen, the graphical user
interface of the system is used extensively in both play-in and play-out. In
the former the GUI objects are used to specify user actions and system re-
actions, and in the latter they are used to reflect the system reactions as the
specification is executed, and to allow the user to input external events. We
have also seen how existential LSCs can be used to specify system tests and
how they can be monitored in the Play-Engine for successful completion. If
we indeed want to think of our methodology and tool as being useful not only
for requirements but also for specifying the system’s actual implementable
behavior, we have to talk about making a smooth transition from the require-
ments phase into the design phase. This chapter is devoted to discussing some
of the issues raised by this possibility.

14.1 The Design Phase

In many development methodologies, the design phase begins with a require-
ments specification, usually given as a text document, following which sce-
narios are constructed (say, in some variant of sequence diagrams) to show
the interaction between the objects comprising the system. The scenarios are
considered to be an initial step towards formalizing the requirements. Using
play-in and play-out, the designer is given a head start: He/she can begin
the design phase with the requirements specification already given as a set
of executed and debugged LSCs, describing the allowed, necessary and for-
bidden interactions between the system and its users and environment. This
specification is thus highly suitable as a basis for the design phase.

Beginning with this LSC specification, we can imagine the design phase
as consisting of the following activities, which would typically be carried out
as part of an incremental and iterative (possibly spiral-like) process:

190 14. Transition to Design

• Identifying ‘internal’ objects (i.e., objects that are not represented in the
GUI of the system) and their properties. This activity is usually affected
not only by the original behavioral requirements but also by other con-
siderations, such as non-functional constraints, robustness of the design,
design patterns, etc.

• Adding properties (e.g., state variables) to existing objects, both graphical
and internal.

• Describing the interactions between the objects comprising the system in
increasing levels of detail. To do this, the designer identifies the methods
of each object, through which it can be called, and the parameters to be
passed when invoking each of them. Then, existing LSCs and newly created
ones are refined with method calls, interleaved with the original property
changes of the objects. These method calls are used to show the control
flow that triggers the changes in the various values of the properties.

• Refining objects into sets of sub-objects and composing (clustering) sets of
objects into compound objects. During these processes, we allow the use
of appropriate levels of detail in the inter-object scenarios, and preserve
the meanings of these scenarios under the refinement and composition of
objects.

• Constantly making sure that the design is consistent with the original re-
quirements. This is usually done by maintaining some kind of traceability
between the requirements and the design.

The following sections show how the play-in/play-out approach and the
Play-Engine are extended to support most of these aspects in the transition
from requirements to design. We do note, however, that although the issue of
object refinement and composition is extremely important, we have not yet
worked it into our methodology and implementation. This is one of the main
topics for our future work; see Chap. 21.

14.2 Incorporating Internal Objects

Figure 14.1 shows a simple LSC stating that each time the user changes
the state of the switch, the light should change its state accordingly. In the
requirements analysis phase, one does not have (and usually does not wish)
to be more specific than this. However, it is clear that the way the LSC is
currently specified, we do not know how the light is notified about the user
action and how it decides to turn on or off.

Let us assume that as a first step towards the design the user decides that
the communication between the switch and the light will be carried via a
new internal object — a controller. The Play-Engine allows the addition of

14.2 Incorporating Internal Objects 191

Fig. 14.1. High-level requirements

internal (i.e., GUI-less) objects on the fly. After creating an internal object,
the user may specify properties for this object using an appropriate dialog.
See Fig. 14.2. The user may specify a name for the newly created object (in

Fig. 14.2. Dialog for defining application objects

this case ‘Controller’) and define new properties for it. The bottom section
of the dialog, termed ‘Methods’, is discussed in the next section.

After filling in all the details and closing the dialog, the object is added
to the set of application objects and can be used in the LSCs and during
play-in and play-out. Figure 14.3 states that after the switch is flipped, the
information is first transferred to the controller, which sets its state property
to be the same as the switch, and only then does it reach the light. Note that
even the LSC of Fig. 14.3 does not specify how the information is passed
between the objects, but only that it reaches an intermediate object that is
responsible for forwarding it to the light.

192 14. Transition to Design

Fig. 14.3. Using an internal object in an LSC

One point needs to be addressed here: if an internal object is not repre-
sented in the GUI, how can it be used in playing in and playing out? We
have decided to visually represent internal objects in a way similar to how
they are represented in most object-oriented methodologies and tools — by
object model diagrams. After an internal object is created, it is added to
the Play-Engine’s object map. The object map is a variant of an object
model diagram, which contains all the internal objects. For each object,
the object map displays its sets of properties (see Fig. 14.4). Properties of

Fig. 14.4. Visualizing internal objects in an object map

internal objects are like properties of GUI objects, and are used to reflect
various attributes of the objects. Since property values of internal objects
cannot be visually reflected, as they can for graphical properties of GUI ob-
jects, the value of each property is written next to the property name in the
object map, thus enabling the user to view the system state at a glance.

14.3 Calling Object Methods 193

Since the process of transition into design may entail adding new proper-
ties to existing GUI objects, as well as to internal objects, the Play-Engine
allows the addition of properties to GUI objects too. But since new proper-
ties of GUI objects are not known to the GUI application, they cannot be
visually rendered in the GUI itself. To examine the current values of such
properties, the user right-clicks an object and selects Properties from the
popup menu. In response, the Play-Engine displays a list of all the object’s
properties together with their current values.

14.3 Calling Object Methods

Continuing with our example, suppose that the user now wishes to specify
how the information is transferred from the switch that was clicked by the
user, via the newly added controller, to the light, so it can change its state.
We do this by adding methods to every object that needs to be called, and
then calling these methods to transfer the desired information.

Methods are means for transferring data or control signals between ob-
jects. Each object can have an arbitrary number of methods, which other
objects can call in order to transfer the required information. Every method
has a name and a set of parameters defined over the application types. A
method can be either synchronous or asynchronous, thus specifying whether
the calling and the called objects synchronize when the method is called. The
list of methods is shown both in the object dialog (as seen in the bottom sec-
tion of the dialog in Fig. 14.2) and in the bottom part of the object rectangle
in the object map (as seen in Fig. 14.4).

In our example, we add two identical methods SetState(S), with S ranging
over {On,Off }, one to the controller and one to the light. We then move into
play-in mode and play in a call from the switch to the controller. Figure 14.5
shows the basic steps in playing in such interactions. The user first right-clicks
the switch and selects Call Other Object (see Fig. 14.5(a)). As a result, the
switch is highlighted and a tooltip appears above it showing “From” (see (b)).
Next, the user right-clicks the target object. The Play-Engine knows that the
user is currently in the process of specifying a method call, and therefore the
opened popup menu contains a list of all the methods of the target object
(see (b)). After one of the methods is selected, a dialog opens up, in which
the user instantiates the parameters of the method with concrete values or
with variables from the LSC (see (c)). When this process is over, a message
going from the caller object to the called object is added to the LSC (see
(d)).

194 14. Transition to Design

Fig. 14.5. Playing in interactions with internal objects

Repeating this process, but with the controller as the source and the light
as the target, completes the desired interaction, resulting in the LSC of Fig.
14.6.

Fig. 14.6. From the Switch to the Light via the Controller

14.3 Calling Object Methods 195

Adding this control flow information to a chart that initially contains only
requirements-level interaction between the system and its environment helps
fill the gap between what the system should do and how it does it. In our
example, the ‘what’ part is given in the initial LSC, stating that the light
should reflect the state of the switch, and the ‘how’ part is given in the fi-
nal LSC by the interactions between the objects, which are interleaved with
those appearing in the original scenario. These interactions show how seem-
ingly unrelated events become related, by explicitly showing the sequence (or
sequences) of events that can lead from one to the other.

As discussed at the beginning of the chapter, by starting with LSCs cre-
ated by, or on behalf of, the user, developers can achieve direct traceability
between the behavioral requirements and the design. Although the determi-
nation of internal objects, their properties and their methods can be affected
by various considerations other than the behavioral requirements, these ob-
jects and properties should be integrated into the system in a way that sat-
isfies the requirements that caused their addition but does not violate any
other requirements. After internal objects are added and the interaction be-
tween objects is played in, the user may play out various scenarios and verify
that the system still behaves as expected.

In addition to all of this, continuous consistency between the requirements
and the design, as it evolves, can be checked using existential LSCs. Suppose
that after the initial LSC of Fig. 14.1 is developed, a corresponding test
is formulated, as shown in the existential LSC of Fig. 14.7. This LSC can

Fig. 14.7. Regression testing with existential LSCs

then be checked for satisfiability by clicking the switch to on and then to
off, and verifying that the two hot conditions evaluate to true when they
are reached. By leaving the existential chart unmodified, the designer may
prove the correctness of the modified universal LSC (i.e., the one in Fig. 14.6)

196 14. Transition to Design

by repeating the same sequence of actions and showing that this sequence
satisfies the test described by the existential LSC.

As shown in Chap. 12, a comprehensive set of system tests can be formu-
lated as a set of existential LSCs. In the requirements phase, this set can be
checked for satisfiability, and for each test a satisfying run should be recorded.
At any point during the design phase this set can then be used for regres-
sion testing of the requirements, as follows. Each recorded run is modified to
contain only external events (i.e., events that were generated by the user or
the environment). These runs are then replayed, but with the new universal
charts now driving the execution, and the original existential charts being
monitored. Since the existential tests do not (and for this purpose, indeed
should not) specify how the results are achieved but only that they are indeed
eventually achieved, the new sequences of events generated by the modified
universal LSCs should still satisfy the tests.

Another way of performing regression testing to check for consistency
between the original LSCs — those on the requirements level — and the
modified, design-level LSCs would be to keep copies of the original LSCs and
then to simply execute the system, with both the old and the new LSCs
driving the execution. Figure 14.8 shows the initial and the final LSCs of our
example being executed simultaneously.

Fig. 14.8. Consistency between requirements and design

14.4 Playing Out

Messages representing method calls can be symbolic (just like the usual
kind of message). To support their execution, our unification algorithm is
extended, so that messages that are sent between the same two objects, and

14.4 Playing Out 197

which represent the same method, can be unified if all their variables can be
pairwise unified.

When LSCs containing method calls are played out, the Play-Engine high-
lights the involved objects and animates the interaction by drawing arrows
between them. Thus, the play-out mechanism does not only let end-users
validate requirements but can also be used beneficially for demonstrating,
reviewing and debugging a design. Figure 14.9 shows how the interaction
between objects is animated during play-out. Note that the arrows are not
limited to being within the GUI application or the object map, but can run
from one to the other. Send events are animated by arrows that start out with

Fig. 14.9. Animating interactions between objects

a solid line (the sender) and end up with a dashed line (the receiver), while
receive events will be drawn the other way around. Synchronous messages
are shown as full solid arrows.

198 14. Transition to Design

14.5 External Objects

Often, a reactive system works in the presence of other elements, besides
the user who interacts with it. These might include other systems, compo-
nents, machines, computers, sensors, and even other humans or elements from
nature. The collection of all these elements is referred to as the system’s en-
vironment. When playing in the required behavior of a reactive system, it is
necessary to be able to express its interaction with this environment. As we
have already seen, the Play-Engine allows the user to specify how the envi-
ronment interacts with the system in a way similar to the interaction with
the end-user. However, such interactions with the environment are limited to
changes in object properties, and are thus suited to interactions with nature
(e.g., the external temperature rising, devices breaking down, etc.), but less
so to true communication with interfacing systems (e.g., receiving data or
control signals).

The need to describe interactions with interfacing systems usually arises
already in the requirements analysis phase, although there are cases where
these aspects of the system may be ignored. For example, when specifying
the behavioral requirements of a communication-guided missile, chances are
that we cannot ignore the control signals received from the guiding control
unit. In contrast, when specifying the requirements of an automatic teller
machine (ATM), we could probably describe the ATM as an integral system,
and describe the communication with the remote bank server at a later phase.

When it comes to design, it is often the case that the design of a sys-
tem is carried out by more than one person, each responsible for a set of
components. In such cases, every designer in the team is aware of the en-
tire behavioral specification, but is allowed to refine the specification of only
those components for which he/she is responsible, and must do so in a way
that guarantees that they fit in correctly within the overall system behavior.
While performing such a design task it is convenient for each team member
to refer to the objects under his/her responsibility as internal, and to the
other objects, with which these are to interact, as external. As we shall see
next, the distinction between internal and external objects is not merely a
matter of convenience, but is also reflected in the executable semantics of the
language.

To support the aforementioned design tasks within the language of LSCs
and the play-in/play-out approach, we first extend the LSC language with
the ability to refer to external objects. Technically, within the Play-Engine,
external objects are implemented as internal objects, i.e., non-GUI ones, and
are distinguished from the usual internal objects by their external flag being
set to true.

14.5 External Objects 199

Having external objects within the specification entails more than just
partitioning the external environment into its components and giving them
names. In contrast to the external environment discussed in Chap. 5, exter-
nal objects are not limited to changing property values of internal objects.
External objects can have properties of their own, indicating their being in
different states (e.g., active, ready for communication, etc.). They can also
call system objects and be called by them, thus modeling the interaction with
external systems.

Figure 14.10 shows an LSC, in which the switch instance represents an
external object, and is therefore annotated with a small cloud.

Fig. 14.10. External objects in LSCs

When playing out scenarios and testing the system’s behavior, we would
like to be able to control the behavior of external objects, much like we
control the actions of the user and the external environment. As an example,
consider the LSC in Fig. 14.11, which describes a simple interaction between
two interfaces. Suppose that we are given the task of creating a detailed
design for Interface 2. For simplicity, assume that this entails adding a single
implementation object, Impl 2, and a simple interaction with it. The detailed
design is given in the LSC of Fig. 14.12. Note that the interfacing object
Interface 1 is now considered external.

To check our design, we would now like to use the play-out techniques in
the standard way. Recall, however, that property changes of internal objects
and method calls between objects are not carried out by the user; rather, they
are performed by the Play-Engine as part of its super-steps. In our example,
we would like to activate the prechart of ‘Detailed Design’ by initiating the
call from Interface 1 to Interface 2. If the actions of Interface 1 were depen-
dent upon the values of its properties, we would have also liked to be able to
change these values, and thus control the behavior of this object.

200 14. Transition to Design

Fig. 14.11. High-level interaction between interfaces

Fig. 14.12. Detailed design of Interface 2

To support this, the execution mechanism of the Play-Engine is modi-
fied so that it does not initiate events that originate from external objects,
much as it does not initiate events from the user or the external environ-
ment. While playing out, the user can change property values of external

14.6 And a Bit More Formally ... 201

objects and can initiate calls from external objects to objects that are inter-
nal to the system. Thus, it is the user who controls the behavior of external
components and systems while the system under development is being ex-
ecuted and analyzed. This extension to the play-out mechanism provides a
way for validating component-based requirements and designs, by allowing
the independent execution of each part and then combining the LSCs in the
various parts into a fully integrated requirements or design specification. Sec-
tion 21.5 in our Future Work chapter describes our work on linking several
Play-Engines together, and is particularly relevant to the above discussion.

14.6 And a Bit More Formally ...

Following the semantics skeleton, we show the extensions and modifications
needed to support method calls, and internal and external objects.

System Model and Events

The system model is extended to include method calls and to distinguish
between internal and external objects.

A method with n formal parameters is defined as:

Method = Name(D1, D2, . . . , Dn)

where Name is the method name and Di ∈ D is the type of its ith parameter.
A class is modified to have a set of methods, through which its object

instances can be called:

C = 〈Name,P,M〉

Next, an object can be declared as external:

O = 〈Name, C,PV, External〉

where External is a Boolean flag, set to true in external objects and to false
in all other objects.

We now redefine a system message Ms to also contain method information
if it represents a method call:

Ms = 〈Src,Dst, P, V, f, λF
f , m, λM

m , Symbolic〉

where m ∈M∪ {⊥} is the method represented by the message and λM
m is a

method information structure for m, defined as follows:

202 14. Transition to Design

λM
m =

{
(V1 ∈ m.D1, . . . , Vn ∈ m.Dn) if m ∈M
⊥ if m = ⊥

If the message represents a method call m ∈M, then λM
m contains variables

as actual parameters that replace the method’s formal parameters. If Ms does
not represent a method call, then λM

m = ⊥. We require that each message
represent either a property change or a method call:

∀Ms : (Ms.P 6= ⊥)⊕ (Ms.m 6= ⊥)

Since method calls can also be synchronous and asynchronous, the defini-
tion of synchronous messages is modified to reflect this.

Definition 14.6.1 (synchronous system messages). A message Ms is
synchronous if Ms.P 6= ⊥ ∧Ms.P.Sync = true or Ms.m 6= ⊥ ∧Ms.m.Sync =
true. A self message is also synchronous.

The alphabet of possible messages of Sys is extended to include messages
going between objects within the system and not only between objects and
the environment:

Σ = ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv ∪ΣSelf ∪ΣCalls

ΣFromUser = {Ms | Src = User ∧ P ∈ class(Dst).P}
ΣToUser = {Ms | Dst = User ∧ P ∈ class(Src).P ∧ P.Affects = User ∧

P.InOnly = False}
ΣFromEnv = {Ms | Src = Env ∧ P ∈ class(Dst).P ∧ P.ExtChg = True ∧

P.InOnly = False}
ΣToEnv = {Ms | Dst = Env ∧ P ∈ class(Src).P ∧ P.Affects = Env ∧

P.InOnly = False}
ΣSelf = {Ms | Dst = Src ∧ P ∈ class(Src).P ∧ P.Affects = Self ∧

P.InOnly = False}
ΣCalls = {Ms | Dst, Src ∈ O ∧ m ∈ class(Dst).M}

The set of system events, E , is extended accordingly:

E = ((ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv ∪ΣCalls)× {Send, Recv})
∪ (ΣSelf × {Send})

LSC Specification

The set of LSC events is extended to contain messages that represent inter-
actions between system objects:

14.6 And a Bit More Formally ... 203

EL =
({m ∈ ML | m.Ms ∈ ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv ∪ΣCalls}
× {Send, Recv})

∪ ({m ∈ ML | m.Ms ∈ ΣSelf} × {Send})
∪ (PchL × {Start, End}) ∪ {Completed}
∪ {perform(A) | A ∈ AL} ∪ {eval(C) | C ∈ CL}
∪ (SUBL × {Start, End}) ∪ {branch(ITE)| ITE ∈ ITEL}
∪ (LOOPL × {Start, End})
∪ {skip(Loop)| Loop ∈ LOOPL ∧ Loop.Kind = Dynamic}

The notion of a message affecting a variable is extended. Now, an LSC
message M ∈ ML affects a variable X also if the variable is used as a param-
eter in a method call.

Definition 14.6.2 (affecting a variable). An LSC message M ∈ ML af-
fects a variable X, if M.Ms.V = X or X ∈ M.Ms.λ

M
m . An assignment

A ∈ AL affects a variable X if A.V = X.

Operational Semantics

The operational semantics is changed in two ways. First, the notion of mes-
sage unification is extended to support method calls. Then, the set of external
events is extended to include send events that originate from external objects,
so that these events will not be candidates for execution in the procedure
super-step.

We now extend the notion of unification to apply also to method calls,
so that two method information structures are unifiable if they represent the
same method and their variables are pairwise unifiable.

Definition 14.6.3 (method unification). Two method information struc-
tures λM

m1
and λM

m2
are Q-unifiable (where Q is ‘positively’ or ‘negatively’) if:

m1 = m2

∧ ∀i : λM
m1

.Vi and λM
m2

.Vi are Q-unifiable.

The message content Λ of a message Ms is modified to refer to methods
when relevant.

Definition 14.6.4 (message content).

Ms.Λ =





Ms.λ
F
f if λF

f 6= ⊥
Ms.λ

M
m if λM

m 6= ⊥
Ms.V otherwise

204 14. Transition to Design

Definition 14.6.5 (message unification). Two system messages
Ms = 〈Src, Dst, P, V, f, λF

f , m, λM
m , Symbolic〉 and

M ′
s = 〈Src′, Dst′, P ′, V ′, f ′, λF

f ′ , m
′, λM

m′ , Symbolic′〉 are Q-unifiable (where
Q is ‘positively’ or ‘negatively’) if Src = Src′, Dst = Dst′, P = P ′, m = m′

and their contents are Q-unifiable.

Since message variables may bind to values as a result of unifying different
method information structures during execution, we add another unification
procedure to handle such cases:

Unify(λM
m , λM

m
′, Context)

1. For i = 1, . . . , n:
a) Unify(λM

m .Vi, λM
m
′
.Vi, Context)

Having these definitions, the transition relation ∆ supports method calls
with no modifications. In Chap. 5, we defined the set of external events as
send events that are initiated by the user or the environment:

External = {
⋃

L∈S
〈m,Send〉 | m.Ms.Src ∈ {User,Env}}

We now modify this definition to include send events from all external objects.
For brevity, we will refer to User and Env as external objects and will not
treat them separately:

External = {
⋃

L∈S
〈m,Send〉 | m.Ms.Src.External = true}

Having modified the set of external events, the procedure super-step remains
unchanged.

14.7 Bibliographic Notes 205

14.7 Bibliographic Notes

Constructing a program from a requirements specification is the long-known
general and fundamental synthesis problem. This chapter was devoted to
discussing briefly a methodology, supported by the Play-Engine tool, for re-
fining a set of requirements given as LSCs into a design also given as an
LSC specification. Since we use the same language and the same pattern of
thought for both phases, the synthesis problem becomes a lot easier. In the
development scheme outlined in [43], an important facet is the ability to syn-
thesize an intra-object implementation from the inter-object requirements.
This is a whole lot harder than our LSC-to-LSC process, or the problem of
generating lower-level code from an already intra-object system model (which
is really but a high-level kind of compilation). The duality between the inter-
object scenario style for requirements and the intra-object statechart style
for design renders useful synthesis a truly difficult task.

There has been a lot of work on the limited case of state-machine synthesis
from variants of classical message sequence charts. This problem is a lot easier
than synthesis from LSCs, since MSCs do not enable expressing forbidden or
mandatory behavior, so there is very little in the way of real constraints on
behavior. Also, some of the synthesis papers do not even allow the system
to be simultaneously in different charts, and so really relate to a single chart
only. Work on synthesis from MSCs includes the SCED method [66, 67, 68],
based on the algorithm of [15], and synthesis in the framework of ROOM
charts [77]. Other relevant work appears in [108, 10, 18, 72]. New efforts on
synthesis appear in [5, 119].

A lot of work has also been carried out on synthesizing state-based sys-
tems from requirements given in temporal logic. Due to the expressive
power of temporal logic, this problem is closely related to synthesizing from
LSCs. The early work on such synthesis considered closed systems that do
not interact with the environment [83, 34]. In this case, a program can be
extracted from a constructive proof that the formula is satisfiable. This ap-
proach is not suitable for synthesizing open systems that interact with the
environment, since satisfiability implies the existence of an environment in
which the program satisfies the formula but the synthesized program cannot
restrict the environment. Later work in [98, 96, 1, 121] dealt with the synthe-
sis of open systems from linear temporal logic specifications. The realizability
problem is reduced to checking the non-emptiness of tree automata, and a
finite state program can be synthesized from an infinite tree accepted by the
automaton. The problems of realizability checking and synthesis from linear
temporal logic have been shown to be 2EXPTIME-complete. Work on syn-
thesis from branching temporal logics, based on alternating tree automata

206 14. Transition to Design

[73], show that the synthesis problems for CTL and CTL∗ are EXPTIME
and 2EXPTIME complete, respectively. In [97] synthesis of a distributed re-
active system is considered. Given an architecture — a set of processors and
their interconnection scheme — a solution to the synthesis problem yields
finite state programs, one for each processor, whose joint behavior satisfies
the specification. It is shown in [97] that the realizability of a given specifi-
cation over a given architecture is undecidable. Previous work assumed the
easy architecture of a single processor, and then realizability was decidable.

Turning to LSCs, there is the work described in [65], which synthesizes
a timed Büchi automaton from a single LSC (and code can then be derived
from the automaton). A more general approach appears in [46], where the
synthesis problem for a multiple-chart LSC specification is tackled by first
defining consistency, then showing that an LSC specification is consistent iff
it is satisfiable by a state-based object system, and finally synthesizing a sat-
isfying system as a collection of finite state machines or statecharts. A global
automaton for the entire system is constructed, which is then distributed be-
tween the objects in the system. Construction of the global automaton in [46]
causes a state explosion problem, which must be tackled somehow in order for
the algorithm to become practical. Also, the LSCs in [46] are restricted: for
example, conditions are excluded and specific restrictions on the interaction
of the environment with the system are assumed.

Another approach that tries to bridge the gap between requirements and
design by using a common representation for both is called genetic software
engineering (GSE) [33], in which a requirement written in natural language
is formalized by a ‘behavior tree’. All such trees are then integrated into
a single tree. This comprehensive system behavior tree is transformed by
a variety of manipulations and projections into a components architecture
diagram, and then into many component trees, each describing the internal
behavior of a single component. GSE is also similar to our approach in that it
uses a richer specification language than conventional sequence charts (e.g.,
it can specify anti-scenarios).

The software cost reduction (SCR) method described in [55] also allows
the specification and simulation of requirements for reactive systems. The
SCR method provides a tabular notation for specifying the required rela-
tion between system and environment variables and also uses a GUI in the
final phase of simulation. According to this method, requirements are first
described using nondeterministic and possibly incomplete relations between
variables, and then the specification is modified, with the aid of an auto-
mated tool, to be deterministic and can then be simulated. The process of
refining the requirements and making them deterministic can also be viewed
as a kind of design. SCR is different from our work in the languages used

14.7 Bibliographic Notes 207

(i.e., tables of variables vs. visual notations) and in the requirement that the
final model should be deterministic.

A methodology supported by a tool called LTSA for specifying and ana-
lyzing labeled transition systems (LTSs) is presented in [81, 114]. This tool
works with an animation framework called SceneBeans [99], yielding a nicely
animated executable model. The model has to be an LTS, which is more
akin to the intra-object statecharts than to inter-object sequence based be-
havior, and it will usually be larger and more detailed than sequence charts.
The behavior can be either written in FSP [80] and compiled into LTSs, or
described as MSCs and transformed using a synthesis algorithm into LTSs
[114]. An interesting idea would be to use SceneBeans as an animation engine
to describe the behavior of internal (non-GUI) objects in our Play-Engine.

15. Classes and Symbolic Instances

In Chap. 7 we showed how scenarios can be generalized using symbolic mes-
sages. Symbolic messages are but one aspect of defining generic scenarios —
the simpler one. This chapter addresses symbolic object instances, which is
the more complicated and more powerful aspect of genericity.

Many systems feature multiple objects that are instances of the same
class, which is one of the central maxims of the object-oriented paradigm. For
example, a communication system contains many phones, and a railroad con-
trol system has many trains and terminals and possibly also many distributed
controllers. We would like to be able to specify inter-object scenario-based
behavior in a general way, on the level of classes and their parameterized
instances, not necessarily restricting them to concrete objects. Not surpris-
ingly, the issue of executing such behavior is quite subtle, since figuring out
exactly what is going on, and in which objects, must be continuously done on
the fly. In this chapter, we extend the LSC language with symbolic instances
and discuss playing in and playing out the resulting specifications, including
the delicate semantic issues that arise.

15.1 Symbolic Instances

Consider a telephone network consisting of four phones, one central switch-
board and four channels, each connecting one phone to the switch. Figure
15.1 shows a graphical user interface for this system. Now, suppose we would
like to say that for every phone, when the ‘C’ button is clicked, the display
should be cleared. Figure 15.2 shows an LSC describing this requirement for
Phone1. To specify the same requirement for the other telephones, the LSC
should be replicated for each phone. This may become very inconvenient and
inefficient when the number of phones is large, and may also become impos-
sible in systems where the number of phones is unknown (dynamic creation
and destruction of objects) or in parameterized systems where the number
of phones is fixed, but is given as a parameter.

To solve these problems and to enable the creation of more compact LSC
specifications, we introduce symbolic instances. Recall that every object

210 15. Classes and Symbolic Instances

Fig. 15.1. NetPhone: the GUI for a telephone network

Fig. 15.2. A concrete scenario for clearing a display

in our system model is an instance of some specific class. A symbolic instance
represents an entire class rather than one concrete object, and can bind to
concrete objects at runtime. Figure 15.3 shows an LSC where one of the
instances is symbolic and represents the class Phone (denoted by ‘Phone::’).
The chart states that its scenario should hold for every actual phone of class
Phone in the system, regardless of the number of actual phones and whether
these phones are static or were created dynamically during the system run.

15.2 Classes and Objects

Before we get into the more complex features of symbolic instances, let us
spend some time on how classes and objects show up in the play-in/play-
out methodology. Classes in object-orientation are used to describe sets of
objects that share a common behavior. The objects themselves are commonly
referred to as the class instances. Classes are usually introduced in the design

15.2 Classes and Objects 211

Fig. 15.3. A generalized scenario for clearing the display of any phone

phase, where the behavior of each class is given in an intra-object style, say,
using a statechart or code, thus describing how each of the objects in the
class behaves under different circumstances.

In the play-in/play-out approach, we are not interested in how each of the
objects behaves as an independent entity, but, rather, in how a set of objects
interacts in an inter-object style to satisfy certain desired (or undesired) sce-
narios. Therefore, classes in our approach serve more as interfaces, i.e., as
place holders for sets of objects that are interchangeable in the specified sce-
narios. Put another way, classes are not used to describe the overall common
behavior of sets of concrete objects, but, more operationally, to specify that
in certain scenarios any concrete object from the set of class instances can
be used, and that the scenario should still hold (or that a forbidden scenario
is not allowed to hold for any instance of the class).

The Play-Engine provides several ways to create classes and objects and
to associate them with others. A class can be created from scratch, or can be
based on an already existing object. In the former case, the user names the
class and specifies the class properties and methods. In the latter case, the
class properties and methods are derived from those of the object on which
the class is based. Creating classes based on existing objects is very useful
in cases where the GUI application comes with sets of similar objects, and
one would like to handle them in identical ways. Note that a class is not
restricted to have either GUI objects as instances or internal objects, but
may contain instances of both kinds. For example, in our telephone system,
we could create a ‘backup’ switch as an internal object and then let both the
GUI switch and the internal switch be instances of a Switch class.

An alternative way to associate objects with classes is to start with a class
and then create objects based on that class. After creating some classes, the
concrete objects may be associated with them via class property dialogs.
The Play-Engine supports the creation of (multiple) internal objects using a
single mouse click. Currently, it supports one level of classes and one level

212 15. Classes and Symbolic Instances

of objects, but this could be easily extended to support class inheritance,
by defining a class hierarchy and associating each object with the class from
which it is derived. A symbolic instance representing a class C can then bind
to a concrete object O if O is either an instance of C or is an instance of a
class C ′ that (indirectly) inherits from C.

15.3 Playing with Simple Symbolic Instances

Specifying that a certain instance represents a class rather than a concrete
object is done at the end of playing in the scenario. Thus, the scenario is
first played in just as in the non-symbolic case. When this is completed, the
user selects the desired instance and turns it into a symbolic one by choosing
Symbolic from the instance popup menu (see Fig. 15.4).1

Fig. 15.4. Declaring LSC instances to be symbolic

As for playing out, we have shown in previous chapters that when a sys-
tem event occurs, it is unified with the relevant LSC events. With symbolic
instances, the extended unification principle we will be using is obtained by
relaxing the requirement for identical senders and receivers: From now on, we
do not require that the senders of the two events should be the exact same
object, but we allow one of them to be a class to which the other belongs.
The same holds for the message’s receivers.

The execution mechanism is now modified as follows. When an event e
occurs, the precharts of universal charts are scanned for minimal events that
can be unified with e according to the new definition. Note that since e has
occurred, its sender and receiver are already bound. If a unifiable event is
found, a copy of the relevant universal chart is created and the symbolic
1 At the time of writing (February 2003) we are in the process of modifying the Play-

Engine so that playing in will be possible even when some of the instances in the chart
are symbolic.

15.4 Symbolic Instances in the Main Chart 213

sender and receiver instances (if they exist) are bound to the actual sender
and receiver, respectively. The same holds for events located in precharts
of already created copies. Thus, events associated with symbolic instances
cannot be carried out as such; events actually carried out must be in fact
connected to actual objects. After a symbolic instance binds to a concrete
object it remains bound to it until the LSC completes.

15.4 Symbolic Instances in the Main Chart

Suppose that we would like our phone to have the property that any digit the
user clicks will be transmitted over the channel appropriately associated with
the phone. Simply adding a symbolic instance representing a Channel:: is not
good enough, since there is a major difference between the way the phone
and channel symbolic instances are identified in this scenario. The Phone::
instance is bound to an actual phone as the result of a user action. The chan-
nel, however, should be bound by the Play-Engine’s execution mechanism
(not by the user), so that the message from the actual phone is sent via the
correct actual channel without the need for a user-triggered action during
execution. What we need here is the information as to which channel should
bind to the Channel:: symbolic instance.

One option for obtaining this information is to use static binding, derived
from an object model that can have each phone associated with a channel by a
special relationship denoted by itsChannel. This information can then be used
in the LSC. We suggest a somewhat more general approach, using binding
expressions, which can involve any available properties of the instance. If
the first event involving a symbolic instance is in the prechart, the instance
will be bound to an actual object as the result of unification with some other
event, but if the event is in the chart body the execution mechanism should
be able to trigger it, and the object to be bound with the instance should be
identified using a binding expression, as follows.

Figure 15.5 shows how the Channel:: instance is specified as binding with
the actual channel associated with the phone (the example assumes that this
association is defined by the use of a common ID). After the Phone:: instance
is bound, the assignment can be performed and the value of the ID variable is
determined, following which the binding expression of the Channel:: instance
(shown as .ID = ID in the small oval above the instance name2) can be
evaluated and the appropriate channel is bound. A binding expression is
evaluated as soon as all the variables it uses are bound.
2 The ‘.’ preceding the ID property indicates a self reference.

214 15. Classes and Symbolic Instances

Fig. 15.5. Binding expressions for symbolic instances

Recall that in order to turn an instance into a symbolic one, the user right-
clicks it and selects the Symbolic option from a popup menu. To support
symbolic instances that are to be bound by the execution mechanism, upon
making this selection the Play-Engine checks whether the first event of the
instance is located in the prechart or in the chart body. If the event is in the
chart body, a wizard opens up, with which the user may specify the binding
expression for the symbolic instance (see Fig. 15.6). A binding expression —

Fig. 15.6. A wizard for specifying binding expressions

like a basic expression in a condition construct — is of the form P Oper RHS,
where P is a property of the class represented by the symbolic instance, Oper
is a comparison operator, and RHS may be a constant value, a variable or a
function applied to some specified parameters.

The binding-expression approach can be used to associate objects using
any navigation expressions derivable from an object model diagram. We have
not implemented this feature yet, since our Play-Engine has not yet been set
up to fully support object model diagrams with general object associations,
but we definitely plan to do so in the near future. For each such naviga-

15.5 Quantified Binding 215

tion association, a property can be automatically extracted (e.g., itsChannel
would be derived in the case of a one-to-one association between a phone
and its channel, itsChanneli for the ith channel in the case of a one-to-many
association, etc.).

15.5 Quantified Binding

Nothing we have said so far forbids the situation where a binding expression
is satisfied by more than one object. This raises the options of the engine
choosing one object at random on the fly, or treating such cases as errors,
or somehow binding to all satisfying objects. Since there are cases where we
would like only one instance to bind and others for which we would like them
all to bind (see example below), we have decided to allow both possibilities,
in the hot/cold spirit of the original definition of LSCs: The association of
a symbolic instance with a binding expression can be made existential or
universal. In the existential case (denoted by a dashed instance header and
expression oval), one of the objects satisfying the binding expression is chosen
at random and the instance is bound to it, and in the universal case (denoted
by solid lines) a new copy is created for each satisfying object.

The LSC in Fig. 15.7 shows the power of this approach. Whenever the cen-

Fig. 15.7. Using universally quantified symbolic instances

tral switch becomes out of order (in our example, this can happen as a result
of some external environment stimulus), we want it to send a CancelCall mes-
sage to all the channels that are currently allocated to a conversation. This is
done using a universally quantified Channel:: instance associated with a bind-
ing expression that is true for all allocated channels (no matter how many
channels the system has and no matter how many of them are allocated).
Figure 15.8 shows one copy of this LSC immediately before the symbolic
channel instance binds to a concrete channel. When the binding expression

216 15. Classes and Symbolic Instances

Fig. 15.8. Binding an instance during play-out

is evaluated, a different copy is created for each satisfying object. These LSC
copies are then added to the set of active copies and continue executing as if
they were not created from the same original chart.

15.6 Reusing a Scenario Prefix

Figure 15.9(a) raises an interesting issue concerning multiple bindings of a
symbolic instance. The LSC in the figure states that if some phone sends the
message Call(1) to the switch and then some other3 phone sends the same
message to the switch, the switch sends an error message to the second phone.
By way of illustration, suppose Phone1 is the first to send the message to
the switch. As a consequence, the left-hand instance in the chart is bound
to Phone1. Now, Phone2 sends the message to the switch, the right-hand
instance binds to Phone2, and the chart completes its execution by sending
the error message from the switch to Phone2; see Fig. 15.9(b). This is fine.

Now suppose that a third phone, Phone3, sends the same message to the
switch. The pair of events of Phone1 and then Phone3 sending the same
message satisfies the prechart of the LSC in Fig. 15.9(a), and the chart body
should therefore be executed. But this is a problem since after binding the
right-hand instance to Phone2, the LSC copy completes execution and stops
existing, and the first event of Phone1 sending the message is ‘lost’, making it
impossible for a second event to cause another satisfaction of the same chart.

We solve this problem as follows. When an instance in an already activated
LSC copy is bound to an object as the result of an event, the binding and
consequent propagation of the execution are carried out in a new separate
copy (in this case Fig. 15.9(b)). In addition, the original copy is left open,
with the cut positioned as it was in the first active copy before the binding,
3 The second calling phone must be different from the first one, recalling that an object

cannot be represented by more than one instance in an LSC.

15.6 Reusing a Scenario Prefix 217

Fig. 15.9. Retaining scenario prefixes for reuse

but with the symbolic instance in this remaining copy being restricted in a
binding expression to not bind to the same object again. The original copy
of Fig. 15.9(a), with its new binding expression, is shown in Fig. 15.9(c). In
this way, prefixes of scenarios are kept open for reuse. Proceeding with our
example, when Phone3 sends the message to the switch, a new copy is cre-
ated, based on the original copy of Fig. 15.9(c), in which Phone3 is bound to
the right-hand instance. Then, in the original copy of Fig. 15.9(c), Phone3
is added to the set of objects to which the right-hand instance cannot bind,
thus making it possible for yet another phone to bind to this instance. By
the way, during this described scenario, additional LSC copies are created.
For example, each sending of Call(1) by Phone2 and Phone3 is also a mini-
mal event and therefore causes the creation of new copies of this LSC; also,
sending Call(1) by Phone3 after Phone2 completes the copy created when
Phone2 sent the message, etc. For clarity, we have focused here only on some
of the copies.

If the engine determines that the set of forbidden objects of a symbolic
instance (together with the objects of the same class that are already present
in the chart and therefore cannot bind to the symbolic instance) becomes

218 15. Classes and Symbolic Instances

equal to the set of all objects in the system that are instances of the same
class, the LSC copy is closed, since it has a symbolic instance that cannot
bind to any more objects.

The same mechanism is adopted also for events that cause violation of a
prechart. If an event e associated with object O occurs, and is unifiable with
an event e′ associated with a symbolic instance I (among other things, this
means, of course, that O is an instance of the class represented by I), and e′

is not enabled, this should be a violation. However, for the reasons discussed
earlier, we want the scenario prefix to be kept open for other objects to bind
to later. Therefore, a new copy is created, in which I is bound to O, and this
copy is violated and closed.4 The original copy adds O to the set of restricted
objects of I, thus forbidding O to bind to I later on in the execution.

15.7 Symbolic Instances in Existential Charts

In Chap. 12 we saw how existential charts can be used to specify system
tests and how they are monitored for successful completion. When an LSC
is monitored, its events are propagated when matching events are generated
by the tested system. Since the events that are generated by the system
are actual events, in which the sending and receiving objects are concrete
and known, there is no need for binding expressions in existential LSCs, and
the symbolic instances bind with concrete objects only as a result of system
events.

Now, a universal LSC can also be monitored, but since when it is created
we do not specify whether it is going to be used for execution or monitoring
or both, binding expressions are used anyway. Therefore, even in the case
of monitoring a universal chart, instances can bind to concrete objects in
between system events, as a result of evaluating binding expressions.

15.8 An Advanced Example: NetPhone

Using the NetPhone GUI and the play-in methodology, one can specify a
variety of behaviors for the telephone network. In this section we show a
simple, but non-trivial example of describing a requirement for this system,
which strongly utilizes symbolic instances. The requirement, which involves
a phone setting its own number, is as follows:

When the user dials a number and then clicks the Set button, then:
4 Creating a copy, violating it and closing it is done so that the user can be visually notified

of the effects of this most recent event.

15.8 An Advanced Example: NetPhone 219

1. If the number is already occupied by another phone an error mes-
sage is shown.

2. Otherwise, the number is associated with the current phone as
its telephone number, and is stored in the database as such. The
number is also displayed in the top-left corner of the phone’s GUI.

Since our GUI does not contain a database object, we first add it as an
internal object, called PhoneDB, and we can then play in the requirement. We
now discuss this behavior in some detail, since it entails a chain of messages
going from the phone to the switch, from there to the database, and then
back to the phone. Note that in our model each phone is associated with a
unique ID. This ID serves only to distinguish between the phone objects, and
is different from the phone’s number, which is used to call the phone from
other phones. The channels are also associated with unique IDs that serve to
distinguish between them, and it will be convenient to associate each phone
with the channel that has the same ID. Other 1–1 relations between phones
and channels could have been established in various different ways.

The LSC ‘Click Set’ (Fig. 15.10(a)) shows that when the user clicks the Set
button the phone’s ID number, Phone.ID, is stored in the variable ID and the
currently displayed number is stored in N. The phone then calls the switch’s
SetNumber method with ID and N. The LSC ‘Verify Number’ (Fig. 15.10(b))
shows that when some phone (the instance is symbolic but dashed) calls
the switch’s SetNumber method with parameters ID and N, the PhoneDB
is searched for a phone ID associated with the number N (denoted by the
implemented function RetrieveKey). If the result returned in the PhoneDB
state variable QResult is the empty string(denoted by no value in the condi-
tion), then no phone is associated with this number, and the switch therefore
asks the PhoneDB to associate the phone’s ID with the number N and to
store this information in the database. Otherwise, if the retrieved ID is not
the same as the initiating phone ID, the number N is already associated with
a different phone, and an error message should be shown on the initiating
phone’s display. LSC ‘Set in DB’ (Fig. 15.10(c)) shows that when the switch
asks the PhoneDB to associate the phone that has an ID equal to the num-
ber stored in the variable ID with the number stored in the variable N , the
PhoneDB actually stores the information in the DB (using an implemented
function). If the operation was successful, the switch sends AckNumber to
the phone, which has an ID equal to ID. Otherwise, an error message is sent
to this phone, indicating that the operation of linking the ID with the new
number has failed. The final LSC, ‘AckNumber’ (Fig. 15.10(d)), simply states
that when a phone receives the AckNumber message with the acknowledged
number N as a parameter, the phone’s number is set to N (which, in turn,

220 15. Classes and Symbolic Instances

Fig. 15.10. A phone setting its own number

is reflected in the GUI by showing this number on the top-left corner of the
phone) and the phone’s display is cleared by showing an empty string.

We have extended the NetPhone to include LSCs for establishing calls,
answering calls, conference calls, hanging up, and many other scenarios. Our
method of using binding expressions to characterize symbolic instances al-
lows each phone to set its phone number at runtime, but to use the number
property in binding expressions in order to refer to the required phone when
describing interactions between telephones. This could not have been done
using static instances and relationships only.

15.9 And a Bit More Formally ...

Here are the extensions and modifications needed to support symbolic in-
stances and their binding during execution.

15.9 And a Bit More Formally ... 221

System Model and Events

The system model we have defined so far already contains classes and defines
the relationships between classes and objects. Hence, no modifications are
needed here.

LSC Specification

Until now, all we needed to know about an LSC instance was the object it
represented, and this was given by the AppObj function. Since instances can
now be symbolic, and thus represent classes rather than objects, we modify
the definition of an instance as follows:

I = 〈`,O, C, ψ,Mode, Φ〉

where O ∈ O ∪ {⊥} is the concrete object represented by I (with O = ⊥
if I is symbolic), C ∈ C ∪ {⊥} is the class represented by I (with C = ⊥
if I is not symbolic), ψ ∈ {P × Oper × RHS} is the binding expression of
I, which is a basic condition expression restricting the property P ∈ C.P to
certain values, as discussed in Chap. 9, Mode ∈ {Existential, Universal} is
the instance quantification, and Φ ⊆ O is a set of forbidden objects that the
instance is not allowed to bind to. We also modify the range of AppObj to
reflect these changes:

AppObj :
⋃

L∈S
IL → O ∪ C

We will use the predicate symbolic(I) as an abbreviation of I.C 6= ⊥. We now
define the relation X 4 Y , where X ∈ O and Y ∈ O ∪ C, to denote that
either X and Y are the same object or Y is the class to which X belongs:5

X 4 Y , (X ∈ O ∧ (X = Y ∨ class(X) = Y))

We extend the relation 4 so it can also have instances as arguments in the
natural way (i.e., the relation refers to the objects or classes represented by
the instances).

The instances to which an LSC message M ∈ ML refers can now be
symbolic. Therefore, we relax the requirement that the instances represent
the same concrete objects as in the associated system message, and allow
them to also represent the classes to which the concrete objects belong:

M = 〈ISrc, IDst,MS〉
5 Recall from Chap. 4 that every object belongs to exactly one class.

222 15. Classes and Symbolic Instances

where MS .Src 4 AppObj(ISrc) and MS .Dst 4 AppObj(IDst).
We now extend EL, the set of LSC events, with the hidden event of binding

a symbolic instance with a concrete object:

EL =
({m ∈ ML | m.Ms ∈ ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv ∪ΣCalls}
× {Send, Recv})

∪ ({m ∈ ML | m.Ms ∈ ΣSelf} × {Send})
∪ (PchL × {Start, End}) ∪ {Completed}
∪ {perform(A) | A ∈ AL} ∪ {eval(C) | C ∈ CL}
∪ (SUBL × {Start, End}) ∪ {branch(ITE)| ITE ∈ ITEL}
∪ (LOOPL × {Start, End})
∪ {skip(Loop)| Loop ∈ LOOPL ∧ Loop.Kind = Dynamic}
∪ {bind(I)| I ∈ IL ∧ symbolic(I)}

The events of binding symbolic instances with concrete objects do not refer
to bindings that occur as a result of unifying events, but only to the act
of binding a symbolic instance when its binding expression is enabled. As
opposed to all the other events we have seen so far, a bind(I) event is enabled
when all the variables it uses are bound, regardless of the instances’ locations
as depicted by the current cut.

Operational Semantics

Prior to the addition of symbolic instances, one could tell whether two LSC
messages were unifiable by looking only at their associated system messages.
Hence, the definition for message unification was:

Definition 15.9.1 (message unification). Two system messages
Ms = 〈Src, Dst, P, V, f, λF

f , m, λM
m , Symbolic〉 and

M ′
s = 〈Src′, Dst′, P ′, V ′, f ′, λF

f ′ ,m
′, λM

m′ , Symbolic′〉 are Q-unifiable (where
Q is ‘positively’ or ‘negatively’) if Src = Src′, Dst = Dst′, P = P ′,m = m′

and their contents are Q-unifiable.

This definition then served in the definition of unifiable events as follows:

Definition 15.9.2 (level1-unification).

1. A system event es = 〈ms, t〉 and an LSC event el = 〈ml, t
′〉, with

t, t′ ∈ {Send, Recv} are Q-level1-unifiable (where Q is ‘positively’ or ‘neg-
atively’) if t = t′, ml.Ms and ms are Q-unifiable, AppObj(ml.ISrc) =
ms.Src, and AppObj(ml.IDst) = ms.Dst.

15.9 And a Bit More Formally ... 223

2. Two LSC events e = 〈m, t〉 and e′ = 〈m′, t′〉, with t, t′ ∈ {Send, Recv},
are Q-level1-unifiable if t = t′, m.Ms and m′.Ms are Q-unifiable,
AppObj(m.ISrc) = AppObj(m′.ISrc) and AppObj(m.IDst) =
AppObj(m′.IDst).

Since we are never really interested in unifying two system events but
rather in unifying a system event with an LSC event or unifying two LSC
events, and since the unification now depends also on the LSC instances, we
must modify these two definitions. First, we do not check the actual objects
of the system messages but rather leave this check to the event unification.
Second, we no longer require the objects to be identical, and it suffices that
one is an instance of the other.

Definition 15.9.3 (message unification). Two system messages
Ms = 〈Src, Dst, P, V, f, λF

f , m, λM
m , Symbolic〉 and

M ′
s = 〈Src′, Dst′, P ′, V ′, f ′, λF

f ′ ,m
′, λM

m′ , Symbolic′〉 are Q-unifiable (where
Q is ‘positively’ or ‘negatively’) if they represent the same property or method
(i.e., P = P ′ and m = m′), and their contents are Q-unifiable.

Definition 15.9.4 (level2-unification).

1. A system event es = 〈ms, t〉 and an LSC event el = 〈ml, t
′〉, with

t, t′ ∈ {Send, Recv}, are Q-level2-unifiable (where Q is ‘positively’ or
‘negatively’) if t = t′, ml.Ms and ms are Q-unifiable, ms.Src 4 ml.ISrc,
ms.Src /∈ ml.ISrc.Φ, ms.Dst 4 ml.IDst, and ms.Dst /∈ ml.IDst.Φ.

2. Two LSC events e = 〈m, t〉 and e′ = 〈m′, t′〉, with t, t′ ∈ {Send, Recv},
are Q-level2-unifiable if t = t′, m.Ms and m′.Ms are Q-unifiable and

((m.ISrc 4 m′.ISrc ∧ AppObj(m.ISrc) /∈ m′.ISrc.Φ)
∨ (m′.ISrc 4 m.ISrc ∧ AppObj(m′.ISrc) /∈ m.ISrc.Φ))

and
((m.IDst 4 m′.IDst ∧ AppObj(m.IDst) /∈ m′.IDst.Φ)
∨ (m′.IDst 4 m.IDst ∧ AppObj(m′.IDst) /∈ m.IDst.Φ))

So far, the effect of unifying events was a possible binding of variables with
new values. However, now, unifying events may result also in binding symbolic
instances with concrete objects. We therefore define the act of unifying two
level2-unifiable LSC events e = 〈m, t〉 and e′ = 〈m′, t〉 as follows:

224 15. Classes and Symbolic Instances

Unify(e, e′, Context)

1. Unify(e.m, e′.m′, Context).
2. If symbolic(e.m.ISrc) and e′.m′.ISrc 4 e.m.ISrc then bind the sym-

bolic instance with the concrete object:
a) e.m.ISrc.O ← e′.m′.ISrc.O.
b) e.m.ISrc.C ← ⊥.

3. If symbolic(e′.m′.ISrc) and e.m.ISrc 4 e′.m′.ISrc then bind the
symbolic instance with the concrete object:
a) e′.m′.ISrc.O ← e.m.ISrc.O.
b) e′.m′.ISrc.C ← ⊥.

4. If symbolic(e.m.IDst) and e′.m′.IDst 4 e.m.IDst then bind the sym-
bolic instance with the concrete object:
a) e.m.IDst.O ← e′.m′.IDst.O.
b) e.m.IDst.C ← ⊥.

5. If symbolic(e′.m′.IDst) and e.m.IDst 4 e′.m′.IDst then bind the
symbolic instance with the concrete object:
a) e′.m′.IDst.O ← e.m.IDst.O.
b) e′.m′.IDst.C ← ⊥.

A system event es = 〈ms, t〉 and an LSC event el = 〈ml, t〉 are also unified
along the same lines, except that the system event is guaranteed to have
concrete objects as the sender and receiver of the message:

Unify(es, el, Context)

1. Unify(es.ms, el.ml, Context).
2. If symbolic(el.ml.ISrc) and es.ms.Src 4 el.ml.ISrc then bind the

symbolic instance with the concrete object:
a) el.ml.ISrc.O ← es.ms.Src.
b) el.ml.ISrc.C ← ⊥.

3. If symbolic(el.ml.IDst) and es.ms.Dst 4 el.ml.IDst then bind the
symbolic instance with the concrete object:
a) el.ml.IDst.O ← es.ms.Dst.
b) el.ml.IDst.C ← ⊥.

The transition relation ∆[SO,SC] should now be modified to contain also
the effects of binding symbolic instances caused by event unification, and
extended with transitions for handling the hidden events of binding symbolic
instances as their binding expressions become enabled:

• If e = 〈M, t〉 (where t ∈ {Send, Recv}) then:
1. Set Context ← ∅.

15.9 And a Bit More Formally ... 225

2. If ∃CL ∈ SC and ∃e′ ∈ CL.LSC, such that e and e′ are negatively
level2-unifiable and e′ violates CL, then:

a) Set SC ← SC \ {CL}.
b) If temp(CL.Cut) = hot, set Violating ← True.
c) If symbolic(e′.M.ISrc) or symbolic(e′.M.IDst) then create an identical

copy C ′L of CL, set SC ← SC ∪ {C ′L}, and in the copy set
e′.M.ISrc.Φ ← e′.M.ISrc.Φ ∪ {e.M.Src} if symbolic(e′.M.ISrc)
e′.M.IDst.Φ ← e′.M.IDst.Φ ∪ {e.M.Dst} if symbolic(e′.M.IDst)

3. For every universal LSC L ∈ SO which has an event e′, positively level2-
unifiable with e, as a minimal event in its prechart, create a copy of
L, CL, and set SC ← SC ∪ {CL}. Set CL.Mode = PreActive and set
its cut by CL.Cut ← AdvanceCut(InitialCut(L), 〈PchL, Start〉). Unify
the variables of e and e′, by Unify(e, e′, Context). For each hidden event
e′′ <L e′, apply ∆(e′′).

4. For every existential LSC L ∈ SO which has an event e′, positively level2-
unifiable with e, as a minimal event in the chart body, create a copy of
L, CL, and set SC ← SC ∪{CL}. Set CL.Mode = Check, and set its cut
to the beginning of the chart by CL.Cut ← BeginMainCut(CL.LSC).
Unify the variables of e and e′, by Unify(e, e′, Context). For each hidden
event e′′ <L e′, apply ∆(e′′).

5. For every copy CL ∈ SC that has a reachable event e′ positively level2-
unifiable with e:

a) If symbolic(e′.M.ISrc) or symbolic(e′.M.IDst) then create an identical
copy of CL, C ′L, set SC ← SC ∪ {C ′L}, and in the copy set

e′.M.ISrc.Φ ← e′.M.ISrc.Φ ∪ {e.m.Src} if symbolic(e′.M.ISrc)
e′.M.IDst.Φ ← e′.M.IDst.Φ ∪ {e.m.Dst} if symbolic(e′.M.IDst)

b) Set CL.Cut ← AdvanceCut(CL.Cut, e′).
c) If e′ = 〈M,Send〉, M is synchronous and e′′ = 〈M, Recv〉,

set CL.Cut ← AdvanceCut(CL.Cut, e′′).
d) Unify the events e and e′, Unify(e, e′, Context).
e) For each hidden event e′′ <L e′, apply ∆(e′′).

• If e = Completed(CL) for some CL ∈ SC , then set SC ← SC \ {CL}.
• If e = 〈PchL, End〉 for some CL ∈ SC , then set

CL.Cut ← BeginMainCut(CL.LSC) and CL.Mode ← Active.
• If e = perform(A) for some A ∈ AL s.t. CL ∈ SC , then set CL.Cut ←

AdvanceCut(CL.Cut, e) and set

A.V ←




A.C if A.Type = constant
V alue(A.P) if A.Type = property
A.f(A.λF

f) if A.Type = function

226 15. Classes and Symbolic Instances

• If e = eval(C) for some C ∈ CL s.t. CL ∈ SC then
1. If value(C) = true then set CL.Cut ← AdvanceCut(CL.Cut, e).
2. If value(C) = false then

a) If subchart(C) ∈ {ITE.SubT , ITE.SubE} for some ITE then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

b) If subchart(C) = Sub ∈ SUBL then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

c) If subchart(C) = ⊥ then set SC ← SC \ {CL}.
d) If temp(C) = hot then set Violating ← True.

• If e = branch(ITE) for some ITE ∈ CL s.t. CL ∈ SC then
1. If value(ITE.C) = true then set

CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubT , Start)).
2. If value(ITE.C) = false then

set CL.Cut ←
{

AdvanceCut(CL.Cut, (ITE.SubE , Start)) if ITE.SubE 6= ⊥
AdvanceCut(CL.Cut, (ITE.SubT , End)) if ITE.SubE = ⊥

• If e = (ITE.SubT , End) for some ITE ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

• If e = (ITE.SubE , End) for some ITE ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubE , End))

• If e = (Sub, End) for some Sub ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

• If e = skip(Loop) for some Loop ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop,End))

• If e = (Loop, Start) for some Loop ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop, Start))

For every variable V ∈ VL that is used in Loop for the first time, set
V.ω ← ⊥.

• If e = (Loop, End) for some Loop ∈ CL s.t. CL ∈ SC and Loop.Kind 6=
Dynamic then

15.10 Bibliographic Notes 227

1. Set µ ← µ− 1.
2. If µ > 0 then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop, Start))

For every variable V ∈ VL that is used in Loop for the first time, set
V.ω ← ⊥.

3. If µ = 0 then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop,End))

• If e = bind(I) for some symbolic instance I ∈ CL s.t. CL ∈ SC , then:
1. S ← {O ∈ O | O 4 I, O satisfies I.ψ and @I ′ ∈ CL s.t. I ′.O = O}.
2. If S = ∅ then SC ← SC \ {CL}.
3. If I.Mode = Existential then

a) Set I.O = O, for some O ∈ S.
b) Set I.C = ⊥.

4. If I.Mode = Universal then perform the following for every O ∈ S:
a) Create an identical copy C ′L of CL.
b) Set SC ← SC ∪ {C ′L}.
c) Set I.O = O.
d) Set I.C = ⊥.
Finally, set SC ← SC \ {CL}.

Since the events of binding symbolic instances with objects that satisfy
their binding expressions are simply additional forms of hidden events, the
procedures step, super-step and monitor-event handle them with no modifi-
cations needed.

15.10 Bibliographic Notes

Deriving object relations from the object model diagram and utilizing these
relations during execution was discussed in [44] and is implemented in the
Rhapsody tool [60].

Extending LSCs with symbolic instances was first described in [84]. In that
paper we also discuss the rather technical problem of redundant activation of
symmetric precharts, and a proposed solution. However, since the issue is not
treated in the current implementation of the Play-Engine, we have decided
to omit it from the book.

In [64] there is a description of work (carried out independently of ours)
that deals with relating instance lines in LSCs to objects and classes, as part

228 15. Classes and Symbolic Instances

of an ongoing effort to establish a verification environment for UML models.
The resulting decisions made in [64] are different from ours, since the goals
were quite different; we have executability of LSCs as one of our main goals,
while the main purpose of LSCs in [64] is to serve as a basis for testing an
intra-object model or implementation.

16. Time and Real-Time Systems

In this chapter, we extend the language of LSCs and the Play-Engine with
means for dealing with time. We use a single discrete clock that is linked
to the host computer’s internal clock. We also assume the synchrony hy-
pothesis. Hence, in terms of playing out the behavior on an actual simulating
computer, we essentially have a real-time mechanism. The resulting extension
is extremely expressive.

16.1 An Example

Let us return to the cellular phone example, and consider the requirement
discussed in Chap. 7:

Every time the user opens or closes the cover, the antenna should
automatically open or close as well.

The LSC in Fig. 16.1 captures this requirement. Now, suppose we change the
requirement as follows:

Every time the user opens or closes the cover, the antenna should
automatically open or close between two and four seconds later.

This requirement refers to the time passage between events, and in order to
express it we have to extend the language of LSCs with timing constructs.
The LSC in Fig. 16.2 shows how this requirement is expressed in the extended
language. After the cover is opened (closed), the current time is stored in the
variable T . Before the antenna is allowed to open (close) we make sure, using
a hot condition, that the current time is greater than or equal to T +2. Since
a hot condition must be met, the execution must wait until the condition
becomes true, thus forcing the required delay. Finally, after the antenna opens
(closes), we check, again using a hot condition, that the current time is no
more than T + 4, thus making sure that the interval’s upper bound was not
violated.

230 16. Time and Real-Time Systems

Fig. 16.1. Opening and closing the antenna automatically

Fig. 16.2. Opening and closing the antenna within a specified time interval

16.2 Adding Time to LSCs

Many kinds of reactive systems must explicitly refer to time and react to its
passage. For this purpose, a variety of programming language constructs have
been proposed, including delays, timeouts, watchdogs and clock variables.
Temporal logic, for example, has been extended by a variety of constructs to
enable quantification of time, including bounded temporal operators, freeze
quantifiers and the use of explicit clock variables. Visual scenario-based lan-
guages, such as MSCs, have also been extended with timers, delay intervals,

16.3 Hot Timing Constraints 231

drawing rules and timing marks. Many of these approaches are referred to in
the bibliographic notes at the end of this chapter.

To extend the language of LSCs to deal with time, we adopt the basic
philosophy of Alur and Henzinger, according to which a real-time system can
be viewed as a discrete system with clock variables. We apply this approach in
our setting by adding a special single clock object with one property, Time,
and one method, Tick. The new object and its method can be referred to in
the charts by a special instance (with a clock icon) and a special constant
Tick event. The main technical observation underlying this chapter is that by
using these new elements with constructs already existing in our language,
such as assignments and conditions, and, significantly, by exploiting the hot
and cold dichotomy that pervades our entire approach, we are able to capture
a rich set of timing constraints and time-based behavior.

An important point here is that we have chosen to assume the synchrony
hypothesis, although we did not have to do so in order to make semantic
sense of our extension. This is a well-known abstraction of real-time systems,
according to which the system events themselves consume no actual time,
and time may pass only between events. As we shall see later, the synchrony
hypothesis makes our life a bit simpler when it comes to executing a time-
enriched LSC specification.

16.3 Hot Timing Constraints

A timing constraint in the extended LSC language can be defined by a combi-
nation of assignments and conditions. Figure 16.3 shows how to express three
of the most common timing constraints in scenario-based visual languages.
A vertical delay interval indicates the minimal and maximal delays allowed
between two consecutive events along an instance line. Such an interval is ex-
pressed in our language using the following steps (see Fig. 16.3(a), and note
the small sand-clock icons added to the assignment and condition boxes):

Store time: The time is stored immediately after the first event. According
to our semantics, assignments are performed as soon as they are reached.
Hence, the value of the variable will be the time instant at which the
event occurs.

Specify minimal delay: The minimal delay is specified by placing a hot con-
dition of the form Time > Time-Variable + Min-Delay just before the
second event. According to the described semantics, hot conditions are
evaluated continuously until they become true. Therefore, this condition
will be advanced only after the required period has passed. Such a condi-

232 16. Time and Real-Time Systems

Fig. 16.3. Expressing common timing constraints in LSCs

tion may be reached after the required lower bound on time has passed,
in which case it will be advanced immediately.

Specify maximal delay: The maximal delay is specified by placing a hot con-
dition of the form Time < Time-Variable + Max-Delay just after the
second event. If the condition is reached before the maximal delay has
elapsed, it will evaluate to true and will be advanced immediately, caus-
ing no delay or violation. If the condition is reached after the maximal
delay has elapsed, it evaluates to false, and since time cannot decrease the
condition will never hold and it is therefore treated as a constant False
condition, causing a violation of the requirements.

A message delay interval indicates the minimal and maximal delays
allowed from the moment a message is sent until it is received. This kind of
delay interval is specified like a vertical delay, except that here the time is
stored on one instance line and is checked on another (Fig. 16.3(b)). Note that
the assignment and the first condition in the figure are not related by the LSC
partial order, so that the condition may be reached before the assignment.
However, recall that a condition that uses (refers to) an unbound variable
cannot be evaluated. Thus, in this case, the condition will not be evaluated
until the assignment is performed.

The ITU-TS Recommendation Z.120 document provides timers for ex-
pressing timing constraints within a single MSC, and along a single instance.
Such a timer can be set to a value, reset to 0, and observed for timeout, and
can be used to express a minimal delay between two consecutive events or
a maximal delay between two or more consecutive events. However, timers
cannot be shared among different instances in an MSC and can therefore
be used to constrain events occurring only within a single object. Our LSC

16.3 Hot Timing Constraints 233

equivalent for a timer is also specified as a vertical constraint, except that the
maximal delay condition can be placed arbitrarily far from the place where
the time is stored (Fig. 16.3(c)), and we are not limited to a single instance,
as we shall soon see.

Here now are some more complex examples of timing constraints that can
be expressed in the extended LSCs.

Fig. 16.4. Expressing more complex timing constraints

Figure 16.4(a) shows how events occurring in different objects can be
related by a timing constraint. The LSC in this figure says that whenever
the switch is turned on, the light should turn on after no less than one time
unit and no more than two time units. (As we shall see later, the actual
duration of time units can be determined by the user, so we sometimes use
specific time units and sometimes use the more general term.) This very
natural requirement cannot be expressed by the previous three standard time
constructs, unless the communication between the switch and the light is
given explicitly in the chart. However, this kind of constraint is often desired,

234 16. Time and Real-Time Systems

especially in the requirements analysis phase, without having to get into the
details of implementation.

Figure 16.4(b) shows the use of conjunctive timing constraints. The LSC
shows a scenario where object C sends messages to O1 and O2 and expects
messages in reply from both objects. C is willing to accept the replies no later
than five time units after the first object received its message. Conjunctive
timing constraints are very useful when it is impossible to know the exact
execution order between multiple events that can affect some other event.

Figure 16.4(c) shows how conditions can be used to combine timing con-
straints with conventional constraints. In this LSC, when the switch is turned
on, the display should change its background color to green, but only if the
light is on, and no earlier than 1 time unit after the switch event. When the
condition is reached, execution will be advanced only if and when both of
these are true.

The combination of real-time constraints and regular ones can be taken
one step further, as seen in Fig. 16.4(d). This is an existential LSC, which
describes a simple test stating our expectation that the light should be on no
more than D time units after the switch was turned on. Or, in other words,
that if the light is still off later than D units after the switch was turned on,
we are in trouble. The value of D is taken from the MaxDelay state variable of
the controller, which may change dynamically during the system run. Note
that since this LSC represents a test, it does not have to specify how the
result of the light being on is achieved but only that it indeed is.

16.4 Cold Timing Constraints

In the previous section we used hot conditions to force an event to occur
only after a certain amount of time has elapsed (by a minimal delay) and
to cause a violation if the constraint is not satisfied (by a maximum delay).
The availability of cold conditions further enriches the expressive power of
time-enriched LSCs. A cold timing constraint with a minimal delay states
that if a certain event occurs after a specified period of time, the scenario
continues, otherwise the chart is exited. A cold constraint with a maximal
delay states that if the event occurred within the specified period of time,
the chart (or subchart) continues, otherwise the rest of it is simply ignored.

Figure 16.5 shows an example. The Queen of Hearts instructs the rabbit to
come to her palace in five seconds, and proceeds to look at her watch, noting
the time. The rabbit meets Alice and tells her he is late (the message is cold,
so he doesn’t have to do this, but can). Alice hurries the rabbit up, and upon
arriving at the Queen’s palace he reports to her. The Queen then checks

16.5 Time Events 235

Fig. 16.5. Having a cold time in Wonderland

whether more than five seconds have passed since the last time she looked at
her watch. If this is the case, she issues an order to remove the rabbit’s head;
otherwise, the scenario ends with the rabbit’s anatomy intact. . .

16.5 Time Events

Reactive real-time systems are often required to react to the passage of time,
and not only to refer to it when constraining the timing of other events of
interest. An example of such a requirement could be:

The controller should probe the thermometer for a temperature value
every 100 milliseconds, and if the result is more than 60 degrees, it
should deactivate the heater and send a warning to the console.

To express such requirements, generally termed time events, a special object
instance representing the clock is available, and can it be added to the LSCs.
Within this instance one can refer to the Tick event, which represents an
actual clock tick, i.e., the passage of a single time unit. This event can be
placed in a prechart to trigger desired actions, or in the main chart, thus
explicitly forcing delays.

Figure 16.6 shows an LSC that describes the above requirement.

236 16. Time and Real-Time Systems

Fig. 16.6. Time events in LSCs

16.6 Playing In

In order for the user to be able to refer to time while remaining within the
intuitive convenience of GUI-oriented play-in, we have added a global clock
object (accessible directly from the upper toolbar of the engine’s layout: see
Fig. 16.7). To specify a Tick event, the user simply clicks the clock’s Tick
button on the toolbar.

Fig. 16.7. The clock object in the Play-Engine’s toolbar

In order to specify timing constraints, the user needs to store time in time
variables and to restrict time with respect to these variables. Although we
use the existing constructs of assignments and conditions for these activities,
the Play-Engine provides more direct ways to define the timed versions of
these constructs.

To store the time at any point during play-in, the user right-clicks the rele-
vant object and chooses Store Time from the popup menu (see Fig. 16.8(a)).
In response, the Play-Engine displays a popup dialog in which the user is re-
quested to name the time variable.

To specify a timing constraint, the user right-clicks the constrained object
and chooses Time Constraint. . . from the popup menu (Fig. 16.8(b)). In
response, a timing constraint dialog opens up, in which the user specifies the
time variable, the delay and the constraint operator (Fig. 16.8(c)).

16.7 Playing Out 237

Fig. 16.8. Playing in a timing constraint

We have also added the following feature to the Play-Engine’s interface:
placing the mouse over a timed assignment causes the engine to draw thin
indication lines from it to all the timing constraints it may affect (see Fig.
16.2), and placing it over a timing constraint shows such lines drawn to all
the timed assignments that may affect it. We should add that the algorithm
for doing this is non-trivial, as it has to take into account the partial order
in the chart, the bindings of variables, and a number of additional things.1

16.7 Playing Out

As emphasized throughout the book, our target is not merely to construct
an off-line modeling medium, but to produce an executable formalism —
for which the execution mechanism essentially constitutes the operational
semantics — and to build the tool that executes the specifications. These
goals raise a host of new issues when time is included as part of the language,
and this section discusses the way we deal with them.

We have already seen that during execution the Play-Engine generates
only system events; it does not cause events that should be triggered by the
user or by the external environment. In this sense, the clock is considered part
1 We have actually implemented this algorithm for assignments and conditions in general,

and not only for those that deal with time.

238 16. Time and Real-Time Systems

of the system’s external environment, and the Play-Engine does not trigger
clock ticks on its own. Hence, in contrast to time-less LSCs, here a super-step
can terminate in the middle of a chart’s body because of as-yet unsatisfied
minimal-delay constraints.

So how indeed does our clock tick during play-out? We have implemented
two means for this. The first is a manual mode, where the user can cause
a tick by simply clicking the Tick icon on the engine’s toolbar. Note that
giving the user the power to control clock ticks, over and above the ability
to cause normal external events, makes it possible to trigger several events
within a single time unit, which can be used to set up realistic scenarios,
since it is often the case that a real-world external environment is capable of
doing exactly that.

The second mode is an automatic one. Here, the Play-Engine triggers
a clock tick every fixed interval, using the host machine’s internal clock to
obtain the actual time information. The interval length, relative to the real
clock, is determined by the engine’s user, and a natural thing to do would be
to set the interval to be the time unit used in the requirements themselves,
or the smallest such unit (e.g., if the time units are seconds, then the time
interval could be set to 1000 ms). Allowing for true control over the exe-
cution/simulation speed, at least insofar as the host machine’s clock allows,
this gets us as close as can be hoped to having a ‘really’ real-time system
model (that is, on a general-purpose computer, as opposed to working on a
special-purpose real-time operating system).2

The Play-Engine performs a lot of additional work during execution that
is not related to actually executing the specified events and actions (e.g.,
finding the next event to be taken, monitoring the activated LSCs and dis-
playing their progress graphically, etc.). Therefore, we have to somehow con-
front the problem of model vs. implementation, which is particularly acute
in the real-time arena. The synchrony hypothesis makes this easier. When
our Play-Engine executes the model, the clock keeps ticking and the system
waits for external stimuli. When such a stimulus arrives, our execution mech-
anism freezes the clock and performs the sequence of events that constitutes
the system’s response to that stimulus (this is the super-step). When the se-
quence is completed, the clock’s operation is resumed, thus causing the effect
of zero-time actions. We could just as easily not adopt the synchrony as-
sumption that freezes the clock when this kind of additional engine-specific
‘meta-work’ is carried out, but rather let the clock continue to tick when
events and functions from the model itself are applied. However, doing so
would mean that since the Play-Engine executes on a single-processor PC
2 If the interval between ticks is made sufficiently large, the user can trigger several end-

user and environment events within a single time unit in this mode too.

16.8 Unification of Clock Ticks 239

the requirements are captured correctly only if the target system also runs
on a single-processor platform.

16.8 Unification of Clock Ticks

The clock Tick event is denoted in LSCs as a self message, going from the
clock instance to itself. Although this message appears to be like any other
one, its unification with the Tick event must be handled in a special way. To
illustrate the problematic nature of this special message, consider the LSC
in Fig. 16.9.

Fig. 16.9. Unification of Tick messages with the Tick event

This LSC says that every time the user clicks the PWR button, the display
waits for three time units and then changes its color to green and then to
white, twice. Between every two changes of color there is a delay of at least
one time unit. The clock Tick event is being used here to explicitly indicate
the passage of time, as an alternative to the timing constraints described
earlier.

There is however a problem with this chart. In order to advance beyond
the first timing constraint, three time units must elapse. The passage of each
time unit is caused by a Tick event, but as the first such event occurs it will
be unified with the Tick messages in the chart and will cause the chart’s

240 16. Time and Real-Time Systems

violation (because of the semantics of events, which causes violation if an
event occurs out of sequence). This problem complicates the task of specifying
timed specifications, especially in the case where a Tick message must appear
in the prechart, since having such a message forbids the occurrence of other
ticks until the chart completes (unless these ticks are specified explicitly in
the chart body).

To overcome this problem we handle the unification of Tick events dif-
ferently: Recall that we use positive unification when looking for events that
can be propagated simultaneously, whereas we use negative unification to find
events that violate currently active LSCs. In the case of clock ticks, we do not
want the occurrence of a Tick event to be considered a violation because of
Tick messages that appear elsewhere in the LSC. Therefore, Tick events can
be positively unified (so that minimal events are found and Tick messages
are advanced when required), but they are not negatively unifiable. Thus, a
Tick event in a chart does not prevent other Tick events from happening.

Chapter 17 discusses an alternative way of specifying that a Tick event is
not allowed to happen as long as a specific LSC is active.

16.9 The Time-Enriched NetPhone Example

In Chap. 15 we introduced the telephone network example, and used it to
illustrate the power of symbolic instances. We now extend this NetPhone
system with a number of time-related features. For example, Fig. 16.10(b)
shows the LSC for an auto-dial feature:

If a phone that is not in automatic mode tries to call some number,
following which the “Receiver Busy...” message appears on the dis-
play, then if the user clicks the call button within five seconds from
the time the message appeared, the phone enters automatic mode.

The LSC in Fig. 16.10(c) shows the behavior of a phone in automatic
mode. As soon as it enters this mode the phone stores the current time in
Ts. It then displays “Automatic Mode”, and enters an (unbounded) loop,
which iterates for as long as the display shows “Automatic Mode”, but no
longer than 30 seconds from when the mode was entered. The loop’s control
is captured by the cold condition therein, whose semantics prescribes exiting
the current subchart — i.e., the loop — upon becoming false. The first thing
the phone does inside the loop is to store the current time in T1 and to try
calling the desired number. It then waits one second for the communication
protocol to be over and checks the message on the display. If it says “Receiver
Busy ...”, the display is set to show “Automatic Mode” again. Then there

16.9 The Time-Enriched NetPhone Example 241

Fig. 16.10. Some time-related behavior of the NetPhone system

is a hot constraint that forces a five second wait before there is an attempt
to reconnect. After the loop, there is a cold time constraint: If the loop was
exited after 30 seconds or more (i.e., it was exited not because a conversation
was established), the display shows that the automatic mode has expired.

242 16. Time and Real-Time Systems

Since the condition is cold, if the loop exits before 30 seconds have elapsed
(by establishing a conversation3), the scenario simply ends without showing
this last message.

16.10 And a Bit More Formally ...

Here are the extensions and modifications needed in the semantics to support
timing constraints and time events.

System Model and Events

The system model is extended with a global clock object:

Sys = 〈D, C,O,F , Clock〉

The clock is an external object with one Time property and one Tick method:

Clock.P = {Time}
Clock.M = {Tick}
Clock.External = True

The alphabet of possible messages of Sys is extended to include clock
ticks:

Σ = ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv ∪ΣSelf ∪ΣCalls

∪ ΣClock

ΣFromUser = {Ms | Src = User ∧ P ∈ class(Dst).P}
ΣToUser = {Ms | Dst = User ∧ P ∈ class(Src).P ∧ P.Affects = User ∧

P.InOnly = False}
ΣFromEnv = {Ms | Src = Env ∧ P ∈ class(Dst).P ∧ P.ExtChg = True ∧

P.InOnly = False}
ΣToEnv = {Ms | Dst = Env ∧ P ∈ class(Src).P ∧ P.Affects = Env ∧

P.InOnly = False}
ΣSelf = {Ms | Dst = Src ∧ P ∈ class(Src).P ∧ P.Affects = Self ∧

P.InOnly = False}
ΣCalls = {Ms | Dst, Src ∈ O ∧ m ∈ class(Dst).M}
ΣClock = {Ms | Dst = Src = Clock ∧ m = Tick}
The set of system events, E , is extended accordingly:
3 If a connection was indeed established, the receiving phone initiates a sequence of actions

— not shown in this LSC — which results in the display changing to show the number
of that phone, thus causing our loop to exit as it should before the full 30 seconds have
elapsed, by making the controlling condition false.

16.10 And a Bit More Formally ... 243

E = ((ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv ∪ΣCalls)× {Send, Recv})
∪ ((ΣSelf ∪ΣClock)× {Send})

LSC Specification

We modify the definitions of assignments and conditions so that they can
refer to time, as explained in the text.

An assignment is defined as:

A = 〈V, IA, C, P, f, λF
f , T imed〉

where Timed ∈ {True, False} is a flag indicating whether A is a timed
assignment. We require that one and only one of the following expressions
holds for each assignment:

(C 6= ⊥), (P 6= ⊥), (f 6= ⊥), (Timed = true)

We say that the assignment type of A is time if Timed = true.
The set of a condition’s basic expressions is extended to include also timing

constraints:

ψ ∈ {LHS ×Oper ×RHS} ∪ {TRUE, FALSE, SELECT(P),⊥}
∪ {Time×Oper × VL ×RHS}

where
LHS ∈ {O.P |O ∈ O, P ∈ O.P} ∪ VL

Oper ∈ {=, <,≤, >,≥, 6=}
RHS ∈ (

⋃

D∈D
D) ∪ VL ∪ {(f, λF

f)|f ∈ F}

A timing constraint is therefore a basic expression, in which the constrained
(left) part is the reserved word Time, and the constraint is the sum of the
values of a (time) variable and a delay. The latter can be any constant, vari-
able or function expression. If ψ is a time constraint, value(ψ) is computed
by evaluating ψ in the natural way, where Time is replaced by the current
value of Clock.T ime.

Finally, we extend EL, the set of LSC events, with the visible event of the
clock ticking:

244 16. Time and Real-Time Systems

EL =
({m ∈ ML | m.Ms ∈ ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv ∪ΣCalls}
× {Send, Recv})

∪ ({m ∈ ML | m.Ms ∈ ΣSelf ∪ΣClock} × {Send})
∪ (PchL × {Start, End}) ∪ {Completed}
∪ {perform(A) | A ∈ AL} ∪ {eval(C) | C ∈ CL}
∪ (SUBL × {Start, End}) ∪ {branch(ITE)| ITE ∈ ITEL}
∪ (LOOPL × {Start, End})
∪ {skip(Loop)| Loop ∈ LOOPL ∧ Loop.Kind = Dynamic}
∪ {bind(I)| I ∈ IL ∧ symbolic(I)}

Operational Semantics

First, we modify the definition of message unification so that Tick events are
not negatively-unifiable.

Definition 16.10.1 (message unification). Two system messages
Ms = 〈Src, Dst, P, V, f, λF

f , m, λM
m , Symbolic〉 and

M ′
s = 〈Src′, Dst′, P ′, V ′, f ′, λF

f ′ ,m
′, λM

m′ , Symbolic′〉 are Q-unifiable (where
Q is ‘positively’ or ‘negatively’) if they represent the same property or method
P = P ′ ∧m = m′ and their contents are Q-unifiable. If m = m′ = Tick, Ms

and M ′
s are only positively-unifiable.

The transition relation ∆[SO,SC] is now modified to handle time assign-
ments and time constraints correctly, and is also extended with transitions
for handling the Tick event.

• If e = 〈M, t〉 (where t ∈ {Send, Recv}) then:
1. If e.M.m = Tick then set Clock.T ime ← Clock.T ime + 1.
2. Set Context ← ∅.
3. If ∃CL ∈ SC and ∃e′ ∈ CL.LSC, such that e and e′ are negatively

level2-unifiable and e′ violates CL, then:
a) Set SC ← SC \ {CL}.
b) If temp(CL.Cut) = hot, set Violating ← True.
c) If symbolic(e′.M.ISrc) or symbolic(e′.M.IDst) then create an identical

copy C ′L of CL, set SC ← SC ∪ {C ′L}, and in the copy set
e′.M.ISrc.Φ ← e′.M.ISrc.Φ ∪ {e.M.Src} if symbolic(e′.M.ISrc)
e′.M.IDst.Φ ← e′.M.IDst.Φ ∪ {e.M.Dst} if symbolic(e′.M.IDst)

4. For every universal LSC L ∈ SO which has an event e′, positively level2-
unifiable with e, as a minimal event in its prechart, create a copy of
L, CL, and set SC ← SC ∪ {CL}. Set CL.Mode = PreActive and set
its cut by CL.Cut ← AdvanceCut(InitialCut(L), 〈PchL, Start〉). Unify
the variables of e and e′, by Unify(e, e′, Context). For each hidden event
e′′ <L e′, apply ∆(e′′).

16.10 And a Bit More Formally ... 245

5. For every existential LSC L ∈ SO which has an event e′, positively level2-
unifiable with e, as a minimal event in the chart body, create a copy of
L, CL, and set SC ← SC ∪{CL}. Set CL.Mode = Check, and set its cut
to the beginning of the chart by CL.Cut ← BeginMainCut(CL.LSC).
Unify the variables of e and e′, by Unify(e, e′, Context). For each hidden
event e′′ <L e′, apply ∆(e′′).

6. For every copy CL ∈ SC that has a reachable event e′ positively level2-
unifiable with e:

a) If symbolic(e′.M.ISrc) or symbolic(e′.M.IDst) then create an identical
copy of CL, C ′L, set SC ← SC ∪ {C ′L}, and in the copy set

e′.M.ISrc.Φ ← e′.M.ISrc.Φ ∪ {e.m.Src} if symbolic(e′.M.ISrc)
e′.M.IDst.Φ ← e′.M.IDst.Φ ∪ {e.m.Dst} if symbolic(e′.M.IDst)

b) Set CL.Cut ← AdvanceCut(CL.Cut, e′).
c) If e′ = 〈M,Send〉, M is synchronous and e′′ = 〈M, Recv〉,

set CL.Cut ← AdvanceCut(CL.Cut, e′′).
d) Unify the events e and e′, Unify(e, e′, Context).
e) For each hidden event e′′ <L e′, apply ∆(e′′).

• If e = Completed(CL) for some CL ∈ SC then set SC ← SC \ {CL}.
• If e = 〈PchL, End〉 for some CL ∈ SC , then set

CL.Cut ← BeginMainCut(CL.LSC) and CL.Mode ← Active.
• If e = perform(A) for some A ∈ AL s.t. CL ∈ SC , then CL.Cut ←

AdvanceCut(CL.Cut, e) and

A.V ←





A.C if A.Type = constant
V alue(A.P) if A.Type = property
A.f(A.λF

f) if A.Type = function

Clock.T ime if A.Type = time

• If e = eval(C) for some C ∈ CL s.t. CL ∈ SC then
1. If value(C) = true then set CL.Cut ← AdvanceCut(CL.Cut, e).
2. If value(C) = false then

a) If subchart(C) ∈ {ITE.SubT , ITE.SubE} for some ITE then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

b) If subchart(C) = Sub ∈ SUBL then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

c) If subchart(C) = ⊥ then set SC ← SC \ {CL}.
d) If temp(C) = hot then set Violating ← True.

• If e = branch(ITE) for some ITE ∈ CL s.t. CL ∈ SC then

246 16. Time and Real-Time Systems

1. If value(ITE.C) = true then set
CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubT , Start))

2. If value(ITE.C) = false then

set CL.Cut ←
{

AdvanceCut(CL.Cut, (ITE.SubE , Start)) if ITE.SubE 6= ⊥
AdvanceCut(CL.Cut, (ITE.SubT , End)) if ITE.SubE = ⊥

• If e = (ITE.SubT , End) for some ITE ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

• If e = (ITE.SubE , End) for some ITE ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubE , End))

• If e = (Sub, End) for some Sub ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

• If e = skip(Loop) for some Loop ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop,End))

• If e = (Loop, Start) for some Loop ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop, Start))

For every variable V ∈ VL that is used in Loop for the first time, set
V.ω ← ⊥.

• If e = (Loop, End) for some Loop ∈ CL s.t. CL ∈ SC and Loop.Kind 6=
Dynamic then
1. Set µ ← µ− 1.
2. If µ > 0 then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop, Start))

For every variable V ∈ VL that is used in Loop for the first time, set
V.ω ← ⊥.

3. If µ = 0 then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop,End))

• If e = bind(I) for some symbolic instance I ∈ CL s.t. CL ∈ SC , then:
1. S ← {O ∈ O | O 4 I, O satisfies I.ψ and @I ′ ∈ CL s.t. I ′.O = O}.
2. If S = ∅ then SC ← SC \ {CL}.

16.11 Bibliographic Notes 247

3. If I.Mode = Existential then
a) Set I.O = O, for some O ∈ S.
b) Set I.C = ⊥.

4. If I.Mode = Universal then perform the following for every O ∈ S:
a) Create an identical copy C ′L of CL.
b) Set SC ← SC ∪ {C ′L}.
c) Set I.O = O.
d) Set I.C = ⊥.
Finally, set SC ← SC \ {CL}.

16.11 Bibliographic Notes

There are essentially four popular classes of syntactic constructs for express-
ing timing constraints in (variants of) MSCs: timers [9, 123], delay inter-
vals [9, 86], drawing rules and timing marks [17]. For a detailed survey
and comparison of the different time notations in sequence charts the reader
is referred to [13].

Recommendation Z.120 [91] provides timers for expressing timing con-
straints within a single MSC, and along a single instance. Timers cannot be
shared among different instances in an MSC and can therefore be used to
constrain events occurring only within a single object.

Delay intervals are also used to express timing constraints in a single MSC.
They may express three types of constraints: An event associated interval
[86] indicates the global minimal and maximal delays within which the event
should occur with respect to a previous event in the trace. A message de-
livery interval indicates the minimal and maximal delays allowed from the
moment a message is sent until it is received. A processor speed interval
indicates the minimal and maximal delays allowed between two consecutive
events along an instance line. The author of [86] generalizes the message de-
livery and processor speed delay intervals by using the semantic notion of
consecutive events. In addition, the syntax of MSCs is extended in [86]
with precedence edges that connect unrelated events and thus allow the
user to provide delay intervals for them. While precedence edges indeed allow
the expression of additional timing constraints, they may result in a cluttered
graph.

In some versions of the UML [17, 115], timing constraints in sequence
diagrams can be represented by drawing rules and timing marks. Horizon-
tally drawn arrows indicate synchronous messages, while downward slanted
arrows indicate a required delay between the send and receive events of the
message. To describe more quantitative timing constraints, timing marks can

248 16. Time and Real-Time Systems

be attached to the diagram. These are Boolean expressions placed in braces,
and they can constrain particular events or the entire diagram. Timing marks
are not shown visually in the diagram.

In [65], an automata-based semantics for LSCs is presented. While the LSC
language in [65] does not contain some of our other extensions (e.g., symbolic
instances and forbidden elements), time is indeed dealt with. LSCs can be
annotated by timers and by delay intervals. Thus, the timing constraints
are between pairs of events that are either on the same instance line or are
connected by a message. The LSC is unwound into a timed Büchi automaton
with unique clocks serving each constraint.

Turning now to temporal logics, these are usually interpreted over linear
traces or branching computation trees. Temporal logic formulas disregard
aspects of visualization or the fact that two constrained events may occur
in different objects/processes. An extensive survey of notations for timing
constraints in temporal logics, comparisons of them and a discussion of their
expressive power can be found in [6].

A common way of introducing real time in temporal logic is by replac-
ing the unrestricted temporal operators by time-bounded versions [70]. For
example, the time-bounded operator ♦[1,3] is interpreted as ‘eventually
within one to three time units’. This notation can relate only adjacent tem-
poral contexts, so that there appears to be no direct way of expressing the
following property for example: “every stimulus p is followed by a response q
and then by another response r, such that r is within five time units of the
stimulus p” [6]. This shortcoming can be remedied by extending temporal
logic with explicit references to the times of temporal contexts, for example
by freeze quantifiers [7]. The freeze quantifier ‘x.’ binds the associated vari-
able x to the time of the current temporal context. For example, the formula
♦x.φ binds the variable x to the time of the state at which φ ‘eventually’
becomes true.

Another way of writing real-time requirements is based on standard first-
order logic. The syntax uses a dynamic state variable T — the clock variable
— and first-order quantification of global variables over the time domain. The
clock variable T assumes in each state the value of the corresponding time.
Examples of using this method for expressing timing constraints can be found
in several places, such as [94, 95].

Timed automata [4] serve as the semantic basis for many of the timing
models in the literature, and are extensively used for model-checking prop-
erties of such models. An extensive survey of the theory of timed automata
and their role in specification and verification of real-time systems appears
in [3].

16.11 Bibliographic Notes 249

Time is, of course, handled in many other non-scenario-based formalisms,
mainly to specify maximal delays for an operation to be carried out (e.g.,
Delay in the Ada programming language [61]) or for a state to be exited
(e.g., the squiggle notation proposed in the initial statecharts paper [42],
and timeout constructs for states in tools like Statemate or Rhapsody [48,
53, 60]).

The time extensions to LSCs that are discussed in this chapter were first
presented in [51], which is also the source for most of the examples presented
in the chapter. In our extensions to LSCs we adopt the basic philosophy of
Alur and Henzinger [8], according to which a real-time system can be viewed
as a discrete system with clock variables. The synchrony hypothesis, which we
adopt in our operational semantics and in the Play-Engine implementation,
was first proposed by Berry as part of the Esterel language [14]. For a detailed
discussion regarding the problems and challenges in the transition between
models of real-time systems and their implementation, see [112].

We showed earlier how timing constraints can be combined with standard
conditions to form timed guards. Placing a maximal delay in conjunction with
a ‘regular’ guard is somewhat similar to the notion of delayed deadline, as
it appears in [107].

17. Forbidden Elements

So far, we have shown how the language of LSCs and its various proposed
extensions are used to specify what a system can do and what it must do. Of
course, the fact that we have hot elements at our disposal allows us to lay out
a variety of constraints on the allowed behavior, outlawing parts that we do
not want. The ultimate in such disallowed behavior are anti-scenarios, where
we use a hot false condition to forbid an entire scenario, the one appearing
in the prechart, from occurring.

In this chapter, we introduce a more direct and flexible means for disal-
lowing behavior, forbidden elements. With these one can specify events
that are not allowed to occur or conditions that are not allowed to hold
during specific intervals within a chart’s execution. We also show how forbid-
den elements can be used to express invariants, i.e., expressions that must
hold during specified execution intervals. Using invariants, we can express
assumptions over the system’s runs and can also force the system to adhere
to them. And, again, the hot/cold dichotomy causes this LSC extension to
become particularly powerful. It also renders the specification of many kinds
of often-needed constraints more convenient and explicit.

17.1 Example: A Cruise Control System

We shall be using a simple car panel with an automatic cruise control system
as our example here. Figure 17.1 shows a graphical user interface and an
object map of the target system, together with a sample LSC. The GUI
consists of a steering wheel, acceleration and brake pedals, a speedometer,
and a switch for turning the cruise control system on and off. The object
map contains three internal objects: the cruise control unit, the car’s main
control unit and the engine. The LSC in this figure describes what happens
when the driver hits the brake pedal. Using an unbounded loop with a cold
condition and timing constructs, the speed is decreased at a rate of 5 km/h
every second, until it reaches 0.

Now suppose we would like to specify that this process of deceleration
terminates not only when the car stops, but also when the user presses the

252 17. Forbidden Elements

Fig. 17.1. Hitting the brakes

accelerator. Since hitting the accelerator is an event, we cannot refer to it
using a cold condition in the loop. To overcome this shortcoming we introduce
the new construct of a forbidden message, which appears in this example
at the bottom of Fig. 17.2.

17.2 Forbidden Messages

Forbidden messages are messages that are not allowed to occur within a given
scope. In the example of Fig. 17.2, we would like to say that the event of the

17.2 Forbidden Messages 253

Fig. 17.2. Stop deceleration when pressing the accelerator

user pressing the accelerator is not allowed to happen inside the deceleration
loop. In the general spirit of LSCs, forbidden messages can be hot or cold.
If a hot forbidden message occurs while the chart is in the forbidden scope,
this is considered a violation of the requirements, whereas a cold forbidden
message occurring merely causes the forbidden scope to be gracefully exited,
causing no error. In our example, the forbidden message is cold, thus causing
the termination of the loop the instant the accelerator is pressed, regardless
of the situation of the execution within the loop.

Cold forbidden messages can be used to control the flow of LSC execu-
tion by events whose exact time of occurrence is not known. In contrast, hot
forbidden messages can be used to unequivocally state that certain events
are simply not allowed to happen (or are strongly postulated not to hap-
pen) within a given scope. The temperature of a forbidden message has a
somewhat different meaning from that of a conventional message. The tem-
perature of a standard message represents the obligation for the message to
be received if sent, while the temperature of a forbidden message represents
the obligation for the message not to be sent, i.e., not to take place at all.

254 17. Forbidden Elements

We thus draw forbidden messages in a neutral color — grey — while the
message’s surrounding rectangle is drawn in blue or red according to the
temperature. Cold forbidden messages and their rectangles are still drawn
using dashed lines, while the hot ones are drawn with solid lines.

All the forbidden messages are located in a special area at the bottom
of the LSC, separated by the Forbidden Elements header. Each forbidden
message is surrounded by its own (red or blue) small rectangle to emphasize
that these messages are not related to each other and are not restricted by
any partial order.

Figure 17.3 shows an example of using a hot forbidden message. In it, O1

Fig. 17.3. Using hot forbidden messages

sends Request(1) to O2. In response, O2 may reply with either “Accept” or
“Reject”. The forbidden message asserts that as long as the LSC is active
(the forbidden scope is written to the left of the rectangle), O1 is not allowed
to send Request(2) to O2. This hot forbidden message serves two purposes.
First, it can be used to capture our assumption that O1 indeed does not
send Request(2) to O2 until it receives a reply. If the forbidden message does
occur, the Play-Engine will issue an error message, indicating a violation of
the requirements, and the chart will be crossed out in red. Second, this kind
of hot forbidden message can be used to force the Play-Engine to select events
in some desired order during LSC execution. If, for example, the event of O1
sending Request(2) to O2 is enabled in some other chart, the Play-Engine
will not carry it out until the first chart has completed, and if these are the

17.3 Generalized Forbidden Messages 255

only two charts, the Play-Engine will first cause O2 to reply to O1 and only
then will it issue the next request.

To insert a forbidden message into an LSC, the user clicks on the
Forbidden Elements button in the toolbar. In response, the cursor moves
to the forbidden elements area, and there the user plays in the message as if
it were a conventional one.

17.3 Generalized Forbidden Messages

Forbidden messages come in four flavors, or, rather, four levels of generality.
The user determines the level by right-clicking the message and choosing a
value from the Forbid What submenu (see Fig. 17.4).

Fig. 17.4. Specifying the level of generality for a forbidden message

The first two levels of generality (i.e., the two most specific) are set by se-
lecting Specified message only. If the message is exact (i.e., not symbolic)
then only the exact message that was played in is forbidden. If the message
is symbolic, all the messages that are unifiable with it are forbidden. Recall
that when trying to unify messages for checking whether there is a violation,
we used negative unification, where variables must be already bound to the
same value in order to be unifiable. This was done in this way because we
did not want a message of the form m(x) to be considered a violation when
m(3) occurs, if the value of x is unknown. But now, if we specify that m(x)
is a forbidden message, we would certainly like any message of the form m(c)
with some constant value c to be considered a violation. Therefore, when
checking for violations of forbidden messages we use positive unification. The
top two messages in Fig. 17.5 show how these first two levels of generality
show up in the forbidden elements area of the chart.

256 17. Forbidden Elements

Fig. 17.5. Generality levels of forbidden messages

The next level of generality is obtained by selecting All messages between
these objects. Setting a message to this level means that all the messages
going from the sender of the message to its receiver are forbidden. These
kinds of messages are denoted by an arrow going between the objects and
labeled with ‘*’; see the third message in Fig. 17.5.

The maximal generality level is obtained by selecting All messages. Set-
ting a message to this level means that all messages are forbidden. Setting
the scope of such a message to be the entire LSC (see Sect. 17.6 for how this
is done) means that the only sequences of events that are allowed are those
that contain events that appear in the LSC, in an order matching the one
induced by the LSC, and which contain no other events at all. These kinds
of messages are denoted by an arrow stretching across the full width of the
message rectangle and labeled with ‘*’; see the bottom message in Fig. 17.5.

Note that the parameter of the symbolic forbidden message (the second
line in Fig. 17.5) is given by a ‘*’ and not by a specific name. This is to
indicate the fact that any value can be unified with the parameter. If we
want to forbid only messages with a specific value that is a priori unknown
but will be determined during execution, an existing variable from the LSC
can be used as the parameter of the forbidden message, and the variable
name will then appear as the parameter of the forbidden message. The LSC
in Fig. 17.6 says that O1 is not allowed to make two identical requests before
the first one is answered.

17.4 Symbolic Instances in Forbidden Messages

Consider the LSC shown in Fig. 17.7. It refers to the telephone network
system of Chaps. 15 and 16, and states that when the user clicks the Call
button on any of the phones in the system, the phone delays for one time
unit and then sends a Call(0) message to the central switch. It also says,
utilizing the forbidden messages mechanism, that during that time no other
phone may call the switch, and if some phone does, the LSC should exit
immediately.

17.4 Symbolic Instances in Forbidden Messages 257

Fig. 17.6. Using an existing LSC variable in a forbidden message

Fig. 17.7. Symbolic instances in forbidden messages

This example raises the following question: Suppose that the chart is ac-
tivated by the user clicking on phone1. Clearly, if phone2 calls the switch
while phone1 is waiting for the time unit to elapse, this should be considered
a violation. But, what happens if phone1, not phone2, calls the switch during
that period by sending the message Call(2) (we deliberately chose a message
that does not unify with any other message in the chart body)? Should that
be considered a violation?

We have decided that it is not. According to our semantics, the forbidden
message, if specified with a source or target class line that is different from
some instance that represents a specific object or class in the chart, should
refer to the disjoint set that contains all objects other than those that are
already represented by instances in the chart. Here, the forbidden message

258 17. Forbidden Elements

refers to all the phones except phone1. This decision is consistent with the
fact that the same object cannot be represented by two instance lines in the
same LSC. The decision also allows us to restrict phone1 by adding another
forbidden message originating from the first instance, whereas choosing the
alternative option would have made it impossible to restrict all objects except
for phone1.

17.5 Forbidden Conditions

Returning to our cruise control example, consider the LSC in Fig. 17.8. It

Fig. 17.8. Turning on the cruise control system

states that when the driver turns on the cruise control system, the cruise
unit stores the current speed of the car and then enters an infinite loop, in
which it adjusts the speed every 5 seconds (the call to AdjustSpeed activates
a different LSC that we have not shown here). Since the user may turn off the
cruise control system at any time, specifying this user action as a forbidden
message has the effect of deactivating the operation of the cruise unit as soon
as the cruise switch is turned off.

17.5 Forbidden Conditions 259

Now suppose we have specified that the cruise switch is turned off auto-
matically as a side effect of the user hitting the brakes or the accelerator (see
Fig. 17.9). Naturally, we would like to deactivate the cruise control operation

Fig. 17.9. Deactivating cruise control with the brakes or accelerator

in these cases too. We could add another forbidden (self) message in Fig.
17.8 to disallow the switch being turned off, thus having the same effect as
the existing forbidden message. Instead, we offer a more elegant solution.

What we really care about is the state of the switch and not the reason for
it being turned off. Thus, what we really need is a cold condition constraining
the switch to be on. Where should such a condition be located? We could put
it at the beginning of the loop, thus making sure that no AdjustSpeed event
occurs while the switch is off. However, if the switch is turned off immediately
after being turned on, the cruise unit will still store the new speed. Although
this is not the end of the world, the point is that we want a condition that
will be forced to hold not only at some discrete points during the run but
throughout entire run intervals.

To make this possible, we extend the LSC language with forbidden con-
ditions, which are not allowed to hold anywhere within the scope associated
with them. Figure 17.10 shows an example of a cold forbidden condition that
constrains the switch to be on as long as the LSC is active. As with forbid-
den messages, as soon as a cold forbidden condition evaluates to true, its
forbidden scope is exited.

Forbidden conditions may also be hot, and can thus be used to really
force properties during execution. If a hot forbidden condition becomes true,
this is considered a violation of the requirements and is indicated with a red
cross over the chart and an error message, as with forbidden messages. In
Fig. 17.11, for example, the hot condition constrains the engine speed to be

260 17. Forbidden Elements

Fig. 17.10. A cold forbidden condition

no greater than 100 km/h. By associating this condition with the entire LSC,
even the act of turning on the cruise control system while the car is running
at a speed greater than 100 km/h will trigger a violation of the forbidden
condition and the prechart will not complete.

Hot forbidden conditions can also be used to enforce some specific order
between unrelated events. Consider, for example, the two LSCs in Fig. 17.12.
The LSC “Trigger” states that when the cruise switch is turned on, O1 resets
its Done flag to false, then it sends Req1 to O2, and finally it sets its Done
flag to true. The second LSC, “Response”, shows that after a certain delay
from the moment the request sent from O1 is received by O2, O2 replies with
Accept. In this LSC there is a hot forbidden condition that forbids O1 to have
its Done flag set to true throughout the entire LSC. Now, suppose the switch
is turned on. O1 first resets its flag to false, then sends the message to O2,
and this message activates a copy of “Response”. Although O2 has to wait
before replying to O1, the Play-Engine cannot advance the first chart in the
meantime, because it will cause a violation of the second LSC. Therefore, the
Play-Engine waits for the required delay to elapse and for O2 to send the
reply. Only then, after the second LSC completes, is the constraint no longer

17.5 Forbidden Conditions 261

Fig. 17.11. Using a hot forbidden condition to enforce a safety invariant

obligating, and the first chart can be completed too by setting the Done flag
to true.

Fig. 17.12. Using a hot forbidden condition to enforce the order of execution

262 17. Forbidden Elements

17.6 Scoping Forbidden Elements

Forbidden elements can be restricted to various scopes in an LSC. The forbid-
den scope can be the entire LSC, its prechart, its main chart, or any subchart
thereof. The user determines the scope by right-clicking the message and se-
lecting a value from the Forbidden Scope submenu (see Fig. 17.13).

Fig. 17.13. Selecting the scope of a forbidden message

The scope is written on the left side of the forbidden message’s bounding
rectangle, and when the mouse is placed over the message a thin dashed line
connecting it to its scope is shown. In addition, when the mouse is placed
over a subchart, the Play-Engine graphically connects it to all its relevant
forbidden messages (see Fig. 17.14).

Figure 17.14 actually raises a priority issue. The bottom two messages
restrict the same subchart. The first is a hot restriction, and says that all
messages going from O1 to O2 are strictly forbidden. The second is cold, and
says that if any message occurs while execution is inside the subchart, the
subchart should be exited. Suppose now that O1 sends a message M to O2.
Which of the following should happen? Should the subchart exit, or should
this be interpreted as a violation of the requirements?

We adopt the second approach, according to which hot forbidden messages
take precedence over (or are more dominant than) cold ones. We feel it is
more intuitive to have stricter restrictions overriding less strict ones. A similar
question arises when two cold forbidden messages are violated simultaneously
and one’s scope contains the other. The LSC in Fig. 17.15 states that when
O1 sends a request to O2, O2 accepts it with a 50% probability. The first of
the chart’s two cold forbidden messages forbids only those going from O1 to
O2, but throughout the entire chart, while the second forbids all messages,
but only within the subchart. Now suppose that O1 again sends a message
M to O2. This can result in either exiting the subchart or exiting the whole

17.6 Scoping Forbidden Elements 263

Fig. 17.14. Overlapping scopes of forbidden messages

Fig. 17.15. Violating contained scopes

chart. We adopt the approach according to which the larger scope takes
precedence. This choice seems the most intuitive, and it also eliminates the
need to explain why a scope that is restricted by a message is not exited
when the message occurs.

264 17. Forbidden Elements

17.7 Playing Out

Forbidden elements are played in like conventional ones, i.e., the user moves
the cursor to the forbidden area and then the elements are played in normally.

Turning to play-out, the process of executing an LSC specification calls for
the Play-Engine to monitor events as they are carried out by the system or the
environment, and to trigger events according to the bodies of universal charts.
Events that are carried out by the environment (i.e., the user, the external
environment, the clock and the external objects) are beyond the control of
the Play-Engine, and it therefore cannot prevent them from occurring. If such
an event does occur while being forbidden, it is the duty of the Play-Engine
to indicate this misbehavior visually and to report it to the user.

As far as events that are generated by the system are concerned, the Play-
Engine selects such events one at a time, in such a way as to make sure that
the next event that is carried out will not violate any active LSCs (and if
possible will not violate any pre-active LSCs either). Now that LSCs have
been endowed with forbidden messages, the Play-Engine has additional work
to do. Not only does it have to look for events that appear in the chart and
are not enabled, but it also has to scan the forbidden messages looking for
possible violations. Unlike finding non-enabled events, a task that involves
a simple search through the chart, forbidden messages are considered to be
violating only if the current cut is inside the message’s forbidden scope.

When the specification contains forbidden conditions, the Play-Engine
makes an additional effort, and before choosing an event to be carried out
it simulates the immediate impact on the system of doing so. (Of course,
this is required only for events that change object properties and not for
events that merely transfer information between objects.) If a hot forbidden
condition with a currently active scope would become true by this, the event
is not selected to be executed. Cold forbidden conditions are not considered
in the act of ruling out events, since we think of them more as means for
controlling the flow of execution and less as constraints that are not allowed
to happen.

Hence, the process of checking whether an event e causes a violation in
an LSC L consists of the following steps:

1. Go through the forbidden conditions in L. If there is one with a currently
active scope that will become true as a result of carrying out e, add it to
an initially empty collection of conditions.

2. If the collection of conditions contains a hot condition, e is violating.
3. If e is currently enabled in L, it is not violating.

17.7 Playing Out 265

4. Go through the forbidden messages in L. If there is one with a currently
active scope that can be positively-unified with e, add it to an initially
empty collection of messages.

5. If the collection of messages contains a hot message, e is violating.
6. If the collection of messages contains only cold messages, e is not violating.
7. If there are no relevant forbidden messages and there is an event in L

negatively-unifiable with e that is currently not enabled, e is violating.
8. Otherwise, e is not violating.

Actually, when the Play-Engine looks for events to be carried out, it first
selects those that do not violate even cold forbidden messages, and only if no
such events exist, does it allow for ones that violate cold forbidden messages.

If a forbidden message occurs, the Play-Engine crosses out the violated
chart, encircles the forbidden message that caused the violation and issues a
warning or an error message, depending on the message’s temperature. In the

Fig. 17.16. Interrupting a chart by a cold forbidden message

example shown in Fig. 17.16, it is assumed that the driver is not supposed
to turn on the cruise control for at least 1 second from the moment he/she
hits the brake pedal. The figure shows the reaction of the Play-Engine when
this scenario indeed occurs; in this case, the deceleration is terminated and
the chart is exited, causing no violation.

266 17. Forbidden Elements

17.8 Using Forbidden Elements with Time

Forbidden elements can be used to induce simple but useful (and quite com-
mon) timing constraints. For example, suppose we wish to specify that a set
of events should be carried out within one time unit; or, in other words, that
it should not be interrupted by clock ticks. This can be achieved, as shown
in Chap. 16, by specifying a maximal delay on the set of events. A simpler
and more elegant way of doing this would be to specify the ‘Tick’ event as a
forbidden message that restricts the set of events (e.g., the entire chart or a
subchart). Figure 17.17 shows an example.

Fig. 17.17. Forcing an LSC to complete within a single time unit

A cold forbidden ‘Tick’ event placed so as to restrict an unbounded loop
can be used to specify a restriction of the form: “the system should do as
much as it can within a single time unit”.

Forbidden conditions can also be used to restrict the amount of time
something should take. In the LSC of Fig. 17.18, for example, O1 requests
O2 to perform something. This may be an iterative computation, for which
initial results can be obtained quickly and then refined for better quality as
time permits. Here, the computation loop is guarded by a watchdog that
allows it to consume no more than 3 time units (and in this case no less than
that either, because of the absence of any other means of loop termination).

17.9 A Tolerant Semantics for LSCs

The LSC semantics that we define throughout the book prescribes that an
event e that occurs during execution is considered to be violating an LSC

17.9 A Tolerant Semantics for LSCs 267

Fig. 17.18. Specifying a watchdog with forbidden conditions

L if e appears in L but is not enabled. Other events, i.e., those that do not
appear in L, are not restricted in this way, and may occur at any time. Now
that LSCs are extended with forbidden messages, events that do not appear
in a chart may also be restricted to not occur while the chart is executed.
There is, however, a problem with this semantics: it makes it very difficult
to specify the kind of behavior where some event has to appear in a certain
place, but doing so without forbidding it to occur in other places during the
execution.

Endowed with the expressive power of forbidden elements, a reasonable
alternative semantics would be one that prescribes that events should not
be restricted at all by the LSC, unless explicitly restricted using forbidden
elements. And, indeed, the Play-Engine has been designed to support this
‘tolerant’ semantics too. We could have implemented the alternative seman-
tics on the execution level — meaning that it would apply to all LSCs —
or on the single-LSC level. We have decided to adopt the second, more ex-
pressive, approach. Thus, the user can declare each LSC as being strict or
tolerant. A strict LSC is one that behaves the way we have seen all along;
namely, it does not allow events that appear in it to occur when they are
not enabled. A tolerant LSC allows occurrences of all events, unless they are
explicitly not allowed by the forbidden elements mechanism.

Figure 17.19 shows an example of a tolerant LSC (marked with Tolerant
to the right of its name; strict LSCs have no added annotation). In this ex-

268 17. Forbidden Elements

Fig. 17.19. Using a tolerant LSC to detect dangerous driving

ample, if the driver switches between the accelerator and the brake pedals
twice within 3 seconds, this is considered dangerous driving and an appro-
priate message appears on the display. Since this LSC is tolerant, the user
may press the brake pedal or the accelerator several times before switching
to the other. In a strict LSC this would have been considered a violation, but
in this tolerant LSC all that matters is that the specified events occurred in
the specified order within the specified time limit.

17.10 And a Bit More Formally ...

Here are the extensions and modifications needed in the semantics to support
forbidden elements and the tolerant semantics.

System Model and Events

Forbidden messages and conditions are entirely specification oriented and
therefore do not affect the system model.

LSC Specification

An LSC L is extended to contain forbidden messages and forbidden conditions
and may be declared as either strict or tolerant, as follows:

17.10 And a Bit More Formally ... 269

L = 〈IL, VL,ML, [PchL], AL, CL, SUBL, ITEL, LOOPL, ML, CL, Strict,
evnt, subchart, temp〉

where ML is the set of forbidden messages, CL is the set of forbidden con-
ditions, and Strict ∈ {True, False} indicates whether the LSC is strict or
tolerant.

A forbidden message M̄ ∈ ML is a 3-tuple

M̄ = 〈M, Level, Scope〉
where M is an LSC message, Level ∈ {Message, Objects, All} is the gener-
ality level of the forbidden message, and Scope ∈ {LSC, Pre,Main}∪SUBL

is the forbidden scope restricted by the message.
A forbidden condition C̄ ∈ CL is a pair

C̄ = 〈C, Scope〉
where C is an LSC condition and Scope is defined as above.

Forbidden messages and conditions are also associated with temperatures.
Therefore, we extend the domain of the function temp:

temp : `(L) ∪ML ∪ CL ∪ML ∪ CL → {hot, cold}
Finally, we extend EL, the set of LSC events, to include the hidden events

of evaluating forbidden conditions:

EL =
({m ∈ ML | m.Ms ∈ ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv ∪ΣCalls}
× {Send, Recv})

∪ ({m ∈ ML | m.Ms ∈ ΣSelf ∪ΣClock} × {Send})
∪ (PchL × {Start, End}) ∪ {Completed}
∪ {perform(A) | A ∈ AL} ∪ {eval(C) | C ∈ CL}
∪ (SUBL × {Start, End}) ∪ {branch(ITE)| ITE ∈ ITEL}
∪ (LOOPL × {Start, End})
∪ {skip(Loop)| Loop ∈ LOOPL ∧ Loop.Kind = Dynamic}
∪ {bind(I)| I ∈ IL ∧ symbolic(I)}
∪ {evalf(C̄)| C̄ ∈ CL}

Operational Semantics

Forbidden messages and conditions are considered only when the current
LSC cut contains locations that are within their associated scope. To capture
precisely this notion of a cut being in a scope, we define an active scope.

270 17. Forbidden Elements

Definition 17.10.1 (active scope). A scope S ∈ {LSC, Pre,Main} ∪
SUBL is active in an LSC live copy CL if one of the following holds:

1. S = LSC.
2. S = Pre and CL.Mode = PreActive.
3. S = Main and CL.Mode ∈ {Active, Check}.
4. S ∈ SUBL and ∀I ∈ IS , loc((S, Start)) <L CL.Cut(I) <L loc((S,End)).

Recall that Cut(I) denotes the location of instance I in Cut. Since the start
and end of a subchart are synchronization points for all its instances, it is
sufficient to check any instance in the subchart to see if the subchart is active.
We will use the predicate notation active(S) to indicate that a scope S is
active.

We explained in the text that when looking for a violation in the set
of forbidden messages we use positive-unification. Moreover, since forbidden
messages can be in one of several levels of generality, we should define a
different algorithm for checking whether a forbidden message is unifiable
with a regular one.

Definition 17.10.2 (forbidden message unification). A system message
Ms and a forbidden message M̄ are unifiable if one of the following holds:

1. M̄.Level = All.
2. M̄.Level = Objects and Ms.Src 4 M̄.M.ISrc ∧ Ms.Dst 4 M̄.M.IDst.
3. M̄.Level = Message and Ms and M̄.M are positively-unifiable.

Checking for unification of an LSC message Ml with a forbidden message
M̄ is defined similarly, with Ms.Src and Ms.Dst replaced by Ml.ISrc and
Ml.IDst, respectively.

Before modifying the transition relation, we define a utility function that
gets as input a set of forbidden messages and returns one of the dominant
messages in the set. A hot message is more dominant than a cold one, and one
cold message is more dominant than another if the former’s scope contains
that of the latter. Note that if two forbidden messages are active, their scopes
must be identical or one scope must be contained in the other.

17.10 And a Bit More Formally ... 271

dominant(S)

1. If ∃M̄ ∈ S s.t. temp(M̄) = hot then return M̄ .
2. If all messages are cold then

a) Set M̄ to be any message in S.
b) S ← S \ {M̄}.
c) While S 6= ∅ do

i. Choose a message M̄ ′ ∈ S.
ii. S ← S \ {M̄ ′}.
iii. If M̄.Scope ⊂ M̄ ′.Scope then set M̄ ← M̄ ′.

d) Return M̄ .

The function dominant is defined in the same way for sets of forbidden
conditions.

The definition of a violating event is now modified, so that events that
appear in an LSC and are not enabled in it are considered violating only if
the LSC is strict.

Definition 17.10.3 (violating event). An event e violates a chart L in a
cut C if L.Strict = True and e ∈ ML × {Send, Recv}, but e is not enabled
with respect to C.

The transition relation ∆[SO,SC] is now modified to handle unification with
forbidden messages and to evaluate forbidden conditions. The transition rela-
tion assumes that if it is applied to a forbidden condition, the condition holds
and its forbidden scope is active. These assumptions are later guaranteed
by the various execution functions, i.e., step, super-step and monitor-event.
∆[SO,SC] is therefore given as:

• If e = 〈M, t〉 (where t ∈ {Send, Recv}) then:
1. If e.M.m = Tick then set Clock.T ime ← Clock.T ime + 1.
2. Set Context ← ∅.
3. If ∃CL ∈ SC and ∃M̄ ∈ CL.LSC.ML, such that e.M and M̄ are unifiable

and active(M̄.Scope), and there is no enabled event e′ positively level2-
unifiable with e, then:

a) Set S ← {M̄ ∈ CL.LSC.ML| Unifiable(e.M, M̄) ∧ active(M̄.Scope)}.
b) Set M̄ ← dominant(S).
c) If temp(M̄) = hot then

i. Set SC ← SC \ {CL}.
ii. Set Violating ← True.

d) If temp(M̄) = cold then
i. If M̄.Scope ∈ {LSC, Pre,Main} then set SC ← SC \ {CL}.
ii. If M̄.Scope = Sub ∈ SUBL then set

272 17. Forbidden Elements

CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

4. If ∃CL ∈ SC and ∃e′ ∈ CL.LSC, such that e and e′ are negatively
level2-unifiable and e′ violates CL, then:

a) Set SC ← SC \ {CL}.
b) If temp(CL.Cut) = hot, set Violating ← True.
c) If symbolic(e′.M.ISrc) or symbolic(e′.M.IDst) then create an identical

copy C ′L of CL, set SC ← SC ∪ {C ′L}, and in the copy set
e′.M.ISrc.Φ ← e′.M.ISrc.Φ ∪ {e.M.Src} if symbolic(e′.M.ISrc)
e′.M.IDst.Φ ← e′.M.IDst.Φ ∪ {e.M.Dst} if symbolic(e′.M.IDst)

5. For every universal LSC L ∈ SO which has an event e′, positively level2-
unifiable with e, as a minimal event in its prechart, create a copy of
L, CL, and set SC ← SC ∪ {CL}. Set CL.Mode = PreActive and set
its cut by CL.Cut ← AdvanceCut(InitialCut(L), 〈PchL, Start〉). Unify
the variables of e and e′, by Unify(e, e′, Context). For each hidden event
e′′ <L e′, apply ∆(e′′).

6. For every existential LSC L ∈ SO which has an event e′, positively level2-
unifiable with e, as a minimal event in the chart body, create a copy of
L, CL, and set SC ← SC ∪{CL}. Set CL.Mode = Check, and set its cut
to the beginning of the chart by CL.Cut ← BeginMainCut(CL.LSC).
Unify the variables of e and e′, by Unify(e, e′, Context). For each hidden
event e′′ <L e′, apply ∆(e′′).

7. For every copy CL ∈ SC that has a reachable event e′ positively level2-
unifiable with e:

a) If symbolic(e′.M.ISrc) or symbolic(e′.M.IDst) then create an identical
copy of CL, C ′L, set SC ← SC ∪ {C ′L}, and in the copy set

e′.M.ISrc.Φ ← e′.M.ISrc.Φ ∪ {e.m.Src} if symbolic(e′.M.ISrc)
e′.M.IDst.Φ ← e′.M.IDst.Φ ∪ {e.m.Dst} if symbolic(e′.M.IDst)

b) Set CL.Cut ← AdvanceCut(CL.Cut, e′).
c) If e′ = 〈M,Send〉, M is synchronous and e′′ = 〈M, Recv〉,

set CL.Cut ← AdvanceCut(CL.Cut, e′′).
d) Unify the events e and e′, Unify(e, e′, Context).
e) For each hidden event e′′ <L e′, apply ∆(e′′).

• If e = Completed(CL) for some CL ∈ SC then set SC ← SC \ {CL}.
• If e = 〈PchL, End〉 for some CL ∈ SC , then set

CL.Cut ← BeginMainCut(CL.LSC) and CL.Mode ← Active.
• If e = perform(A) for some A ∈ AL s.t. CL ∈ SC , then set CL.Cut ←

AdvanceCut(CL.Cut, e) and set

17.10 And a Bit More Formally ... 273

A.V ←





A.C if A.Type = constant
V alue(A.P) if A.Type = property
A.f(A.λF

f) if A.Type = function

Clock.T ime if A.Type = time

• If e = eval(C) for some C ∈ CL s.t. CL ∈ SC then
1. If value(C) = true then set CL.Cut ← AdvanceCut(CL.Cut, e).
2. If value(C) = false then

a) If subchart(C) ∈ {ITE.SubT , ITE.SubE} for some ITE then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

b) If subchart(C) = Sub ∈ SUBL then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

c) If subchart(C) = ⊥ then set SC ← SC \ {CL}.
d) If temp(C) = hot then set Violating ← True.

• If e = branch(ITE) for some ITE ∈ CL s.t. CL ∈ SC then
1. If value(ITE.C) = true then set

CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubT , Start))
2. If value(ITE.C) = false then

set CL.Cut ←
{

AdvanceCut(CL.Cut, (ITE.SubE , Start)) if ITE.SubE 6= ⊥
AdvanceCut(CL.Cut, (ITE.SubT , End)) if ITE.SubE = ⊥

• If e = (ITE.SubT , End) for some ITE ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

• If e = (ITE.SubE , End) for some ITE ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubE , End))

• If e = (Sub, End) for some Sub ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

• If e = skip(Loop) for some Loop ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop,End))

• If e = (Loop, Start) for some Loop ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop, Start))

For every variable V ∈ VL that is used in Loop for the first time, set
V.ω ← ⊥.

274 17. Forbidden Elements

• If e = (Loop, End) for some Loop ∈ CL s.t. CL ∈ SC and Loop.Kind 6=
Dynamic then
1. Set µ ← µ− 1.
2. If µ > 0 then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop, Start))

For every variable V ∈ VL that is used in Loop for the first time, set
V.ω ← ⊥.

3. If µ = 0 then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop,End))

• If e = bind(I) for some symbolic instance I ∈ CLs.t. CL ∈ SC , then:
1. S ← {O ∈ O | O 4 I, O satisfies I.ψ and @I ′ ∈ CL s.t. I ′.O = O}.
2. If S = ∅ then SC ← SC \ {CL}.
3. If I.Mode = Existential then

a) Set I.O = O, for some O ∈ S.
b) Set I.C = ⊥.

4. If I.Mode = Universal then perform the following for every O ∈ S:
a) Create an identical copy C ′L of CL.
b) Set SC ← SC ∪ {C ′L}.
c) Set I.O = O.
d) Set I.C = ⊥.
Finally, set SC ← SC \ {CL}.

• If e = evalf(C̄) for some C̄ ∈ CL s.t. CL ∈ SC , then (it is guaranteed that
value(C̄) = true)
1. If temp(C̄) = hot then

a) Set SC ← SC \ {CL}.
b) Set Violating ← True.

2. If temp(C̄) = cold then
a) If C̄.Scope ∈ {LSC, Pre, Main} then set SC ← SC \ {CL}.
b) If C̄.Scope = Sub ∈ SUBL then set

CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

To complete the modifications in the formal semantics caused by forbid-
den messages and conditions, we need to modify the procedures super-step
and monitor-event. As opposed to conventional conditions, which are eval-
uated according to the partial order induced by the LSC, forbidden condi-
tions should affect the course of execution immediately upon becoming true.
Therefore, they should be given precedence over other hidden events, both in
super-step and in monitor-event. We begin with the changes in monitor-event:

17.10 And a Bit More Formally ... 275

monitor-event(ev)

1. Apply ∆[SM ,ML](ev).
2. Compute the set of forbidden conditions:

Forbidden ←
⋃

CL∈ML
{C̄ ∈ CL| active(C̄.Scope) ∧ value(C̄.C) = true}

3. If Forbidden 6= ∅ then
a) C̄ ← dominant(Forbidden).
b) Apply ∆[SM ,ML](evalf(C̄)).
c) Go back to 2.

4. Compute the set of enabled events:

Enabled ←
⋃

CL∈ML
{e ∈ EL|enabled(e)}

Waiting ←
⋃

CL∈ML
{e | e = branch(ITE)}

∪
⋃

CL∈ML
{e|e = (Loop, End) ∧ Loop.Kind = Dynamic}

Enabled ← Enabled \Waiting

5. If there is a hidden enabled event e ∈ Enabled, then
a) Apply ∆[SM ,ML](e).
b) Go back to 2.

6. Terminate monitor-event.

As the Play-Engine selects events to be carried out, it avoids choosing
ones that are unifiable with active hot forbidden messages, and tries to defer
events that are unifiable with cold forbidden messages. Moreover, it avoids
choosing events that will cause active hot forbidden conditions to become
true. To capture this behavior formally, we define hot-forbidden events and
cold-forbidden events.

Definition 17.10.4 (hot-forbidden event). An event e is hot-forbidden
in a chart L being in a cut C if e is not enabled with respect to C, and if, in
addition, one of the following holds:

• ∃M̄ ∈ ML s.t. active(M̄.Scope) ∧ temp(M̄) = hot ∧ Unifiable(e.M, M̄)
• e.M.P 6= ⊥ (i.e., e represents a change in the value of a property) and
∃C̄ ∈ CL s.t. temp(C̄) = hot ∧ active(C̄) and C̄ will become true if the
current value of P is replaced with the value in e.M .

276 17. Forbidden Elements

Definition 17.10.5 (cold-forbidden event). An event e is cold-forbidden
in a chart L being in a cut C if e is not enabled with respect to C and
∃M̄ ∈ ML s.t. active(M̄.Scope) ∧ temp(M̄) = cold ∧ Unifiable(e.M, M̄).

We can now continue with the modified super-step:

17.10 And a Bit More Formally ... 277

super-step

1. Compute the set of forbidden conditions:

Forbidden ←
⋃

CL∈RL
{C̄ ∈ CL | active(C̄.Scope) ∧ value(C̄.C) = true}

2. If there is a forbidden condition in Forbidden, then
a) C̄ ← dominant(Forbidden).
b) Apply ∆[SC ,RL](evalf(C̄)).
c) Go back to 1.

3. Compute the set of enabled events:

Enabled ←
⋃

CL∈RL
{e ∈ EL|enabled(e)}

Waiting ←
⋃

CL ∈ RL,
CL.Mode = PreActive

{e | e = branch(ITE)}

Enabled ← Enabled \ (External ∪Waiting)

4. If there is a hidden enabled event e ∈ Enabled, then
a) Apply ∆[SC ,RL](e).
b) Go back to 1.

5. If there is a visible enabled event e ∈ Enabled, such that e does
not violate and is neither hot-forbidden nor cold-forbidden in any
copy that is either in active or preactive mode, then
a) step(e).
b) Go back to 1.

6. If there is a visible enabled event e ∈ Enabled, such that e does
not violate and is neither hot-forbidden nor cold-forbidden in any
copy that is in active mode, then
a) step(e).
b) Go back to 1.

7. If there is a visible enabled event e ∈ Enabled, such that e does
not violate and is not hot-forbidden in any copy that is in active
mode with a hot cut, then
a) step(e).
b) Go back to 1.

8. Terminate super-step.

278 17. Forbidden Elements

17.11 Bibliographic Notes

Forbidden conditions can be used to construct invariants, which are to be
true during the behavior described in an LSC specification. The use of in-
variants in programming languages, mainly for capturing the semantics of
loops and for specifying pre-conditions and post-conditions, is one of the
most fundamental ideas in program semantics and verification. It was first
proposed by Floyd in [37] and was given a significant push by Hoare’s work
in [58].

In the Eiffel programming language [87], invariants are part of the lan-
guage itself. They are used to specify pre- and post-conditions for object
methods, and also to capture class-level invariants, i.e., conditions that
are asserted to hold during the entire life cycle of a class.

In interval temporal logic (ITL) [89, 90], a variant of temporal logic
geared towards expressing properties that hold along specified intervals, one
can specify that a variable has some value during an interval, or that an event,
usually indicated by a change in a variable value, is not allowed to happen
during an interval. These capabilities resemble our forbidden conditions and
forbidden messages, respectively.

Part VI

Enhancing the Play-Engine

18. Smart Play-Out (with H. Kugler)

In this chapter we provide a brief overview of smart play-out1, a predictive
strengthening of the play-out mechanism, which uses methods from program
verification — mainly model-checking.

The chapter should not be viewed as describing another Play-Engine fea-
ture, but, rather, as a broader and more recent approach to the very idea
of executing scenario-based requirements. Also, the material described here
is somewhat less complete than that appearing in the rest of the book; for
example, it has not yet been worked out for several features of the LSCs lan-
guage. The same applies to the robustness and scope of the implementation
of smart play-out, as compared with that of the rest of the Play-Engine. We
expect to be able to provide a more detailed report on smart play-out in the
near future, as well as a more powerful implementation.

18.1 Introduction

In recent years, formal specification and verification techniques are beginning
to be applied to the development of complex reactive systems. Major obsta-
cles that still prevent even wider usage of such methods include the facts
that errors are found relatively late in the development process and that
high expertise is required to correctly capture the properties to be verified.
There has been a particular surge in interest in the verification of software-
based reactive systems, especially given the success of verification techniques
in hardware development. Due to the size and complexity of such systems,
it is desirable to understand all the system requirements, and to make sure
they are consistent, before moving on to the implementation phase. In classic
verification, a model is first constructed and then verified against well-defined
requirements, whereas one of the main points of this chapter is that verifi-
cation techniques can be beneficially applied to the requirements themselves
too. Alternatively, if one adopts the more ambitious potential of play-in/play-
out, leading to systems specified solely in a scenario-based fashion, then smart
1 Smart play-out is the central topic of the Ph.D. work of Hillel Kugler (cosupervised by

Amir Pnueli), who is also the main co-author of this chapter.

282 18. Smart Play-Out (with H. Kugler)

play-out can be viewed as utilizing verification techniques to run programs
rather than to verify them.

Recall that play-out is actually an iterative process, where after each step
taken by the user the Play-Engine computes a super-step, i.e., a sequence
of events carried out by the system as a response to the event input by
the user. However, the play-out mechanism is, in general, rather naive. For
example, there can be many possible sequences that are valid responses to a
user event, and some of these may not constitute ‘correct’ super-steps. We
consider a super-step to be correct if when it is executed no active universal
chart is violated. By acting blindly by the ‘book’ of requirements, reacting
to a user-generated event with the first action it encounters as a possible
reaction to that event, the naive play-out process could very well follow a
sequence of events that eventually causes violation, even though some other
sequence might have been chosen that would have completed successfully. We
will illustrate this shortly.

From a conceptual point of view, the potential of many possible sequences
of reactions to a user event is due to the fact that LSCs is a declarative,
inter-object language, and as such it enables the formulation of high-level
requirements in pieces (e.g., scenario fragments), leaving open details that
may depend on the implementation. Technically, the two sources of this non-
determinism are the partial order semantics among events in each chart, and
different charts containing scenarios that do not have explicit information
about their interrelationship. These features are very useful in early require-
ments stages, but can cause undesired underspecification when one attempts
to execute them. Smart play-out attempts to remove these sources of non-
determinism during execution. Thus, depending on whether we view play-
in/play-out as a requirements method or an implementation, smart play-out
either ‘helps’ the system fulfil its requirements or strengthens its very execu-
tion mechanism.

The smart play-out process uses a powerful program verification tech-
nique, called model-checking, to find a ‘correct’ super-step if one exists, and
otherwise proving that such a super-step does not exist. In our implementa-
tion, the procedure can be applied anew at the occurrence of each user event
in order to examine the different potential super-steps and to find a correct
sequence of system reactions if there is one. Once found, the smart play-out
module feeds this sequence into the Play-Engine, which then executes it to
completion as a super-step. Model-checking thus drives the execution.

We do not assume that the reader of this chapter is an expert in verifica-
tion or model-checking. To get a clear idea of what this chapter describes, it
suffices to know that model-checking is a method by which a desired behav-
ioral property of a reactive system is verified over a given system (the model)

18.2 Being Smart Helps 283

through exhaustive enumeration (explicit or implicit) of all the states reach-
able by the system and the behaviors that traverse through them. Compared
to other verification approaches, model-checking has two main advantages.
First, it is fully automatic, and its application requires no user supervision
or complex mathematical expertise. Second, when the design fails to satisfy
the checked-for property, the model-checker is able to produce a counterex-
ample that demonstrates some behavior that falsifies the property. In our
smart play-out approach, we make use of these two advantages. Recent years
have seen intensive research on developing ever-stronger and more efficient
model-checking algorithms, which renders the approach successful in various
industrial settings. It also serves to boost our own motivation in seeking ways
to make smart play-out more powerful.

18.2 Being Smart Helps

We now use some simple examples to illustrate the role and possible usage of
smart play-out. Consider the two charts of Fig. 18.1. The first, ‘LSC1’, states
that when the phone’s cover is opened the display sets its state to show a
number (rather than the current time), the antenna opens and the speaker
becomes silent. It is important to realize that this LSC does not enforce any
particular order on these three events, since they are relevant to different
objects. The play-out mechanism will choose one order for execution, in a
way that is not controllable by the user.

The second chart in the figure, ‘LSC2’, states that whenever the antenna
opens, the display should be showing the current time (and this is a hot
condition), it should then set its state to show a number, and only then should
the speaker become silent. (The order of these last two events is enforced by
the SYNC condition.)

Assuming that these are the only two specified charts of the system,
and that the user opens the cover during play-out, the play-out mechanism
chooses the events in an order that results in the charts shown in Fig. 18.2,
which describes the situation during the execution. The first event the engine
has chosen to take is the topmost, i.e., setting the display’s state to show a
number. The second is opening the antenna. As this event occurs, ‘LSC2’
is activated but cannot progress, since the display shows a number and not
the current time, so the hot condition is false. ‘LSC1’ is also not allowed to
progress, since the event of the speaker turning silent violates ‘LSC2’. There-
fore, no progress is allowed at all and the super-step terminates. Note that
the location of the event of the speaker becoming silent is also hot (denoted
by a solid line from that location) so that the entire cut depicted in Fig. 18.2

284 18. Smart Play-Out (with H. Kugler)

Fig. 18.1. Opening the cover of a cellular phone

is also hot. Now, it could be the case that the user decides not to do any-
thing else, and, hence, the cut will not progress. This is clearly a violation of
the requirements, since hot cuts must eventually make progress, and it was
caused by what we call an ‘incorrect’ super-step.

If we apply the smart play-out process to this example, it computes and
carries out a different order of events, as shown in Fig. 18.3. The first event
taken after the cover is opened is that of opening the antenna. This event ac-
tivates ‘LSC2’, but this time the display still shows the current time. The hot
condition is thus evaluated to true and propagated. The display now changes
its state to show a number, thus making progress in both charts. Next, the
synchronization condition is successfully passed, and the event of the speaker
becoming silent can be performed, causing the successful completion of both
charts.

There are situations in which there exists no correct super-step. Consider,
for example, the two charts ‘Green First’ and ‘Red First’ in Fig. 18.4. When
the user clicks on the PWR button, both charts are activated. However,

18.2 Being Smart Helps 285

Fig. 18.2. Naive play-out

there is no way to satisfy them both since they require the events Change
background(Green) and Change background(Red) to occur in contradicting
order. Smart play-out proves in this case that no legal super-step exists and
announces this to the user. While this is a very simple example, such con-
tradictions can be a lot more subtle, arising as a result of the interaction
between several charts. In large specifications this can be very hard to ana-
lyze manually. The smart play-out framework would prove that in such cases
no correct super-step exists.

Another situation in which smart play-out is useful is in detecting the
existence of an infinite loop. Consider the three LSCs of Fig. 18.5. The first,
‘LSC1’, states that when the phone’s antenna is opened the reception in the
display is set to value 2. The second chart in the figure, ‘LSC2’, states that
whenever the reception in the display is set to value 2, it should later be set
to value 4, while the third chart, ‘LSC3’, requires that setting the reception
in the display to value 4 will later cause the reception value to be set to 2.
These three charts together will cause an infinite reaction if the antenna is

286 18. Smart Play-Out (with H. Kugler)

Fig. 18.3. Using smart play-out instead

opened, in which ‘LSC2’ and ‘LSC3’ repetitively activate each other. The
play-out mechanism would indeed execute this ‘infinite loop’ while smart
play-out will detect this situation and notify the user.

Smart play-out can be used to satisfy existential charts. As discussed
earlier, existential LSCs may be used to specify system tests. Smart play-out
can then be used to find a trace that satisfies the chart without violating
universal charts on the way. Figure 18.6 shows a test, in which user and
external environment actions are performed and expected system responses
are described using conditions. In this chart, the user opens the cover and
enters the number 4050. In response, the display is expected to show the
dialed number. Next, the user clicks the ‘SEND’ button and the phone’s
speaker is expected to ring. Finally, when a signal from the environment
indicating the acceptance of the call (denoted by the “ACK” reserved word)
is received by the phone’s chip, the speaker turns silent. Smart play-out
finds a trace satisfying the chart and all the activated universal charts and

18.3 The General Approach 287

Fig. 18.4. Inconsistent LSCs

the execution is then shown by the Play-Engine. More information on using
smart-play to satisfy existential charts can be found in Sect. 18.6.

18.3 The General Approach

The approach we use is to formulate the play-out task as a verification prob-
lem, and to use the counterexample provided by a model-checking algorithm
as the desired super-step. The system on which we perform model-checking
is constructed according to the universal charts in the LSC specification. We
define a transition relation from the LSC specification, which is designed to
allow progress of active universal charts but prevents any violations. The
system is initialized to reflect the status of the application just after the last
external event occurred, including the current values of object properties, in-
formation on the universal charts that were activated as a result of the most
recent external events, and the progress in all precharts.

The model-checker is then given a property claiming that always (in the
temporal sense) at least one of the universal charts is active. In order to

288 18. Smart Play-Out (with H. Kugler)

Fig. 18.5. Infinite loop

falsify the property, the model-checker searches for a run in which eventually
none of the universal charts is active, i.e., all active universal charts complete
successfully, and, by the definition of the transition relation, no violations
occurred in the process. Such a counterexample is exactly the desired super-
step. If the model-checker verifies the property then no correct super-step
exists. The next section provides details on how we construct the input to
the model checker.

It is important to note that smart play-out (at least as it stands when this
was written — February 2003) does not backtrack over super-steps. Thus, we
may get to a situation where no correct super-step exists due to moves the
system made in previous super-steps, which could perhaps have been done
differently. This demonstrates the difference between smart play-out, which
looks one super-step ahead, and full synthesis, which performs a complete
analysis. Moreover, currently smart play-out is limited to a rather restricted
version of the LSCs language, as we discuss later.

It should also be emphasized that from a computational complexity point
of view smart play-out, being based on model-checking, is more problem-
atic then naive play-out. First, model-checking is in general undecidable for
infinite-state systems. Second, even for finite-state systems, the time complex-

18.4 The Translation 289

Fig. 18.6. Smart play-out satisfying an existential chart

ity of the problem turns its application to real-world systems into a major
challenge.

Having said all this, our goal in future research on smart play-out is to
extend the subset of LSCs that is supported and to improve the efficiency
of the algorithms. We shall address several aspects of this in the remaining
parts of the chapter.

18.4 The Translation

A formal definition of the operational semantics of LSCs as implemented in
the Play-Engine appears in Appendix A. Central to the semantics is a sym-
bolic transition system, where the states are the set of LSC copies (which
contain cuts that specify progress), and LSC events correspond to the tran-
sitions. The transition system is then used to define the play-out execution
mechanism. Roughly speaking, play-out selects an enabled event that does
not cause a violation in any of the universal LSC copies and executes it, it-
erating this process until no such enabled events exist. If, at a certain stage
in the super-step, there are several enabled events, the play-out mechanism
chooses one of them in an uncontrollable way that is a function of the con-
crete implementation of the Play-Engine and the particular LSC specification
executed. No special effort is made to prefer a certain event over another. The

290 18. Smart Play-Out (with H. Kugler)

choice is purely ‘local’, and does not take into account the effects this may
have down the line.

Smart play-out uses model-checking algorithms to make a ‘global’ deci-
sion on the super-step level. The technique takes into account the effects of
choosing a particular enabled event, and makes the actual choice in a way
that guarantees successful completion of the super-step, if possible.

Our main focus is to search for a correct behavior of the system when
several charts act together. Accordingly, we construct a transition system
with one process for each actual object. A state in this system indicates the
currently active charts and the location of each object therein. The transition
relation restricts the transitions of each process to moves that are allowed by
all the currently active charts. Note that our translation does not explicitly
construct the cuts for each chart (which by itself causes an exponential growth
in the size of the initial representation).

We now provide more details on how to translate a play-out problem into
a model-checking problem. In the rest of this section, we use terms that were
defined in the more formal sections of the book.

An LSC specification S = SU ∪ SE consists of a set of charts, where each
chart m ∈ S is existential or universal. We denote by pch(m) the prechart of
chart m. Assume that the set of universal charts in S is SU = {m1,m2, ...,mt},
and that the objects participating in the specification are O = {O1, ..., On}.

We define a transition system with the following variables:

actmi – determining if universal chart mi is active. Its value is 1 when mi is
active and 0 otherwise.

msgs
Oj→Ok

– denoting the sending of message msg from object Oj to object
Ok. Its value is set to 1 at the occurrence of the send and is changed to
0 at the next state.

msgr
Oj→Ok

– denoting the receipt by object Ok of message msg sent by object
Oj . Its value is set to 1 at the occurrence of the receive and is changed
to 0 at the next state.

lmi,Oj – denoting the location of object Oj in chart mi. It ranges over
0 · · · lmax, where lmax is the last location of Oj in mi.

lpch(mi),Oj
– denoting the location of object Oj in the prechart of mi. It ranges

over 0 · · · lmax, where lmax is the last location of Oj in pch(mi).

Throughout this chapter, we assume the asynchronous mode of messages,
in which a send and a receive are separate events; however, smart play-
out supports the synchronous mode too. We denote by f(l) = evnt(l) the
event associated with location l, and use the convention that primed variables
denote the value of a variable in the next state, while unprimed variables
relate to the current state.

18.4 The Translation 291

The following subsections show the definition of the transition relation,
organized by the various features of the LSC language.

Messages

We first define the transition relation for the location variable when the
location corresponds to the sending of a message:

l′mi,Oj
=

{
l if lmi,Oj = l − 1 ∧msgs

Oj→Ok

′ = 1
l − 1 if lmi,Oj = l − 1 ∧msgs

Oj→Ok

′ = 0

Intuitively, if object Oj is at location l−1 in chart mi, and the next location
of Oj corresponds to the sending of message msg from Oj to Ok, then if in the
next state the message is sent, the location is advanced; otherwise it remains
where it is. It is important to notice that the event msgs

Oj→Ok
may not be

allowed to occur at the next state due to the happenings in some other chart.
This is one of the places where the interaction between the different charts
becomes important.

As for the receipt of events, given that n is the location in which message
msg is sent from object Oj to object Ok in mi, we define the transition
relation as:

l′mi,Ok
=

{
l if lmi,Ok

= l − 1 ∧ lmi,Oj ≥ n ∧msgr
Oj→Ok

′ = 1
l − 1 if lmi,Ok

= l − 1 ∧ (lmi,Oj < n ∨msgr
Oj→Ok

′ = 0)

If object Ok is at location l − 1 in chart mi, and the next location of
Ok corresponds to the receipt of the message msg sent by object Oj , and
this message has already been sent, then if in the next state the message is
received, the location is advanced; otherwise it remains where it is.

We now define the transition relation for the variable that determines the
occurrence of a send event (the receive case is similar):

msgs
Oj→Ok

′ =
{

1 if φ1 ∧ φ2

0 otherwise

φ1 ,
∨

mi∈SU∧msgs
Oj→Ok

∈Messages(mi)

actmi = 1

φ2 ,
∧

mi∈SU∧msgs
Oj→Ok

∈Messages(mi)

(actmi = 0 ∨ ψ(mi))

ψ(mi) ,
∨

lt s.t. f(lt)=msgs
Oj→Ok

(lmi,Oj = lt − 1 ∧ l′mi,Oj
= lt)

292 18. Smart Play-Out (with H. Kugler)

Let us explain. In order for the event of sending msg from Oj to Ok to oc-
cur, we require two conditions to hold, which are expressed by the formulas φ1

and φ2, respectively. The first, φ1, states that at least one of the main charts
in which this message appears is active. The assumption is that message com-
munication is caused by universal charts that are active and does not occur
spontaneously. The second requirement, φ2, states that all active charts must
‘agree’ on the message. For an active chart mi that contains msgs

Oj→Ok
, we

require that object Oj progresses to a location lt corresponding to this mes-
sage, as expressed by the formula ψ(mi). Formula φ2 states that for all charts
mi containing msgs

Oj→Ok
(that is, msgs

Oj→Ok
∈ Messages(mi)), either the

chart is not active or the message can occur (that is, ψ(mi) holds). According
to the semantics of LSCs, if a message does not appear in a chart explicitly,
it (i.e., its sending and receipt) is allowed to occur between the messages that
do appear, without violating the chart. This is reflected in φ2 by the fact that
the conjunction is only over the charts containing msgs

Oj→Ok
.

Precharts

The prechart of a universal chart describes the scenario which, if completed
successfully, forces the scenario described in the main chart to occur. The
main chart becomes active if all locations of the prechart have reached max-
imal positions, which is what successful completion of the prechart means.
A central feature of play-out is that a sequence of events in a super-step
may cause the activation of some additional universal chart, which now must
also be completed successfully as part of the same super-step. For this pur-
pose precharts are monitored, and locations along instance lines are advanced
when messages are sent and received.

The transition relation for a location variable in a prechart is similar to
the one defined for locations in the main chart, with one major difference:
precharts are allowed to be violated. If a message is sent or received while it is
not enabled in the prechart, the prechart is ‘reset’ by moving all its instances
back to their initial locations. This reset action allows the prechart to start
‘looking’ for another way to be satisfied. In fact, when the model-checker
searches for a ‘correct’ super-step it often tries to violate a prechart in order
not to get into the obligation of having to satisfy the corresponding main
chart. When all locations in the prechart reach their maximal positions, they
too are reset.

Formally, if the prechart location is lpch(mi),Oj
= l − 1, and the next

location corresponds to a message sending, then its transition relation is
given by:

18.4 The Translation 293

l′pch(mi),Oj
=





l if msgs
Oj→Ok

′ = 1
0 if msgs

Oj→Ok

′ = 0 ∧ Φ(mi)
l − 1 otherwise

Φ(mi) ,
∨

msgs
Ox→Oy

∈Messages(mi)

Ψ s(msgs
Ox→Oy

)

∨
∨

msgr
Ox→Oy

∈Messages(mi)

Ψ r(msgr
Ox→Oy

)

∨
∧

Oj∈Obj(mi)

(lpch(mi),Oj
= lmax

pch(mi),Oj
)

Ψ s(msgs
Ox→Oy

) ,





1 if lmi,Ox = lx − 1 ∧ f(lx) 6= msgs
Ox→Oy

∧
msgs

Ox→Oy

′ = 1
0 otherwise

Ψ r(msgr
Ox→Oy

) ,





1 if lmi,Oy = ly − 1 ∧ f(ly) 6= msgr
Ox→Oy

∧
msgr

Ox→Oy

′ = 1
0 otherwise

Ψ s (respectively, Ψ r) checks whether a send (respectively, receive) event oc-
curred while not enabled by its sender (respectively, receiver) instance in
the chart. Φ(mi) checks whether all locations have reached their maximal
position.

Activation of Charts

For a universal chart mi, we define the transition relation for actmi as follows:

act′mi
=





1 if φ(pch(mi))
0 if φ(mi)
actmi otherwise

φ(mi) ,
∧

Oj∈Obj(mi)

(l′mi,Oj
= lmax

mi,Oj
)

The main chart mi becomes active when all locations of the prechart reach
maximal positions, and it stops being active when all locations of the main
chart reach maximal positions.

Object Properties and Conditions

Although the basic strength of scenario-based languages like LSCs is in show-
ing message communication, the LSC language has the ability to reason about

294 18. Smart Play-Out (with H. Kugler)

the properties of objects too. Object properties can be referenced in condition
constructs, and these can be hot or cold. According to the semantics of LSCs,
if a cold condition is true the chart progresses to the location that immedi-
ately follows the condition, whereas if it is false the surrounding (sub)chart
is exited. A hot condition, on the other hand, must always be met, otherwise
the requirements are violated and the system aborts. To support this kind of
reasoning, we have to update the value of each property as the system runs.

More formally, let P t
Ok

denote the tth property of object Ok, defined over
a finite domain D. For many of the object properties there are simple rules
— defined when the application and the GUI are constructed — that relate
the value of the property to message communication. Accordingly, suppose
that message msg received by Ok from Oj has the effect of changing property
P t of object Ok to the value d ∈ D. We then add to the transition relation
of process Oj the clause

P t
Ok

′ = d if msgr
Oj→Ok

′ = 1

In this way, the values of the properties are updated as the objects send
and receive messages.

Object properties can be referred to in conditions. In fact, we take a
condition expression to be a Boolean function over the domains of the object
properties, C : D1 ×D2 × · · · ×Dr → {0, 1}, so that a condition can relate
to the properties of several objects. Here, the properties appearing in the
condition are P1, P2, . . . , Pr.

A condition affects the transition relation of the location of a participating
object. Here is how we deal with a hot condition: To simplify the presentation
of the definition, we assume only two objects participating in the condition.
In the general case, of course, there could be a single object or many objects.
If object Oj is at location lj − 1 and object Ok is at location lk − 1 in chart
mi, and if their next locations correspond to the hot condition C, we define:

l′mi,Oj
=

{
lj if C(dj , dk)′ = 1 ∧ lmi,Oj = lj − 1 ∧ lmi,Ok

= lk − 1
lj − 1 if lmi,Oj = lj − 1 ∧ ((C(dj , dk)′ = 0 ∨ lmi,Ok

6= lk − 1)

Object Oj moves to location lj if both objects participating in the con-
dition are ready for the evaluation of the condition expression, being at lo-
cations lj − 1 and lk − 1, respectively, and the condition C holds. Here, dj

and dk are the values of properties P s
Oj

and P t
Ok

, respectively. The transi-
tion relation thus ensures synchronization of the objects when evaluating the
condition and allows progress only if the condition expression holds, thus
preventing violation of the chart. In this definition, we assume that there are

18.4 The Translation 295

two objects, Oj and Ok, constrained by the condition, whereas, as mentioned,
in the general case there could be a single object or several.

For a cold condition we define:

l′mi,Oj
=





lj if C(dj , dk)′ = 1 ∧ lmi,Oj = lj − 1 ∧ lmi,Ok
= lk − 1

ls if C(dj , dk)′ = 0 ∧ lmi,Oj = lj − 1 ∧ lmi,Ok
= lk − 1

lj − 1 if lmi,Oj = lj − 1 ∧ lmi,Ok
6= lk − 1

The difference between this and the previous definition for a hot condition
is that here, if the objects are ready for the evaluation of the condition but
the condition does not hold, the smallest surrounding (sub)chart is exited,
as per the semantics of LSCs. Here, ls is the location of object Oj at the end
of the surrounding (sub)chart. In such a case, all the other objects will also
synchronize their exit of this (sub)chart. Note that this is a ‘peaceful exit’,
and it does not constitute a violation of the universal chart mi.

Assignments

Among other things, assignments enable us to refer to system properties
after they are set. In the assignment x := d, the value d may be a constant,
a property value of some object, or the value obtained by applying some
function to other values. To handle assignments we add to our translation a
Boolean variable assign(x, d) that is set to 1 exactly when the assignment is
performed. Actually, these variables are used only for notational clarity, since
in the implementation they can be computed from the values of the location
variables. The translation is straightforward:

x′ =
{

d if lmi,Ok
= l − 1 ∧ l′mi,Ok

= l ∧ assign(x, d)
x otherwise

Intuitively, if object Ok is at location l − 1 in chart mi, and the next
location of Ok corresponds to the assignment x := d, the value of x is set to
d.

We also add to the system a Boolean variable xbound, which determines
whether variable x is already bound to a concrete value. After an assignment
is evaluated, xbound is set to 1. More information about this appears in the
“Symbolic Messages” subsection below.

Assignments are local to a chart. Typically, the variable x on the left-hand
side of the assignment will be used later in the chart, as part of a condition
or a symbolic message.

296 18. Smart Play-Out (with H. Kugler)

Symbolic Messages

A symbolic message is of the form msg(x), where x is a parameter ranging
over a finite domain D. (Actually, a message can have more than one variable,
but for clarity we explain the simple case of a single variable.) It represents
concrete messages of the form msg(d), where d ∈ D. Using symbolic messages
it is possible to describe generic scenarios, which are typically instantiated
and bound to concrete values during play-out.

To handle msg(x) in smart play-out, we add a variable representing the
parameter x, which can be bound to a concrete value as the result of the oc-
currence of a concrete message or an assignment. The binding of this variable
also affects other messages in the same chart that are parameterized by x,
binding them to the same value. Once the variables of a symbolic message are
bound to concrete values, the usual rules concerning message communication
apply to it, so that the message will affect the transition relation in a way
similar to that of a regular message.

Formally, for a symbolic message of the form msg(x) we add a variable
x ∈ D and a Boolean variable xbound that determines whether variable x is
already bound to a concrete value. Initially, we set xbound to 0, and we define
the transition relation as follows:

x′bound =
{

1 if φ1 ∨ φ2 ∨ xbound = 1
0 otherwise

φ1 , lmi,Oj = l − 1 ∧ l′mi,Oj
= l ∧

∨

d∈D

msg(d)′ = 1

φ2 ,
∨

lt s.t. f(lt)=assign(x)

(lmi,Ok
= lt − 1 ∧ l′mi,Ok

= lt)

Thus, xbound is changed to 1 if the concrete message msg(d) occurs, with
d ∈ D (as defined by φ1), or when x appears in the left-hand side of an
assignment that is being evaluated (as defined by φ2).

The transition relation for the variable x is defined as follows:

x′ =
{

d if lmi,Oj = l − 1 ∧ l′mi,Oj
= l ∧ (msg(d)′ = 1 ∨ assign(x, d)′ = 1)

x otherwise

The first case corresponds to the binding of x to the value d, as the result
of the occurrence of the concrete message msg(d) or as the result of x being
assigned the value d. Otherwise, x remains unchanged.

18.4 The Translation 297

We now define the transition relation for the location variable when the
location corresponds to a symbolic message:

l′mi,Oj
=

{
l if lmi,Oj = l − 1 ∧∨

d∈D (msg(d)′ = 1 ∧ x′bound = 1 ∧ x′ = d)
l − 1 if lmi,Oj = l − 1 ∧∧

d∈D (msg(d)′ = 0 ∨ x′bound = 0 ∨ x′ 6= d)

Intuitively, if object Oj is at location l−1 in chart mi, and the next location
of Oj corresponds to a symbolic message, then the location is advanced if the
message msg(d) occurs and x is bound to the value d ∈ D.

If-Then-Else

The transition relation of the if-then-else construct is a variation on the
way conditions are handled earlier. All participating objects are synchronized
when the condition is evaluated and when entering and exiting the ‘then’ and
‘else’ parts.

l′mi,Oj
=





lj if C(dj , dk)′ = 1 ∧ lmi,Oj = lj − 1 ∧ lmi,Ok
= lk − 1

lej if C(dj , dk)′ = 0 ∧ lmi,Oj = lj − 1 ∧ lmi,Ok
= lk − 1

lj − 1 if lmi,Oj = lj − 1 ∧ lmi,Ok
6= lk − 1

lej − 1 if lmi,Oj = lej − 1 ∧ lmi,Ok
6= lek − 1

lxj if (lmi,Oj = lxj − 1 ∧ lmi,Ok
6= lxk − 1)

∨ (lmi,Oj = lej − 1 ∧ lmi,Ok
= lek − 1)

Here, lej and lek are the locations of objects Oj and Ok at the beginning of
the else subchart, and lxj and lxk are the locations of these objects at the end
of the else subchart, respectively.

Loops

A loop is a sub-chart whose behavior is iterated, and all objects are synchro-
nized at the beginning and end of each iteration. Loops can be of two basic
types, bounded or unbounded; see Chap. 13. The transition relation should
synchronize the objects at the beginning and end of each iteration, and for
the bounded case a counter variable is added to ensure that the given bound
is not exceeded.

To simplify the presentation of the definition, we assume that there are
only two objects participating in the loop, Oj and Ok, and that they end the
loop at locations lej and lek, respectively. (In the general case, of course, there
could be a single object or many objects.)

298 18. Smart Play-Out (with H. Kugler)

For the bounded case, where the loop is iterated N times, and where lej
is the first location of object Oj after the loop and lbj is the first location of
Oj inside the loop, we add a loop variable x, initialized to 1, and add the
following conjunct to the transition relation:

l′mi,Oj
=

{
lej if x = N ∧ lmi,Oj = lej − 1 ∧ lmi,Ok

= lek − 1
lbj if x < N ∧ lmi,Oj = lej − 1 ∧ lmi,Ok

= lek − 1

x′ =
{

x + 1 if x < N ∧ lmi,Oj = lej − 1 ∧ lmi,Ok
= lek − 1

1 if x = N ∧ lmi,Oj = lej − 1 ∧ lmi,Ok
= lek − 1

Intuitively, if the objects do not exit the loop by the variable x reaching
the required number of iterations N , they reiterate the loop (object Oj moves
to its loop start location lbj). The transition relation synchronizes the objects
at the beginning and end of each iteration. The loop variable x is incremented
in each iteration of the loop.

For an unbounded loop we do not add a loop variable, and the transition
relation is defined as follows:

l′mi,Oj
= lb if lmi,Oj = lj − 1 ∧ lmi,Ok

= lk − 1

When they reach the end of the loop the objects always change locations
to their start loop ones. The loop can be exited by a cold condition being
evaluated to false inside the loop, as explained earlier.

The Model-Checking Formula

To compute a super-step in the execution of an LSC system using a model
checker, the system is initialized according to the current locations of in-
stances in precharts, while all locations in the main charts are set to 0. The
main chart’s activation state is also initialized to reflect the current state. Af-
ter each external event, the Play-Engine decides which precharts have com-
pleted and sets their corresponding main charts to be active. We also set the
properties of the objects to reflect their current value.

The model checker is then given the following property to prove, stating
that it is always the case that at least one of the universal charts is active:

G(
∨

mi∈SU
(actmi = 1))

As explained earlier, falsifying this property amounts to finding a run
that leads to a point at which all active universal charts have completed
successfully, with no violations — which is exactly the desired super-step.

18.5 Current Limitations 299

18.5 Current Limitations

Features Not Covered

Smart play-out, being based on model-checking, cannot support the LSC
language in full. We now briefly discuss those LSC features that are either
not supported yet or are supported only in part. Some of these we believe we
know how to handle, but have not yet worked out the details.

String variables: Model checkers can handle only finite-state systems. In
the Play-Engine all types are indeed finite, although using a string type with
a large maximal length would make model-checking infeasible in practice.
In our current implementation of smart play-out, string variables are not
supported. In the future we intend to use abstractions, either automatic or
proposed by an advanced user, to enable smart play-out to handle strings or
infinite types.

Dynamic loops: We explained earlier how smart play-out handles fixed
loops and unbounded loops. A third type of loop is the dynamic loop, in
which the user determines the number of times the loop is iterated. How to
perform this interaction with the user while in smart play-out and how to
handle some of the subtle semantic issues regarding dynamic loops require
further research.

External objects: When the chart body contains interactions with enti-
ties that are external to the system — the user, environment, external objects
or time — we cannot guarantee that all maximal positions are reached within
a single super-step, because play-out cannot initiate moves that are not made
by the system. Currently smart play-out has limitations in handling these sit-
uations and we are working on trying to overcome them.

Multiple active copies of a chart: In order to identify the activation
of a universal chart it is sometimes necessary to maintain several copies of
the same prechart, each one in a different stage of the prechart’s scenario.
A universal chart may also be reactivated before its main chart completes,
causing several copies of the main chart to be active simultaneously. In the
absence of unbounded loops, the maximal number of simultaneously active
charts and precharts is bounded and can be easily computed. Actually, we
predict that in most practical cases these bounds will be small, because in
order for the bound to be large there must be a very strong correlation
between the messages in the prechart and the main chart, and this is usually
not the case. In any case, we have not yet dealt with multiple active copies
of the same chart.

Implemented functions: As explained in Sect. 18.4, message communi-
cation can have an effect on the values of object properties. If there is a simple

300 18. Smart Play-Out (with H. Kugler)

rule relating the value of a property to message communication, this can be
fully handled in the transition relation. In cases where implemented functions
are used, the situation is more complicated. We plan to investigate several
directions in trying to deal with implemented functions in smart play-out.
Currently we use a practical approach, creating a symbolic trace of events
that is bound to actual values at a later stage, iteratively. This approach,
however, is not guaranteed to produce a correct super-step; in such cases the
problem will be indicated during execution of the super-step.

Probabilistic nondeterminism: Smart play-out handles probabilistic
nondeterministic choices without taking into account the probabilities. The
nondeterminism is directly reflected in the transition relation, and smart
play-out can thus consider all possible choices when searching for a satisfying
run. Future research directions may include taking into account the proba-
bilities obtained by analyzing the probability of a satisfying run, or finding a
satisfying run with the highest probability, etc. Recent work on probabilistic
verification and probabilistic model-checking may be relevant here too.

Classes and symbolic instances: Extending live sequence charts to
handle symbolic instances enhances the expressive power of the LSC language
and thus makes smart play-out a harder challenge. For the general case in
which the number of objects is not bounded the problem is undecidable. The
current Play-Engine implementation does not allow dynamic creation and
destruction of objects, so that their number is fixed per specification. Even
so, applying the smart play-out idea to specifications with symbolic instances
is a difficult challenge, which we are currently investigating.

Time: Extending LSCs with time can introduce undecidability results
when attempting to apply smart play-out. Our work focuses on characterizing
interesting cases in which smart play-out can be performed, and handling
them efficiently. Another research direction is dealing with continuous time
instead of the discrete time approach used in the Play-Engine.

Forbidden elements: The use of forbidden elements is another recent
extension of LSCs, which is not yet covered in the smart play-out. We believe
that it does not present new fundamental limitations, and hope to work out
the details soon.

The Semantics of Smart Play-Out

Although we have made an effort to base play-out and smart play-out on the
same LSC semantics, there are still some small differences, for a number of
reasons. One reason is that play-out implements ‘violation policies’, i.e., it
first tries to find an event that does not violate a prechart and only if that is
impossible does it choose a violating event. In contrast, smart play-out does

18.6 Satisfying Existential Charts 301

not implement such policies and ‘cares’ only about finding a correct super-
step. This difference, however, is not an inherent limitation, and in the future
we may consider adding information to the smart play-out process that will
allow it to implement different violation policies.

A similar difference is that smart play-out sometimes allows more nonde-
terminism — for example, in deciding when a certain LSC construct should
be evaluated. There are some cases (e.g., assignments) in which we believe
this freedom is not necessary and we plan to modify our translation scheme
to capture the same semantics as in the standard play-out. There are situ-
ations, however, in which the smart play-out approach has the potential to
capture a more realistic and convenient semantics, such as in certain cases of
evaluating conditions and in determining exactly when a prechart has been
activated. We plan to further investigate these possibilities, while gaining
more experience in using LSCs for more realistic examples.

18.6 Satisfying Existential Charts

An additional powerful way to utilize the techniques we have developed for
calculating a super-step is in satisfying an existential LSC. Here the smart
play-out approach enhances the Play-Engine’s capabilities by automatically
finding a satisfying run for a given existential chart. To do this using only
the standard play-out we would have to designate the existential LSC as a
monitored chart, and then run play-out as we see fit, trying on our own to
cause the chart to be traced to completion.

In this section we briefly describe some of the ways in which smart play-
out provides extended analysis capabilities for satisfying existential charts.
We illustrate the ideas using a biological model of the development of parts
of the egg-laying system of the nematode Caenorhabditis elegans, fondly
called C. elegans by the research community.

Satisfying from Any Configuration

When formulating a play-out task as a verification problem, the system must
be initialized to reflect the status of the application, in particular, the current
values of all object properties. For the purpose of using smart play-out for
satisfying existential charts, it is often useful to relax this constraint and
allow the setting of a more general initial configuration.

Consider the C. elegans model whose GUI appears in Fig. 18.7. The GUI
contains elements representing simplified versions of the worm’s gonad, in-
cluding its anchor cell (AC), and the six vulval precursor cells (VPCs). During

302 18. Smart Play-Out (with H. Kugler)

Fig. 18.7. GUI for part of the egg-laying system of C. elegans

normal development, three of the six VPCs are induced by the AC to execute
vulval (primary or secondary) fates. Induced cells go through three rounds
of cell division, resulting in 22 cells that form the worm’s vulva. Uninduced
cells adopt a tertiary (non-vulva) fate, and divide only once. The GUI in the
figure represents the developmental decisions that occur during a discrete
window of time, and it was constructed to directly reflect the way biologists
represent the relevant part of the anatomy of C. elegans. Its form is natural
and clear for anyone working on C. elegans vulval development.

The general behavioral scheme of our C. elegans model is that during the
experimental setup the user can perform various genetic manipulations and
cell ablations. After this setup stage, the development starts (captured during
the modeling by clicking the Start button), and the egg-laying subsystem
evolves; the different cells communicate and adopt different fates. The be-
havior is strongly dependent on the types of mutations that occurred at the
initial stages.

This is consistent with the relevant biological data obtained from C. ele-
gans researchers. Large parts of this data are of the ‘condition-result’ kind,
and are usually gathered in an experiment triggered by a certain set of circum-
stances (conditions), following which an observation is made and the results
recorded. The condition is often a set of perturbations, such as mutating
genes or exposing cells to an altered environment. Another example includes
observations of the effects of anatomical manipulations (e.g., cell destruction
or tissue transplantation) on the behavior of the remaining structures. To
model such condition-result experiments, the prechart of the LSC is played
in to represent the experimental setup (i.e., the alterations that were intro-

18.6 Satisfying Existential Charts 303

duced to the biological system), and the main chart captures the observed
behavior (e.g., cell fates adopted during development). Thus, most of the
interactions between experimentalists and the biological system they inves-
tigate, and therefore also between them and our biological model, involve
modifications to the initial configuration of the system.

As an example, consider the task of satisfying the existential chart of
Fig. 18.8, which states that some time after the system starts development,
the P7.p cell adopts a tertiary fate, which shows up in the GUI by the cell
being colored yellow. We instruct the smart play-out module to find a way to

Fig. 18.8. Cell P7.p adopts a tertiary fate

initialize the system with some combination of mutations and cell ablations,
which leads to the chart being satisfied. This corresponds to trying to find
the experimental conditions that lead to the desired result. If the system
succeeds, it informs the user of the initial configuration that it used to satisfy
the chart, as shown in Fig. 18.9. Notice the mutation of dig-1, which enables

Fig. 18.9. Notifying the user of the initial configuration used

the scenario of ‘displacement of the gonad’ to be activated, as described in
Fig. 18.10, and leads P7.p to adopt a tertiary fate, as desired.

304 18. Smart Play-Out (with H. Kugler)

Fig. 18.10. Displacing the gonad (DIG) mutation

Finding Different Satisfying Runs

When using smart play-out to satisfy an existential LSC, it can be very
helpful to obtain not only a single satisfying run but many such runs, if they
exist. Our experience in the work on C. elegans showed that in certain cases
the fact that there is a way to satisfy a given existential chart did not come
as a surprise to the biology experts. However, they were often surprised by
the different ways of satisfying it, sometimes by scenarios that they initially
did not think were relevant.

To make it possible to find a number of satisfying runs within the smart
play-out framework, the Play-Engine can be instructed to record a satisfy-
ing run and to transform it automatically into an anti-scenario. Figure 18.11

18.6 Satisfying Existential Charts 305

shows the anti-scenario obtained from the satisfying run of the ‘Dig’ scenario
discussed above. We can now add this anti-scenario to the LSC specification

Fig. 18.11. Automatically generated anti-scenario for the DIG mutation

and go back to the smart play-out procedure, asking it again to satisfy the
original existential chart. However, now it does so after enriching the spec-
ification with the new anti-scenario, so that the first solution will not be
detected, since the first satisfying scenario is now forbidden. Indeed, a differ-
ent satisfying run is found, which starts with the ‘loss-of-function’ mutation
(lof) of the let-23 gene, resulting in a vulvaless phenotype: all six VPC cells,
and in particular P7.p, adopt a tertiary fate. See Figs. 18.12 and 18.13.

Fig. 18.12. Another way for P7.p to become tertiary

306 18. Smart Play-Out (with H. Kugler)

Fig. 18.13. The vulvaless scenario

18.7 Bibliographic Notes 307

18.7 Bibliographic Notes

Smart play-out was first described in [47], and is the central topic of the
Ph.D. work of H. Kugler. For a survey on model checking, with a wealth of
information, see [22].

Preliminary results on using LSCs for the modeling and analysis of C. ele-
gans development appear in [63], and are the central topic of the Ph.D. work
of N. Kam. This recent modeling and analysis project helped inspire some of
the features described in Sect. 18.6. For further information about C. elegans
vulva development, see [38, 79].

19. Inside and Outside the Play-Engine

In this chapter, we give a brief overview of the Play-Engine’s architecture, and
provide schematic descriptions of the way it handles its two main functions,
play-in and play-out.

19.1 The Engine’s Environment

Figure 19.1 shows the main components that participate in the play-in and
play-out processes, and how the Play-Engine itself fits in. The top cloud rep-
resents the various graphical user interfaces that can be used for playing in
and playing out. Among other things, they include mock-ups of electronic
devices, dialogs and forms used in software systems, object model diagrams,
etc. The Application Interface is implemented by any GUI application that
wants to interact with the Play-Engine. It is used by the engine to instruct
the GUI application to perform various commands, such as changing values
of properties, highlighting objects, etc. The Play-Engine Interface is imple-
mented by the Play-Engine, and is used by the GUI application to notify the
Play-Engine of various events, such as right-clicking on an object or changing
a property’s value (e.g., flipping a switch, dragging a slider, etc.).

The Play-Engine is responsible for generating the LSC specifications dur-
ing play-in and executing them during play-out. When playing in, the user
specifies the behavior of the target system using a GUI representation of
that system and an object model diagram for the GUI-less objects. As this
is happening, the GUI application notifies the Play-Engine of events, using
the Play-Engine Interface. In response, the Play-Engine generates an LSC for
each played-in scenario. These LSCs are then added to the LSC specification.

During play-out, the user operates the GUI application and/or the object
model diagram in a similar way, and events are again generated and sent
to the Play-Engine using the Play-Engine Interface. This time, the Play-
Engine monitors the LSC specification and generates events as dictated by
the universal charts. The effects of these events on the GUI application are
reflected in the GUI by commands sent from the Play-Engine to the GUI
application, using the Application Interface.

310 19. Inside and Outside the Play-Engine

Fig. 19.1. The Play-Engine in its environment

We now zoom in, and take a somewhat closer look at the main components
of the Play-Engine itself that are involved in play-in and play-out.

19.2 Playing In

Figure 19.2 shows how the play-in process is handled. The user specifies
scenarios by playing in events for GUI objects using the GUI application,
and events for internal and external objects using the object map. In the
former case, the GUI application sends the events to the Play-Engine via
the Play-Engine Interface, and from there the events are transferred to the
GUI Manager, which is the Play-Engine’s point of contact with the GUI
application.

In the latter case, where the user plays in via the object map, the events
are transmitted in a similar way to the ObjectMap Manager, which is the

19.3 Playing Out 311

Fig. 19.2. The play-in process

Play-Engine’s point of contact with the object map. (In this case, however,
the communication occurs directly inside the Play-Engine.) The GUI Man-
ager and the ObjectMap Manager provide identical interfaces (denoted by
the surrounding ellipse) to the other modules in the Play-Engine, and these
indeed do not distinguish between GUI objects and internal objects.

Next, the GUI Manager and the ObjectMap Manager forward the events
to the Sequence Manager, which is the module responsible for generating
the LSC specification. Recall that during play-in, the user specifies system
reactions by right-clicking objects and specifying new values for their proper-
ties. The Sequence Manager is also responsible for conducting this interaction
with the user, a process that begins with the right-click event, continues with
opening the different menus and dialogs, and ends with instructing the GUI
application or the object map to visually reflect the change of value in the
object’s graphical representation. The instruction that causes these changes
to show goes through the chain of interfaces described above, and if it is
designated for the GUI application, it is sent to it by calling the Application
Interface implemented by the GUI application.

19.3 Playing Out

Figure 19.3 shows how the complementary play-out process is handled. Just
like with play-in, the user operates the GUI application and the object map,
and the generated events are sent through the chain of interfaces until they

312 19. Inside and Outside the Play-Engine

Fig. 19.3. The play-out process

reach the GUI Manager or the ObjectMap Manager. In play-out, the mod-
ule that ‘listens’ to the events is not the Sequence Manager but, rather, the
Execution Manager, which is the module responsible for executing LSC spec-
ifications.

When the Execution Manager receives a user event, it performs a step with
the event and then performs a super-step. During the super-step, the Exe-
cution Manager tracks the universal LSCs in the specification and generates
events as dictated by their bodies. Every such event is executed by calling
step again. When an event is executed using step, the GUI Manager and
the ObjectMap Manager are instructed to reflect the changes caused by the
event in the GUI application and in the object map, respectively. In addition,
the event is sent to another module, the LSCs Monitor, which is responsible
for monitoring existential (and universal) LSCs that the user asked to be
traced. The LSCs Monitor does not affect the application but only indicates
the progress of execution in the traced LSCs. This is done by applying the
procedure Monitor Event to the event to be monitored.

19.5 Additional Play-Engine Features 313

19.4 Recording Runs and Connecting External Applications

As an LSC specification is executed, the generated sequence of events can be
recorded and saved into Run Files. These files can also be produced manually
or by any other model or implementation, and either way they can then be
loaded and replayed. Thus, a system model or an implementation can be
instrumented to record the events generated as it runs, and these recorded
runs can then be loaded into the Play-Engine and replayed there to check
whether the system satisfies the specification.

The module responsible for recording and replaying runs is called the Run
Manager. When a run is replayed, the Run Manager injects the events one
after the other into the LSCs Monitor, so that they can affect the traced
LSCs, and at the same time it instructs the GUI application and the object
map to reflect the changes in the values of properties, as indicated by the
injected events.

The Play-Engine is able to do more than just test an LSC specification
with respect to prerecorded runs. It can also receive events online from ex-
ternal models or implementations via a TCP/IP connection. The module
responsible for receiving such events and injecting them into the execution
mechanism is the External Manager. The External Manager can also be used
to transmit events along a communication line as they are being generated
by the Execution Manager.

This functionality of receiving and transmitting events through commu-
nication lines can be used, among other things, to connect two Play-Engines.
In Chap. 14 we showed how component-based specifications can be devel-
oped using external objects to represent elements that are external to the
currently specified system or component. After preparing two such ‘comple-
mentary’ specifications for two related parts of a system, we can connect two
Play-Engines and have each of them execute one part of the specification.
In this configuration, incoming events serve as inputs from external sources,
while messages that are sent to external objects are actually sent along the
communication line, feeding the other executed specification. For a discussion
of a more general approach for connecting multiple Play-Engines, see Sect.
21.5.

19.5 Additional Play-Engine Features

We have implemented several features in the Play-Engine that are not cru-
cial to its main functionality, but which nevertheless make the system more
convenient and useful. Some of the features were mentioned here and there in

314 19. Inside and Outside the Play-Engine

previous chapters, and some were not. This section provides brief descriptions
of them all.

Run-time information – The Play-Engine can be asked to reflect its cur-
rent mode by coloring the background of the work area with different
light hues. If this option is chosen then, when playing in, the work area is
colored light green, when specifying forbidden elements it is colored light
red, and when playing out it is colored light blue.
During play-out, the user is often interested in the values of various el-
ements in the charts. By pointing to an element, the Play-Engine shows
a tool tip with the relevant information. When pointing to assignments
or messages, the variables used are shown with their values (if they are
bound). When pointing to a condition, the participating objects are high-
lighted in the GUI application or object map, and for each object its
constraints are shown in a separate tool tip. Moreover, the condition is
evaluated anew whenever the pointing occurs, and its current value is
shown in a separate tool tip.
When pointing to an assignment, the Play-Engine connects the assign-
ment with a thin purple line to all the conditions that directly involve the
assignment’s variable. Similarly, when pointing to a condition, lines are
drawn to all the assignments that have a variable to which the condition
refers.
Lines are also drawn between forbidden elements and their scopes.

Notes – LSCs can sometimes be quite complicated. The Play-Engine allows
the user to attach notes to charts and point from the notes to the elements
in the chart that are of interest. The user may write a short description
that will appear in the note, and may also give a longer, more detailed
description that will be displayed as a tooltip when the mouse is located
over the note (see Fig. 19.4). A note can include pointers to websites that
will open up when clicked. This has been found useful in the C. elegans
application of the Play-Engine (see Chap. 18) to point to pdf files of
scientific articles that are relevant to the part of the chart in question.

Jump starts – Users often describe different scenarios, assuming different
initial system configurations. The Play-Engine allows the setting up of
Jump Starts. A Jump Start is a set of object properties associated with
initial values, and is used to represent initial configurations. Any such
configuration can then be reached with a single mouse click. A jump
start can be defined to reflect the system’s state at any given moment
during play-in or play-out; i.e., at the user’s request the engine will query
all the objects for the current values of their properties, and will create
an appropriate jump start from those values.

19.5 Additional Play-Engine Features 315

Fig. 19.4. Attaching a note to an LSC

Breakpoints – When debugging a large specification, we often run through
a scenario and at some point want to examine the situation more closely.
The Play-Engine enables the setting of breakpoints on messages, condi-
tions and assignments. When a breakpoint is reached during execution,
the engine moves into step mode, thus letting the user examine the system
configuration and the currently active charts in a step-by-step fashion.

Statistics – The Play-Engine provides various statistics, including informa-
tion about the size of the specification (e.g., number of use cases and
LSCs) and the number of different LSC constructs used in it (e.g., total
number of messages, conditions, loops, etc.). It also produces on-the-fly
information about the length of super-steps carried out and the number
of simultaneously active LSC live copies.

Controlling the execution – As we know, a specification will typically
consist of many LSCs. While preparing for playing out, the user can
decide which of the universal LSCs will participate in the execution and
which of the universal and existential LSCs will be merely traced. More-
over, some of the charts can be set up to participate in the execution but
without being shown when activated. This feature is useful for small triv-
ial charts that are opened many times during execution. The user may
also instruct the Play-Engine not to show any charts during play-out.
Using this feature, and minimizing the Play-Engine’s own window, gives
the feeling of working with a truly independent application.

20. A Play-Engine Aware GUI Editor

This chapter describes GUIEdit, a rather rudimentary editor we have built
to help the user construct GUI applications that can be used with the Play-
Engine.

20.1 Who Needs a GUI Editor?

The Play-Engine in its current guise does not support the process of building
a GUI application as the front end to a desired system model. The main rea-
son is the fact that we did not want to restrict the methodology or the tool to
work with a specific technology for building user interfaces, since such tech-
nologies constantly evolve, providing increasingly faster ways of constructing
ever nicer-looking applications.

Several skills are required of a user faced with the task of constructing a
nontrivial GUI application to work with the Play-Engine:

• The GUI application must be written in some convenient programming
language, in which the user must be able to program.

• Each GUI application must implement an application interface that we
call IUserApp. It consists of all the procedures and functions that may be
called by the Play-Engine to obtain information from the application (e.g.,
values of properties, values of implemented functions applied to specified
values, etc.), or to instruct the application to perform changes (e.g., set new
values for properties, highlight objects, etc.). IUserApp is a COM (Com-
ponent Object Model) interface, which is described in detail in Appendix
D. To implement this interface, the user again has to be familiar with a
programming language that supports COM.

• The structure of the system model (i.e., the types, objects, properties,
functions, etc.) should be given in a separate file (see Appendix B) in XML
format. To create such a file, the user should be familiar with XML.

Although these skills are not beyond reach, and can be expected of most
programmers, we would not like to limit the use of the Play-Engine to people

318 20. A Play-Engine Aware GUI Editor

with such skills. Moreover, even for the more skilled user, the task of con-
structing such an application entails a large amount of tedious work, involving
little creativity or imagination, and is bound to be error-prone.

To tackle these problems, and to show that the task of constructing GUI
applications for the Play-Engine can be carried out by most end-users, we
have developed GUIEdit, an editor with which one can relatively easily
build GUI applications that are ‘aware’ of the Play-Engine. This means that
they can provide all the information required by the Play-Engine, and can
interact with it as needed. Moreover, as we argue in Sect. 20.5, this shows
that standard commercially available software for building GUIs can be easily
adapted to do the same.

20.2 GUIEdit in Visual Basic

GUIEdit was developed as an Add-On to the Visual Basic 6.0 development
environment. Having no aspirations to compete with existing GUI builders,
we have chosen Visual Basic as the basis for GUIEdit, for the following rea-
sons:

• Visual Basic provides a friendly and powerful environment for creating
forms and putting controls onto them. It provides many libraries of ready-
to-use standard controls, such as buttons, text boxes, sliders, lists, etc.

• Using Visual Basic, one can create custom controls of various shapes, pro-
viding different required functionality, and can then easily load them into
the Visual Basic environment, where they can be used just like any other
standard controls.

• Visual Basic inherently supports COM. Every class can be automatically
referred to as a COM object and no complicated programming is required
(in contrast to Visual C++, for example).

Having Visual Basic as our underlying foundation, the GUIEdit Add-On
can be loaded from the Visual Basic standard menu bar and can then be
used as if it were an integral part of the environment itself. The interface of
GUIEdit is really just a small toolbar, as shown in Fig. 20.1.

20.3 What Does GUIEdit Do?

The process of constructing a GUI application with GUIEdit consists of the
following steps, in which the numbers in parentheses refer to the buttons in
Fig. 20.1.

20.3 What Does GUIEdit Do? 319

Fig. 20.1. The GUIEdit toolbar

Build GUI representation of the system – The graphical representation
of the system is built with the standard tools of Visual Basic. The user
creates forms, drags controls from the controls toolbox and drops them
onto the forms. When developing a Visual Basic project, the next step
would have been to associate code with the different controls, describ-
ing their behavior and reactions to different events. In our case, no such
programming is needed.

Define application types – All object properties are based on application
types. Therefore, before we can define the system objects and their prop-
erties we should specify the various types in the application domain.
GUIEdit allows us to define types by clicking the Types button (number
(2) in Fig. 20.1) and then filling in the type’s details. GUIEdit also allows
us to load type libraries, which contain one or more types in an XML for-
mat. The user can load type libraries by clicking the Load Type Libraries
button (6) and then selecting the files to be loaded.

Define objects and properties – The main step in working with GUIEdit
is defining the system’s objects and their properties. This step consists
of going through the graphical objects and defining those that will be
used as system objects,1 to be recognized by the Play-Engine. This is
done by clicking an object and then clicking the Properties button on the
GUIEdit toolbar (5). In response, an object dialog opens, in which the
user may give the object a name and define its properties with all of their
attributes. An object property can be defined as being standard, meaning
that it maps directly to a property of the Visual Basic control (e.g., a
display object that is based on a label control can have a color property
that maps directly to the BackgroundColor property of the label control).
Later, when the code is generated, GUIEdit knows that it should reflect

1 Not all visual objects must be declared as system objects. One can certainly add objects
that have no functionality, but give a more realistic nature to the graphical representation
of the system.

320 20. A Play-Engine Aware GUI Editor

the changes in object properties by applying the corresponding changes
to the Visual Basic properties of the underlying controls.
Visual Basic allows us to create arrays of controls. GUIEdit recognizes
such arrays and enables the user to give each object a different name but
to specify the set of properties only once. This set of properties is then
automatically replicated for all the objects in the array. Later, when the
GUI application is loaded into the Play-Engine, the natural thing would
be to create a class based on one of these objects and to associate all of
them with this class.

Load implemented functions – Implemented functions are used by the
Play-Engine during the specification and execution processes, and should
be implemented by the GUI application. This, of course, cannot be done
automatically, since such functions are domain-dependent. One way of
implementing them would be to simply write their code after all the
other code is automatically generated by GUIEdit. This would result in a
process that is not fully automatic and which cannot be conducted totally
by an end-user. We therefore propose a different approach.
Implemented functions are written in function libraries. A function library
is an XML file that contains all the function information that should be
exported to the Play-Engine. In addition, the XML file contains the name
of a Visual Basic module in which the functions are actually implemented.
This way, the task of developing function libraries can be given to expert
programmers, and these libraries can then be used by people who want
to build GUIs but have no programming skills.
The Play-Engine allows the user to load function libraries by clicking the
Load Function Library button (7).

Generate application description file – When a GUI application is loaded
into the Play-Engine, the first thing the engine does is read its descrip-
tion file. This file contains all the information the Play-Engine needs to
know about the application. The application description file is generated
automatically by GUIEdit using the Save to XML button (4).

Generate code – The final step in creating a GUI application with GUIEdit
is automatic code generation. By clicking the Generate Code button (1),
GUIEdit generates all the code that is needed for the GUI application
to interact with the Play-Engine. This includes the data structures for
storing property values, the procedures and functions required by the
IUserApp interface, the code that will notify the Play-Engine as events
occur, and more.
GUIEdit also generates hook procedures for the user to fill in when a
certain behavior should be overridden or redefined. For example, suppose
there is an object that is rendered using different bitmaps according to its

20.4 Incorporating Custom Controls 321

state — say, on or off. The code for associating correctly the bitmaps with
the states cannot be generated automatically. GUIEdit therefore creates
a procedure that is automatically called when the state is changed. All
the user has to do is endow this procedure with the details for correctly
displaying the bitmaps.
At the end of this step, the user has a working Visual Basic project, which
is compiled and linked like any other Visual Basic project, resulting in a
dll file that can be loaded by the Play-Engine.

Refine the application – Constructing a GUI application can be an iter-
ative process, which will usually be interleaved with the process of spec-
ifying the system’s behavior. When the user wishes to modify the GUI
application by adding properties to existing objects, adding new objects,
adding types or functions, etc., he/she will have to first open the Visual
Basic project. To load the Play-Engine information that is relevant to
that project, the user clicks the Load XML File button (3). He/she then
selects the file that was saved earlier and the information is loaded and
associated with the Visual Basic controls. The user may then continue to
modify the application, save it again and generate the new code.

20.4 Incorporating Custom Controls

Since GUIEdit is based on Visual Basic, it can utilize the capability of Visual
Basic to incorporate user-defined custom controls. To enable the construction
of rich and nice-looking GUI applications, expert programmers and graphic
designers can create custom controls for specific purposes, with specific func-
tionality. Custom controls can export their properties as standard Visual
Basic properties and encapsulate the code needed to graphically render the
various property values.

Building such libraries of controls has obvious benefits in developing
reusable components. It also the following advantage: since all the properties
are exported as standard Visual Basic properties, end-users can use the con-
trols within GUIEdit without having to worry about implementing any hook
procedures. Indeed, almost all of the GUI applications described in this book
were built with GUIEdit using various kinds of controls (e.g., the switch and
light in the calculator, the thermometers in the bakery panel, the phones in
the NetPhone application, etc.).

322 20. A Play-Engine Aware GUI Editor

20.5 GUIEdit As a Proof of Concept

We developed GUIEdit with two objectives in mind. The first, the one this
chapter concentrated on, was to make our life, and the life of our users, easier,
by enabling us and them to create different examples and modify them very
quickly. The other objective, which is of broader interest, was to prove that
the concept of a GUI builder with inherent capabilities for interacting with
the Play-Engine, is indeed feasible. After demonstrating this concept with
GUIEdit, it is clear that any visual programming environment (e.g., Delphi,
Visual Studio, Java Swing, etc.) and any product for building rich graphical
interfaces (e.g., Altia FacePlate, e-SIM Rapid, Macromedia Flash, etc.) can
be easily modified to contain the GUIEdit capabilities, so that applications
built with these environments will be able to interact seamlessly with the
Play-Engine.

This concept leads to a new possible development process for various kinds
of systems. The user first builds the graphical user interface with tools that
specialize in doing just that. Then the graphical user interface is loaded into
the Play-Engine, where its behavior is played in, resulting in LSCs. These two
components, i.e., the GUI application and the LSC specification, can then be
executed in tandem by the play-out part of the Play-Engine, which acts as a
universal reactive system, running a particular ‘program’. Obviously, each
of the two components — the GUI application and the LSC behavior — can
be changed separately, thus adding a measure of flexibility and independence
to the process.

20.6 Bibliographic Notes

Microsoft Visual Basic [116] is an integrated development environment (IDE)
that uses the BASIC programming language. The Component Object Model
(COM) [24] is a software architecture that allows applications to be built up
from binary software components. COM is the underlying architecture that
forms the foundation for Microsoft’s higher-level software services.

Borland Delphi [30] is a visual IDE, which uses Object Pascal as its pro-
gramming language. Swing is a graphical user interface (GUI) component kit,
part of the Java Foundation Classes (JFC) integrated into Java 2 platform,
Standard Edition (J2SE). Swing provides a complete set of user-interface
elements written in the Java programming language.

Macromedia Flash [36] is software for the creation and implementation
of vector-based interactive animations and rich graphical interfaces. Altia
FacePlate [2] and e-SIM Rapid [35] are powerful environments for rapid de-
velopment of Human-Machine Interface (HMI) prototypes.

20.6 Bibliographic Notes 323

The Extensible Markup Language (XML) [122] is the universal format for
structured documents and data on the Web.

A detailed description of how to use GUIEdit and how to build custom
controls that can be used within GUIEdit appears in the Play-Engine User’s
Guide [50].

21. Future Research Directions

The play-in/play-out methodology is very new. The first ideas for play-in
were conceived of only in 1998, around the time that the first version of the
LSCs paper [27] was being written. While we do feel that our work, including
its implementation in the form of the Play-Engine, has matured enough to
be deserving of a detailed book-length treatment, there are still many issues
that have not been dealt with yet at all, and others that require considerable
further investigation before they can be finalized. Thus, we regard our work
as still being a research-level effort, with much remaining to be done.

In this chapter, we give a short overview of some of the topics that have
not yet found their way into the Play-Engine. For some of these we only
mention the problems, but for others we share our thoughts regarding the
way they should be resolved. Indeed, some of them are being investigated
and implemented even as we write. We have only included topics that we feel
are truly important, and which have the potential to significantly increase
the power and appeal of the entire approach.

21.1 Object Refinement and Composition

In Chap. 14, we introduced internal, non-GUI objects, and discussed their
importance in specifying system behavior. However, anyone who has been
involved in complex system development recognizes the need for a hierarchy
of structural elements, and here this would translate into the need for a
hierarchy of objects. Accordingly, as the design becomes more detailed, we
want to be able to carry out downward and upward enrichment of the object
hierarchy, by allowing the designer to refine objects into sets of sub-objects
and to compose sets of objects into compound objects, respectively. Thus, we
want mechanisms for object refinement and object composition, both
of which have to be dealt with in terms of structure and behavior.

As for the structure, we would like to have user-friendly methods for
refining an abstract object into actual sub-objects and for composing several
‘real’ objects into one high-level object. A main issue that has to be resolved

326 21. Future Research Directions

is whether the high-level object will be an actual object in its own right, or
only an abstract container that is totally defined by its sub-objects. The main
difference is whether the high-level object can have properties and methods
of its own that can be changed and invoked (respectively) directly, or whether
the properties and methods of the high-level object are only a facade for those
of its sub-objects.

In the first approach, there need not be a direct linkage between the inter-
face (properties and methods) of the high-level object and the interfaces of
its sub-objects. Thus, there cannot be an automatic transformation between
an LSC consisting of the high-level object and another consisting only of its
sub-objects. In the second approach, the high-level object is but an abstract
container, and refinement and composition should be consistent across the
levels of the hierarchy. This means that a high-level object should provide
an interface that is consistent with the interfaces of its sub-objects, so that
when a property of the high-level object is changed or one of its methods
is invoked, these can be directly mapped to the corresponding property or
method of the appropriate sub-object, and vice versa. In this case, an auto-
matic transformation between abstract and detailed LSCs is possible.

Note that there is no loss of generality in choosing the second approach,
since we can always add a ‘controller’ object, which would contain the main
logic of the high-level object and would interact with the other sub-objects
and the object’s environment. As a matter of fact, real-world composed ob-
jects are usually implemented that way. Indeed, we feel that the second ap-
proach for defining object hierarchies is more suitable in the context of the
LSC language and the play-in/play-out approach, enabling more rigorous and
semantically meaningful relations between abstract and detailed LSCs.

So much for the structural aspects of refinement and composition. The
behavioral aspects are far more complicated. They involve the use of the ap-
propriate level of detail in inter-object behavior, while preserving the meaning
of such behavior under the refinement and composition operations. Thus, af-
ter defining the desired hierarchy of objects and sub-objects, we would like
to be able to automatically transform an LSC containing a high-level object
into an equivalent LSC containing the concrete sub-objects, by preserving the
property changes and the method calls using the mapping between the ob-
ject interfaces. The natural next step after carrying out such a transformation
would usually be to add the interaction between the sub-objects (should we
call it sub-interaction?) so that the desired behavior of the high-level object
is achieved in full.

All this is not at all straightforward. Here is one example of why. With
refinement and composition, several LSCs of varying levels of detail may be
active simultaneously, yet they must be executed by the play-out mechanism

21.2 Object Model Diagrams, Inheritance and Interfaces 327

in a synchronized manner. Thus, if some LSC L1 contains a message M going
into a high-level object O, and another LSC L2 contains the same message M
going into O’s sub-object O1, then the two messages should be propagated
simultaneously. Things get even more complicated when taking conditions
into account. Consider an LSC L1 containing a condition that refers to two
properties P1 and P2 of a high-level object O, and a more detailed LSC
L2 containing the same condition, but this time the condition refers to sub-
objects (since P1 can be a property of sub-object O1 and P2 a property of
sub-object O2). Now, suppose that the two LSCs are active simultaneously,
the condition in L1 is enabled and that in L2 is not, since O2 has not yet
reached it. Should the condition in L1 be evaluated and propagated, or should
it wait for the equivalent, more detailed condition to become enabled too?

These kinds of synchronization issues between high-level and detailed
LSCs that describe consistent behavior arise in many other cases. Careful
thought must be given to all of them, and rules and mechanisms should be
defined and implemented to enable the most natural execution of an LSC
specification consisting of LSCs with different levels of detail.

21.2 Object Model Diagrams, Inheritance and Interfaces

In Chap. 15, we showed how classes can be used to specify general scenarios
that are not limited to concrete objects. We have also shown how symbolic
instances can be bound to concrete objects using general binding expressions.
One of the most natural ways to refer to concrete objects in the OO world
is to use navigation expressions, which can be built up from specific re-
lationships (associations) specified to exist between objects. We would thus
like to extend the Play-Engine’s object map to support the full features of
object model diagrams, which enable graphical specification of associations
between objects. We would then use the resulting navigation expressions (e.g.,
Phone.Channel(3)) to create statically defined binding expressions in a more
intuitive manner.

Object model diagrams also support the specification of class inheri-
tance, which we have not dealt with in our work yet either. Thus, they can
be used to model class hierarchies that involve both inheritance and composi-
tion. Once we are able to incorporate class inheritance into our methodology
and tool, a symbolic instance would be able to represent any class in the class
hierarchy, and it would be able to bind in runtime to any concrete object that
is an instance of that class or of some other class that inherits from it.

Since at present the Play-Engine supports only a flat one-level organiza-
tion of classes, each class is associated with a set of properties and methods

328 21. Future Research Directions

and all of its instance objects share these same sets. When introducing class
inheritance, the Play-Engine must be modified so that in general a class in-
herits the properties and methods from its base class, but can also be endowed
with additional properties and methods of its own, and can also override the
inherited ones.

Another issue that will have to be considered is the way symbolic in-
stances are played in. Currently, the user plays in scenarios using one of the
concrete objects, and after the scenario is completed, the instance is declared
as symbolic. Since we still have a one-level class hierarchy, determining the
class that is represented by the symbolic instance is straightforward. Given a
multilevel hierarchy of classes, the user would have to specify which class is
intended. It may be the class of which the object in question is an instance,
or any class from which that class (even indirectly) inherits. However, since
each class can contain new properties and methods, we must make sure dur-
ing play-in that the class to be represented by the symbolic instance supports
all the properties and methods that are used in the particular LSC at hand.
Clearly, there are a number of ways to enforce this.

The problem of handling different objects using different views (e.g., con-
sidering telephones, televisions and VCRs as all being electronic devices) can
be solved not only by class inheritance but also by using interfaces. In the
context of the Play-Engine, an interface is simply a set of properties and
methods. Given a set of interfaces, each object can be defined as implement-
ing one or more of the interfaces. In a way, using interfaces is more powerful
than using simple class inheritance (i.e., with multiple inheritance being for-
bidden), since an object can implement multiple interfaces, thus providing
different views of its functionality. Using interfaces, the same instance can
implement the interface for a telephone, for an electronic device, and for a
machine with a mouthpiece. The play-in process could still be conducted as
is, but at the end, when the user declares an instance as being symbolic,
he/she would have to choose the interface that is to be represented by the in-
stance. Again, the Play-Engine would have to verify that candidate interfaces
have all the properties and methods that were used in the LSC at hand.

21.3 Dynamic Creation and Destruction of Objects

The use of classes via symbolic instances allows us to specify general behavior
for an a priori unknown number of actual object instances. We can thus
specify parameterized systems, in which the number of objects is fixed but
unknown. In principle, this should also allow the specification of behavior
for systems with a dynamically varying number of objects, but we have not

21.4 Structured Properties and Types 329

yet extended our work to support dynamic creation and destruction of
objects.1

Several problems must be resolved in order to extend the Play-Engine
along these lines. We limit the discussion to the creation and destruction of
internal objects, since we would like to assume that GUI objects are present
from the start and do not get destroyed during execution.

First, we must provide a setup for initializing classes, so that they start
out with some number of initial instances, perhaps zero. Second, for those
classes that start out with no live instances, we have to find a convenient
way of starting the play-in process despite this fact. This could be done by
displaying classes in the object model diagram and allowing play-in from
there as with internal objects, even though these classes are still empty.

Creating an object during system execution would consist of clicking the
class and selecting the act of object creation. A new object should be created
and placed in the object model diagram, so that it can be used during play-in.
Obviously, the life cycle of an object need not necessarily begin and end in a
single chart, which means that we must find a way to identify the object in
the different LSCs. This issue is non-trivial, and should be subject to further
research. One direction, which we think may be suitable, is to index objects
according to their order of creation (e.g., Phone(5) is the phone that was
created fifth), and use the indexing for identification. During play-in, when
an object is dynamically destroyed, it should be removed from the object
model diagram, so the current state of the system will be correctly depicted.
This imposes a difficulty in modifying a chart that was played in earlier, since
the object no longer shows up.

21.4 Structured Properties and Types

In the current implementation of the Play-Engine, each object is associated
with a set of properties. There is no structure to the properties, and they
all reside on a single level. It could be useful to allow the organization of
properties into a hierarchy, so that if there is a large number of them, they
could be accessed in a more convenient and intuitive manner.

Some of the properties are based on enumeration types, each of which is
defined by a set of values, and these values do not form a hierarchy either.
As opposed to arranging properties in a hierarchy, which is purely cosmetic,
we would like to arrange type values into a hierarchy that imposes a seman-
tic relation between them. The semantics would be that a property can be
1 Although the Play-Engine does not support dynamic creation and destruction of objects,

it can be used to monitor systems that do support these features.

330 21. Future Research Directions

specified to have some high-level value, meaning that the actual value could
be any sub-value thereof.

Arranging values of a type in a hierarchy is like having super-states and
sub-states in statecharts. For example, the status of a system can be defined
over a ‘flat’ type, consisting of the values {Open, Initializing, Ready, Closed}.
It could also be defined over a hierarchy of values that has Open and Closed
on the top level and Initializing and Ready as sub-values of Open. As in stat-
echarts, this is not merely cosmetic, but has semantic significance that makes
a difference in the dynamics of executing the model. Using this hierarchy, one
could specify a condition that says S is Open, and the condition will hold if
S evaluates to Open, Initializing or Ready. Note that saying S is Open here
really means that we do not know or care about the exact value, but only
about the more abstract one, and play-out would have to be able to deal
with this too. This feature has already been defined, and is currently being
implemented in the Play-Engine.

A related issue has to do with compound types. In the current imple-
mentation of the Play-Engine, all the properties and variables are arranged
around basic types (i.e., enumerations, strings or discrete ranges). We would
like to have compound types and arrays, just like in most programming lan-
guages. An array would contain a fixed number of values from a given type
and a compound type would contain several fields, each based on some type,
which need not necessarily be the same for all fields. To do this, we would
have to modify the play-in and play-out processes by helping the user fill in
values for compound types, and by enriching the unification mechanisms to
support them.

21.5 Linking Multiple Engines

One of the most important features needed in order to support large-scale
use of play-in/play-out and the Play-Engine is the ability to link up several
engines, and to link these up also to other, complementary tools. In recent
months we have been modifying the Play-Engine along these lines.

In a project called SEC (simulation engines coordinator) we are in the
midst of defining and implementing a standard interface and an interaction
protocol for reactive simulation engines, so that a number of them can be
used together, each executing a different part of the system. By and large,
every such part considers the other parts to be its environment. Thus, we can
use SEC to execute a large system, with various parts specified by different
teams, and even systems for which some parts have been implemented or
modeled in an intra-object fashion (e.g., using code or statecharts).

21.5 Linking Multiple Engines 331

Current experimentation with a number of linked Play-Engines playing
out a specification together, or with a Play-Engine linked to the Rhapsody
tool, are very encouraging.

Part VII

Appendices

A. Formal Semantics of LSCs

This appendix summarizes the combined syntax and operational semantics
of the entire LSC language and its extensions. It can be viewed as the grand
sum of all the “And a Bit More Formally ...” sections that appear in many
of the chapters of the book.

A.1 System Model and Events

Object Systems

An object system Sys is defined as

Sys = 〈D, C,O,F , Clock〉
where D is the set of application types (domains), C is the set of classes, O
is the set of objects, F is the set of externally implemented functions, and
Clock is the system global clock. We refer to the user of the system as User
and to the external environment as Env.

A type D ∈ D is simply a finite set of values.
A class C is defined as

C = 〈Name,P,M〉
where Name is the class name, P is the set of class properties, and M is the
set of class methods.

An object O is defined as

O = 〈Name, C,PV, External〉
where Name is the object’s name, C is its class, PV : C.P → ⋃

i Di is a
function assigning a value to each of the object’s properties, and External
indicates whether the object is external to the system. We define the function
class : O → C to map each object to the class it is an instance of. We also
use V alue(O.P) = O.PV(O.C.P) to denote the current value of property P
in object O.

336 A. Formal Semantics of LSCs

An object property P is defined as

P = 〈Name,D , InOnly ,ExtChg ,Affects,Sync〉

where Name is the property name and D is the type it is based on.
InOnly ∈ {True, False} indicates whether the property can be changed only
by the user, ExtChg ∈ {True, False} indicates whether the property can be
changed by the external environment, Affects ∈ {User,Env, Self} indicates
the instance to which the message arrow is directed to when the property
is changed by the system, and Sync ∈ {True, False} indicates whether the
property is synchronous.

An object method M is defined as

M = 〈Name(D1, D2, . . . , Dn), Sync〉

where Name is the method name, Di ∈ D is the type of its ith formal pa-
rameter, and Sync ∈ {True, False} indicates whether calling this method is
a synchronous operation.

An implemented function is defined as

Func = Name : D1 ×D2 × . . .×Dn → DF

where Name is the function name, Di ∈ D is the type of its ith formal
parameter, and DF ∈ D is the type of its returned value.

The clock is an external object with one Time property and one Tick
method:

Clock.P = {Time}
Clock.M = {Tick}
Clock.External = True

Messages and Events

Given a system model Sys, we define a system message Ms as

Ms = 〈Src,Dst, P, V, f, λF
f ,m, λM

m , Symbolic〉

where Src is the object sending the message, Dst is the object receiving the
message (which could be the same as Src), P ∈ P ∪ {⊥} is the property
changed, V is a variable holding a new value for the property P , f ∈ F ∪{⊥}
is a function describing a new value for P , λF

f is a function information
structure, m ∈ Dst.M ∪ {⊥} is the method of Dst called by Src, λM

m is
a method information structure, and Symbolic is a Boolean flag indicating

A.1 System Model and Events 337

whether the message is symbolic. Each message represents either a property
change or a method call:

∀Ms : (Ms.P 6= ⊥)⊕ (Ms.m 6= ⊥)

A function information structure λF
f is defined for f ∈ F ∪ {⊥} as follows:

λF
f =

{
(V1 ∈ f.D1, . . . , Vn ∈ f.Dn) if f ∈ F
⊥ if f = ⊥

A method information structure λM
m is defined for m ∈ ⋃

C∈C C.M ∪ {⊥}
as follows:

λM
m =

{
(V1 ∈ m.D1, . . . , Vn ∈ m.Dn) if m ∈ ⋃

C∈C C.M
⊥ if m = ⊥

The message content Λ of a message Ms is defined as

Ms.Λ =





Ms.λ
F
f λF

f 6= ⊥
Ms.λ

M
m λM

m 6= ⊥
Ms.V otherwise

Definition A.1.1 (synchronous system messages). A message Ms is
synchronous if Ms.P 6= ⊥ ∧Ms.P.Sync = true or Ms.m 6= ⊥ ∧Ms.m.Sync =
true. A self message is also synchronous.

The alphabet of possible messages of Sys, denoted by Σ, is defined as

Σ = ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv ∪ΣSelf ∪ΣCalls

∪ ΣClock

ΣFromUser = {Ms | Src = User ∧ P ∈ class(Dst).P}
ΣToUser = {Ms | Dst = User ∧ P ∈ class(Src).P ∧ P.Affects = User

∧ P.InOnly = False}
ΣFromEnv = {Ms | Src = Env ∧ P ∈ class(Dst).P ∧ P.ExtChg = True

∧ P.InOnly = False}
ΣToEnv = {Ms | Dst = Env ∧ P ∈ class(Src).P ∧ P.Affects = Env

∧ P.InOnly = False}
ΣSelf = {Ms | Dst = Src ∧ P ∈ class(Src).P ∧ P.Affects = Self

∧ P.InOnly = False}
ΣCalls = {Ms | Dst, Src ∈ O ∧ m ∈ class(Dst).M}
ΣClock = {Ms | Dst = Src = Clock ∧ m = Tick}

The set of system events, E , is defined as

E = ((ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv ∪ΣCalls)× {Send, Recv})
∪ ((ΣSelf ∪ΣClock)× {Send})

338 A. Formal Semantics of LSCs

A.2 LSC Specification

LSC Constructs

An LSC specification for Sys is defined as the disjoint union

S = SU ∪ SE

where SU is a set of universal charts and SE is a set of existential charts.
An LSC L is defined to be

L = 〈IL, VL,ML, [PchL], AL, CL, SUBL, ITEL, LOOPL, ML, CL, Strict,
evnt, subchart, temp〉

where IL is the set of LSC instances, VL is the set of variables used in L, ML

is the set of messages in L, PchL is the prechart of L (in universal charts), AL

is the set of assignments in L, CL is the set of conditions in L, SUBL is the set
of subcharts in L, ITEL is the set of if-then(-else) constructs in L, LOOPL

is the set of loops in L, ML is the set of forbidden messages in L, CL is the
set of forbidden conditions in L, Strict is a Boolean flag indicating whether
the LSC is strict or tolerant, and evnt, subchart and temp are functions that
will be discussed shortly.

An instance I is defined as

I = 〈`,O, C, ψ,Mode, Φ〉

where ` is the set of instance locations, O ∈ O ∪ {⊥} is the concrete object
represented by I (O = ⊥ if I is symbolic), C ∈ C ∪ {⊥} is the class repre-
sented by I (C = ⊥ if I is not symbolic), ψ ∈ {P × Oper × RHS} is the
binding expression of I, Mode ∈ {Existential, Universal} is the instance
quantification, and Φ is a set of forbidden objects, which the instance is not
allowed to bind to.

We denote by lix the xth location of instance Ii, and by `(I) = I.` the set
of locations of instance I. We use `(L) as an abbreviation for

⋃
I∈L `(I).

We define the function AppObj to map each instance to the object or class
it represents

AppObj :
⋃

L∈S
IL → O ∪ C

and we require that a single object cannot be represented by more than one
instance in an LSC:

∀I, I ′ ∈ IL : AppObj(I) ∈ O ⇒ AppObj(I ′) 6= AppObj(I)

A.2 LSC Specification 339

We use the predicate symbolic(I) as an abbreviation for I.C 6= ⊥. We define
the relation X 4 Y , where X ∈ O and Y ∈ O ∪ C, to denote that either X
and Y are the same object, or Y is the class to which X belongs:

X 4 Y , (X ∈ O ∧ (X = Y ∨ class(X) = Y))

The relation 4 is extended to have instances as arguments in the natural way
(i.e., the relation refers to the objects or classes represented by the instances).

A message M ∈ ML is defined as

M = 〈ISrc, IDst,MS〉

where ISrc ∈ IL is the instance representing the sender, IDst ∈ IL is the
instance representing the receiver, and Ms ∈ Σ is the system message rep-
resented by M , so that MS .Src 4 AppObj(ISrc) ∧MS .Dst 4 AppObj(IDst).
The message M is synchronous if and only if M.Ms is synchronous.

A variable V ∈ VL is defined as

V = 〈D, ω〉

where D ∈ D is the variable’s type, and ω ∈ D∪{⊥} is the value assigned to
V . For a free variable we have ω = ⊥. We shall use simple predicate notation
for notions like free and bound, as in free(x).

An assignment A ∈ AL is defined as

A = 〈V, IA, C, P, f, λF
f , T imed〉

where V is the assigned-to variable, IA ⊆ IL is the set of instances that
are synchronized with the assignment, C ∈ (

⋃
D∈D D) ∪ {⊥} is a constant

of some type in case the assignment stores a constant and ⊥ if not, P ∈
(
⋃

I∈IA
AppObj(I).P) ∪ {⊥} is the property stored in case this assignment

stores a property value and ⊥ if not, f ∈ F ∪ {⊥} is a function in case the
assignment stores some function and ⊥ if not, λF

f is a function information
structure in case f 6= ⊥, and Timed ∈ {True, False} is a flag indicating
whether A is a timed assignment. We require that one and only one of the
following expressions holds for each assignment:

(C 6= ⊥), (P 6= ⊥), (f 6= ⊥), (Timed = true)

We say that the assignment kind (or simply kind) of A is constant if C 6= ⊥,
property if P 6= ⊥, function if λF

f 6= ⊥, and time if Timed = true.
A condition C in an LSC L is defined as

C = 〈IC , Ψ〉

340 A. Formal Semantics of LSCs

where IC ⊆ IL is the set of instances that are synchronized with the condition
and Ψ is the set of basic expressions. A basic expression ψ ∈ Ψ is defined
over the following alphabet:

ψ ∈ {LHS ×Oper ×RHS} ∪ {TRUE, FALSE, SELECT(P),⊥}
∪ {Time×Oper × VL ×RHS}

where

LHS ∈ {O.P | O ∈ O, P ∈ O.P} ∪ VL

Oper ∈ {=, <,≤, >,≥, 6=}
RHS ∈ (

⋃

D∈D
D) ∪ VL ∪ {(f, λF

f)|f ∈ F}

The first kind of expression is used to constrain a property or a variable,
using some comparison operator, with a constant value, another variable or
with a function. The second kind of expression consists of the reserved words
(SYNC is considered as a synonym for TRUE), the SELECT statement with
probability P , and free expressions (all free expressions are reduced to ⊥).
The third kind of basic expression is timing constraints, which constrain the
current time with respect to a time value stored in some variable and a delay
that can be a constant value, another variable or a function. We denote by
value(ψ) the result of evaluating ψ in the natural way. If ψ = SELECT (P),
a Boolean value is chosen randomly with probability P for true, and if ψ = ⊥
the user is prompted for a value. In case ψ is a time constraint, value(ψ) is
computed by evaluating ψ in the natural way where Time is replaced by the
current value of Clock.T ime. The value of a condition C is defined as:

value(C) =
∧

ψ∈Ψ

value(ψ)

SUBL is the set of subcharts in L. Every LSC construct can be contained
in at most one subchart. The function subchart returns for each construct
the subchart to which it belongs (if there is no such subchart the function
returns ⊥). The domain of subchart includes SUBL, thus enabling nested
subcharts:

subchart : ML ∪AL ∪ CL ∪ SUBL → SUBL ∪ {⊥}
The set of instances, ISub, participating in a subchart Sub is defined as the
set of all instances that are involved in some activity in Sub:

ISub = {I ∈ IL| ∃M ∈ ML s.t. (subchart(M) = Sub
∧ (I = M.ISrc ∨ I = M.IDst))
∨ ∃A ∈ AL s.t. (subchart(A) = Sub ∧ I ∈ IA)
∨ ∃C ∈ CL s.t. (subchart(C) = Sub ∧ I ∈ IC)
∨ ∃Sub′ ∈ SUBL s.t. subchart(Sub′) = Sub ∧ I ∈ ISub′}

A.2 LSC Specification 341

An if-then-else construct ITE in L is defined as

ITE = 〈IITE , C, SubT , SubE〉

where IITE = IC ∪ ISubT
∪ ISubE

is the set of instances participating in
the if-then-else construct, C is the main condition of the if-then-else con-
struct, SubT ∈ SUBL is the subchart containing the ‘then’ part, and
SubE ∈ SUBL ∪ {⊥} is the subchart containing the ‘else’ part (if there
is no such part, SubE = ⊥).

A loop construct Loop in L is defined as

Loop = 〈Kind, µ, Sub〉

where Kind ∈ {Fixed, Unbound, Dynamic} is the loop’s kind, µ ∈ N∪{∞} is
the loop’s number of iterations, and Sub ∈ SUBL is the subchart containing
the loop events to be iterated. We denote by ILoop = ISub the set of instances
participating in the loop.

A forbidden message M̄ ∈ ML is defined as

M̄ = 〈M, Level, Scope〉

where M is an LSC message, Level ∈ {Message, Objects, All} is the gener-
ality level of the forbidden message, and Scope ∈ {LSC, Pre,Main}∪SUBL

is the forbidden scope restricted by the message.
A forbidden condition C̄ ∈ CL is a pair

C̄ = 〈C, Scope〉

where C is an LSC condition and Scope is defined as above.
The temperature function temp assigns temperatures to some of the LSC

constructs:

temp : `(L) ∪ML ∪ CL ∪ML ∪ CL → {hot, cold}

Locations and Events

We denote by EL the set of LSC events in L:

342 A. Formal Semantics of LSCs

EL =
({m ∈ ML | m.Ms ∈ ΣFromUser ∪ΣToUser ∪ΣFromEnv ∪ΣToEnv ∪ΣCalls}
× {Send, Recv})

∪ ({m ∈ ML | m.Ms ∈ ΣSelf ∪ΣClock} × {Send})
∪ (PchL × {Start, End}) ∪ {Completed}
∪ {perform(A) | A ∈ AL} ∪ {eval(C) | C ∈ CL}
∪ (SUBL × {Start, End}) ∪ {branch(ITE)| ITE ∈ ITEL}
∪ (LOOPL × {Start, End})
∪ {skip(Loop)| Loop ∈ LOOPL ∧ loop.Kind = Dynamic}
∪ {bind(I)| I ∈ IL ∧ symbolic(I)}
∪ {evalf(C̄)| C̄ ∈ CL}

The virtual event (ITE,End) is defined as:

(ITE, End) ,
{

(ITE.SubE , End) ITE.SubE 6= ⊥
(ITE.SubT , End) ITE.SubE = ⊥

Events that match system events are called visible events while events that
are internal to an LSC are called hidden events.

The function evnt : `(L) → EL maps a location to the event it is associated
with. Its inverse, loc : EL → 2`(L) = evnt−1, maps an event to the set of
locations associated with it.

The function subchart is extended to events and to instance locations
in the natural way. We also use the notation e ∈ Sub as an equivalent to
subchart(e) = Sub.

There is one point to be clarified regarding the relation between sys-
tem events and LSC events. A system event es is defined over the set
Σ×{Send, Recv}. When such an event is generated by the system, it has to
be matched with LSC events that are defined over the set ML×{Send,Recv}.
As we shall see later, we also want to be able to match two LSC events (usu-
ally in different charts). We use the expression e = 〈m, t〉 both for system
events and for LSC visible events. Note that in the first case m ∈ Σ and in
the second m ∈ ML. In both cases t ∈ {Send, Recv}.

The Partial Order of an LSC

Every LSC induces a partial order among locations, which is the central
aspect in determining the order of execution.

Definition A.2.1 (affecting a variable). An LSC message M ∈ ML af-
fects a variable X if M.Ms.V = X ∨ X ∈ M.Ms.λ

M
m . An assignment A ∈ AL

affects a variable X if A.V = X.

A.2 LSC Specification 343

Definition A.2.2 (using a variable). An LSC message M ∈ ML uses a
variable X if X ∈ M.Ms.λ

F
f . An assignment A ∈ AL uses a variable X if

X ∈ A.λF
f .

A condition basic expression ψ uses a variable X if at least one of the
following holds:

1. ψ.LHS ∈ VL and ψ.LHS = X.
2. ψ.RHS ∈ VL and ψ.RHS = X.
3. ψ.RHS = (f, λF

f) and X ∈ λF
f .

A condition C uses a variable X if one of its basic expressions uses it.

The notions of affecting and using a variable are extended to LSC events and
locations in the natural way.

We say that lix is the first location in L to affect the variable X if it affects
X, and for any other location ljy that affects X either lix <L ljy or lix <V ljy
(where <V is the vertical order in L). The predicate first(l,X) is true iff l is
the first location that affects X.

The partial order ≤L, induced by a chart L, is obtained by the following
relations:

Instance line - The locations along a single instance line are ordered top-
down, beginning with the prechart start and ending with the chart end.
Thus, things higher up are carried out earlier:

x < y ⇒ lix <L liy

Send-Receive - For an asynchronous message m ∈ ML, the location of the
〈m, Send〉 event precedes the location of the 〈m, Recv〉 event. Thus, an
asynchronous message is sent before it is received. For synchronous mes-
sages, the two events take place simultaneously:

∀m ∈ ML :
(async(m) ⇒ loc(〈m,Send〉) <L loc(〈m,Recv〉))
∧ (sync(m) ⇒ loc(〈m,Send〉) =L loc(〈m, Recv〉))

Prechart - All the instances participating in the prechart are synchronized
at the beginning of the prechart and at its end.

∀lix, ljy ∈ loc((Pch, Start)) : lix =L ljy

∀lix, ljy ∈ loc((Pch, End)) : lix =L ljy

Chart completion - In order for a chart to complete, all the instances must
reach their final location.

∀lix, ljy ∈ FinalLocations(L) : lix =L ljy

344 A. Formal Semantics of LSCs

Variables - The first location that affects a variable precedes all other loca-
tions that affect or use the variable.

∀l, l′ ∈ `(L) : first(l, X) ∧ (affects(l′, X) ∨ uses(l′, X)) ⇒ l <L l′

Synchronize at assignments - All the instances that participate in an assign-
ment are synchronized there.

∀A ∈ AL, ∀lix, ljy ∈ loc(A) : lix =L ljy

Synchronize at conditions - All the instances that participate in a condition
are synchronized there.

∀C ∈ CL, ∀lix, ljy ∈ loc(C) : lix =L ljy

Synchronize at subcharts - All the instances that participate in a subchart
are synchronized at its start and at its end.

∀Sub ∈ SUBL ∀lix, ljy ∈ loc((Sub, Start)) : lix =L ljy

∀lix, ljy ∈ loc((Sub,End)) : lix =L ljy

If-then-else branch - All the events in an if-then-else construct may be carried
out only after the main condition has been evaluated and one of the ‘then’
or ‘else’ branches has been selected.

∀ITE ∈ ITEL ∀e ∈ ITE.SubT ∪ ITE.SubE : branch(ITE) <L e

Disconnect If and Else - Events in ‘then’ subcharts should not be considered
as preceding events in ‘else’ subcharts.

∀ITE ∈ ITEL, ∀lix, liy s.t. lix ∈ ITE.SubT ∧ liy ∈ ITE.SubE : lix ≮L liy

We extend the partial order ≤L to events in the following way:

e′ <L e if ∃l ∈ loc(e), ∃l′ ∈ loc(e′) s.t. l′ <L l

A.3 Operational Semantics

Copies, Cuts and Events

Definition A.3.1 (LSC legal cut). An LSC cut of L is a tuple of locations
mapping every instance of L to one of its possible locations.

A.3 Operational Semantics 345

CutL ∈
∏

I∈IL

`(I)

A set of locations S is down-closed if

lix ∈ S ⇒ ∀y ≤ x, liy ∈ S

The down-closure of an LSC cut C, denoted by ¼C, is the minimal down-
closed set that contains C.

An LSC legal cut C is an LSC cut that satisfies:

∀l ∈ C, ∀l′ ≤L l : l′ ∈ ¼C

The top-line of a down-closed set S, denoted by »S, is a set of locations
obtained by:

lix ∈ »S ⇐⇒ lix ∈ S ∧ @liy ∈ S s.t. y > x

We denote by Cut(I) the location of instance I in Cut.
The following utility functions dealing with cuts are used as we continue:

• The function InitialCut(L) returns a legal cut of L containing the initial
location for each instance.

• The function BeginMainCut(L) returns the cut containing for each in-
stance the location associated with the beginning of the main chart.

• The function AdvanceCut(C, e) =»(¼C ∪ loc(e)) is defined for a legal cut
C and an event e that is enabled with respect to C, and returns a legal cut
that is the result of advancing the cut C beyond e.

Definition A.3.2 (temperature of a cut). The temperature of a cut is
hot if at least one of the instances is in a hot location and is cold otherwise.
We use temp(C) to denote the temperature of cut C.

Definition A.3.3 (LSC live copy). Given an LSC L, a live copy of L,
denoted by CL, is defined as

CL = 〈LSC,Mode, Cut〉

where LSC is a copy of the original chart, Mode ∈ {PreActive, Active,
Check} is the execution mode of this copy, and Cut is some legal cut of
L representing the current location of the instances of L in this particular
copy.

Definition A.3.4 (minimal event in a chart). A visible event e is mini-
mal in a chart L if there is no visible event e′ in L such that e′ <L e.

346 A. Formal Semantics of LSCs

Definition A.3.5 (enabled event). An event e is enabled with respect to
a cut C if »(¼C ∪ loc(e)) is a legal cut. That is, if the location in C of every
instance participating in the event e is the one exactly prior to e, and there
is no e′ <L e that is not already in the down-closure of C.

• If e = 〈m,Send〉, m is synchronous and e′ = 〈m,Recv〉, we require also
that ¼C∪loc(e)∪loc(e′) is down-closed, thus making sure that a synchronous
message will not be sent unless it can be received.

• If e = eval(C), temp(C) = hot and FALSE /∈ C.Ψ , we require also that
value(C) = true.

Definition A.3.6 (reachable event). A visible event e is reachable from
a cut C if:

1. The event e is enabled with respect to C, or
2. There exists an enabled hidden event e′ such that e is reachable from the

cut C ′ = AdvanceCut(C, e′), or
3. There exists an enabled dynamic loop, Loop, such that e is reachable from

the cut C ′ = AdvanceCut(C, (Loop,End)), or
4. There exists an enabled dynamic loop, Loop, such that (Loop,End) is

currently enabled from C, and e is reachable from the cut
C ′ = AdvanceCut(C, (Loop, Start)).

Definition A.3.7 (violating event). An event e violates a chart L in a
cut C if L.Strict = True and e ∈ ML × {Send, Recv} but e is not enabled
with respect to C.

Unification

Definition A.3.8 (variable unification). Two variables X and Y are
positively-unifiable if X.ω = Y.ω ∨ free(X) ∨ free(Y). X and Y are
negatively-unifiable if X.ω = Y.ω 6= ⊥.

Definition A.3.9 (function unification). Two function information struc-
tures λF

f and λF
g are unifiable (both positively and negatively) if f(λF

f) =
g(λF

g) (where f(λF
f) is the value of f applied to the actual parameters in λF

f).

Definition A.3.10 (variable-function unification). A variable X and a
function information structure λF

f are positively-unifiable if X.ω = f(λF
f) ∨

free(X). X and λF
f are negatively-unifiable if X.ω = f(λF

f).

Definition A.3.11 (method unification). Two method information struc-
tures λM

m1
and λM

m2
are Q-unifiable (where Q is ‘positively’ or ‘negatively’) if:

A.3 Operational Semantics 347

m1 = m2

∧ ∀i λM
m1

.Vi and λM
m2

.Vi are Q-unifiable.

Definition A.3.12 (message unification). Two system messages
Ms = 〈Src, Dst, P, V, f, λF

f , m, λM
m , Symbolic〉 and

M ′
s = 〈Src′, Dst′, P ′, V ′, f ′, λF

f ′ ,m
′, λM

m′ , Symbolic′〉 are Q-unifiable (where
Q is ‘positively’ or ‘negatively’) if they represent the same property or method
P = P ′∧m = m′ and their contents are Q-unifiable. In case m = m′ = Tick,
Ms and M ′

s are only positively-unifiable.

Definition A.3.13 (event unification).

1. A system event es = 〈ms, t〉 and an LSC event el = 〈ml, t
′〉 with t, t′ ∈

{Send,Recv} are Q-unifiable (where Q is ‘positively’ or ‘negatively’) if:
a) t = t′.
b) ml.Ms and ms are Q-unifiable.
c) ms.Src 4 ml.ISrc ∧ms.Src /∈ ml.ISrc.Φ.
d) ms.Dst 4 ml.IDst ∧ms.Dst /∈ ml.IDst.Φ.

2. Two LSC events e = 〈m, t〉 and e′ = 〈m′, t′〉 with t, t′ ∈ {Send,Recv} are
Q-unifiable if t = t′, m.Ms and m′.Ms are Q-unifiable, and

((m.ISrc 4 m′.ISrc ∧ AppObj(m.ISrc) /∈ m′.ISrc.Φ)
∨ (m′.ISrc 4 m.ISrc ∧ AppObj(m′.ISrc) /∈ m.ISrc.Φ))

and
((m.IDst 4 m′.IDst ∧ AppObj(m.IDst) /∈ m′.IDst.Φ)
∨ (m′.IDst 4 m.IDst ∧ AppObj(m′.IDst) /∈ m.IDst.Φ))

When we use the term unification without specifying whether it is positive
or negative, it should be read as positive unification.

As events occur in the system, LSC events are checked to see if they
can be unified, and, if so, their variables are actually bound to new values
according to the unification process. In the following we describe the different
procedures used in the unification process.

If the two variables to be unified are free, no binding occurs and the two
variables are connected in a connection set:

348 A. Formal Semantics of LSCs

Connect(X, Y, Context)

1. Create a connected pair in the context:

S ← {X,Y }; Context ← Context ∪ {S}

2. If X or Y are already connected, join the sets:

if ∃SX ∈ Context, s.t. X ∈ SX , then S ← S ∪ SX ;
Context ← Context \ {SX}

if ∃SY ∈ Context, s.t. Y ∈ SY , then S ← S ∪ SY ;
Context ← Context \ {SY }

Binding a variable in Context with a given value entails binding all the
variables in its connection set:

Bind(X, Val, Context)

1. Let SX be the set in Context s.t. X ∈ SX .
2. Assign values to all variables in the set:

∀U ∈ SX , U.ω ← V al

Context ← Context \ {SX}
Variables are therefore unified as follows:

Unify(X, Y, Context)

1. If X.ω = ⊥ ∧ Y.ω 6= ⊥ then X.ω ← Y.ω.
2. If X.ω 6= ⊥ ∧ Y.ω = ⊥ then Y.ω ← X.ω.
3. If X.ω = ⊥ ∧ Y.ω = ⊥ then Connect(X, Y, Context).
4. If X.ω 6= ⊥ then Bind(X, X.ω,Context).
5. If Y.ω 6= ⊥ then Bind(Y, Y.ω, Context).

A variable and a function information structure are unified as follows:

Unify(X, λF
f , Context)

1. If X.ω = f(λF
f) then return.

2. X.ω ← f(λF
f).

3. Bind(X, X.ω, Context).

And two method information structures are unified as follows:

A.3 Operational Semantics 349

Unify(λM
m , λM

m
′, Context)

1. For i = 1, . . . , n:
a) Unify(λM

m .Vi, λM
m
′
.Vi, Context).

For two unifiable messages, we use Unify(M, M ′, Context) as an abbre-
viation to
Unify(M.Λ, M ′.Λ, Context). Next, we show how two LSC events are unified:

Unify(e, e′, Context)

1. Unify(e.m, e′.m′, Context).
2. If symbolic(e.m.ISrc) ∧ e′.m′.ISrc 4 e.m.ISrc then bind the sym-

bolic instance with the concrete object:
a) e.m.ISrc.O ← e′.m′.ISrc.O.
b) e.m.ISrc.C ← ⊥.

3. If symbolic(e′.m′.ISrc) ∧ e.m.ISrc 4 e′.m′.ISrc then bind the sym-
bolic instance with the concrete object:
a) e′.m′.ISrc.O ← e.m.ISrc.O.
b) e′.m′.ISrc.C ← ⊥.

4. If symbolic(e.m.IDst) ∧ e′.m′.IDst 4 e.m.IDst then bind the sym-
bolic instance with the concrete object:
a) e.m.IDst.O ← e′.m′.IDst.O.
b) e.m.IDst.C ← ⊥.

5. If symbolic(e′.m′.IDst) ∧ e.m.IDst 4 e′.m′.IDst then bind the sym-
bolic instance with the concrete object:
a) e′.m′.IDst.O ← e.m.IDst.O.
b) e′.m′.IDst.C ← ⊥.

A system event es = 〈ms, t〉 and an LSC event el = 〈ml, t〉 are also unified
according to these same lines, except that the system event is guaranteed to
have concrete objects as the sender and receiver of the message:

Unify(es, el, Context)

1. Unify(es.ms, el.ml, Context).
2. If symbolic(el.ml.ISrc)∧es.ms.Src 4 el.ml.ISrc then bind the sym-

bolic instance with the concrete object:
a) el.ml.ISrc.O ← es.ms.Src.
b) el.ml.ISrc.C ← ⊥.

3. If symbolic(el.ml.IDst)∧es.ms.Dst 4 el.ml.IDst then bind the sym-
bolic instance with the concrete object:
a) el.ml.IDst.O ← es.ms.Dst.
b) el.ml.IDst.C ← ⊥.

350 A. Formal Semantics of LSCs

A different kind of unification is used when trying to match events with
forbidden messages.

Definition A.3.14 (forbidden message unification). A system message
Ms and a forbidden message M̄ are unifiable if one of the following holds:

1. M̄.Level = All.
2. M̄.Level = Objects and Ms.Src 4 M̄.M.ISrc ∧ Ms.Dst 4 M̄.M.IDst.
3. M̄.Level = Message and Ms and M̄.M are positively-unifiable.

Checking for unification of an LSC message Ml with a forbidden message
M̄ is defined similarly, with Ms.Src and Ms.Dst replaced by Ml.ISrc and
Ml.IDst, respectively.

Definition A.3.15 (active scope). A scope S ∈ {LSC, Pre,Main} ∪
SUBL is active in an LSC live copy CL if one of the following holds:

1. S = LSC.
2. S = Pre and CL.Mode = PreActive.
3. S = Main and CL.Mode ∈ {Active, Check}.
4. S ∈ SUBL and ∀I ∈ IS , loc((S, Start)) <L CL.Cut(I) <L loc((S,End)).

We use the predicate notation active(S) to indicate that a scope S is active.

Definition A.3.16 (hot-forbidden event). An event e is hot-forbidden
in a chart L being in a cut C if e is not enabled with respect to C and one of
the following holds:

• ∃M̄ ∈ ML s.t. active(M̄.Scope) ∧ temp(M̄) = hot ∧ Unifiable(e.M, M̄).
• e.M.P 6= ⊥ (i.e., e represents a change of property value) and
∃C̄ ∈ CL s.t. temp(C̄) = hot ∧ active(C̄) and C̄ will become true if the
current value of P is replaced with the value in e.M .

Definition A.3.17 (cold-forbidden event). An event e is cold-forbidden
in a chart L being in a cut C if e is not enabled with respect to C and
∃M̄ ∈ ML s.t. active(M̄.Scope) ∧ temp(M̄) = cold ∧ Unifiable(e.M, M̄).

Since the same event can cause the violation of more than one forbid-
den message or more than one forbidden condition, we define the function
dominant(S), which gets a set of forbidden messages and returns one of the
dominant messages in the set. A hot message is more dominant than a cold
one, and a cold message with a scope containing the scope of another cold
message is more dominant than the message whose scope is contained.

A.3 Operational Semantics 351

dominant(S)

1. If ∃M̄ ∈ S s.t. temp(M̄) = hot then return M̄ .
2. If all messages are cold then

a) Set M̄ to be any message in S.
b) S ← S \ {M̄}.
c) While S 6= ∅ do

i. Choose a message M̄ ′ ∈ S.
ii. S ← S \ {M̄ ′}.
iii. If M̄.Scope ⊂ M̄ ′.Scope then set M̄ ← M̄ ′.

d) Return M̄ .

The function dominant is defined in the same way for sets of forbidden
conditions.

The Transition System

The operational semantics is given as a transition system

Sem(S) = 〈V, V0,SD,SM , ∆[SO,SC]〉

where V is the set of possible configurations (states) of Sem(S), V0 is the
initial configuration, SD ⊆ SU is the set of driving LSCs, SM ⊆ SU ∪ SE is
the set of monitored LSCs, and ∆ ⊆ V × (E ∪ ⋃

L∈S EL) × V is the set of
allowed transitions. We require that SD ∩ SM = ∅.

A state V ∈ V is defined as

V = 〈RL,ML,Violating〉

where RL is a set of live copies of ‘driving’ LSCs, ML is a set of live copies
of monitored LSCs, and Violating indicates by True or False whether the
state is a violating one.

The initial configuration contains no copies of driving LSCs and no copies
of monitored LSCs, and is defined as:

V0 = 〈∅, ∅, False〉

The transition relation ∆ is parameterized with two sets. The first set
SO is the set of original LSCs to which ∆ should be applied. The second
set SC is the set of live copies that currently exist. This set contains only
copies of LSCs from SO. The two sets are instantiated with either (SD,RL)
or (SM ,ML). The ‘standard’ part of the semantics, i.e., the part that enables
a system to be tested and verified against an LSC specification, is achieved
by setting SM = S and SD = ∅.

352 A. Formal Semantics of LSCs

We describe ∆ as a set of rules to be applied to its set parameters and
to Violating with respect to a given event e. Since the set parameters are
instantiated also by RL and ML, which are taken from a state V , the re-
sult of applying ∆ is a new state V ′ consisting of the modified components.
Given an event, all the applicable rules are applied before the next event is
considered. Also, ∆ handles hidden events with higher priority than visible
events. Therefore, in order for a visible event to be handled, all hidden events
must be processed first. Other than that, the semantics imposes no order on
the particular event to be processed, and is thus nondeterministic:

• If e = 〈M, t〉 (where t ∈ {Send, Recv}) then:
1. If e.M.m = Tick then set Clock.T ime ← Clock.T ime + 1.
2. Set Context ← ∅.
3. If ∃CL ∈ SC and ∃M̄ ∈ CL.LSC.ML, such that e.M and M̄ are unifiable

and active(M̄.Scope), and there is no enabled event e′ positively level2-
unifiable with e, then:

a) Set S ← {M̄ ∈ CL.LSC.ML| Unifiable(e.M, M̄) ∧ active(M̄.Scope)}.
b) Set M̄ ← dominant(S).
c) If temp(M̄) = hot then

i. Set SC ← SC \ {CL}.
ii. Set Violating ← True.

d) If temp(M̄) = cold then
i. If M̄.Scope ∈ {LSC, Pre,Main} then set SC ← SC \ {CL}.
ii. If M̄.Scope = Sub ∈ SUBL then set

CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

4. If ∃CL ∈ SC and ∃e′ ∈ CL.LSC, such that e and e′ are negatively
level2-unifiable and e′ violates CL, then:

a) Set SC ← SC \ {CL}.
b) If temp(CL.Cut) = hot, set Violating ← True.
c) If symbolic(e′.M.ISrc) or symbolic(e′.M.IDst) then create an identical

copy C ′L of CL, set SC ← SC ∪ {C ′L}, and in the copy set
e′.M.ISrc.Φ ← e′.M.ISrc.Φ ∪ {e.M.Src} if symbolic(e′.M.ISrc)
e′.M.IDst.Φ ← e′.M.IDst.Φ ∪ {e.M.Dst} if symbolic(e′.M.IDst)

5. For every universal LSC L ∈ SO which has an event e′, positively level2-
unifiable with e, as a minimal event in its prechart, create a copy of
L, CL, and set SC ← SC ∪ {CL}. Set CL.Mode = PreActive and set
its cut by CL.Cut ← AdvanceCut(InitialCut(L), 〈PchL, Start〉). Unify
the variables of e and e′, by Unify(e, e′, Context). For each hidden event
e′′ <L e′, apply ∆(e′′).

A.3 Operational Semantics 353

6. For every existential LSC L ∈ SO which has an event e′, positively level2-
unifiable with e, as a minimal event in the chart body, create a copy of
L, CL, and set SC ← SC ∪{CL}. Set CL.Mode = Check, and set its cut
to the beginning of the chart by CL.Cut ← BeginMainCut(CL.LSC).
Unify the variables of e and e′, by Unify(e, e′, Context). For each hidden
event e′′ <L e′, apply ∆(e′′).

7. For every copy CL ∈ SC that has a reachable event e′ positively level2-
unifiable with e:

a) If symbolic(e′.M.ISrc) or symbolic(e′.M.IDst) then create an identical
copy of CL, C ′L, set SC ← SC ∪ {C ′L}, and in the copy set

e′.M.ISrc.Φ ← e′.M.ISrc.Φ ∪ {e.m.Src} if symbolic(e′.M.ISrc)
e′.M.IDst.Φ ← e′.M.IDst.Φ ∪ {e.m.Dst} if symbolic(e′.M.IDst)

b) Set CL.Cut ← AdvanceCut(CL.Cut, e′).
c) If e′ = 〈M,Send〉, M is synchronous and e′′ = 〈M, Recv〉,

set CL.Cut ← AdvanceCut(CL.Cut, e′′).
d) Unify the events e and e′, Unify(e, e′, Context).
e) For each hidden event e′′ <L e′, apply ∆(e′′).

• If e = Completed(CL) for some CL ∈ SC then set SC ← SC \ {CL}.
• If e = 〈PchL, End〉 for some CL ∈ SC , then set

CL.Cut ← BeginMainCut(CL.LSC) and CL.Mode ← Active.
• If e = perform(A) for some A ∈ AL s.t. CL ∈ SC , then set

CL.Cut ← AdvanceCut(CL.Cut, e) and set

A.V ←





A.C if A.Type = constant
V alue(A.P) if A.Type = property
A.f(A.λF

f) if A.Type = function

Clock.T ime if A.Type = time

• If e = eval(C) for some C ∈ CL s.t. CL ∈ SC then
1. If value(C) = true then set CL.Cut ← AdvanceCut(CL.Cut, e).
2. If value(C) = false then

a) If subchart(C) ∈ {ITE.SubT , ITE.SubE} for some ITE then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

b) If subchart(C) = Sub ∈ SUBL then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

c) If subchart(C) = ⊥ then set SC ← SC \ {CL}.
d) If temp(C) = hot then set Violating ← True.

• If e = branch(ITE) for some ITE ∈ CL s.t. CL ∈ SC then

354 A. Formal Semantics of LSCs

1. If value(ITE.C) = true then set
CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubT , Start)).

2. If value(ITE.C) = false then

set CL.Cut ←
{

AdvanceCut(CL.Cut, (ITE.SubE , Start)) if ITE.SubE 6= ⊥
AdvanceCut(CL.Cut, (ITE.SubT , End)) if ITE.SubE = ⊥

• If e = (ITE.SubT , End) for some ITE ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE,End))

• If e = (ITE.SubE , End) for some ITE ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (ITE.SubE , End))

• If e = (Sub, End) for some Sub ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

• If e = skip(Loop) for some Loop ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop,End))

• If e = (Loop, Start) for some Loop ∈ CL s.t. CL ∈ SC then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop, Start))

For every variable V ∈ VL that is used in Loop for the first time, set
V.ω ← ⊥.

• If e = (Loop, End) for some Loop ∈ CL s.t. CL ∈ SC and Loop.Kind 6=
Dynamic then
1. Set µ ← µ− 1.
2. If µ > 0 then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop, Start))

For every variable V ∈ VL that is used in Loop for the first time, set
V.ω ← ⊥.

3. If µ = 0 then

set CL.Cut ← AdvanceCut(CL.Cut, (Loop,End))

• If e = bind(I) for some symbolic instance I ∈ CL s.t. CL ∈ SC , then:
1. S ← {O ∈ O | O 4 I, O satisfies I.ψ and @I ′ ∈ CL s.t. I ′.O = O}.
2. If S = ∅ then SC ← SC \ {CL}.

A.3 Operational Semantics 355

3. If I.Mode = Existential then
a) Set I.O = O, for some O ∈ S.
b) Set I.C = ⊥.

4. If I.Mode = Universal then perform the following for every O ∈ S:
a) Create an identical copy C ′L of CL.
b) Set SC ← SC ∪ {C ′L}.
c) Set I.O = O.
d) Set I.C = ⊥.
Finally, set SC ← SC \ {CL}.

• If e = evalf(C̄) for some C̄ ∈ CL s.t. CL ∈ SC , then (it is guaranteed that
value(C̄) = true)
1. If temp(C̄) = hot then

a) Set SC ← SC \ {CL}.
b) Set Violating ← True.

2. If temp(C̄) = cold then
a) If C̄.Scope ∈ {LSC, Pre, Main} then set SC ← SC \ {CL}.
b) If C̄.Scope = Sub ∈ SUBL then set

CL.Cut ← AdvanceCut(CL.Cut, (Sub, End))

Using ∆ for Testing Systems

Definition A.3.18 (violating transition). A transition in ∆ is violating
if it sets Violating to false.

Definition A.3.19 (run/trace). A run or trace is a sequence of visible
events.

Definition A.3.20 (consistent run). A run R is consistent with an LSC
specification S if, starting from V0, the rules of ∆ can be applied to the events
in R and to the hidden events generated between them, without reaching a
violating transition.

Definition A.3.21 (consistent system). A system Sys is consistent with
an LSC specification S if all the runs of Sys are consistent with the specifi-
cation, and for every existential LSC L ∈ SE, there exists a run that satisfies
L.

If a sequence of visible events is monitored against an LSC specification,
the events are sent one by one to the procedure monitor-event. The input to
monitor-event is a single event, and after monitoring this event the procedure
advances all the hidden events until there are no hidden events enabled:

356 A. Formal Semantics of LSCs

monitor-event(ev)

1. Apply ∆[SM ,ML](ev).
2. Compute the set of forbidden conditions:

Forbidden ←
⋃

CL∈ML
{C̄ ∈ CL| active(C̄.Scope) ∧ value(C̄.C) = true}

3. If Forbidden 6= ∅ then
a) C̄ ← dominant(Forbidden).
b) Apply ∆[SM ,ML](evalf(C̄)).
c) Go back to 2.

4. compute the set of enabled events:

Enabled ←
⋃

CL∈ML
{e ∈ EL|enabled(e)}

Waiting ←
⋃

CL∈ML
{e|e = branch(ITE)}

∪
⋃

CL∈ML
{e|e = (Loop, End) ∧ Loop.Kind = Dynamic}

Enabled ← Enabled \Waiting

5. If there is a hidden enabled event e ∈ Enabled, then
a) Apply ∆[SM ,ML](e).
b) Go back to 2.

6. Terminate monitor-event.

A.3 Operational Semantics 357

Using ∆ for Executing Specifications

One of the main purposes of the Play-Engine is to execute the specification
directly. The engine’s execution mechanism works in phases of step and super-
step. The input to a step is a system event e. The procedure for a step
phase consists of applying the transition relation onto the event e and, if the
event represents a property change, changing the state of the system model
according to the new value in the message:

step(e)

1. Apply ∆[SD,RL](e).
2. If e.M.P 6= ⊥ then change the property value according to the

value in the message:
a)

O ←
{

e.M.Src if M ∈ ΣToUser ∪ΣToEnv

e.M.Dst otherwise

b) P ← e.M.P .
c)

V alue(O.P) ←
{

e.M.f(e.M.λF
f) if e.M.f 6= ⊥

e.M.V.ω otherwise

3. monitor-event(e).

Step also calls monitor-event, so that while some LSCs are used to drive
model execution other LSCs can be monitored.

In the super-step phase, the Play-Engine continuously executes the steps
associated with internal events, i.e., those that do not originate with the user,
the environment, the Clock or with external objects, until it reaches a ‘stable’
state where no further such events can be carried out. We define

External = {
⋃

L∈S
〈m,Send〉|m.Ms.Src.External = true}

and a super-step phase is then given as:

358 A. Formal Semantics of LSCs

super-step

1. Compute the set of forbidden conditions:

Forbidden ←
⋃

CL∈RL
{C̄ ∈ CL | active(C̄.Scope) ∧ value(C̄.C) = true}

2. If Forbidden 6= ∅ then
a) C̄ ← dominant(Forbidden).
b) Apply ∆[SC ,RL](evalf(C̄)).
c) Go back to 1.

3. Compute the set of enabled events:

Enabled ←
⋃

CL∈RL
{e ∈ EL | enabled(e)}

Waiting ←
⋃

CL ∈ RL,
CL.Mode = PreActive

{e | e = branch(ITE)}

Enabled ← Enabled \ (External ∪Waiting)

4. If there is a hidden enabled event e ∈ Enabled, then
a) Apply ∆[SC ,RL](e).
b) Go back to 1.

5. If there is a visible enabled event e ∈ Enabled, such that e does
not violate and is neither hot-forbidden nor cold-forbidden in any
copy which is either in active or preactive mode, then
a) step(e).
b) Go back to 1.

6. If there is a visible enabled event e ∈ Enabled, such that e does
not violate and is neither hot-forbidden nor cold-forbidden in any
copy which is in active mode, then
a) step(e).
b) Go back to 1.

7. If there is a visible enabled event e ∈ Enabled, such that e does
not violate and is not hot-forbidden in any copy which is in active
mode with a hot cut, then
a) step(e).
b) Go back to 1.

8. Terminate super-step.

B. XML Description of a GUI Application

The GUI application is described using an XML file. If GUIEdit is used (see
Chap. 20), then this file is generated as an outcome of the GUI-building
activity. In this appendix, we describe the required structure of this XML file
and explain each of the fields. The XML structure is tree-like.
? Application – The root element of the XML file.

¯ Types – A root node for the application types.
• Type – A single type.

– ID (Integer) – A unique ID for each type. Begins with 1 and is
continuously incremented.

– Name (String) – The type name.
– Description (String) – The type description.
– Symbolic (True/False) – Indicates whether the type is symbolic.

That is, whether, if used in a symbolic message, values of this type
can be interchanged.

– Kind (Enum/Range/String) – The kind of the type. Enum stands
for a list of values. Range stands for a discrete range going from a
minimal value to a maximal value in steps of a given delta. String
represents different strings characterized by a given length.

– Values – The root node of an Enum type’s possible values.
• Val (String) – One value of an enumeration.

– MinValue (Real) – The minimal value in a Range type.
– MaxValue (Real) – The maximal value in a Range type.
– Delta (Real) – The delta step in a Range type.
– Length (Integer) – The length of allowed strings in a String type.

¯ GUIObjects – A root node for the GUI objects.
• GUIObject – A single GUI object.

– ID (Integer) – A unique ID for the object. Begins with 1 and is
continuously incremented.

– Name (String) – The object’s name.
– Kind (GUI In/Internal/App Class) – The object’s kind. Should

always be GUI In. The other two types are for the Play-Engine’s
internal use.

360 B. XML Description of a GUI Application

– Layout – A root node for the object’s layout.
• Top (Integer) – The top coordinate of the object.
• Left (Integer) – The left coordinate of the object.
• Width (Integer) – The width of the object.
• Height (Integer) – The height of the object.

– Properties – The root node for the object’s properties.
• Property – A single property.

· ID (Integer) – A unique ID for the property. Begins with 1
(separated for each object) and is continuously incremented.

· Name (String) – The property name.
· Type (String) – The name of the type upon which the prop-

erty is based. The type must be one of the types defined earlier
in the types section.

· Prefix (String) – A verb that can be used to denote the
action of setting a value to this property (e.g., Set, Change,
Turn, Click, etc.).

· Affects (Self/User/Env) – Shows where the message arrow
in the LSC leads to when the property is changed.

· InOnly (True/False) – Indicates whether this property can
be changed only by a user action (e.g., clicking a button).

· Default (True/False) – Indicates whether the property is
a default property, i.e., whether we can omit its name when
referring to it in the object’s context.

· Synchronous (True/False) – Indicates whether the mes-
sages generated when the property is changed are synchronous.

· CanBeChangedExternally (True/False) – Indicates whether
this property can be changed by the external environment.

¯ Implemented Functions – The root node for functions that are imple-
mented within the GUI application. Every such function must be backed
up by a function in the code.
• ImplementedFunction – A single implemented function.

– ID (Integer) – A unique ID for the function. Begins with 1 and is
continuously incremented.

– Name (String) – The function’s name.
– Description (String) – The function’s description.
– BinaryOp (True / False) – Indicates whether the function is a

binary operation (e.g., +, −, etc.). Binary operations are written as
Arg1 op Arg2 instead of op(Arg1, Arg2).

– ReturnType (String) – The name of the type returned by the
function. The type must be one of the types defined earlier in the
types section.

B. XML Description of a GUI Application 361

– Params – A root node for the function’s formal parameters. Each
function can have up to five parameters.
• Param – A single parameter.

· ParamName (String) – The parameter’s name.
· ParamType (String) – The name of the parameter’s type.

The type must be one of the types defined earlier in the types
section.

C. The Play-Engine Interface

This appendix describes IPlayEngine, an interface implemented by the Play-
Engine and used by GUI applications to interact with it. The IPlayEngine
interface is installed as part of the Play-Engine installation, in the form
of a COM (Component Object Model) component with the file name En-
gineLib.dll.

The IPlayEngine interface has three methods:

ObjectClicked(ObjID: Integer) – The GUI application should call this method
whenever a GUI object is clicked. The ObjID parameter should contain
the ID of the clicked object.

ObjectChanged(ObjID: Integer, PropID: Integer, strValue: String) – The GUI
application should call this method whenever a property of some object
is changed (e.g., clicking a switch to on, moving a slider, writing text in
a text box, etc.). ObjID should contain the ID of the object, PropID the
ID of the modified property, and strValue the new value of the property.

ObjectRightClicked(ObjID: Integer) – The GUI application should call this
method whenever a GUI object is right-clicked. The ObjID parameter
should contain the ID of the right-clicked object.

C.1 Visual Basic Code

Here is the Visual Basic code for the IPlayEngine interface:
Public Sub ObjectClicked(ByVal ObjID As Integer)
End Sub
Public Sub ObjectChanged(ByVal ObjID As Integer, PropID As Integer,
strValue As String)
End Sub
Public Sub ObjectRightClicked(ByVal ObjID As Integer)
End Sub

D. The GUI Application Interface

This appendix describes IUserApp, an interface that should be implemented
by any GUI application wishing to interact with the Play-Engine. This in-
terface is used by the Play-Engine to interact with the GUI application. The
IUserApp interface is installed as part of the Play-Engine installation in the
form of a COM (Component Object Model) component with the file name
UserAppLib.dll.

The IUserApp interface has the following methods:

ShowGUI () – The Play-Engine calls this method to display the GUI appli-
cation.

HideGUI () – The Play-Engine calls this method to hide the GUI application
(this only hides the display; it does not unload or free the application).

GetAppDataXMLFile () : String – This function returns the name of the
XML file that contains the application description (see Appendix B).

InfoMode (InInfoMode: Boolean) – This method is currently not in use.
When implementing this interface, this method should be left empty.

SetGUIObject (ObjID: Integer, PropID: Integer, sValue: String) – The Play-
Engine calls this method in order to set some property of some object
to some new value. ObjID contains the object ID, PropID contains the
property ID, and sValue contains the property’s new value.

GetGUIValue (ObjID: Integer, PropID: Integer) : String – This function re-
turns the current value of some object’s property. ObjID contains the
object’s ID and, PropID contains the property’s ID.

PlayEngine (Engine: IPlayEngine) – This property is used by the Play-Engine
in order to register itself within the GUI application. Upon loading the
GUI application, this method is called. The GUI application is expected
to keep a reference (pointer) to this particular calling engine and to use
it to interact later with the Play-Engine.

HighlightObject(ObjID: Integer) – The Play-Engine calls this method in or-
der to highlight an object in the application (usually by circling it in red,
but this is application-dependent). ObjID contains the ID of the object
to be highlighted.

366 D. The GUI Application Interface

ClearObject(ObjID: Integer) – The Play-Engine calls this method in order
to remove the highlight from an object in the application. ObjID contains
the ID of the object to be de-highlighted.

GetObjectPosition(ObjID: Integer, Left: Integer reference, Top: Integer reference) –
The Play-Engine calls this method in order to get the top and left coor-
dinates of an object. ObjID contains the object’s ID. The returned values
should be placed in Left and Top, respectively.

GetObjectLayout(ObjID: Integer, Left: Integer reference, Top: Integer reference,
Width: Integer reference, Height: Integer reference) – The Play-Engine
calls this method in order to get the layout information for an object.
ObjID contains the object’s ID. The layout values should be placed in
Left, Top, Width and Height, respectively.

TerminateGUI () – The Play-Engine calls this method just before it termi-
nates, thus giving the GUI application a chance to free memory and
conduct all the actions needed for clean termination.

ApplyFunction(XMLFuncData: String) : String – This function is used by
the Play-Engine in order to compute the value of an implemented func-
tion applied to given parameter values. XMLFuncData is a string that
contains an XML description of the function to be applied. Its XML
structure is as follows:
• Function Info – The function information node

– Func Name (String) – The name of the implemented function.
One of the functions that were declared in the implemented functions
section in the application XML description file.

– Param1 (String) – The value of parameter 1.
– Param2 (String) – The value of parameter 2.
– Param3 (String) – The value of parameter 3.
– Param4 (String) – The value of parameter 4.
– Param5 (String) – The value of parameter 5.
If there are fewer than five1 parameters, only the relevant number of
parameters is given in the string.

D.1 Visual Basic Code

Here is the Visual Basic code for the IUserApp interface:
Public Sub HideGUI()
End Sub
1 In the current implementation, there is a technical bound of up to five parameters. This

bound can be easily increased or avoided.

D.1 Visual Basic Code 367

Public Sub ShowGUI()
End Sub
Public Function ApplyFunction(XMLFuncData As String) As String
End Function
Public Property Get AppDataXMLFile() As String
End Property
Public Property Let InfoMode(InInfoMode As Boolean)
End Property
Public Sub SetGUIObject(ObjID As Integer, PropID As Integer, sValue As

String)
End Sub
Public Function GetGUIValue(ObjID As Integer, PropID As Integer) As

String
End Function
Public Property Let PlayEngine(Engine As IplayEngine)
End Property
Public Sub HighlightObject(ObjID As Integer)
End Sub
Public Sub ClearObject(ObjID As Integer)
End Sub
Public Sub GetObjectPosition(ObjID As Integer, ByRef Left As Integer,

ByRef Top As Integer)
End Sub
Public Sub GetObjectLayout(ObjID As Integer, ByRef Left As Integer,

ByRef Top As Integer, ByRef Width As Integer, ByRef Height
As Integer)

End Sub
Public Sub TerminateGUI()
End Sub

E. The Structure of a (Recorded) Run

A recorded run of the Play-Engine is saved as an XML file, which can later
be loaded and replayed. This appendix provides information on the structure
of such an XML file and explains each of its fields. Knowing the structure
of a run can be very useful if one wishes to create a run, either manually
or by using another tool, and then load it into the Play-Engine. Runs can
therefore be generated by actual applications, by implementation tools, by
conventional intra-object models, and so on.
? Run – The root element of the Run XML file.

• ID (Integer) – The ID of the run.
• Name (String) – The name of the run.
• RunEvents – The root node for the events in the run.

– RunEvent – A single run event.
• ID (Integer) – A unique ID for each event. Starts from 1 and is

continuously incremented.
• Value (String) – If the event corresponds to a property change,

then the new property value is given here (for example, Off). If the
event corresponds to a method call between objects, the full string that
describes the method call is written here (for example, SetState(Off),
Method1(X1,X2), and so on).

• EventKind (Send/Recv) – Indicates whether this is a send event or
a receive event. For synchronous messages and for self-messages, only
the Send event is specified in the run.

• FromObjID (Integer) – The ID of the object sending the message.
This is the object ID that is specified in the application description
file.

• ToObjID (Integer) – The ID of the object receiving the message.
This is the object ID that is specified in the application description
file. In the case of a self-message, ToObjID is the same as FromObjID.

• ToProperty (Integer) – The ID of the property that was changed.
This is specified only if the parent run event describes a property value
change, and is the ID associated with this property in the application
description file.

370 E. The Structure of a (Recorded) Run

• Method (Integer) – The ID of the method that was called. This
should be specified only if the parent run event describes a method call,
and is the ID associated with this method in the application description
file.

• Param1 (String) – The value of parameter 1.
• Param2 (String) – The value of parameter 2.
• Param3 (String) – The value of parameter 3.
• Param4 (String) – The value of parameter 4.
• Param5 (String) – The value of parameter 5.

Parameter values are given only in the case of a method call. When
there are fewer than five parameters, only the relevant number of pa-
rameters is given.

References

1. M. Abadi, L. Lamport, and P. Wolper. Realizable and Unrealizable Concurrent Pro-
gram Specifications. In Proc. 16th Int. Colloq. Aut. Lang. Prog., vol. 372, Lecture
Notes in Computer Science, pp. 1–17. Springer-Verlag, 1989.

2. Altia Design & Altia FacePlate. Web page http://www.altia.com.
3. R. Alur. Timed Automata. In 11th Int. Conf. on Computer-Aided Verification, vol.

1633, Lecture Notes in Computer Science, pp. 8–22. Springer-Verlag, 1999.
4. R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretical Computer Science,

126:183–235, 1994.
5. R. Alur, K. Etessami, and M. Yannakakis. Inference of Message Sequence Charts.

In Proc. 22nd Int. Conf. on Software Engineering (ICSE’00), Limerick, Ireland, June
2000.

6. R. Alur and T.A. Henzinger. Logics and Models of Real Time: a Survey. In Real-Time:
Theory in Practice, REX Workshop, vol. 600, Lecture Notes in Computer Science, pp.
74-106. Springer-Verlag, 1991.

7. R. Alur and T.A. Henzinger. A Really Temporal Logic. In Proc. 30th Annual Symp. on
Foundations of Computer Science (FOCS’89), pp. 164–169. IEEE Computer Society
Press, 1989.

8. R. Alur and T.A. Henzinger. Real-Time System = Discrete System + Clock Variables.
Software Tools for Technology Transfer, 1:86–109, 1997.

9. R. Alur, G.J. Holzmann, and D. Peled. An Analyzer for Message Sequence Charts.
Software Concepts and Tools, 17(2):70–77, 1996.

10. R. Alur and M. Yannakakis. Model Checking of Message Sequence Charts. In Proc.
10th Int. Conf. on Concurrency Theory (CONCUR’99), Eindhoven, The Netherlands,
August 1999.

11. D. Amyot and A. Eberlein. An Evaluation of Scenario Notations for Telecommunica-
tion Systems Development. In Int. Conf. on Telecommunication Systems, Dallas, TX,
2001.

12. K. Apt. Verification of Sequential and Concurrent Programs. Springer-Verlag, 2nd
edition, 1997.

13. H. Ben-Abdallah and S. Leue. Timing Constraints in Message Sequence Chart Specifi-
cations. In Proc. 10th Int. Conf. on Formal Description Techniques FORTE/PSTV’97,
Osaka, Japan, November 1997. Chapman & Hall.

14. G. Berry and G. Gonthier. The Esterel Synchronous Programming Language: Design,
Semantics, Implementation. Sci. Comput. Program., 19:87–152, 1992.

15. A.W. Biermann and R. Krishnaswamy. Constructing Programs from Example Com-
putations. IEEE Trans. Softw. Eng., SE-2:141–153, 1976.

16. G. Booch. Object-Oriented Analysis and Design with Applications. Addison-Wesley,
1994.

17. G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language for Object-
Oriented Development (Version 0.91 Addendum). RATIONAL Software Corporation,
1996.

18. M. Broy and I. Krüger. Interaction Interfaces – Towards a Scientific Founda-
tion of a Methodological Usage of Message Sequence Charts. In J. Staples, M.G.

372 References

Hinchey, Shaoying Liu Hinchey, and Shaoying Liu (ed.), Formal Engineering Methods
(ICFEM’98), pp. 2–15. IEEE Computer Society, 1998.

19. F. Buschmann, R. Maunier, H. Rohnert, P. Sommerald, and M. Stal. A System of
Patterns. Pattern-Oriented Software Architecture. Wiley, 1996.

20. A.K. Chandra and P.M. Merlin. Optimal Implementation of Conjunctive Queries in
Relational Databases. In Proc. 9th ACM Symp. on the Theory of Computing, pp.
77–90, 1977.

21. P.P. Chen. The Entity-Relationship Model: Toward a Unified View of Data. ACM
Trans. on Database Systems, 1:9–36, 1976.

22. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
23. A. Colmeraurer, H. Kanoui, P. Roussel, and R. Pasero. Un système de communication

homme-machine en francais. Technical Report, Group de Recherche en Intelligence
Artificielle, Univ. d’Aix-Marseille, 1973.

24. Microsoft COM. Web page: http://www.microsoft.com/com.
25. L. Constantine and E. Yourdon. Structured Design. Prentice-Hall, 1979.
26. S. Cook and J. Daniels. Designing Object Systems: Object-Oriented Modeling with

Syntropy. Prentice-Hall, 1994.
27. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. Formal

Methods in System Design, 19(1), 2001. Preliminary version in Proc. 3rd IFIP Int.
Conf. on Formal Methods for Open Object-Based Distributed Systems (FMOODS’99),
pp. 293–312, P. Ciancarini, A. Fantechi and R. Gorrieri, (eds.), Kluwer, 1999.

28. W. Damm, B. Josko, and R. Schlör. Specification and Verification of VHDL-Based
System-Level Hardware Designs. In E. Börger (ed), Specification and Validation Meth-
ods, pp. 331–410. Oxford University Press, 1995.

29. W. Damm and J. Klose. Verification of a Radio-Based Signalling System Using
the STATEMATE Verification Environment. Formal Methods in System Design,
19(2):121–141, 2001.

30. Borland Delphi. Web page http://www.borland.com/delphi/.
31. T. DeMarco. Structured Analysis and System Specification. Yourdon Press, 1978.
32. L.K. Dillon, G.Kutty, L.E. Moser, P.M. Melliar-Smith, and Y.S. Ramakrishna. A

Graphical Interval Logic for Specifying Concurrent Systems. ACM Trans. on Soft.
Eng. and Meth., Vol 3(2), pp. 131–165, 1994.

33. R.G. Dromey. Genetic Software Engineering. Manuscript, 2001.
34. E.A. Emerson and E.M. Clarke. Using Branching Time Temporal Logic to Synthesize

Synchronization Skeletons. Science of Computer Programming, 2:241–266, 1982.
35. e-SIM Rapid. Web page http://www.e-sim.com/home/.
36. Macromedia Flash. Web page http://www.macromedia.com/software/flash/.
37. R.W. Floyd. Assigning Meanings to Programs. In Proc. Symp. on Applied Math., vol.

19: Mathematical Aspects of Computer Science, pp. 19–32. American Mathematical
Society, 1967.

38. I. Greenwald. Development of the vulva. In: D.L. Riddle, , T. Blumenthal, B.J. Meyer,
and J.R. Priess (eds.) C. elegans vol. II pp. 519–541. Cold Spring Harbor Laboratory
Press, 1997.

39. R. Grosu, I. Krüger, and T. Stauner. Hybrid Sequence Charts. Tech. Report TUM-
I9914, Technical University of Munich, 1999.

40. E.L. Gunter, A. Muscholl, and D. Peled. Compositional Message Sequence Charts. In
Tools and Algorithms for Construction and Analysis of Systems, vol. 2031 of Lecture
Notes in Computer Science pp. 496–511. Springer-Verlag, 2001.

41. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Data-Flow
Programming Language LUSTRE. Proc. IEEE, 79(9):1305–1320, September 1991.

42. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Prog.,
pp. 231–274, 1987. (Preliminary version: Tech. Report CS84-05, The Weizmann Insti-
tute of Science, Rehovot, Israel, February 1984.)

43. D. Harel. From Play-In Scenarios to Code: An Achievable Dream. IEEE Computer,
pp. 53–60, January 2001.

References 373

44. D. Harel and E. Gery. Executable Object Modeling with Statecharts. IEEE Computer,
pp. 31–42, 1997.

45. D. Harel and Y. Koren. Drawing Graphs with Non-uniform Vertices. In Proc. Working
Conf. on Advanced Visual Interfaces (AVI’02), pp. 157–166. ACM Press, 2002.

46. D. Harel and H. Kugler. Synthesizing State-Based Object Systems from LSC Specifica-
tions. Int. J. of Foundations of Computer Science (IJFCS), 13(1):5–51, Febuary 2002.
(Also, Proc. 5th Int. Conf. on Implementation and Application of Automata (CIAA
2000), July 2000, vol. 2088, Lecture Notes in Computer Science. Springer-Verlag, 2000.)

47. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart Play-Out of Behavioral Re-
quirements. In Proc. 4th Int. Conf. on Formal Methods in Computer-Aided Design
(FMCAD’02), Portland, USA, 2002. Also available as Tech. Report MCS02-08, The
Weizmann Institute of Science, 2002.

48. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. STATEMATE: A Working Environment for the
Development of Complex Reactive Systems. IEEE Trans. Soft. Eng., 16:403–414,
1990. (Preliminary version in Proc. 10th Int. Conf. Soft. Eng. pp. 396–406. IEEE
Press, 1988).

49. D. Harel and R. Marelly. Specifying and Executing Behavioral Requirements: The
Play-In/Play-Out Approach. Software and System Modeling (SoSyM), to appear,
2003.

50. D. Harel and R. Marelly. Play-Engine User’s Guide. 3rd edition, 2002.
51. D. Harel and R. Marelly. Playing with Time: On the Specification and Execution of

Time-Enriched LSCs. In Proc. 10th IEEE/ACM Int. Symp. on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS’02), Fort
Worth, Texas, 2002.

52. D. Harel and A. Pnueli. On the Development of Reactive Systems. In K. R. Apt, (ed.),
Logics and Models of Concurrent Systems, NATO ASI Series, Vol. F-13, pp. 477–498.
Springer-Verlag, 1985. 1985.

53. D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: The STATEM-
ATE Approach. McGraw-Hill, 1998. Early version titled The Languages of STATE-
MATE, Technical Report, I-Logix, Inc., Andover, MA (250 pp.), 1991.

54. D. Hatley and I. Pirbhai. Strategies for Real-Time System Specification. Dorset House,
1987.

55. C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj. SCR*: A Toolset for Specifying
and Analyzing Software Requirements. In A.J. Hu and M.Y. Vardi (eds.), Int. Conf.
on Computer Aided Verification (CAV’98), vol. 1427 of Lecture Notes in Computer
Science, pp. 5–51. Springer-Verlag, 1998.

56. J.G. Henriksen, M. Mukund, K. Narayan Kumar, and P.S. Thiagarajan. On Message
Sequence Graphs and Finitely Generated Regular MSC Languages. In Proc. 27th Int.
Colloq. on Automata Languages and Programming (ICALP’2000), Geneva, Switzer-
land, 2000, vol. 1853 of Lecture Notes in Computer Science. Springer-Verlag.

57. J.G. Henriksen, M. Mukund, K. Narayan Kumar, and P.S. Thiagarajan. Regular
Collections of Message Sequence Charts. In Proc. of the 25th Int. Symp. on Mathe-
matical Foundations of Computer Science (MFCS’2000), vol. 1893 of Lecture Notes in
Computer Science, Bratislava, Slovakia, 2000. Springer-Verlag.

58. C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Comm. Assoc. Com-
put. Mach., 12(10):576–583, 1969.

59. C.A.R. Hoare. Communicating Sequential Processes. Comm. Assoc. Comput. Mach.,
21:666–677, 1978.

60. I-Logix, Inc. Products Web page. http://www.ilogix.com/fs prod.htm.
61. American National Standards Institute. Reference Manual for the ADA Programming

Language. February 1983. ANSI/MIL-STD 1815A. Also published by Springer-Verlag
as vol. 155 of Lecture Notes in Computer Science.

62. I. Jacobson. Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

374 References

63. N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, E.J.A. Hubbard, and M.J. Stern.
Formal Modeling of C. elegans Development: A Scenario-Based Approach. In Proc.
Int. Workshop on Computational Methods in Systems Biology (CMSB 2003). Kluwer,
February 2003.

64. J. Klose and B. Westphal. Relating LSC Specifications to UML Models. In Proc. 2nd
Int. Workshop on Integration of Specification Techniques for Applications in Engineer-
ing (INT 2002), Grenoble, France, 2002.

65. J. Klose and H. Wittke. An Automata Based Interpretation of Live Sequence Charts.
In Proc. 7th Intl. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’01), 2001.

66. K. Koskimies and E. Makinen. Automatic Synthesis of State Machines from Trace
Diagrams. Software — Practice and Experience, 24(7):643–658, 1994.

67. K. Koskimies, T. Mannisto, T. Systa, and J. Tuomi. SCED: A Tool for Dynamic
Modeling of Object Systems. Tech. Report A-1996-4, University of Tampere, July
1996.

68. K. Koskimies, T. Systa, J. Tuomi, and T. Mannisto. Automated Support for Modeling
OO Software. IEEE Software, 15(1):87–94, 1988.

69. R.A. Kowalski. Predicate Logic as a Programming Language. Information Process-
ing’74, pp. 569–574. North-Holland, 1974.

70. R. Koymans, J. Vytopil, and W.-P. de Roever. Real-Time Programming and Asyn-
chronous Message Passing. In Proc. 2nd Annual Symp. on Principles of Distributed
Computing, pp. 187–197. ACM Press, 1983.

71. I. Krueger. Distributed System Design with Message Sequence Charts. Ph.D. Thesis,
Department of Informatics, Technical University of Munich, 2000.

72. I. Kruger, R. Grosu, P. Scholz, and M. Broy. From MSCs to Statecharts. In Proc.
DIPES’98. Kluwer, 1999.

73. O. Kupferman and M.Y. Vardi. Synthesis with Incomplete Information. In 2nd Int.
Conf. on Temporal Logic, pp. 91–106, Manchester, July 1997.

74. L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, Vol 21(7), pp. 558–565, 1978.

75. L. Lamport. The Temporal Logic of Actions. ACM Trans. on Prog. Lang. and Sys.,
Vol 16(3), pp. 872–923, 1994.

76. M. Lettrari and J. Klose. Scenario-Based Monitoring and Testing of Real-Time UML
Models. In 4th Int. Conf. on the Unified Modeling Language, Toronto, October 2001.

77. S. Leue, L. Mehrmann, and M. Rezai. Synthesizing ROOM Models from Message
Sequence Chart Specifications. Tech. Report 98-06, University of Waterloo, April
1998.

78. M. Broy, C. Hofmann, I. Krüger, and M. Schmidt. A Graphical Description Technique
for Communication in Software Architectures. Tech. Report TUM-I9705, Technical
University of Munich, 1997.

79. P.W. Sternberg and M. Wang. Pattern Formation During C. elegans Vulval Induction.
Curr. Top. Dev. Biol., 51:189–220, 2001.

80. J. Magee and J. Kramer. Concurrency - State Models & Java Programs. Wiley, 1999.
81. J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer. Graphical Animation of

Behavior Models. 22nd Int. Conf. on Soft. Eng. (ICSE’00), Limeric, Ireland, 2000.
82. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer-Verlag, 1992.
83. Z. Manna and R.J. Waldinger. A Deductive Approach to Program Synthesis. ACM

Trans. on Programming Languages and Systems, 2:90–121, 1980.
84. R. Marelly, D. Harel, and H. Kugler. Multiple Instances and Symbolic Variables in

Executable Sequence Charts. In Proc. 17th Ann. ACM Conf. on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA’02), Seattle, WA, 2002.

85. S. Mauw and M.A. Reniers. Refinement in Interworkings. In U. Montanari and
V. Sassone (eds.), CONCUR’96, vol. 1119 of Lecture Notes in Computer Science, pp.
671–686. Springer, 1996.

References 375

86. N. Meng-Siew. Reasoning with Timing Constraints in Message Sequence Charts. Mas-
ter’s Thesis, University of Stirling, UK, August 1993.

87. B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.
88. R. Milner. A Calculus of Communicating Systems, vol. 92 of Lecture Notes in Com-

puter Science. Springer-Verlag, 1980.
89. B. Moszkowski. A Temporal Logic for Multi-level Reasoning about Hardware. IEEE

Computer, 18:10–19, 1985.
90. B. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press,

Cambridge, UK, 1986.
91. ITU-TS Recommendation Z.120 (11/99): MSC 2000. ITU-TS, Geneva, 1999.
92. A. Pnueli. The Temporal Semantics of Concurrent Programs. Theoretical Computer

Science, 13:1–20, 1981.
93. A. Pnueli. Applications of Temporal Logic to the Specification and Verification of

Reactive Systems: A Survey of Current Trends. In de Bakker et al. (eds.), Current
Trends in Concurrency , vol. 224 of Lecture Notes in Computer Science, pp. 510–584.
Springer-Verlag, 1986.

94. A. Pnueli and W.-P. de Roever. Rendez-vous with Ada: A Proof Theoretical View. In
Proc. SIGPLAN AdaTEC Conf. on Ada, pp. 129–137. ACM Press, 1982.

95. A. Pnueli and E. Harel. Applications of Temporal Logic to the Specification of Real-
Time Systems. In M. Joseph (ed.), Formal Techniques in Real-Time and Fault-Tolerant
Systems, vol. 331 of Lecture Notes in Computer Science, pp. 84–98. Springer-Verlag,
1988.

96. A. Pnueli and R. Rosner. On the Synthesis of an Asynchronous Reactive Module.
In Proc. 16th Int. Colloq. Aut. Lang. Prog., vol. 372 of Lecture Notes in Computer
Science, pp. 652–671. Springer-Verlag, 1989.

97. A. Pnueli and R. Rosner. Distributed Reactive Systems Are Hard To Synthesize. In
Proc. 31th IEEE Symp. Found. of Comp. Sci., pp. 746–757, 1990.

98. A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In Proc. 16th ACM
Symp. on Principles of Programming Languages, pp. 179–190, Austin, TX, January
1989.

99. N. Pryce and J. Magee. SceneBeans: A Component-Based Animation Framework for
Java. http://www-dse.doc.ic.ac.uk/Software/SceneBeans/.

100. Rational, Inc. Web page http://www.rational.com.
101. W. Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985.
102. M.A. Reniers. Message Sequence Charts. Syntax and Semantics. Ph.D. Thesis, Eind-

hoven University of Technology, 1999.
103. J.A. Robinson. Logic: Form and Function, Chap. 11, pp. 182–198. North-Holland,

1979.
104. A. Roychoudhury and P.S. Thiagarajan. Interface Modeling with Cyclic Transaction

Processes. In Formal Methods at the Crossroads: From Panacea to Foundation Sup-
port, 10th Anniversary Colloq. of UNU/IIST, Lisbon, Portugal, 2002, Lecture Notes
in Computer Science, Springer-Verlag, to appear.

105. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design. Prentice-Hall, 1991.

106. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Addison-Wesley, 1999.

107. S. Bornot and J. Sifakis. An Algebraic Framework for Urgency. Information and
Computation, 163:172–202, 2000.

108. R. Schlor and W. Damm. Specification and Verification of System-Level Hardware
Designs using Timing Diagram. In Proc. European Conf. on Design Automation, Paris,
France, 1993, pp. 518–524. IEEE Computer Society Press.

109. R. Schlör, B. Josko, and D. Werth. Using a Visual Formalism for Design Verifica-
tion in Industrial Environments. In T. Margaria, B. Steffenan, R. Rückert, and J.
Posegga (eds.), Services and Visualization: Towards User-Friendly Design, ACoS’98,

376 References

VISUAL’98, AIN’97, Selected Papers, vol. 1385 of Lecture Notes in Computer Science,
pp. 208–221. Springer-Verlag, 1998.

110. SDL: ITU-T Recommendation Z.100, Languages for Telecommunications Applica-
tions: Specification and Description Language, Geneva, 1999.

111. B. Selic, G. Gullekson, and P. Ward. Real-Time Object-Oriented Modeling. Wiley,
1994.

112. J. Sifakis. Modeling Real-Time Systems – Challenges and Work Directions. In EM-
SOFT01, Tahoe City, CA, USA, October 2001, vol. 2211 of Lecture Notes in Computer
Science, Springer-Verlag.

113. J. Suzuki and Y. Yamamoto. Extending UML for Modelling Reflective Software
Components. In R. France and B. Rumpe (eds.), UML’99 — the Unified Modeling
Language. Beyond the Standard. 2nd Int. Conf., Fort Collins, CO, USA, 1999, vol.
1723 of Lecture Notes in Computer Science, pp. 220–235. Springer-Verlag, 1999.

114. S. Uchitel, J. Kramer, and J. Magee. Detecting Implied Scenarios in Message Sequence
Chart Specifications. In 9th European Software Engineering Conferece and 9th ACM
SIGSOFT Int. Symp. on the Foundations of Software Engineering (ESEC/FSE’01).
Vienna, Austria., September 2001.

115. Documentation of the Unified Modeling Language (UML), available from the Object
Management Group (OMG). http://www.omg.org.

116. Microsoft Visual Basic. Web page http://msdn.microsoft.com/vbasic/.
117. P. Ward and S. Mellor. Structured Development for Real-Time Systems, vol. 1–3.

Yourdon Press, 1985.
118. D.H.D. Warren. Implementing Prolog – Compiling Logic Programs (1 and 2). DAI

Research Reports 39 and 40, University of Edinburgh, 1977.
119. J. Whittle and J. Schumann. Generating Statechart Designs from Scenarios. In 22nd

Int. Conf. on Software Engineering (ICSE 2000), pp. 314–323. ACM Press, 2000.
120. R.J. Wieringa. Design Methods for Reactive Systems: Yourdon, Statemate, and the

UML. Morgan Kaufmann, 2002.
121. H. Wong-Toi and D.L. Dill. Synthesizing Processes and Schedulers from Temporal

Specifications. In Computer-Aided Verification ’90, DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, vol. 3, pp. 177–186, 1991.

122. Web page http://www.xml.com.
123. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva,

1996.
124. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC) — Annex B: Alge-

braic Semantics of Message Sequence Charts. ITU-TS, Geneva, 1995.

Index

activation modes
– active, 67
– check, 161
– completed, 161
– preactive, 67
– terminate, 161
Ada, 249
Altia FacePlate, 322
anti-scenario, 5, 15, 17, 59, 125, 251
– automatic creation, 304
application type, see type
assignment, 35, 108–111, 231, 295
– affecting a variable, 111
– assigned-to variable, 35, 108
– definition, 115, 243
– in precharts, 113
– monitoring, 161
– semantics of, 339
– storing constants, 111
– storing functions, 111
– storing properties, see property, store
– synchronize, 111
– using a variable, 111

basic expression, see condition, basic
expression

behavior, 14
– debugging, 19
– inter-object, VII, 4, 14, 65, 211, 282
– intra-object, 4, 14, 211
– refinement and composition, 326
behavior tree, see GSE
belongs relation, 221
– semantics of, 339
Bind procedure, 102
– semantics of, 348
binding expression, see instance, symbolic
biology, 302
– surprising biologists, 304
Booch method, 12
Borland Delphi, 322
bounded temporal operator, 230
breakpoint, 315

C. elegans, 301
– development, 307
– GUI, 301
CCITT, 13, 59
CCS, 10
class, 38, 209, 300
– adding, 211
– definition, 58, 201
– in a scenario, 210–212
– inheritance, 212, 327
– instance, 210
– organization, 327
– semantics of, 335
– vs. interface, 328
clock, 46, 231
– automatic mode, 46, 238
– instance, 46, 231, 235
– interval, 238
– manual mode, 46, 238
– object, 236
– – definition, 242
– – semantics of, 336
– Tick button, 46, 236
– Tick method, 231
– Time property, 231
clock variable, 230, 231, 248
closed system, 205
code, 211
code generation, 11
COM, 317, 322
component object model, see COM
condition, 119–128, 231, 286, 293
– arranging tool tips, 123
– basic expression, 121
– – dialog, 122, 123
– – semantics of, 340
– cold, 31, 119, 295
– conjunctive query, 121
– constraining a variable, 124
– constraining properties, 122
– definition, 128
– dialog, 30, 122
– displaying, 123

378 Index

– execution policies, 126
– forbidden, see forbidden condition
– free expression, 30, 125
– hot, 31, 120, 294
– – in anti-scenarios, 125
– in if-then-else, 134
– in loops, 34, 176, 251
– in precharts, 127
– monitoring, 161
– participating instances, 32, 120
– probabilities, 125, 300
– relation operators, 30
– reserved words, 124
– SELECT, 125
– semantics of, 339
– stand-alone, 31
– SYNC, 34
– synchronize, 31, 121, 123
– tooltip, 41
– TRUE, 34
– using a variable, 126
– wizard, 31
Connect procedure, 101, 348
constructs
– assignment, see assignment
– if-then-else, see if-then-else
– loop, see loop
– subchart, see subchart
control signal, see method
CSP, 10
CTL, 206
CTL∗, 206
cursor, 26
cut, 67, 264
– AdvanceCut function, 345
– BeginMainCut function, 345
– cold, 153
– definition, 77
– InitialCut function, 345
– semantics of, 344
– temperature, 67, 78
– – semantics of, 345

delay, 230, 249
delay interval, 230, 247
delayed deadline, 249
design, 189–201, 325
– activities, 189
– by teams, 198
– debugging, 45, 197
– patterns, 190
– traceability, 195
– transition from requirements, 44, 189
– working with interfaces, 199
discrete system, 231

drawing rule, 231, 247

e-SIM Rapid, 322
EET, 81
Eiffel, 278
entity-relationship diagrams, 10
environment, 36, 64, 198–200, 264, 286, 299
– interaction with, 38
– play-out, 42
Esterel, 10, 249
event
– cold-forbidden, 276
– – semantics of, 350
– definition, 75
– enabled, 67, 130, 289
– – definition, 78
– – semantics of, 346
– hidden, 76, 112, 126
– hot-forbidden, 275
– – semantics of, 350
– injecting, 164, 165
– LSC event vs. system event, 342
– minimal, 67, 113, 116, 161
– – definition, 78
– – semantics of, 345
– reachable, 143, 184
– – semantics of, 346
– receive, 59
– semantics of, 341
– send, 59
– violating, 67, 266, 271
– – definition, 78
– – semantics of, 346
– visible, 76, 157
examples
– bakery, 25
– C. elegans, 301
– cellular phone, 91
– cruise control system, 251
– pocket calculator, 105
– telephone network, 209
external change, see environment, play-out
external environment, see environment
external event manager, 164
– event queue, 165
external objects, see object, external

first-order logic, 248
forbidden condition, 258–261
– cold, 259
– definition, 269
– hot, 259
– semantics of, 341
forbidden element, 251–266, 300
– active scope, 270
– – semantics of, 350

Index 379

– contained scopes, 263
– dominant, 262
– dominant function, 271
– – semantics of, 351
– scope, 253, 262–263
– – semantics of, 341
– time constraints, 266
forbidden message, 252–258
– adding, 255
– cold, 253
– definition, 269
– exact, 255
– hot, 253
– levels of generality, 255–256
– semantics of, 341
– symbolic, 255
– symbolic instances, 256
– temperature, 253
freeze quantifier, 230, 248
function information structure, 114
– semantics of, 337
function library, 320
functional decomposition, 9
future work, 190, 214, 325–331

genetic software engineering, see GSE
graph layout, 132
GSE, 206
guards, see condition, stand-alone
GUI application, VII, 22, 84, 189, 309, 317
– XML description, 359
GUI controls, see GUIEdit, custom controls
GUI Editor, see GUIEdit
GUIEdit, 83, 317–322
– add-on, 318
– as proof of concept, 322
– building the GUI, 319
– custom controls, 321
– defining objects, 319
– defining types, 319
– generating application file, 320
– generating code, 320
– hook procedures, 320
– loading functions, 320
– modifying applications, 321
– toolbar, 318

hierarchical MSCs, see HMSCs
HMI, 322
HMSCs, 146, 188
HySC, 81

I-Logix, 10
IDE, 322
if-then-else, 30, 133–134, 297

– definition, 142
– in precharts, 138
– monitoring, 139, 161
– nested, 157
– scheduling policies, 140
– semantics of, 341
– wizard, 137
implemented function, 36, 105–108, 299,

320
– actual parameters, 106
– binary, 107
– definition, 114
– formal parameters, 105
– semantics of, 336
– XML description, 360
inductive assertions, 12, 20
information passing, see method
initial configuration, see jump start
instance, 26, 59
– clock, see clock, instance
– definition, 75, 221
– locations, see location
– semantics of, 338
– symbolic, 38, 209–220, 300
– – binding, 42, 210, 213, 327
– – binding expression, 213–215, 217, 327
– – existential, 215
– – in existential charts, 218
– – in forbidden messages, 256
– – playing in, 212
– – quantification, 215–216
– – scenario prefix, 216
– – static binding, 213
– – symmetric precharts, 227
– – universal, 215
– – wizard, 214
interface, 328
internal object, see object, internal
interval temporal logic, 82, 278
interworkings, 81
invariant, 13, 251, 278
– class level, 278
IPlayEngine, 86, 363
ITL, see interval temporal logic
ITU, 13, 59
IUserApp, 86, 317, 320, 365

J2SE, 322
Java, 322
Java foundation class, see JFC
JFC, 322
jump start, 314

live copy, 67, 155, 161, 216, 289, 299
– definition, 79, 167
– life cycle, 67, 161

380 Index

– semantics of, 345
live sequence charts, see LSC
liveness constraints, 13
location, 59, 61, 292
– affecting a variable, 96
– cold, 61
– conflicts with messages, 71–73
– final, 59
– hot, 61
– initial, 59
loop, 33, 175–183, 297
– adding elements, 176
– bounded, see loop, fixed
– definition, 183
– dynamic, 178, 182, 299
– – monitoring, 181
– end, 176
– exiting, 183
– fixed, 34, 176, 298
– in MSCs, 187
– infinite, see smart play-out, detecting

infinite loops
– monitoring vs. executing, 181
– number of iterations, 178
– playing in, 176
– prompting for iterations, 182
– repeat until, 177
– run-time information, 41
– runtime information, 178
– semantics of, 341
– unbounded, 176, 240, 266, 298
– while do, 177
– wizard, 33, 176
LSC, VII, 6, 16, 22, 26, 59–81, 251, 325
– activation, 67, 290, 293
– activation condition, 82
– as final implementation, 23
– automata-based semantics, 248
– background color, 314
– breakpoint, see breakpoint
– chart body, see main chart
– clone, see live copy
– completion, 41, 69, 161
– consistency, 206
– constant, 60
– copy, see live copy
– cut, see cut
– definition, 75
– executing vs. monitoring, 165–166
– existential, 43, 60, 159, 161, 162, 196,

286, 312
– – satisfying, see smart play-out, satisfying

existential charts
– forbidden element, see forbidden element
– forbidden elements area, 255

– forbidden elements header, 254
– main chart, 293
– monitoring, 160–163, 165, 171
– natural language description, 62
– playing in, 62–65
– playing out, 65–71
– prechart, see prechart
– recursion, 155
– refinement, 190
– semantics of, 338
– simultaneous activation, 155
– specification, 75
– statistics, see Play-Engine, statistics
– strict, 267
– time extensions, see time
– tolerant, 267
– tolerant semantics, 266–268
– universal, 22, 39, 60, 287, 293, 312
– violation, 161, 254, 255, 259, 264
– watchdog, 266
LSC event
– semantics of, see event, semantics of
LSC message
– semantics of, 339
LSC specification
– semantics of, 338–344
Lustre, 10

Macromedia Flash, 322
main chart, see LSC, main chart
message, 26, 59, 291
– asynchronous, 61, 290
– cold, 61
– conflicts with locations, see location,

conflicts with messages
– definition, 74, 99, 201
– exact, 93
– forbidden, see forbidden message
– hot, 61
– self, 27, 61
– semantics of, see system message,

semantics of; LSC message, semantics of
– symbolic, 27, 91–99, 133, 209, 296
– synchronous, 61
– – semantics of, 337
message content
– semantics of, 337
message delivery interval, 247
message sequence charts, see MSCs
method, 193–196
– asynchronous, 193
– definition, 201
– in object map, 193
– semantics of, 336
– synchronous, 193

Index 381

method information structure, 201
– semantics of, 337
Microsoft Visual Basic, 318, 322
model
– intra-object, 164
model checking, 20, 248, 307
model execution, 10
monitor-event, 165, 166, 170, 187, 275, 356
MSCs, 13, 59, 81, 187, 247
– high-level, see HMSCs
– MSC 2000, 81
multiple charts, see play-out, multiple

charts

navigation expression, 327
nondeterministic choice, see condition,

probabilities, 135–136
note, 314

object, 319
– abstract, 326
– associate with class, 211
– composition, 325
– definition, 58, 201
– dialog, 191, 193
– dynamic creation and destruction, 209,

328–329
– external, 198–201
– – controlling behavior, 199
– – interacting with, 199
– hierarchy, 325
– internal, 190–193, 325
– – adding, 191, 211
– – playing in, 193
– methods, see method
– properties, see property
– refinement, 190, 325
– semantics of, 335
– sub-object, 326
– XML description, 359
object interaction, see method
object map, 45, 192, 251, 309
object model, 213
object model diagram, 10, 12, 192, 227, 327
object oriented, 10, 209
– analysis and design, 10
object system, 55
– semantics of, 335
ObjectTime, 11
OCL, 132
OMG, 12
OMSC, 81
OMT, 12
OOAD, see object oriented, analysis and

design

open system, 205
operational semantics, 344–358
– transition system, see transition system
overlapping charts, see play-out, overlap-

ping charts

parameterized instance, see instance,
symbolic

parameterized system, 209
partial order, 15, 59, 254
– definition, 76
– enriching with variables, 94
– semantics of, 342–344
Petri nets, 10
Play-Engine, VII, 21, 26, 83–86, 152, 164,

238, 282, 301, 318, 325
– additional features, 313–315
– application description file, 320, 359–361
– application extension, 86
– application interface, 309, 311
– application section, 84
– architecture, 309–313
– – play-in, 310
– – play-out, 311
– breakpoint, see breakpoint
– connecting, 330
– connecting two engines, 165, 313
– Execution manager, 312, 313
– External manager, 313
– GUI manager, 310, 312
– interfaces, 86
– look and feel, 83
– LSC monitor, 312
– notes, see note
– ObjectMap manager, 310, 312
– Play-Engine interface, 309, 310
– run file, 313
– Run manager, 313
– run-time information, 314
– saving files, 85
– Sequence manager, 311
– specification section, 85
– statistics, 315
– user guide, 323
– workspace file, 86
play-in, VII, 6, 21, 26, 310, 325
– conditions, 121
– if-then-else, 137
– subcharts, 136
play-in scenarios, 21
play-in/play-out approach, 21
– overview, 25
play-out, VII, 6, 22, 39, 282, 311, 325
– animating interactions, 45, 197
– assignments, 111

382 Index

– conditions, 126
– forbidden elements, 264
– general schema, 66, 153, 160
– if-then-else, 138
– internal objects, 196
– loops, 178
– maximal approach, 153
– minimal approach, 153
– monitoring, 43, 312
– monitoring dynamic loops, 181
– multiple charts, 149–153
– overlapping charts, 154–157, 161
– participating LSCs, 315
– smart, see smart play-out
– symbolic messages, 99
– time, 237–239
– tracing, see play-out, monitoring
post-condition, 13, 278
pre-condition, 13, 278
prechart, 26, 60, 290, 292
– violation, 70, 151, 218, 292
primitive recursive functions, 178
processor speed interval, 247
property, 56–57, 294, 319
– adding, 190
– affects, 57, 61, 64
– changed externally, 57
– default, 57
– definition, 58
– in object map, 192
– in only, 57
– prefix, 56, 92
– semantics of, 336
– store, 35, 108
– structured, 329
– synchronous, 57
– XML description, 360
prototype, 22

quantified object binding, 215

Rational, 11
reachable event, see event, reachable
reactive system, VII, 3, 10, 36, 198, 281
– programming, 6
reactivity, 3
real-time system, 10, 46, 231, 248
recursive functions, 178
regression tests, see testing, regression
requirements, 6, 12, 165, 196, 198, 281
– component-based, 201
– executing, 65
– liveness, 13
– safety, 13
– violation, 254, 259

reserved words, see condition, reserved
words

Rhapsody, 11, 19, 171
ROOM, 11, 205
Rose RealTime, 11
run
– consistent, 67, 161, 169
– – definition, 80
– – semantics of, 355
– definition, 80
– importing, 44, 164
– manipulations, 164
– recorded, 162, 369
– recorded event, 164
– recording and replaying, 44, 162–164,

196, 304
– semantics of, 355
– trace, 162

safety constraints, 13
SCED, 205
scenario, VII, 3, 13, 189
– anti, see anti-scenario
– fragment, 48, 134, 151
– generic, 15, 209, 296, 327
– multiple, see multiple charts
– provisional, 161
– satisfying, 161
– symbolic, 91
scenario fragment, 282
SCR, 206
SDL, 10
SDT, see timing diagrams
SEC, 330
SELECT, see condition, SELECT, 135
– in a loop, 177
sequence diagram, 13, 14, 59, 81, 171
smart play-out, 47, 281–306
– as verification problem, 287
– assignments, 295
– complexity, 288
– conditions, 293
– detecting infinite loops, 285
– examples, 283–287
– if-then-else, 297
– limitations, 299
– loops, 297
– LSC activation, 293
– messages, 291
– model checking, 50, 281, 290
– – formula, 298
– nondeterminism, 48, 282
– prechart, 292
– satisfying existential charts, 286, 301–306
– semantics, 300

Index 383

– symbolic messages, 296
– transition system, 290
– variables, 296
software cost reduction, see SCR
squiggle, 249
state diagram, 9
state explosion problem, 206
state-based modeling, 3
statecharts, 9, 14, 164, 206, 211, 330
Statemate, 10, 171
step, 68, 118, 166, 312
– definition, 80
– semantics of, 357
step mode, 40, 69, 315
structured-analysis, 9
structured-design, 9
subchart, 134–135
– definition, 141
– participating instances, 134
– semantics of, 340
– synchronize, 134
super-step, 47, 68, 132, 145, 158, 166, 238,

276, 289, 312
– correct, 48, 282
– definition, 80
– semantics of, 357
super-step mode, 40, 69
Swing, 322
symbol table, 93
symbolic instance, see instance, symbolic
symbolic messages, see message, symbolic
symbolic mode, 28, 92
symbolic scenario, see scenario, symbolic
synchronize, see condition, synchronize
synchrony hypothesis, 231, 238, 249
synthesis, 17, 20, 132, 205, 288
– distributed systems, 206
– from LSCs, 20, 171, 206
– from MSCs, 205
– from temporal logic, 205
system
– consistent
– – semantics of, 355
– consistent with specification, 161, 169,

171
– implementation, 164
– reactions, 162
system event, 337
system message
– alphabet, 337
– semantics of, 336
system model, 55–58
– objects, see object
– properties, see property
– semantics of, 335–337

system run, see run

TCP/IP, 164
temperature, 253
– semantics of, 341
temporal logic, 13, 23, 82, 230, 248
Tempura, 82
TestConductor, 19, 171
testing, 6, 17, 43, 159–160
– design, 195
– on-line, 164–165
– regression, 44, 164, 196
– using hot conditions, 44
time, 46, 229–242, 300
– as environment, 238
– clock, see clock
– conjunctive constraints, 234
– constraint, 46, 231, 236, 243
– – cold, 234–235
– – hot, 231–234
– event, 46, 235
– example, 240
– forbidden elements, 266
– in Wonderland, 234
– indication lines, 237
– message delay interval, 232
– playing in, 236–237
– property, 46
– standard constraints, 231
– storing, 236
– Tick event, 231, 235, 239, 266
– Tick method, 46
– timer, 232
– vertical delay interval, 231
time-bounded operator, 248
timed automata, 248
timed specification, see time
timeout, 230, 249
timer, 230, 247
timing diagrams, 20, 23, 81
timing mark, 231, 247
tool tip, 314
transition system, 79
– semantics of, 351–355
– state
– – semantics of, 351
– transition relation (∆), 352–355
– violating transition
– – semantics of, 355
tree automata, 205
type, 55–56, 319
– compound, 330
– discrete, 56
– enumeration, 55
– examples, 56

384 Index

– string, 56, 299
– structured, 329
– value hierarchy, 330
– XML description, 359

UML, 12
unification, 103
– clock ticks, 239
– event
– – semantics of, 347
– forbidden messages, 270
– – semantics of, 350
– functions, 116
– – semantics of, 346
– implemented functions, 114
– level0, 100
– level1, 101
– level2, 223
– messages, 101, 116, 204, 212, 222, 244
– – semantics of, 347
– methods, 197, 203
– – semantics of, 346
– negative, 98, 255
– – semantics of, 346
– positive, 98, 240, 255
– – semantics of, 346
– semantics of, 346–350
– variable and function, 116
– – semantics of, 346
– variables, 97–99, 101
– – semantics of, 346
Unify procedure, 102, 117, 204, 224
– semantics of, 348
universal reactive system, 322
use case, 6, 12

user, 200
user-defined controls, see GUIEdit, custom

controls

variable, 28, 92, 157, 296
– affecting, 111
– – semantics of, 342
– binding, 40, 113, 180, 296
– bound, 97
– constant, 110
– definition, 99
– free, 97
– in assignments, 35, 108
– in conditions, 124
– in functions, 106
– in loops, 179
– in messages, 94
– in time constraints, 236
– rebinding, 180
– semantics of, 339
– unification, see unification, variables
– using, 107, 111, 116, 129
– – semantics of, 343
– using vs. affecting, 107
verification, 17, 19, 171, 281
vertical order, 96
VHDL, 81
visual formalisms, 9

watchdog, 230, see LSC, watchdog

XML, 57, 87, 162, 317, 323
XUML, 12

Z120, 13, 81, 247

