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ABSTRACT
We construct a 1-round delegation scheme for every lan-
guage computable in time t = t(n) and space s = s(n),
where the running time of the prover is poly(t) and the run-

ning time of the verifier is Õ(n + poly(s)) (where Õ hides
polylog(t) factors).

The proof exploits a curious connection between the prob-
lem of computation delegation and the model of multi-prover
interactive proofs that are sound against no-signaling (cheat-
ing) strategies, a model that was studied in the context of
multi-prover interactive proofs with provers that share quan-
tum entanglement, and is motivated by the physical princi-
ple that information cannot travel faster than light.

For any language computable in time t = t(n) and space s =
s(n), we construct MIPs that are sound against no-signaling
strategies, where the running time of the provers is poly(t),

the number of provers is Õ(s), and the running time of the

verifier is Õ(s+ n).
We then show how to use the method suggested by Aiello

et al . (ICALP, 2000) to convert our MIP into a 1-round dele-
gation scheme, by using a computational private information
retrieval (PIR) scheme. Thus, assuming the existence of a
sub-exponentially secure PIR scheme, we get our 1-round
delegation scheme.

1. INTRODUCTION
The problem of delegating computation considers a set-

ting where one party, the delegator (or verifier), wishes to
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delegate the computation of a function f to another party,
the worker (or prover). The challenge is that the delegator
may not trust the worker, and thus it is desirable to have
the worker “prove” that the computation was done correctly.
We require that verifying this proof will be significantly eas-
ier than doing the computation itself, that is, the delegator
running time will be significantly smaller than the time com-
plexity of f . Moreover, we require that the running time of
the worker will not be much larger than the time complexity
of f .

The problem of delegating computation became a central
problem in cryptography, especially with the increasing pop-
ularity of cloud computing, where people (and weak devices)
use cloud platforms to run their computations.

We focus on the problem of constructing one-round dele-
gation protocols, where the delegator wants to verify a state-
ment of the form x ∈ L. The delegator sends x to the
worker together with some query q; then the worker com-
putes b = L(x), and based on the query q provides a non-
interactive proof π for the fact that b = L(x). The delega-
tor should be able to verify the correctness of the proof π
very efficiently. And the worker should run in time poly-
nomial in the time it takes to compute f . Throughout this
work (similarly to all previous works that consider the prob-
lem of one-round delegation), the security requirement is
against computationally bounded cheating workers. Namely,
we consider the computational setting, where the security
(i.e., soundness) of our scheme relies on a cryptographic as-
sumption, and the guarantee is that any cheating worker,
who cannot break the underlying assumption, cannot prove
the correctness of an incorrect statement.

It is known that (under plausible cryptographic assump-
tions) any function in LOGSPACE-uniform NC has a one-
round delegation scheme [16,23]. More generally, it is known
that any function f that can be computed by a LOGSPACE-
uniform circuit C of size t = t(n) and depth d = d(n) has a
one-round delegation scheme where the communication com-
plexity is poly(d, k, log t), the running time of the delegator
is poly(d, k, log t)+n·poly(log t), and the running time of the
prover is poly(k, t), where k is the security parameter. Note
however that for circuits with large depth d, this delegation
scheme does not satisfy the efficiency criterion.

A fundamental question is: Does there exist an (efficient)
1-round delegation scheme for circuits with large depth?
More ambitiously, does there exist an (efficient) 1-round del-
egation scheme for every function in P? There are several
works that (partially) answer this question in the prepro-



cessing model, or under non-falsifiable assumptions.1 We
elaborate on these works in Section 1.4.

In this paper we show a 1-round delegation scheme for
any language that can be computed in bounded space. More
specifically, we show a delegation scheme for every language
computable in time t and space s, where the running time
of the verifier depends polynomially on s but only poly-
logarithmically on t. The running time of the prover is poly-
nomial in t.

We note that several widely used algorithms have large
depth, and yet only linear space. These include algorithms
for linear programming and the perceptron algorithm, to
name a few. In general, often algorithms with loops tend to
have large depth and only small space.

Our delegation scheme exploits a connection to the seem-
ingly unrelated model of multi-prover interactive proof sys-
tems (MIP) in which soundness holds even against no-signaling
cheating provers. Loosely speaking, no-signaling provers are
allowed to use arbitrary strategies (as opposed to local ones,
where the reply of each prover is a function only of her own
input), as long as their strategies cannot be used for com-
munication between any two disjoint sets of provers.

Our delegation result follows by a new construction of an
MIP with soundness against such no-signaling provers, to-
gether with a generic transformation of such an MIP into
a delegation scheme, using a fully-homomorphic encryption
scheme (FHE), or alternatively, a computational private in-
formation retrieval (PIR) scheme.

1.1 Multi-Prover Interactive Proofs with No-
Signaling Provers

The study of MIPs that are secure against no-signaling
provers was motivated by the study of MIPs with provers
that share entangled quantum states. Recall that no-signaling
provers are allowed to use arbitrary strategies, as long as
their strategies cannot be used for communication between
any two disjoint sets of provers. By the physical principle
that information cannot travel faster than light, a conse-
quence of Einstein’s special relativity theory, it follows that
all the strategies that can be realized by provers that share
entangled quantum states are no-signaling strategies.

Moreover, the principle that information cannot travel
faster than light is a central principle in physics, and is
likely to remain valid in any future ultimate theory of nature,
since its violation means that information could be sent from
future to past. Therefore, soundness against no-signaling
strategies is likely to ensure soundness against provers that
obey a future ultimate theory of physics, and not only the
current physical theories that we have, that are known to be
incomplete.

The study of MIPs that are secure against no-signaling
provers is very appealing also because no-signaling strategies
have a simple mathematical characterization.

Loosely speaking, in a no-signaling strategy the answer
given by each prover is allowed to depend on the queries to
all other provers, as long as for any subset of provers S, and
any queries given to the provers in S, the distribution of the
answers given by the provers in S is independent of all the
other queries. Thus, the answer of each prover can depend

1We note that under non-falsifiable assumptions, there are
known positive results even for non-deterministic languages.
The focus of this work is on deterministic languages.

on the queries to all other provers as a function, but not as
a random variable.

More formally, fix any MIP consisting of n provers, and
fix any set of cheating provers {P ∗1 , . . . , P ∗n} who may see
each other’s queries (and thus each answer may depend on
the queries sent to all the provers). The provers are said to
be no signaling if for every subset of provers {P ∗i }i∈S , and
for every two possible query sets {qi}i∈[n] and {q′i}i∈[n] such
that qi = q′i for every i ∈ S, it holds that the distributions of
answers {ai}i∈S and {a′i}i∈S are identical, where {ai}i∈S is
the answers of the provers in S corresponding to the queries
{qi}i∈[n], and {a′i}i∈S is the answers of the provers in S cor-
responding to the queries {q′i}i∈[n]. If we have the slightly
weaker guarantee that these two distributions are statisti-
cally close, then we say that the provers are statistically no-
signaling. More specifically, if these two distributions are
δ-close, then we say that the provers are δ-no-signaling. We
refer the reader to Section 2.3 for details.

No-signaling strategies were first studied in physics in the
context of Bell inequalities by Khalfin and Tsirelson [25] and
Rastall [32], and they gained much attention after they were
reintroduced by Popescu and Rohrlich [31]. MIPs that are
secure against no-signaling provers were extensively studied
in the literature (see for example [3, 4, 19–21, 24, 34]). How-
ever, their precise power is still not known. It is known
that they contain PSPACE [20] and are contained in EXP.2

We note that known constructions for MIPs that are secure
against no-signaling strategies for PSPACE [21] are ineffi-
cient, in the sense that the provers in the MIP protocol run
in exponential time (even if the computation takes much less
time). The blowup in the running time of the provers is par-
ticularly undesirable for applications (such as cryptographic
applications).

In this work, we show how to construct MIPs that are
secure against no-signaling strategies (and more generally,
statistically no-signaling strategies) for all of PSPACE, where
the provers are efficient; i.e., they run in time that is polyno-
mial in the computation time. Specifically, for any language
computable in time t = t(n) and space s = s(n), we con-
struct MIPs that are sound against no-signaling strategies,
where the running time of the provers is poly(t), the num-

ber of provers is Õ(s), and the running time of the verifier

is Õ(s+ n).

1.1.1 The Challenges in Proving Soundness Against
No-Signaling Strategies

It is tempting to consider known constructions for MIPs
and to try to prove their soundness against no-signaling
strategies. However, known constructions for MIPs are usu-
ally for NEXP (or the scaled down version for NP). Since
MIPs that are secure against no-signaling strategies are con-
tained in EXP, there is no hope to construct such MIPs for
NEXP. In particular, all known MIPs for NEXP (or the
scaled down version for NP) are not no-signaling.

Indeed, often the trivial strategy, where the provers sim-
ply choose random answers that make the verifier accept, is
no-signaling. For example, consider the trivial 2-prover in-
teractive proof for graph 3-coloring, where the verifier sends
each prover a vertex in the graph, where with probability
1/2 the vertices are the same and with probability 1/2 there

2In a nutshell, one can find the best strategy for the provers
by solving an exponential size linear program.



is an edge between these vertices, and the provers reply with
the color of these vertices. Suppose the graph is not 3-
colorable. We argue that the “random accepting strategy” is
a no-signaling strategy that is accepted with probability 1.
More specifically, the cheating strategy is the following: If
both vertices are the same, choose a random color from the
set of three legal colors, and both provers send this color
to the verifier. Otherwise, choose two distinct random col-
ors from the set of three legal colors, and each prover sends
one of these colors to the verifier. This strategy is clearly
accepted with probability 1. Moreover, it is a no-signaling
strategy, since the distribution of answers of each prover is
uniform, independent of the query to the other party.

This intuitive argument extends to more sophisticated
MIPs and demonstrates the difficulty in proving soundness
against no-signaling strategies. We note that the foregoing
example is based on the work of Dwork et al. [11] discussed
next.

1.2 From Multi-Prover Interactive Proofs to
One-Round Delegation

Aiello et al . [1] (based on a heuristic of Biehl et al. [5])
suggested a method for converting a 1-round MIP into a 1-
round delegation scheme, by using a PIR scheme, (or more
generally, by using an FHE scheme).3 In this work we choose
to use the terminology of FHE schemes (as opposed to PIR
schemes), because we find this terminology to be simpler.
Nevertheless, all our results hold with PIR schemes as well.

In the resulting delegation scheme, the delegator computes
all the queries of the MIP verifier, and sends all these queries
to the worker, each encrypted under a fresh key, using an
FHE scheme. The worker then computes the MIP prover’s re-
sponses homomorphically over the encrypted answers, that
is, underneath the layer of the FHE scheme.

Unfortunately, shortly after this method was introduced,
Dwork et al . [11] showed that it may, in general, be inse-
cure. In fact, although they used different terminology, [11]
essentially show that the 3-coloring MIP, mentioned in Sec-
tion 1.1.1, is not sound against no-signaling strategies and
they argue that it may be possible to implement such strate-
gies under an FHE. We elaborate further on the work of
Dwork et al. and their connection to no-signaling soundness
in Section 1.4.

Motivated by the work of Aiello et al ., Kalai and Raz [23]
showed that a variant of this method can be used to se-
curely convert any interactive proof into a one-round argu-
ment system.4 The idea is simply to have the verifier send
all its (say t) messages in the first round, in the following
redundant form: For every i ∈ [t], all the first i messages
are encrypted using a fresh FHE key.5 The work of [23], to-
gether with the interactive delegation scheme of Goldwasser
et al . [16], gives rise to the 1-round delegation protocol for
LOGSPACE-uniform NC, mentioned above.

3Actually, [1] suggested to use a PCP. However, the work
of [11] shows that an MIP is more suitable.
4Recall that an argument system is an interactive proof sys-
tem that only guarantees soundness against computationally
bounded adversaries. A delegation scheme is an argument-
system in which the focus is on the efficiency of the verifier
and the (honest) prover.
5The reason the i’th message is encrypted together with the
preceding messages, is since the prover’s reply may depend
on all these messages.

We show that the method of Aiello et al . [1] is secure if the
underlying MIP is sound against statistically no-signaling
strategies. This result generalizes the work of [23], since any
interactive proof can be seen as an MIP where the verifier
sends his first i messages to prover i (it is quite easy to
verify that the resulting MIP is secure against statistically
no-signaling cheating provers). Moreover, this result signif-
icantly simplifies the one of [23], which implicitly converts
the interactive proof into an MIP scheme and then applies
the PIR to the resulting MIP scheme. We believe that due to
the lack of the “correct” terminology, the result of [23] was
relatively complicated, whereas this current result is signifi-
cantly simpler and more general.

1.3 Summary of Our Results
We show that when applying the method of Aiello et al . [1]

to an MIP that is sound against statistically no-signaling
cheating provers, then the resulting 1-round delegation pro-
tocol is secure (assuming that the underlying PIR is secure
against attackers of sub-exponential size).

Informal Theorem 1. Assume the existence of an FHE
scheme with sub-exponential security. Then, there exists
an efficient way to convert any 1-round MIP that is sound
against statistically no-signaling cheating provers into a se-
cure 1-round delegation scheme, where the running time of
the prover and verifier in the delegation scheme are propor-
tional to the running time of the provers and verifier in the
MIP.

Thus, we reduced the cryptographic problem of construct-
ing secure one-round delegation schemes, to the information
theoretical problem of constructing MIP schemes that are
secure against statistically no-signaling provers. Such a re-
duction allows us to “strip off” the cryptography, and to fo-
cus on an information theoretic question of constructing an
MIP that is secure against statistically no-signaling provers.

As mentioned above, the problem of constructing an MIP
that is secure against no-signaling provers, is a problem that
is well studied by researchers in the field of quantum com-
plexity. Indeed, it was shown in [20] how to construct such
an MIP for all languages in PSPACE. However, the running
time of the provers in these MIPs is exponential (even if
the computation is significantly more efficient). Therefore,
in the resulting 1-round delegation scheme, the prover runs
in exponential time, which is more than we can afford in
a delegation scheme (in which the prover must run in time
polynomial in the time it takes to run the computation).

In this work, we construct an efficient MIP that is sound
against (statistically) no-signaling strategies.

Informal Theorem 2. For any language L computable
by a Turing machine running in time t = t(n) and space s =
s(n), there exists an MIP that is secure against statistically
no-signaling adversaries. The provers in this MIP run in
time poly(t), the number of provers is Õ(s), and the verifier

runs in time Õ(s+ n), where Õ hides polylog(t) factors.

In particular this theorem gives an MIP for PSPACE with
no-signaling soundness and efficient provers. We note that
our MIP has the additional property that the verifier does
not need to know the entire input, but rather only needs to
access a few points in the low-degree extension of the input
(we refer the reader to full version for the definition of low-



degree extension). This property, which was also a property
of the [16] protocol, is important for applications such as
memory delegation [8].

The two theorems above immediately yield the following
corollary:

Corollary 3. Assume the existence of an FHE scheme
with sub-exponential security. Then, there exists a 1-round
delegation scheme for any function computable by a Turing
machine running in time t = t(n) and space s = s(n). The
prover in this delegation scheme runs in time poly(t) and the

verifier runs in time Õ(n+ poly(s)).

We note that the bulk of technical contribution of this
work is in proving Theorem 2. Indeed, as explained in Sec-
tion 3, proving this theorem requires overcoming several
technical hurdles that do not appear in classical MIP (or
PCP). Theorem 1 is mainly a conceptual contribution. Its
proof is relatively straightforward, but we find the connec-
tion between the seemingly unrelated concepts of delegation
and no-signaling soundness to be intriguing.

As a special case, Theorem 2 also gives soundness against
provers that share an entangled quantum state, since such
provers are no-signaling. This gives a scheme to delegate
computation to a group of workers that cannot communicate
with each other (where the parameters are as in Theorem 2).
The scheme is information theoretically secure even if the
workers share an entangled quantum state. Moreover, the
scheme remains secure in any future ultimate theory (that
may extend quantum theory) as long as the no-signaling
principle remains valid. We note that a recent breakthrough
by Ito and Vidick constructs MIPs that are secure against
provers that share entangled quantum states, for NEXP [22].
However, in their construction the provers are inefficient in
the sense that their running time is super-polynomial in the
running time of the initial computation.

1.4 Related Work
Our work is greatly inspired by the work of Aiello et al . [1],

who propose a general methodology of constructing 1-round
delegation schemes, by combining an MIP (or a PCP) with a
(computational) PIR scheme. Also very relevant to our work
is the work of Dwork et al . [11], who proved that this method
is not sound, by giving an example of a PCP for which the re-
sulting one-round delegation scheme is not sound, no matter
which PIR scheme (or FHE scheme) is used.

Moreover, [11] define the notion of a “spooky interaction”
which is a behavior of the cheating prover, which on the one
hand does not directly contradict the security of the PIR, yet
on the other hand is not consistent with answers based on
PIR databases. Using our terminology, a spooky behavior
is exactly a no-signaling distribution on prover answers that
are computed“homomorphically”under the“encrypted”PIR
queries.

More importantly, Dwork et al . also argue that the sound-
ness of the [1] technique cannot essentially be based on a
general MIP (or PCP). In fact, Dwork et al . implicitly con-
sidered the possibility of applying the [1] technique on MIPs
that have no-signaling soundness. However, Dwork et al. (and
[1]) were focused on constructing 1-round delegation schemes
for non-deterministic languages (such as NEXP or the scaled
down version of NP). Since they showed that non-deterministic
languages cannot have soundness against no-signaling strate-
gies (under very reasonable complexity assumptions), they

reasoned that the [1] method is not useful for non-deterministic
languages.

We also note that Gentry and Wichs [15] recently showed
a negative result, proving that there does not exist a non-
interactive delegation scheme for NP with a black-box proof
of security under any falsifiable assumption.6

However, both of these negative results do not apply to
our setting as our delegation scheme is not for all of NP,
but rather for a class of languages in P (or, in the scaled up
version, in EXP). Thus, by focusing on deterministic classes
(as opposed to non-deterministic ones), we manage to show
that the [1] method is indeed sound in some cases.

Related work on computation delegation. Beyond the
works of [16,23] which we mentioned earlier, there are many
other works on delegating computation that are less relevant
to this work. Let us mention a few. In the interactive set-
ting, Kilian [26] constructed a 4-message delegation scheme
for every function in NEXP. Micali [28] showed that in the
so called random oracle model this result can be made non-
interactive, by relying on the Fiat-Shamir paradigm [12].
There are also several results that construct non-interactive
delegation schemes under non-falsifiable assumptions (as de-
fined by Naor [29]). These works include [6,7,10,14,17,18,27]
and more. Finally, we mentions a series of results that con-
struct non-interactive delegation scheme in the preprocessing
model, where the verifier is efficient only in the amortized
setting. These results include [2, 9, 13, 30]. There are many
other results that we do not mention, which consider various
different models, or are concerned with practical efficiency.

Organization
In this extended abstract we only include a high-level overview
of our proof, see the full version for details. In Section 2 we
define MIPs, no-signaling strategies and argument systems.
In Section 3 we provide a high-level overview of our tech-
niques. Finally, in Section 4 we formally state our results.

2. PRELIMINARIES

2.1 Notation
For a vector a = (a1, . . . , ak) and a subset S ⊆ [k], we

denote by aS the sequence of elements of a that are indexed
by indices in S, that is, aS = (ai)i∈S . In general, we denote
by aS a sequence of elements indexed by S, and we denote
by ai the ith coordinate of a vector a.

For a distribution A, we denote by a ∈R A a random vari-
able distributed according to A (independently of all other
random variables).

We will measure the distance between two distributions
by their statistical distance, defined as half the l1-distance
between the distributions. We will say that two distributions
are δ-close if their statistical distance is at most δ.

2.2 Multi-Prover Interactive Proofs
Let L be a language and let x be an input of length n. In

a one-round k-prover interactive proof, k computationally
unbounded provers, P1, . . . , Pk, try to convince a (proba-
bilistic) poly(n)-time verifier, V , that x ∈ L. The input x is
known to all parties.
6The model of [15] differs from our model in that they allow
the (cheating) prover the additional power of choosing the
instance x after seeing the first message sent by the verifier.



The proof consists of only one round. Given x and her
random string, the verifier generates k queries, q1, . . . , qk,
one for each prover, and sends them to the k provers. Each
prover responds with an answer that depends only on her
own individual query. That is, the provers respond with
answers a1, . . . , ak, where for every i we have ai = Pi(qi).
Finally, the verifier decides whether to accept or reject based
on the answers that she receives (as well as the input x and
her random string).

We say that (V, P1, . . . , Pk) is a one-round multi-prover
interactive proof system (MIP) for L if the following two
properties are satisfied:

1. Completeness: For every x ∈ L, the verifier V ac-
cepts with probability 1, after interacting with P1, . . . , Pk.

2. Soundness: For every x 6∈ L, and any (computation-
ally unbounded, possibly cheating) provers P ∗1 , . . . , P

∗
k ,

the verifier V rejects with probability ≥ 1− ε, after in-
teracting with P ∗1 , . . . , P

∗
k , where ε is a parameter re-

ferred to as the error or soundness of the proof system.

Important parameters of an MIP are the number of provers,
the length of queries, the length of answers, and the error.

2.2.1 MIPs with Oracle
We will also consider the model of one-round k-prover

interactive proofs with oracle, where the verifier V is given
access to an oracle that computes some fixed function (that
may depend on the language L). We require that all queries,
to the oracle and the provers, are done simultaneously.

For every n, let φn : {0, 1}n
′
→ {0, 1}n

′′
be a function

(where n′, n′′ depend on n). We allow the functions φn to
depend on the language L (but not on the input x).

We define a one-round multi-prover interactive proof sys-
tem for L, relative to the oracle {φn}, exactly as before,
except that now the verifier V is a (probabilistic, poly(n)-
time) oracle machine that on input x of length n has free
oracle access to the function φn. The verifier may base her
accept/reject decision on queries to the oracle, but the ora-
cle queries are not adaptive, and we do not allow the queries
to the provers to depend on the answers of the oracle or
the queries to the oracle to depend on the answers of the
provers. In other words, we require that all queries, to the
oracle and to the provers, are done simultaneously.

We require the same completeness and soundness proper-
ties as before.

2.3 No-Signaling MIPs
We will consider a variant of the MIP model, where the

cheating provers are more powerful. In the MIP model, each
prover answers her own query locally, without knowing the
queries that were sent to the other provers. The no-signaling
model allows each answer to depend on all the queries, as
long as for any subset S ⊂ [k], and any queries qS for the
provers in S, the distribution of the answers aS , conditioned
on the queries qS , is independent of all the other queries.

Intuitively, this means that the answers aS do not give the
provers in S information about the queries of the provers
outside S, except for information that they already have by
seeing the queries qS .

Formally, denote by D the alphabet of the queries and
denote by Σ the alphabet of the answers. For every q =

(q1, . . . , qk) ∈ Dk, let Aq be a distribution over Σk. We
think of Aq as the distribution of the answers for queries q.

We say that the family of distributions {Aq}q∈Dk is no-
signaling if for every subset S ⊂ [k] and every two sequences
of queries q, q′ ∈ Dk, such that qS = q′S , the following two
random variables are identically distributed:

• aS , where a ∈R Aq

• a′S where a′ ∈R Aq′

If the two distributions are δ-close, rather than identical,
we say that the family of distributions {Aq}q∈Dk is δ-no-
signaling.

An MIP, (V, P1, . . . , Pk) for a language L (possibly, rela-
tive to an oracle {φn}) is said to have soundness ε against
no-signaling strategies (or provers) if the following (more
general) soundness property is satisfied:

2. Soundness: For every x 6∈ L, and any no-signaling
family of distributions {Aq}q∈Dk , the verifier V re-
jects with probability ≥ 1 − ε, where on queries q =
(q1, . . . , qk) the answers are given by (a1, . . . , ak) ∈R
Aq, and ε is the error parameter.

If the property is satisfied for any δ-no-signaling family of
distributions {Aq}q∈Dk , we say that the MIP has soundness
ε against δ-no-signaling strategies (or provers).

2.4 Interactive Arguments Systems
An interactive argument for a language L consists of an

efficient verifier that wishes to verify a statement of the form
x ∈ L and a prover that helps the verifier to decide. The goal
is to have the verifier use less computational resources than
the straightforward computation of x ∈ L (that does not
involve the prover). In addition to the answer, the verifier
wants assurance that the prover did not cheat and so the
prover provides a short certificate proving its claim. In an
argument system (in contrast to a proof system) we are only
concerned with cheating provers that are computationally
bounded. That is, we only require that it is infeasible to
convince the verifier to accept some x /∈ L.

We focus on 1-round argument systems. That is, the ver-
ifier sends a single message to the prover, gets a response,
and decides whether to accept or reject. We say that (V, P )
is a one-round argument-system for L if the following two
properties are satisfied:

1. Completeness: For every x ∈ L and every security
parameter τ > 0, the verifier V (1τ , x) accepts with
probability 1, after interacting with P (1τ , x).

2. Soundness: For every x 6∈ L, and any family of
circuits {P ∗τ }τ of size 2O(τ), the verifier V (1τ , x) re-
jects with probability ≥ 1 − ε, after interacting with
P ∗t (1τ , x), where ε is a parameter referred to as the
error or soundness of the argument system.

We note that usually argument systems are defined with
respect to polynomial-time adversaries. Since (using sub-
exponential assumptions) we achieve soundness against sub-
exponential cheating provers, in this paper, for simplicity, we
define argument-systems as having soundness against sub-
exponential size cheating provers.



3. OUR TECHNIQUES
Our techniques can be separated into two parts. The main

part is the construction of a statistically no-signaling MIP
for any function computable in time t and space s, where the
number of provers grows linearly with s (independent of t),
each prover runs in time at most poly(t), and the verifier
runs in time that depends only on the input size, the security
parameter and the space s but is independent of t.7 This
part, described in Section 3.1, is information theoretic, and
does not rely on any cryptographic assumptions.

Then, in Section 3.2 we show how to convert a statistically
no-signaling MIP into a 1-round delegation scheme. The
soundness of the resulting delegation scheme assumes the
existence of a fully homomorphic encryption (FHE) scheme
with sub-exponential security.

3.1 Statistically No-Signaling MIP

We start by giving an overview of our MIP, and then give
the high-level idea for why soundness holds against statisti-
cally no-signaling cheating provers. Our MIP is a variant of
“standard” constructions. Our main contribution is in prov-
ing soundness against (statistically) no-signaling provers.
This requires a different approach than the ones taken to
prove classical soundness. Indeed, all known MIPs for NEXP
(or the scale down version of NP) are not sound against no-
signaling adversaries (see discussion in Section 1.1.1).

The main difference between a classical MIP and a no-
signaling MIP is that in a classical MIP once a prover fixes its
random tape (if at all he uses randomness), then his answer
is a deterministic function of his query. This is not the
case in the no-signaling setting, since a prover’s answer can
depend on the other queries. It is required that the answer
of the prover is independent of the other queries as a random
variable , but it may certainly depend on the other queries
as a function. This makes the soundness proof significantly
more challenging.

Before presenting the high level ideas of this proof, we
first give a high level overview of our MIP. As a first step
in the construction of our MIP, we would like to assume
for simplicity that any set of (possibly malicious) provers
behave symmetrically; namely, any two (possibly malicious)
provers, who are asked the same questions, answer similarly.
Of course, we cannot ensure such a thing, since cheating
provers may behave arbitrarily. Thus, we ensure this by
defining a new model of no-signaling PCP, as opposed to
no-signaling MIP.

Intuitively, a no-signaling PCP is defined like a classical
PCP, but where soundness is required to hold also against a
no-signaling prover, who may be adaptive. Loosely speak-
ing, a no-signaling prover, upon receiving any set of queriesQ,
may reply with a set of answers, where each answer may de-
pend on all the queries in Q as a function, but not as a ran-
dom variable. Namely, for any set of queries Q and for any
subset Q′ ⊆ Q, the distribution of the answers correspond-
ing to the queries Q′, should be independent of queries in
Q \Q′.

7As a matter of fact, even though the number of queries
is linear in s, most of these queries contain no information
(and are fixed to some arbitrary value). Indeed, the verifier
ignores the responses to these “dummy” queries and they
exist solely for our soundness proof to go through. Thus,
arguably, the verifier’s running time actually depends only
on n and the security parameter.

Formally, a no-signaling PCP consists of a family of dis-
tributions {AQ}Q, where there is one distribution for every
“possible” set of queries Q, and the requirement is that for
every subset of queries Q′ ⊆ Q, the distribution of (AQ)|Q′
(which is the distribution of answers AQ restricted to queries
in Q′) is independent of queries in Q \Q′. More generally, a
δ-no-signaling PCP has the property that for every possible
set of queries Q1 and Q2 such that Q′ ⊆ Q1 and Q′ ⊆ Q2,
the distributions (AQ1)|Q′ and (AQ2)|Q′ are δ-close. We
emphasize that in a δ-no-signaling PCP we think of a set
of queries Q as an unordered set, thus achieving the desired
symmetry; i.e., the answers do not depend on the order of
the queries.

We note, however, that the definition of δ-no-signaling
PCP given above, is not complete. One needs to define what
is a “possible set of queries”. We define it to be all the
query sets with at most kmax queries. kmax is an important
parameter. The larger kmax is, the more limited the cheating
provers are. We denote such a PCP by (kmax, δ) no-signaling
PCP, and define it formally in the full version. We devote
most of the technical sections to constructing a (kmax, δ)-
no-signaling PCP and proving its soundness.

Before we give an overview of this construction, let us
mention how we convert a δ-no-signaling PCP into a δ-no-
signaling MIP. This is relatively straightforward, and is done
formally in the full version. The basic idea is that the MIP
verifier emulates the PCP verifier, and sends each query to
a random prover (that was not yet asked any query). Each
prover answers by simulating the (honest) PCP.

In what follows, we give a high level overview of our
(kmax, δ) no-signaling PCP. The PCP we use is very similar
to known PCPs (see, e.g., [33]). The main point of distinc-
tion of our PCP is that we repeat each test k times, where k
is the security parameter. We mention that (for simplicity)
the high-level description of our PCP slightly differ from our
actual PCP, presented formally in the full version.

Overview of the underlying PCP. Suppose the provers
need to prove that x ∈ L, where x is an n-bit string and L
is a language computable by a (deterministic) Turing ma-
chine running in time t(n) and space s(n). The underlying
PCP consists of several low-degree multi-variate polynomi-
als. The first polynomial is the low-degree extension of the
entire computation. More specifically, let Cn be a circuit of
size N = O(t(n)s(n)) that computes L on inputs of length n.
It is known that this circuit Cn can be made layered, with
O(s(n)) gates in each layer, and such that there exists a
space O(logN) Turing machine that on input n outputs the
description of the circuit Cn.

Assume that the gates of the circuit are indexed by the
numbers 1, . . . , N , in an order that agrees with the layers of
the circuit. In particular, for every gate, the index of the
gate is larger than the indexes of its children. We assume
that 1, . . . , n are the indexes of the n input variables and
that N is the index of the output gate. Let x1, . . . , xN be
the values of the N wires of the circuit Cn when computed
with input x = (x1, . . . , xn).

The entire computation x1, . . . , xN appears in the PCP
encoded using an error correcting code (specifically, using
the low-degree extension encoding), so that if a single bit
in the computation is incorrect it causes a global effect on
the encoding. Let H = {0, 1, . . . , logN − 1} and let m =



logN
log logN

.8 Note that |H|m = N . Thus we can identify [N ]

with Hm (say, by the lexicographic order on Hm), and can
view x1, . . . , xN as a function X : Hm → {0, 1}. Let F be
a finite field of size polylog(N), containing the set H. Let

X̂ : Fm → F be the low-degree extension of X (see the full

version for the definition). Namely, X̂ is the (unique) multi-
variate polynomial of degree |H| − 1 in each variable, that
agrees with X on each element in Hm. To be consistent
with the body of the paper, we abuse notation and denote
the low-degree extension by X : Fm → F. This low-degree
multi-variate polynomial X is part of the PCP. Note that
its truth table is of size |F |m = poly(N).

In addition, the PCP contains the low-degree multi-variate
polynomials P0, P1, . . . , P`, which are defined as follows. Let
ϕ be a 3-CNF boolean formula (which depends on x), where
ϕ(w1, . . . , wN ) checks that its input, w1, . . . , wN , is the cor-
rect computation of Cn on input x1, . . . , xn, and that the
computation is accepting. Namely, ϕ(w1, . . . , wN ) checks
that the computation of every gate in the circuit is per-
formed correctly, that wi = xi for every i ∈ [n], and that
wN = 1. Let φ : (Hm)3 × {0, 1}3 → {0, 1} be the func-
tion where φ(i1, i2, i3, b1, b2, b3) = 1 if and only if the clause
(wi1 = b1)∨ (wi2 = b2)∨ (wi3 = b3) appears in ϕ. Extend φ
to be a function φ : H3m+3 → {0, 1} by setting it to be 0 for

inputs outside of (Hm)3 × {0, 1}3. We denote ` , 3m + 3.

Let φ̂ : F` → F be the low-degree extension of φ. Thus,
φ̂ is a multi-variate polynomial of degree |H| − 1 in each
variable that agrees with φ on H`. Note that x ∈ L if and
only if ϕ(x1, . . . , xN ) = 1. Therefore, if x ∈ L then for every
z = (i1, i2, i3, b1, b2, b3) ∈ H`, we have

φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3) = 0. (1)

For z = (i1, i2, i3, b1, b2, b3) ∈ F` we define

P0(z) , φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3).

Equation (1) implies that P0|H` ≡ 0. Moreover, the fact

that X and φ̂ have degree < |H| in each variable implies
that P0 has degree < 2|H| in each variable, and hence has
total degree < 2|H|`. Next we define P1 : F` → F. For every
z = (z1, . . . , z`) ∈ F`, let

P1(z) =
∑
h∈H

P0(h, z2, . . . , z`)z1
h.

Note that if x ∈ L then P1|F×H`−1 ≡ 0. More generally,

we define by induction P1, . . . , P` : F` → F where for every
z = (z1, . . . , z`) ∈ F`,

Pi(z) =
∑
h∈H

Pi−1(z1, . . . , zi−1, h, zi+1, . . . , z`)zi
h.

Note that P1, . . . , P`−1 have degree < 2|H| in each variable,
and hence total degree < 2|H|`. Note also that if x ∈ L
then Pi|Fi×H`−i ≡ 0, and in particular P` ≡ 0.

The PCP proof for x ∈ L consists of the polynomial X :
Fm → F and the ` + 1 polynomials Pi : F` → F, for i =
0, . . . , `.9 The verifier sends the following queries to the PCP:

1. low-degree test. The verifier chooses k random lines
`1, . . . , `k : F → Fm. It queries X on all the points

8Suppose for simplicity that these are integers.
9Note that since P` ≡ 0 it does not need to be part of
the PCP. We include P` in the PCP only for the sake of
simplicity.

{Lj(t)}j∈[k],t∈F, and checks that for every j ∈ [k], the
univariate polynomial X ◦ Lj : F → F is of degree
< m|H|.
Similarly for each Pi ∈ {P0, P1, . . . , P`}, the verifier
chooses k random lines `1, . . . , `k : F→ F`. It queries Pi
on all the points {Lj(t)}j∈[k],t∈F, and checks that for
every j ∈ [k], the univariate polynomial Pi◦Lj : F→ F
is of degree < `|H|.

2. Consistency check. For every i ∈ [`], the verifier chooses k
random points in F`. For each of these points z =
(z1, . . . , z`) ∈ F`, it queries Pi and Pi−1 on all the
points {(z1, . . . , zi−1, t, zi+1, . . . , z`)}t∈F, and checks that
for every t ∈ F,

Pi(z1, . . . , zi−1, t, zi+1, . . . , z`) =∑
h∈H

Pi−1(z1, . . . , zi−1, h, zi+1, . . . , z`)t
h.

The verifier also chooses k random points in F`. For
each of these points

z = (i1, i2, i3, b1, b2, b3) ∈ (Fm)3 × F3 = F`,

it queries P0 on the point z and it queries X on the
points i1, i2, i3, and checks that

P0(z) = φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3).

Note that φ̂(z) is not necessarily efficiently computable,
and thus it is not clear how the verifier can carry out
this check. For this overview, suppose for simplicity
that the verifier has oracle access to φ̂. We note that
we make this simplifying assumption also in our for-
mal construction. Thus, when converting our δ-no-
signaling PCP to a δ-no-signaling MIP, we get an MIP
which assumes that the verifier has oracle access to φ̂.

The basic idea for removing the oracle is that the
provers will compute φ̂ for the verifier, and will prove
the correctness of the computation via a statistically
no-signaling MIP. At first, it may seems that this
brings us back to square one, since our goal in this
work is to construct a no-signaling MIP. However, it
turns out that we already have a no-signaling MIP for
φ̂, for the following reason: φ̂ can be decomposed into
two parts: φ̂ = φ̂x + φ̂C , where φ̂x depends only on
the input x and φ̂C depends only on the circuit C. The
function φ̂x can be computed in time Õ(n), and thus
the verifier can compute it on his own. Regarding the
function φ̂C, as we argue in Section 3.1, it can be com-
puted in O(logN) space. Moreover, in the full ver-
sion we show that any space s computation has an
(inefficient) statistically no-signaling MIP, where the

provers run in time 2O(s), and the verifier runs in time
poly(s, n). Thus for s = O(logN), we get a statisti-
cally no-signaling MIP where the provers run in time
poly(N) and the verifier runs in time poly(n, logN).
We refer the reader to the technical sections for de-
tails.

This concludes the description of the underlying PCP.

Soundness against δ-no-signaling cheating provers.
In what follows we give a proof overview that slightly dif-
fers from the formal proof. However, it conveys the main



ideas in the proof. The proof is by contradiction. Sup-
pose that there exists a δ-no-signaling strategy {AQ}Q that
proves (with non-negligible probability) that x ∈ L, even
though this is not the case.

As a first step, we amplify the soundness, and claim that
the δ-no-signaling strategy succeeds in convincing the veri-
fier that x ∈ L with probability close to 1. The soundness
amplification, which is a crucial step in our proof, is achieved
by having the verifier V repeat each test k times, and ac-
cept if and only if all tests accept. We define a “relaxed”
verifier V ′ that makes the exact same queries as V , but ac-
cepts if and only if for each (repeated) test, at least r of the
k repetitions are accepting, where r is a parameter. Loosely
speaking, we prove that if the verifier V accepts with prob-
ability ε then the relaxed verifier accepts with probability

1− Õ(2−r)
ε

, where Õ hides polylog(N) factors.
To prove this we argue that if V and V ′ choose their

queries independently then the probability that V accepts
and V ′ rejects is very small. This is true because for each
group of k tests we can first choose the 2k tests for both V
and V ′, and only then decide which tests go to V and which
ones go to V ′. Consider the answers for these 2k tests. (It
is important here that kmax is greater than the total num-
ber of queries in these 2k tests, so that all these queries
can be asked simultaneously.) If among the 2k tests many
are rejected then V rejects with high probability. On the
other hand, if among the 2k tests only few are rejected (say,
less than r) then V ′ always accepts. We refer the reader
to the full version for details. Throughout this overview,
we assume for simplicity that the verifier V accepts with
probability close to 1.

We then argue that the low-degree test implies that for ev-
ery z ∈ F`, when choosing k random lines `1, . . . , `k through z,
such that `i(0) = z, and querying the PCP at all the points
{X ◦ `i(t)}i∈[k],t∈F, there exists a value v such that for most
lines `i, when computing X ◦ `i at point 0 via interpola-
tion, we get v.10 The same can be proved for P0, P1 . . . , P`.
Throughout this overview we denote by X ′(z) = v, the fact
that when X(z) is computed via interpolation as above,
most interpolations give the value v. We emphasize that
this notation may be misleading, since X ′ is not a function.
The value of X ′(z) depends on the chosen lines `1, . . . , `k. In
other words, the value v above may be different for different
lines. This is indeed what makes our analysis significantly
harder than the analysis in the classical setting. We use a
similar (misleading) notation for P ′0, P

′
1, . . . , P

′
` .

Next, we use this notion to argue that for every z ∈ H`,
it holds that P ′0(z) = 0. To this end, we prove the more
general statement that for every i ∈ {0, 1, . . . , `} and for
every z ∈ Fi × H`−i, it holds that P ′i (z) = 0. We prove
this by backward induction, starting with the base case that
P` ≡ 0. The induction step follows from the consistency
test, together with the fact that P ′0, P

′
1, . . . , P

′
` are well de-

fined. More specifically, recall that in the consistency test
the verifier checks that for every i ∈ [`] and for a random

10Typically, in the PCP literature, it is proved that the low-
degree test implies that the PCP is close to a low-degree
polynomial. In contrast, in this work we only prove local
consistency, which seems to be significantly easier.

z = (z1, . . . , z`) ∈ F` it holds that for every t ∈ F,

Pi(z1, . . . , zi−1, t, zi+1, . . . , z`) =∑
h∈H

Pi−1(z1, . . . , zi−1, h, zi+1, . . . , z`)t
h.

One can argue that the low-degree test implies that for every
z ∈ F`, and thus in particular for every
z = (z1, . . . , zi, hi+1, . . . , h`) ∈ Fi ×H`−i, it holds that

P ′i (z1, . . . , zi−1, t, hi+1, . . . , h`) =∑
h∈H

P ′i−1(z1, . . . , zi−1, h, hi+1, . . . , h`)t
h.

Thus, if P ′i |Fi×H`−i ≡ 0 then P ′i−1|Fi−1×H`−i+1 ≡ 0. We
refer the reader to the full version for details.

It remains to argue that the fact that P0|H` ≡ 0 implies
that the computation X is correct. At first this seems to
follow immediately from the definition of P0. Recall that
for any z = (i1, i2, i3, b1, b2, b3) ∈ (Hm)3 ×H3 = H`,

P0(z) , φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3).

Thus, it seems that by definition, X satisfies every clause of
φ. Indeed, proving that this is the case is relatively straight-
forward (though is quite tedious to do formally). We note,
however, that this does not immediately imply that the com-
putation X is correct. It implies local consistency, that each
gate is consistent, but does not imply global consistency,
as needed for correctness. Namely, this implies that when
querying X at three wires corresponding to a gate in Cn
(two input wires and one output wire) then indeed the an-
swers are going to satisfy the gate. However, it turns out
that proving that this local consistency implies global con-
sistency, or that X is correct, is quite tricky. Indeed it is for
this part that we need to assume that kmax > s (which cor-
responds to the number of provers in the MIP being larger
than s, the space of the computation).

At first one might try the following approach for prov-
ing the correctness of X. Recall that we assume that the
verifier accepts the δ-no-signaling strategy with probabil-
ity close to 1 (actually it is important that the probabil-
ity is at least 1 − 1

poly(N)
). This implies that with high

probability, the input layer of the circuit Cn is correct; i.e.,
(X(1), . . . , X(n)) = (x1, . . . , xn). Next, we can argue that
the first level of the circuit is correct. This follows from the
local consistency. Then, we would like to continue to the
next level by induction, and so forth. The problem with
this approach is that it incurs an exponential blowup in the
error, since the output of a gate is correct if both its children
are correct.

In order to avoid this exponential blowup in error, we
take a different route. We assume that kmax (and thus the
number of provers in the resulting MIP) is twice as large as
the size of the longest layer of Cn. Namely, we take kmax =
Ω(s). We emphasize that, as described above, the honest
verifier only sends poly(k, logN) queries (and thus in the
resulting MIP only queries poly(k, logN) provers). We need
kmax = Ω(s) only to argue no-signaling soundness. The
verifier can now query the value of x corresponding to an
entire layer of the circuit Cn. The local consistency implies
that the input level is correct with high probability. Then,
we can argue that if level i is correct, then level i + 1 is
correct. This is the case, since otherwise, the verifier will
ask the provers for the values of the entire layer i and i+ 1,



and if there is an inconsistency, it will contradict the local
consistency. This incurs only a linear (in the number of
layers) blowup in the error. We refer the reader to the full
version for details.

3.2 Converting a δ-No-Signaling MIP into a 2-
message Argument

In this section we show that the method of Aiello et al . [1],
of using a fully homomorphic (FHE) scheme to convert a 1-
round MIP into a 1-round delegation scheme, is sound if
the underlying MIP is secure against δ-no-signaling provers,
where the value of δ affects the security requirement of the
FHE scheme.11

Let us start by recalling their method. Aiello et al . pro-
posed to take any MIP and convert it into the following
1-round delegation scheme: The delegator computes all the
queries that the MIP verifier would send to the MIP provers,
and sends all of these queries to the worker (prover), each
encrypted under a fresh and independent key, using an FHE
scheme. The worker then answers on behalf of each MIP
prover, where each answer is computed homomorphically on
the corresponding encrypted query.

As mentioned in the introduction, shortly after this method
was introduced, Dwork et al . [11] showed that it may, in gen-
eral, be insecure. In this work, we show that this method in
fact is secure if the underlying MIP is sound against δ-no-
signaling provers.

In a nutshell, our result is obtained by proving that if there
exists a cheating prover P ∗ that breaks the soundness of the
1-round argument, then this prover can be used to construct
a δ-no-signaling prover PNS that breaks the soundness of the
MIP scheme.

The prover PNS uses P ∗ in the obvious way: Given a set of
queries (q1, . . . , q`) it encrypts these queries using fresh and
independent keys, and sends the encrypted queries to P ∗;
upon receiving encrypted answers, it decrypts these answers
and sends the decrypted answers (a1, . . . , a`) to the MIP
verifier.

Clearly this strategy breaks the soundness of the MIP ver-
ifier, but we need to argue that it is δ-no-signaling. In-
deed, we argue that if PNS is not δ-no-signaling then the
prover P ∗ can be used to break the underlying FHE scheme.
Loosely speaking, by the definition of δ-no-signaling (see
Section 2.3), if PNS is not δ-no-signaling then there is a sub-
set S ⊂ [`] such that the distribution of the answers (ai)i∈S ,
conditioned on the corresponding queries (qi)i∈S , depends
on the other queries (qi)i/∈S . In other words, these answers
give information on the other queries. If this is the case,
then indeed one can use P ∗ to break the FHE scheme.

We note that the above break may take time exponen-
tial in the communication complexity of the underlying MIP
scheme, since the information obtained from the answers
(ai)i∈S , is not necessarily efficiently computable. There-
fore, we need the security parameter of the underlying FHE
scheme to be bigger than the communication complexity of
the MIP scheme, and we need to rely on the sub-exponential
hardness of the FHE scheme.

11Aiello et al . originally suggested to use a PCP together with
a private information retrieval (PIR) scheme to construct a
1-round delegation scheme. We use FHE instead of PIR only
for the sake of simplicity of notation. Our results hold also
when replacing FHE by PIR (see the full version).

4. OUR RESULTS
We show a general result on MIP proof systems that are se-

cure against no-signaling strategies and use the latter to con-
struct a new delegation scheme (a.k.a, a 1-round argument-
system).

Theorem 4. Suppose that L can be computed in time t =
t(n) and space s = s(n) with respect to inputs of length n.
Then, for any integer k ≥ (log t)c, where c is some (large
enough) universal constant, there exists an MIP for L with s·
k provers and with soundness error ε against δ-no-signaling

strategies where ε ≤ 2−k and δ ≥ 2
− k

polylog(t) .
The resulting MIP verifier runs in time s ·k+n ·polylog(t)

and the resulting provers run in time poly(t). Each query
and answer is of length at most polylog(t).

At first it may seem a bit confusing that δ is lower bounded
by some value but indeed, the larger δ is, the more powerful
δ-no-signaling strategies become and therefore the soundness
guarantee is stronger.

By setting the parameters t = poly(n), k = O(polylog(n))
and s = O(n) we obtain the following corollary:

Corollary 5. Suppose that the language L can be com-
puted in polynomial time and linear space. Then, there exists
an MIP for L with Õ(n) provers, and with soundness error
2−polylogn against 2−polylogn-no-signaling strategies. The veri-
fier runs in time Õ(n) and the prover runs in time poly(n).

Alternatively, setting s = k = poly(n) we obtain the follow-
ing result:

Corollary 6. If L ∈ PSPACE and L can be computed
in time t = t(n) then there exists an MIP for L with poly(n)

provers and with soundness error 2−poly(n) against 2−poly(n)-
no-signaling strategies. The verifier runs in time poly(n)
and the prover runs in time poly(t).

Using Theorem 4 we are also able to construct an argument-
system as follows:

Theorem 7. If there exists a sub-exponentially secure FHE
then there exists a polynomial TFHE (that depends only on the
encryption scheme) such that the following holds. Suppose
that L can be computed in time t = t(n) and space s = s(n).
Then, for any integer k ≥ (log t)c, where c is some (large
enough) universal constant, there exists a 1-round argument-
system for L with soundness error 2−k against provers of
size 2O(k).

The verifier runs in time (n + TFHE(s, k)) · polylog(t) and
the prover runs in time poly(t, k).

We stress that the running time of the verifier in Theo-
rem 7 only depends poly-logarithmically on the time that it
takes to compute L.

By setting t = poly(n), s = nε where 1/ε is the degree of
s in TFHE, we obtain the following:

Corollary 8. If there exists a sub-exponentially secure
FHE then there exists a polynomial TFHE and a constant
ε > 0 (that depend only on the encryption scheme) such
that the following holds. Suppose that L can be computed in
time poly(n) and space nε. Then, there exists a 1-round
argument-system for L with soundness error 2−k against
provers of size 2O(k) where k ≥ polylog(n). The verifier runs

in time Õ(n) · TFHE(k) and the prover runs in time poly(n).
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