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Abstract

We consider the problem of labeling the nodes of a graph in a way that will allow on
compute the distance between any two nodes directlyfrom their labels (without using any addition
information). Our main interest is in the minimal length of labels needed in different cases. We
upper and lower bounds for several interesting families of graphs. In particular, our main results ar
the following. For general graphs, we show that the length needed isΘ(n). For trees, we show tha
the length needed isΘ(log2 n). For planar graphs, we show an upper bound ofO(

√
n logn) and a

lower bound ofΩ(n1/3). For bounded degree graphs, we show a lower bound ofΩ(
√

n).
The upper bounds for planar graphs and for trees follow by a more general upper bound for

with a r(n)-separator. The two lower bounds, however, are obtained by two different argumen
may be interesting in their own right.

We also show some lower bounds on the length of the labels, even if it is only require
distances be approximated to a multiplicative factors. For example, we show that for general grap
the required length isΩ(n) for everys < 3. We also consider the problem of the time complex
of the distance function once the labels are computed. We show that there are graphs with
labels of length 3 logn, such that if we use any labels with fewer thann bits per label, computing
the distance function requires exponential time. A similar result is obtained for planar and bo
degree graphs.
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1. Introduction

1.1. Motivation

Most common network representations are global in nature, and require users to ha
access to data on the entire network structure in order to derive useful information, even
the sought piece of information is very local, and pertains to only few nodes.

In contrast, the notion ofadjacency labeling schemes, introduced by Breuer an
Folkman [2,3], involves using morelocalizedlabeling schemes for networks. The idea
to label the nodes in a way that will allow one to infer the adjacency of two nodesdirectly
from their labels, without usinganyadditional information sources.

Obviously, labels of unrestricted size can be used to encode any desired inform
However, for such a labeling scheme to be useful, it should strive to use relativelyshort
labels (say, of length poly-logarithmic inn), and yet allow efficient (say, poly-logarithm
time) information deduction. The feasibility of suchefficientadjacency labeling scheme
was explored over a decade ago by Kannan, Naor and Rudich [7].

Interest in this natural idea was recently revived by the observation that in addit
adjacencylabeling schemes, it may be possible to devise similar schemes for capturin
distanceinformation. This has led to the notion ofdistance labeling schemes, which are
schemes possessing the ability to determine the distance between two nodes efficien
(say, in poly-logarithmic time again) given their labels [11].

The relevance of distance labeling schemesin the context of communication network
has been pointed out in [11], and illustrated by presenting an application of such la
schemes to distributed connection setup procedures in circuit-switched networks. It
very plausible that distance labeling schemes may be useful also in the design of “me
free” routing schemes, which are routing schemes geared towards supporting architectu
based on very fast and simple switches, allowed to store very little data locally. Some
problems where distance labeling schemes may play an active role are bounded (“t
live”) broadcast protocols and topology update mechanisms.

1.2. Distance labeling

Let us define the notion of distance labeling schemes more precisely. Given
undirected connected weighted graphG and two nodesu andv, we denote bydG(u, v)

the distance betweenu andv in G, i.e., the minimum weight of a path between them. (
an unweighted graph, consider all edges to have weight 1.)

A node-labelingfor the graphG is a functionL that assigns a non-negative integer la
L(u,G) to each nodeu of G.

A distance decoderis a functionf responsible for distance computation; given t
labelsλ1, λ2 (not knowing from which graph they are taken), it returnsf (λ1, λ2). We say
that 〈L,f 〉 is a distance labelingfor G if f (L(u,G),L(v,G)) = dG(u, v) for any pair
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of nodesu,v ∈ V (G). More generally,〈L,f 〉 is adistance labeling schemefor the graph
family G if it is a distance labeling for every graphG ∈ G. Hereafter, we denote byGn the
sub-family containing then-node graphs ofG.

It is important to note that the functionf , responsible of the distance computation
independent ofG. Thusf can be seen as a method used to compute the distance
decentralized fashion, given any two labels and knowing that the graph belongs to so
specific family. In particular, it must be possible to definef by a constant size algorithm
(depending only of the family). In contrast, the labels contain some information tha
be pre-computed by considering the whole graph structure.

Clearly, a distance labeling scheme always exists for any graph family if one allow
arbitrarily large labels. In this paper we are interested in the existence of distance la
schemes which use short labels. Let|L(u,G)| denote the length of the binary labelL(u,G)

associated withu, and denote

Lmax(G) = max
u∈V (G)

∣∣L(u,G)
∣∣.

Given a finite graph familyG and a distance labeling scheme〈L,f 〉 onG, denote

�〈L,f 〉(G) = max
{
Lmax(G) | G ∈ G

}
,

�(G) = min
{
�〈L,f 〉(G) | 〈L,f 〉 is a distance labeling scheme forG

}
.

Instead of considering the maximal label length one can prefer thetotal label length.
We denote

�〈L,f 〉(G) = max

{ ∑
u∈V (G)

∣∣L(u,G)
∣∣ ∣∣ G ∈ G

}
,

�(G) = min
{
�〈L,f 〉(G) | 〈L,f 〉 is a distance labeling scheme forG

}
.

We are also interested in the efficiency of the distance computation. In alinear distance
labeling, the worst-case time complexity is proportional to the size of the inputs, i.e.,
length of the longest label.

Distance labelings can also be defined up to multiplicative stretch factors. That is,
given a distance decoderf , a node-labelingL and a reals � 1, we say that〈L,f 〉 is an
s-stretched distance labeling forG if for any pair of nodesu,v of G,

dG(u, v) � f
(
L(u,G),L(v,G)

)
� s · dG(u, v).

All the above parameters are extended to this case by adding a superscripts.
The above definitions are for the general case of weighted graphs. Below, we will

mainly with classes of unweighted graphs (unless said otherwise).

1.3. Related work

Many on-line problems on static graph collections can be solved efficiently u
preprocessing and auxiliary space. However, here we insist on more localized proc
namely, answering on-line queries with local information (or labels) associated to the
involved in the query alone.Adjacencylabeling schemes are studied in [7]. Specifically,
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it is shown how to constructO(logn)-bit adjacency labeling schemes for a number o
graph families, including trees, bounded arboricity graphs (including,in particular, graphs
of bounded degree and graphs of bounded genus, e.g., planar graphs), various intersectio
based graphs such as interval and permutation graphs, andc-decomposable graphs. It
also easy to encode theancestry(or descendance) relation in a tree using interval-bas
schemes (cf. [14]).

Concerningdistancequery on generaln-node graphs, Graham and Pollak propose
label each node by a word ofqn symbols taken in{0,1,∗} such that the distance betwe
two nodes corresponds to the Hamming distance of the two words (the distance b
∗ and any symbol is null) [6]. Referenced as theSquashed Cube Conjecture, Winkler has
proved thatqn � n− 1 for everyn, implying a scheme with labels ofn log3≈ 1.58n bits,2

although with a prohibitiveΘ(n) query time to decode the distance [15].
More recently, a distance labeling scheme for weighted trees with weights from

range [0,M) using O((logM + logn) logn) bit labels has been given in [11], an
O(log2 n) distance labeling schemes for interval and permutation graphs were pre
in [8], all with O(logn) query time. The bounds for interval graphs has been later impr
to O(logn) bit labels and constant query time, and extended to circular-arc graph
Queries concerning the least-common ancestor of two nodes, and related functions
answered with labels of lengthO(log2 n) bits with O(logn) query time [10].

1.4. Our contribution

We first present some upper bounds. For the classG of all graphs, Winkler showe
in [15] that �(Gn) � 1.58n, however with aΘ(n) time to decode the distance. We sh
thatn-node graphs can be labeled with labels of size 11n bits so that in timeO(log logn)

the distance between two nodes can be computed given their labels only. This re
complemented by the fact that the classG of all n-node graphs requires labels of si
Ω(n). Hence�(Gn) = Θ(n).

We also show that classes of graphs with (recursive)r(n)-separators support distan
labeling scheme with labels of sizeO(r(n) log2 n) (the size reduces toO(r(n) logn)

wheneverr(n) � nε for constantε > 0), such that the distance can be computed in t
O(logn). This general upper bound implies several results. For instance, it implies th
the familyP of planar graphs�(Pn) = O(

√
n logn), and for the familyW of graphs with

bounded tree-width�(Wn) = O(log2 n).
Our main results concern establishing some lower bounds on the size of the

(Some of these bounds hold even if it is only required that the distances areapproximated
to a multiplicative stretch factors.) In particular, we prove the following bounds:

1. For the familyG of general graphs, we prove�s(Gn) � n/2 − O(1) and �s(Gn) �
n2/2− O(n logn), for anys < 2.

2 All the logarithms are in base two.
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2. For the familyBk of bipartite graphs whose smaller part is of sizek, we prove�s(Bk
n) �

k(n − k) − O(n logn), for any s < 3, and thus that�s(Gn) � n2/4 − O(n logn), for
anys < 3.

3. For the familyD of graphs of maximum degree 3, we prove�(Dn) = Ω(n3/2).
4. For the familyP of bounded degree planar graphs, we prove�(Pn) = Ω(n4/3). This

answers negatively a question of [11], but leaves an intriguing gap between our
and lower bounds.

5. For the familyT of unweighted binary trees, we prove�(Tn) � log2 n/8 − O(logn).
More generally, for the familyT M of binary trees with integral weights from the ran
[0,M), M � 2, we prove�(T M

n ) = Θ((logM + logn) logn).

Finally, we consider the problem of the time complexity of the distance function
the labels are computed. We show that there aren-node graphs with optimal labels of siz
3 logn such that, if one uses labels with fewer thann bits, it requires an exponential time
compute the distance function. A similar result is obtained for planar graphs, and bo
degree graphs.

2. Upper bounds

2.1. General graphs

One can easily label every node of a graph with its vector of distances to all
nodes. Forn-node graphs, this leads to anO(n logn) bit node-labeling withO(1) time to
decode the distance. On the other hand, the Squashed Cube Conjecture provides a
assigning shorter labels ofO(n) bits but with anΘ(n) time distance decoding. Usin
another approach, namely a family of geometrically sized dominating sets collection
propose in this paragraph a scheme usingO(n) bit labels but with aO(log logn) time
distance decoding.

We start with some preliminary claims regarding dominating sets. Aρ-dominating set
for a graphG is a setS ⊆ V (G) satisfying that for every nodev ∈ V (G) there is a node
w ∈ S at distance at mostρ from it. It is well known (cf. [12]) that for everyn-node
connected graphG and integerρ � 0, there exists aρ-dominating set of cardinality a
most max{�n/(ρ + 1)	,1}.

A collectionS = {(Si , ρi) | 0 � i � k} such thatρi is a decreasing sequence of integ
(with ρk = 0),Si is aρi -dominating set forG for every 0� i � k andSk = V (G), is called
adominating collectionfor G. The above discussion implies the following fact, needed fo
later use.

Fact 2.1. For every connectedn-node graphG andk = 
log logn�, there exists a domina
ting collectionS = {(Si , ρi) | 0 � i � k} for G, such thatρi = 2k−i and |Si | � n/2k−i for
everyi ∈ {0, . . . , k}.

Let S be a ρ-dominating set forG. For everyx ∈ V (G), let domS(x) denote the
dominatorof x in S, namely, an arbitrary nodev ∈ S minimizingdG(x, v).
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Lemma 2.1. For every two nodesx, y ∈ V (G):

1. dG(domS(x),domS(y)) − 2ρ � dG(x, y) � dG(domS(x),domS(y)) + 2ρ.
2. Knowingρ, dG(x, y) mod(4ρ + 1), and dG(domS(x),domS(y)), one can comput

dG(x, y).

Proof. The first claim is immediate by the triangle inequality. The second claim foll
from the observation that the first claim defines 4p + 1 consecutive possible values f
dG(x, y), exactly one of which can be congruent todG(x, y) modulo 4p + 1. �

Our main lemma, based on a recursive construction using a dominating collect
the following.

Lemma 2.2. There exists a distance labeling scheme〈L,f 〉 such that for anyn-node
graphG, and any dominating collectionS = {(Si, ρi) | 0 � i � k} for G,

Lmax(G) �
k−1∑
i=0

|Si+1| log(4ρi + 1) + |S0| logn + O(k logn).

Moreover,f can be computed in timeO(k) and each label can be computed in tim
O(

∑k
i=0 |Si |).

Proof. Let I = {0, . . . , k}. Recall thatρi+1 < ρi for every 0� i � k (with ρk = 0), hence
the setsSi are typically progressively larger andSk = V (G). We define a sequence
functions{fi}i∈I and of labelings{Li}i∈I such that foru,v ∈ Si , fi(L

i(u,G),Li(v,G)) =
dG(u, v). The pair〈Li,fi〉 is then said to bei-valid. We denote byt (i) the maximum time
needed to computefi , and leta(i) = maxu∈Si |Li(u,G)|.

The proof is by induction. Starting withi = 0 we define an ordering of the nodes ofS0.
The labelL0(u,G) of a nodeu in S0 is made of two fields:

[a] its rank order(u) in the ordering ofS0;
[b] the list {dG(u, v)}v∈S0, given in the ordering chosen.

The distance decoderf0 is as follows: Given two labelsL0(x,G),L0(y,G), we use
field [a] ofL0(y,G) in order to find order(y). Then we use field [b] ofL0(x,G), containing
the list{dG(x, v)}v∈S0, select the order(y)th item in this list and output this result. Clear
the pair〈L0, f0〉 is 0-valid. Also note thata(0) = |S0| logn + logn, and the operation
requires constant time,3 i.e., t (0) = O(1).

Now we proceed inductively, assuming that〈Li,fi〉 is i-valid and definingLi+1. For
every nodeu ∈ Si+1, we compute its dominator inSi , u′ = domSi (u), and we also choos
some arbitraryorderingof the elements ofSi+1. Then we assign tou a labelLi+1(u,G)

composed of the following fields:

3 Constant meaning involving operations on logn bit words on aRAM.
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[a] the labelLi(u′,G) assigned tou′ (at mosta(i) bits);
[b] the rank order(u) of u in Si+1 (O(logn) bits);
[c] the list of values{dG(u, v) mod(4ρi + 1)}v∈Si+1, given according to the orderin

chosen forSi+1 (|Si+1| log(4ρi + 1) + O(1) bits).

To computedG(x, y) for x, y ∈ Si+1 from the labelsLi+1(x,G),Li+1(y,G) of x andy,
we proceed as follows definingfi+1:

1. Forx ′ = domSi (x) andy ′ = domSi (y), obtainLi(x ′,G) andLi(y ′,G) from field [a]
of Li+1(x,G) andLi+1(y,G) respectively (constant time).

2. DeterminedG(x ′, y ′) by computingfi(L
i(x ′,G),Li(y ′,G)) (time t (i)).

3. Obtain the rank order(y) of y in Si+1 from field [b] of Li+1(y,G) (constant time).
4. ObtaindG(x, y) mod(4ρi +1), which is the order(y)th entry in field [c] ofLi+1(x,G)

(constant time as the list is sorted).
5. ComputedG(x, y) as in Lemma 2.1, relying on the fact thatSi is aρi -dominating set

(constant time).

It is easy to verify that〈Li+1, fi+1〉 is (i +1)-valid. Concerning the resulting label siz
and computation times, we have

a(i + 1) � a(i) + |Si+1| log(4ρi + 1) + O(logn),

t (i + 1) � t (i) + O(1).

As Sk = V (G), these recurrences imply the lemma.�
We now proceed with the main theorem of this section.

Theorem 2.3. For the classG of general graphs, there is a distance labeling scheme〈L,f 〉
with �〈L,f 〉(Gn) � 11n + O(logn log logn). Moreover, the distance can be computed
(sub-linear) timeO(log logn) and the set of labels can be computed in timeO(n2).

Proof. The theorem is proved by first constructing a dominating collectionS = {(S0, ρ0),

. . . , (Sk, ρk)}, for k = 
log logn�, as in Fact 2.1, and then applying Lemma 2.2.
Let us now calculate the size of the resulting labels. We have

Lmax(G) �
k−1∑
i=0

|Si+1| log(4ρi + 1) + |S0| logn + O(k logn).

Recalling thatρi = 2k−i , |Si | � n/2k−i andk = 
log logn�, we get that the second term
bounded by(n/ logn) · logn = n, the third term is bounded byO(logn log logn), and the
first term is bounded by

k−1∑
i=0

n

2k−(i+1)
· log

(
4 · 2k−i + 1

)
� n

k−1∑
i=0

k − i + 2

2k−(i+1)
� n

∞∑
i=0

i + 3

2i
� 10n.

Hence overall,Lmax(G) � 11n + O(logn log logn).
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Considering the time complexity, in order to obtain the labeling one needs to com
the dominating collection and then some dominating sets with geometric size
proposed in [12], anyρ-dominating set can be constructed inO(n) time once a BFS ha
been performed from an arbitrary node. The dominating collection can be construct
total ofO(n2) time, and then the construction of all the labels takesO(n2) steps.

The time analysis for computing the distancedG(x, y) from the labelsL(x,G), L(y,G)

using the distance decoderf (L(x,G),L(y,G)), follows directly from Lemma 2.2, and th
fact that herek = 
log logn�. �
2.2. Distance labeling and separators

It is known [7] that planar graphs support aO(logn) bit adjacency labeling schem
In contrast, we show later on (in Section 3.5) that one cannot solve the general dista
labeling problem for planar graphs using labels shorter thanΩ(n1/3) bits. Conversely, we
now show that using the recursiveO(

√
n )-separator property, the problem can be sol

usingO(
√

n logn) bit labels.
More generally, in this section we deal with recursiver(n)-separators. For ann-node

graph G, a subset of nodesS is a separator if its deletion splitsG into connected
components of size at most 2n/3.

Given a classG of graphs and a positive non-decreasing functionr(n), we say thatG has
a recursiver(n)-separator(or simplyr(n)-separator) if for every connected graphG ∈ Gn

there exists a separatorS of size at mostr(n) such that every connected component of
graphG \ S, obtained fromG by removing all the nodes ofS, belongs toG. In particular
this component has a separator of size at mostr(2n/3).

It is well known that planar graphs have anO(
√

n )-separator. More generally, graphs
genusγ have anO(

√
γ n )-separator [5], and graphs withKk minors excluded (a complet

graph withk nodes) have anO(k
√

n logn )-separator [13] or aO(
√

k3n )-separator [1], and
are conjectured to have anO(k

√
n)-separator. Trees, series-parallel graphs, and bou

tree-width graphs, all have anO(1)-separator.

For a function r(n), let R(n) = ∑log3/2 n

i=0 r(n(2/3)i). Note that for positive non
decreasingr(n), R(n) � r(n) log3/2n, and R(n) = O(r(n)) wheneverr(n) � nε for
constantε > 0. The following is a generalization of the result of [11] for trees.

Theorem 2.4. For a familyG of graphs with ar(n)-separator,

�(Gn) � O
(
R(n) logn + log2 n

)
.

Moreover the distance can be computed inO(logn) time.

Proof. Let us describe a distance labeling scheme〈L,f 〉 for the classG. Given a
graphG ∈ Gn, we choose a separatorS of size at mostr(n) for G. For any connecte
componentA of V (G) \ S, let GA be the graph induced by the nodes ofA. Let c be
the number of components. Mark each componentA by a unique identifierI (A) from the
range of integers 0,1,2, . . . , c−1. The separatorS itself is assigned the identifierI (S) = c.
We also fix an ordering of the nodes ofS.
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For each componentGA, we apply the distance labeling scheme〈L,f 〉 recursively. Let
�(n) = �〈L,f 〉(Gn). Now we define the labels for nodes ofG.

A nodex belonging to a componentA receives a label composed of the following field

[a] the list of its distances to the nodes ofS, given according to their fixed orderin
(O(|S| logn) bits);

[b] the identifierI (A) marking the componentA (O(logn) bits);
[c] the labelL(x,GA) (at most�(|A|) bits).

A node x ∈ S is assigned a label composed of only the first two fields (where
identifier in the second field isI (S) = c).

For any two nodesx, y ∈ V (G), denote theirdistance viaS by

d̂(x, y) = min
s∈S

{
dG(x, s) + dG(s, y)

}
.

To compute the distance betweenx andy in G, we must consider two situations. Ifx and
y belong to the same componentA, thendG(x, y) = min{dGA(x, y) | d̂(x, y)}. Otherwise,
dG(x, y) = d̂(x, y).

Consequently, in order to computedG(x, y), we first computêd(x, y) using field [a] of
L(x,G) andL(y,G). Next we compare the component identifierI (A) of x andy from
field [b] of L(x,G) andL(y,G). If they are equal and different fromc then we use field
[c] of L(x,G) andL(y,G) and getL(x,GA) andL(y,GA), which allows to compute
dGA(x, y). Hence we can computedG(x, y).

Now, as|A| � 2n/3 and|S| � r(n), it follows that the label length satisfies

�(n) � �(2n/3) + O
(
r(n) logn + logn

)
,

solving to�(n) = O(R(n) logn) + O(log2 n). �
Corollary 2.5.

1. For the familyP of planar graphs,�(Pn) = O(
√

n logn).
2. For the familyW of bounded tree-width graphs,�(Wn) = O(log2 n).

3. Lower bounds

Observe that for any graphG with V (G) = {1, . . . , n} and having a distance labelin
〈L,f 〉, the tuple of labels〈L(1,G), . . . ,L(n,G)〉 suffices to reconstructG itself; we need
only to test each pair of nodes in the graph to determine if they are at distance
therefore are adjacent) or morethan 1. As such, for any familyG of 2k labeled graphs
under any labeling the tuple of labels must at leastk bits long, lest two distinct graphs b
assigned the same labeling. Therefore, we can conclude that

�(Gn) + O(n logk) � k,
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as delimiting the fields of the tuple can take at mostO(n logk) bits. In particular, there
exists somen-node graphG with Lmax(G) � �(Gn)/n � n/2 − O(logn), since there are
2(n

2) labeled graphs.
In this section we present lower bounds on the maximum label length and the tota

length, for the following graph classes:

(1) general graphs with small stretched distance labeling;
(2) graphs with ar(n)-separator and small stretched distance labeling;
(3) sparse and bounded degree graphs;
(4) planar graphs;
(5) trees.

The first four lower bounds use the same technique, which is formalized in the
subsection.

3.1. The main lower-bound theorem

Let A ⊆ Vn = {1, . . . , n}, and letk > 1 be a real number (k can be a function ofn).
Consider a familyF of labeled graphs on the set of nodesVn. Two graphsG,H ∈ F are
said toexhibit ak-gap overA if there existx, y ∈ A such thatdG(x, y) � k · dH (x, y)

or dH (x, y) � k · dG(x, y). The graph familyF is an(A, k)-family if every two distinct
graphsG,H ∈ F exhibit ak-gap overA. The familyF is anA-family if there exists a rea
k > 1 such thatF is a(A, k)-family. For such a family, we define

Lsum(A,G) =
∑
a∈A

∣∣L(a,G)
∣∣,

�〈L,f 〉(A,F) = max
{
Lsum(A,G) | G ∈ F

}
,

�(A,F) = min
{
�〈L,f 〉(A,F) | 〈L,f 〉 is a distance labeling scheme forF

}
,

and similarly fors-stretched distance labeling schemes.

Theorem 3.1. LetF be an(A, k)-family, fork > 1. Then for any stretchs < k:

1. �s(F) > 1
|A| · log|F | − 1.

2. �s(A,F) > log|F | − |A| log log|F |.

Proof. Let 〈L,f 〉 be any (s-stretched) distance labeling scheme onF with s < k. Assume
that A = {a1, . . . , aα}. For every graphG ∈ F , let L(G) = 〈L(a1,G), . . . ,L(aα,G)〉,
and letL = {L(G) | G ∈ F}. First, let us show that for every two distinctG,H ∈ F ,
L(G) �= L(H), i.e., |L| = |F |.

Assume, by way of contradiction, thatL(G) = L(H) for someG,H ∈ F , namely,
L(ai,G) = L(ai,H) for everyai ∈ A. By definition ofF , there exists a pairx, y ∈ A such
thatdG(x, y) � k · dH (x, y) or dH (x, y) � k · dG(x, y). Without loss of generality assum
the former. Hence ass < k, we have

dG(x, y) > s · dH (x, y). (1)
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Since〈L,f 〉 is s-stretched, we have

dG(x, y) � f
(
L(x,G),L(y,G)

)
and f

(
L(x,H),L(y,H)

)
� s · dH (x, y).

However, sinceL(ai,G) = L(ai,H) for everyai ∈ A, we have in particular that

f
(
L(x,G),L(y,G)

) = f
(
L(x,H),L(y,H)

)
.

HencedG(x, y) � s · dH (x, y), contradicting inequality (1).
Now we simply evaluate the cardinality ofL according to a given restriction on the lab

length. Assume thatLmax(G) � l for everyG ∈ F . Recalling that|A| = α, this implies
thatL ⊆ {1, . . . ,2l+1 − 1}α as there are 2l+1 − 1 binary labels of length at mostl. So,
|F | = |L| < 2(l+1)α, and thusl > (log|F |)/α − 1. The first claim holds considering a
s-stretched distance labeling scheme〈L,f 〉 for F with �s(F) = l.

A slightly more complex argument implies the second claim as well. Ass
Lsum(A,G) � t for everyG ∈ F . As there are

(
α+t
α

)
ways to divide a total oft bits among

α nodes, this implies that

|F | = |L| �
(

α + t

α

)
· 2t � (α + t)α · 2t . (2)

If α + t � log|F | thent � log|F | − α � log|F | − α log log|F |. If α + t < log|F |. Then
inequality (2) implies that|F | < (log|F |)α · 2t , hence log|F | < α log log|F | + t . In all
the cases,t > log|F | − α log log|F |. The second claim holds considering ans-stretched
distance labeling scheme〈L,f 〉 for F with �s(A,F) = t . �

Let us remark that the theorem applies, in particular, to exact (non-approxi
schemes. This requires us to interpret such a scheme over a class ofn-node graphsGn

as ans-stretched scheme withs = 1, and takek = 1+ 1/n.
While we have shown that the total label length may be large for a subset of the

in a graph (the setsA discussed above), we can in fact amplify this result in the follow
manner: We dangle copies of a fixed graph from each of the nodes inA, and we will see
that the dangled copies must have average label length roughly that ofA. The proof idea is
simple: If many of the dangled copies have short labels, we can actually use that la
to create a shorter labeling for the nodes ofA.

More formally, we define a(β, δ)-graph as a graphT with a node, calledroot, at distance
at mostδ > 0 from β other nodes. Given a(β, δ)-graphT and anA-family F , we create
for eachG ∈ F a graphΨT (G) composed ofG in which one join a copy ofT to each node
a ∈ A such thata and the root of the copy ofT coincide. Denote byF ◦ T the family of
graphs{ΨT (G) | G ∈ F}.

Lemma 3.2. LetF be anA-family, letT be a(β, δ)-graph, and let〈L,f 〉 be any distance
labeling scheme on the familyF ◦ T . Then

�〈L,f 〉(F ◦ T ) � β · �(A,F) − |A|β⌈
log(δ + 1)

⌉
.

Proof. Consider a graphΨT (G) ∈ F ◦ T . Let A = {a1, . . . , aα}, and for everyi ∈
{1, . . . , α}, let Bi = {bi , . . . , bi } be a subset of nodes of the copy ofT associated with
1 β
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ai that are at distance at mostδ from the rootai . PartitionZ = ⋃α
i=1 Bi into β disjoint sets

At = {b1
t , . . . , b

α
t }, 1� t � β , each of cardinalityα.

The idea is to construct a labelingLt for each node ofAt , based on the labelingL in
ΨT (G), so that if anyAt has small average label length, the labelingLt can be used to
shrink the labeling forA in G.

For every 1� t � β , define the distance labeling scheme〈Lt ,f ∗〉 onF as follows. For
everyG ∈F , andu ∈ V (G),

Lt (u,G) =
{ 〈L(u,ΨT (G)),0〉, if u /∈ A,

〈L(bi
t ,ΨT (G)), dT (bt , r)〉, if u = ai ∈ A

andf ∗(〈λ1, d1〉, 〈λ2, d2〉) = f (λ1, λ2)− (d1+d2). Clearly,f ∗ returns the correct distanc
between any two nodes ofV (G) \ A (as the fieldsd1 and d2 are null, andV (G) ⊂
V (ΨT (G))). For a nodeai ∈ A, we note thatai is a cut-vertex inΨT (G). Thus,dG(ai, u) =
dΨT (G)(b

i
t , u) − dΨT (G)(b

i
t , ai), for everyu ∈ V (G). Moreover,dΨT (G)(b

i
t , ai) = dT (bt , r).

So,f ∗ is a distance decoder forLt . Note thatf ∗ does not depend ont .
For everyt andi, |Lt (ai,G)| � |L(bi

t ,ΨT (G))|+
log(δ+1)�, because the second fie
of Lt labels hasδ + 1 possible values (namely, the code 0, anddT (bt , r) ∈ [1, δ]).

We now define a labeling onF using the labelingLt which minimizes
∑α

i=1 |Lt (ai,G)|.
Let L∗ be the restriction of this minimal labeling toV (G). Sincef ∗ is a distance decode
for everyLt , we conclude thatf ∗ is a distance decoder forL∗.

Since 〈L∗, f ∗〉 is a distance labeling scheme onF there existsG0 ∈ F such that
L∗

sum(A,G0) � �(A,F) and hence for every 1� t � β , we haveLt
sum(A,G0) � �(A,F).

DenoteH0 = ΨT (G0). It follows that for every 1� t � β ,

α∑
i=1

(∣∣L(
bi
t ,H0

)∣∣ + ⌈
log(δ + 1)

⌉)
� �(A,F).

Since
∑α

i=1 |L(bi
t ,H0)| = Lsum(At ,H0), the above inequality can be rewritten as

Lsum(At ,H0) � �(A,F) − α
⌈
log(δ + 1)

⌉
.

And since the setsAt are disjoint,

Lsum(Z,H0) =
β∑

t=1

Lsum(At ,H0) � β · �(A,F) − αβ
⌈
log(δ + 1)

⌉
.

We complete the proof by noting that�〈L,f 〉(F ◦ T ) � Lsum(Z,H0). �
Hence we can hope to amplify the lower bound of Theorem 3.1 by a multiplicative f

of β . The familyF ◦T contains graphs of size larger thann but smaller thann+|A||V (T )|.
This remainsO(n) for (β, δ)-graphsT with |V (T )| = O(n/|A|) and then we can als
haveβ = O(n/|A|). Thus, for suitable familiesF , G, and a graphT so thatF ⊆ G, and
F ◦ T ⊆ G, we can have

�(Gn) � Ω
(
n · �(Gn)

) − O(n logn).

Lemma 3.2 is used to prove Theorems 3.7 and 3.8.
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3.2. A lower bound for general graphs

Our first application of the main lower-bound theorem is the following.

Theorem 3.3. LetG be the family of general graphs, and lets < 2. Then

�s(Gn) � n

2
− O(1) and �s(Gn) � n2

2
− O(n logn).

Proof. Let F be the family of all labeled graphs of diameter 2 onVn = {1, . . . , n}. F is
a (Vn,2)-family, because for any two distinct graphsG,H of F there always exists
pair (x, y) of Vn for which eitherdG(x, y) = 1 anddH (x, y) = 2, or dG(x, y) = 2 and
dH (x, y) = 1.

To apply the main lower bound theorem we need to estimate|F |. LetG be the set of al
(connected or disconnected) graphs onVn. ClearlyF ⊂ G and|G| = 2(n

2). Let us bound the
probability that a graphG taken uniformly at random fromG is inF . One possible way fo
taking a graphG randomly and uniformly fromG consists of setting all the possible edg
with probability p = 1/2. Note thatG /∈ F if and only if there is a pairx, y ∈ Vn such
thatx andy are not adjacent, and such that there is noz ∈ Vn \ {x, y} adjacent to bothx
andy. This occurs, for a given pair{x, y}, with probabilityp(1−p2)n−2 = 1/2· (3/4)n−2.
Hence, it occurs for at least one pair with probability of at most(

n

2

)
· 1/2 · (3/4)n−2 < 1/2

for every sufficiently largen. Therefore, log|F | � n(n − 1)/2 − 1. Both claims of the
theorem now follow by Theorem 3.1 (noting, for the second claim, that also|F | � 2n2

and
hence log log|F | � 2 logn). �
3.3. A lower bound for graphs withr(n)-separator

LetBk denote the set of bipartite graphs whose smaller part is of sizek. Clearly,Bk has
a k-separator. We next bound the total label length required by distance labeling sc
for Bk

n.
For every bipartite graph inBk

n, letX andY denote the two parts of nodes, with|X| = k,
and|Y | = n − k. Consider the subset of graphsF ⊂ Bk

n whose diameter is bounded by
Note thatF is a (Vn,3)-family, because for every two distinctG,H ∈ F , there exists a
pair (x, y) ∈ X × Y such thatdG(x, y) = 1 anddH (x, y) �= 1 (or the reverse). SinceH is
of diameter 3, the fact that there is no edge betweenx andy necessitatesdH (x, y) = 3.

Lemma 3.4. For sufficiently largen and for2 logn � k � n/2, |F | � 2k(n−k)−1.

Proof. Clearly,|Bk
n| = 2k(n−k). LetG be a random graph inBk

n. This can be taken by fixin
an edge between each pair(x, y) ∈ X × Y with probabilityp = 1/2.

To count the number of graphs inF (relative to Bk
n), it suffices to calculate th

probability thatG is of diameter 3. Let(x, y) ∈ X × Y . Let E denote the event “for ever
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u,v ∈ X, dG(u, v) = 2”. The probability thatdG(x, y) � 3 is at least the probability thaty

has a neighbor inX, sayx ′, and that the eventE holds (since in this casedG(x, x ′) = 2 and
dG(x ′, y) = 1). The probability thaty has a neighbor inX is 1− (1 − p)k . By the union
bound, the probability that everyy ∈ Y has a member inX is at least 1− (n− k) · (1−p)k.
The probability that given a pair{u,v} of X, there is some nodew ∈ Y connectingu and
v is 1− (1 − p2)n−k . Thus (by the union bound) eventE occurs with probability of a
least 1− (

k
2

) · (1 − p2)n−k . Therefore, the graphG is of diameter� 3 with probabilityP̂

satisfying

P̂ � 1− (n − k) · (1− p)k −
(

k

2

)
· (1− p2)n−k

.

Hence, forp = 1/2, this probability is at least

P̂ � 1− (n − k) · 2−k −
(

k

2

)
· (3/4)n−k.

Thus for sufficiently largen and forn/2 � k � 2 logn, the probabilityP̂ is larger than 1/2
and the lemma follows. �
Theorem 3.5. Let s < 3. Then for every sufficiently largen and for eachk such that
2 logn � k � n/2,

�s
(
Bk

n

)
� k(n − k) − 2n logn.

Proof. BecauseF is a (Vn,3)-family, by part 2 of Theorem 3.1, nos-stretched distanc
labeling scheme (s < 3) with total label length less than log|F | − n log log|F | − 1 exists
for the classF , thus also for the classBk

n. By Lemma 3.4, log|F | � k(n− k) − 1. One can

upper bound|F | by |F | � |Bk
n| = 2k(n−k) � 2n2/4, yielding log log|F | � 2 logn − 2. The

theorem follows. �
SinceBk has ak-separator, from 3.5 there are graphs with annε-separator (for constan

ε � 1) that require distance labelings with labels of sizeΩ(nε). The extremal casek = n/2
yields an alternative proof for theΩ(n) lower bound for general graphs, which in fact ho
for larger stretch values, albeit with a slightly weaker constant in the leading term.

Corollary 3.6. Let G be the family of general graphs, and lets < 3. Then for every
sufficiently largen, �s(Gn) � n2/4− 2n logn.

3.4. A lower bound for sparse graphs

Our next question is whether there exists adistance labeling scheme with short labe
say of lengthO(nε) for constantε < 1, for the class ofn-node graphs withO(n) edges.
The following theorem answers this question negatively for everyε < 1/2. LetD be the
class of graphs of maximum degree three.

Theorem 3.7. For everyn, �(Dn) = Ω(n3/2).
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Fig. 1. A possible graph ofH for h = 2.

Proof. Let X = {x1, . . . , x2h} andY = {y1, . . . , y2h}. We construct a familyH of graphs
defined as follows. With each nodea ∈ X ∪Y we associate a copyTa of a complete binary
tree of heighth. We assume that the leaves of the trees are numbered 1 through 2h. The
union of these 2· 2h trees forms the set of nodes and a part of the edge-set of all the g
of H. In addition, for every(xi, yj ) ∈ X × Y , a graphH ∈ H may or may not contain
cross edgeei,j connecting thej th leaf of Txi with the ith leaf of Tyj . Thus the classH
consists of all the graphs generated by considering all possible such choices:

|H| = 222h

.

Alternatively,H can be viewed as the class of all bipartite graphs with partsX andY , in
which every node is replaced by a complete binary tree of heighth. (See Fig. 1.)

The maximum degree of each graph ofH is three (as in particular, there is at mo
one cross edge touching any leaf). By the above definition, every two graphsG,H ∈ H
differ on some cross edgeei,j , and subsequently, exhibit a gap, asdG(xi, yj ) �= dH (xi, yj ).
HenceH is anA-family. Let A = X ∪ Y . By part 2 of Theorem 3.1, any distance label
scheme〈L,f 〉 onH requires

�(A,H) � log|H| − |A| log log|H| = 22h − 2h+1 · 2h.

Consider now a complete binary treeT of heighth with a noder of degree one attache
to its root. The 2h leaves ofT are at distanceh + 1 from r. SoT is a (2h,h + 1)-graph,
andH ◦ T ⊂D. Thus, by Lemma 3.2, the familyH ◦ T satisfies

�(H ◦ T ) � 2h · �(A,H) − |A| · 2h · ⌈log(h + 2)
⌉

� 2h
(
22h − 2h+1 · 2h

) − 22h+1⌈log(h + 2)
⌉

� 23h − 22h+1(2h + ⌈
log(h + 2)

⌉)
� 23h − O

(
h22h

)
.

The node set of every graph ofH ◦ T is composed of 2|A| trees isomorphic to a comple
binary tree of heighth. As each tree has 2h+1 −1 nodes, the total number of nodes of ev
graph inH ◦ T is n = 2 · 2h+1 · (2h+1 − 1) < 22h+3. It follows that
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�(H ◦ T ) � 23h − O
(
h22h

)
� (n/8)3/2 − O(n logn).

Clearly fromH ◦ T one can form a subfamily ofD with exactlyn nodes by adding som
path of suitable length to some leaf ofTa trees. This does not affect any distance of
original graph, and shows that, for everyn, �(Dn) = Ω(n3/2) as claimed. �
3.5. A lower bound for planar graphs

In this subsection we provide a lower bound for planar graphs. Note that a grap
a O(

√
n )-separator is not necessarily planar. In particular, almost all the subgraphs

complete bipartite graphK√
n,n−√

n are not planar (because they containK3,3), and yet
they have a

√
n-separator. So the lower bound of Theorem 3.5 cannot be applied.

Theorem 3.8. There exists a graph familyP consisting of bounded degree planar grap
such that for everyn, �(Pn) = Ω(n4/3).

Proof. We first construct a classG of planarn-node graphs of bounded degree, which
anS-family for a node setS of size|S| = O(n1/3), and such that log|G| = Ω(n2/3). Since
the size of any family ofn-node bounded-degree graphs is at most 2O(n logn), it follows
by part 2 of Theorem 3.1 that every distance labeling scheme onG requires�(S,G) �
Ω(n2/3). Then it remains to consider the familyP = G ◦ T , whereT is a complete binary
tree withΘ(n2/3) leaves.P is composed of planarO(n)-node bounded degree graphs, a
by Lemma 3.2 every distance labeling onP requires�(G ◦ T ) = Ω(n4/3).

Description of anS-familyG
Consider the upper-left half of a grid ofk columns andk rows (see Fig. 2). The nod

with coordinates(i, j), i.e., residing on theith column andj th row of the grid, is named
zi,j . The set of nodes we consider in the grid isZ = {zi,j | 2 � i + j � k + 1} (drawn in
gray in Fig. 2). At every nodezi,1, for 1� i � k, we attach a nodeui of degree one, and a
every nodezk+1−j,j , for 1� j � k, we attach a nodevj of degree one. To lighten notation
ui is also namedzi,0 andvj namedzk+2−j,j . For everyzi,j ∈ Z, the edge(zi,j , zi,j−1) is
subdivided into two edges(zi,j , xi,j ) and (xi,j , zi,j−1), adding the nodexi,j . Moreover
the edge(zi,j , zi+1,j ) is subdivided into the edges(zi,j , yi,j ) and(yi,j , zi+1,j ), adding the
nodeyi,j . Finally we add the edgeei,j = (xi,j , yi,j ) for all i, j .

We will use weights on the edges. Specifically, we assign the weightw(e) = 1 for
every edgee, except for the edges(xi,j , zi,j−1) which are assigned the weight 2i − 1,
and the edges(yi,j , zi+1,j ) which are assigned the weight 2j − 1, for all i, j such that
2 � i + j � k + 1. The resulting labeled graph is denoted byGk . It is planar and of degre
bounded by 4. It is depicted on Fig. 2 withk = 6.

It should be clear that the graphGk can be transformed back into an unweighted gra
by replacing each edgee of weightw(e) with a simple chain ofw(e) edges. Since an edg
with weightw contributesw − 1 new nodes, the total number of nodes in the unweig
version ofGk is

n =
∑ (

2i + 2j + O(1)
) + O

(
k2) = (2/3) · k3 + O

(
k2).
2�i+j�k+1
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Fig. 2. The graphGk definingG.

For convenience, we henceforth discuss the graph in its weighted form.
Let S = {u1, . . . , uk, v1, . . . , vk}. The familyG is composed of all graphsGk in which

we decide to remove or not each edgeei,j . The number of edgesei,j in Gk is |Z| =
k(k + 1)/2, thus|G| = 2k(k+1)/2. We need to show thatG is anS-family. Towards proving
this, we establish the following two lemmas.

Lemma 3.9. Any shortest path inGk from ui to any of the nodes{xi,j , yi,j , zi,j }, for
everyj , must go through the nodes of theith column only.

Proof. By induction oni. The lemma holds fori = 1, since the weights of each ed
along the first column are lower than those of corresponding edges in any other co
Now assume that the lemma holds for everyi ′ < i, and let us verify that it holds fori.

Towards deriving a contradiction, assume the shortest pathP starting fromui to some
nodeq ∈ {xi,j , yi,j , zi,j } does not follow theith column. Note that a minor diversion, sa
from some nodexi,j to yi,j and back tozi,j , does not pay. So let us first consider the c
thatP “strays to the right,” and uses some nodes of the(i + 1)st column. Letzi+1,j0 be
the first node of columni + 1 on P , and letP ′ be a maximal segment ofP starting at
zi+1,j0 and restricted entirely to columnsi ′ > i. Let zi+1,j1 be the last node onP ′. Then
the sub-pathwi,j0, zi+1,j0,P

′, zi+1,j1,wi,j1 of P , wherew ∈ {x, z}, can be replaced by th
direct pathP ′′ going fromwi,j0 to wi,j1 on theith column.P ′′ is clearly shorter thanP ′, as
P ′ uses vertical edges of weight at least 2(i + 1) whereasP ′′ uses vertical edges of weig
2i; contradiction.

Now assume thatP “strays to the left,” and uses some nodes of the(i −1)st column. So
P departs theith column at some nodezi,j0, going throughyi−1,j0, to continue on column
i ′ < i until later returning through some nodeyi−1,j1 to zi,j1 (where again we assume th
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P ′, the segment ofP betweenzi,j0 andzi,j1, is constrained entirely to columns to the l
of i). The length ofP ′ betweenzi,j0 andzi,j1 is 2j0 + dGk (zi−1,j0, xi−1,j1) + 2j1, which
by the inductive hypothesis is at least

(j1 − j0)2(i − 1) − 1+ 2(j0 + j1) = (j1 − j0)2i + 4j0 − 1.

However, the direct path fromzi,j0 to zi,j1 on theith column is of length(j1 − j0)2i, a
contradiction becausej0 � 1. Therefore the lemma holds.�

The following lemma states that the shortest path inGk from ui to vj is precisely the
one highlighted in Fig. 2.

Lemma 3.10. For everyi, j , 2 � i + j � k + 1, every shortest path inGk from ui to vj

goes through the sequence of nodes

xi,1, zi,1, xi,2, zi,2, . . . , zi,j−1, xi,j , yi,j , zi+1,j , yi+1,j , . . . , zk+1−i,j , yk+1−i,j .

Proof. Fixing i, the lemma is proved by induction onj . The claim holds forj = 1 because
the weights on the first row are minimal.

Now assume the claim holds for everyj ′ < j . Let P denote a shortest path fromui

to vj . P cannot use any node of thei ′th column withi ′ < i because otherwiseP has to go
through at least one more nodezi,j ′ of theith column on its way tovj , and then the prefix
of P from ui to zi,j ′ is not shortest, by Lemma 3.9.

So assume thatP uses some nodes of the(i + 1)st column and rowsj ′ > j . In this
case, we observe, by an argument similar to that of the previous proof, that the weig
the edges used by this segment ofP weight at least 2(j + 1) each, making it cheaper t
continue along thej th row, leading to a contradiction.

It remains to consider the case whereP uses nodes of the(i + 1)st column and of
rows j ′ < j . Assume that a part ofP departs theith column at some nodeyi,j0, j0 < j ,
and reaches thej th column at some nodeyi0,j , i0 > i. Without loss of generality,j0 is
maximal, andi0 is minimal. Necessarily,P goes through the(j − 1)st row at a node
zi0,j−1. The length ofP from yi,j0 to zi1,j−1 is d(yi,j0, zi1,j−1) + 2i0. By the inductive
hypothesis, any shortest path uses nodes of theith column and nodes of the(j − 1)st row
only. It follows thatj0 = j . SoP follows nodes of theith column, uses the edgeei,j , then
leaves thej th row at some nodezi0,j , i0 < i1, to go throughzi0,j−1 andzi1,j−1, and to
reach finallyyi1,j . The length ofP from zi0,j to yi1,j is thus

2i0 + d(zi0,j−1, zi1,j−1) + 2i1 = 2(i0 + i1) + (i1 − i0)2(j − 1)

= (i1 − i0)2j + 4i0.

However, using only thej th row, the distance would be(i1 − i0)2j + 1 which is smaller
than the corresponding part ofP for everyi0 � 1, contradiction. This completes the pro
of the lemma. �

It follows from Lemma 3.10 that any shortest path fromui to vj must use the edgeei,j ,
so removing this edge from the graph increases the distance by at least 1. Moreov
shortest path does not go through any other edgeei′,j ′ , showing thatdG(ui, vj ) depends
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only on whetherei,j exists or not. So, given two graphsG,H ∈ G that differs by the edge
ei,j we havedG(ui, vj ) �= dH (ui, vj ).

Application of the lower-bound theorem
BecauseG is an S-family, we have by part 3 of Theorem 3.1 that every dista

labeling scheme onG requires�(S,G) � k(k + 1)/2 − O(|S| logk). We have|S| = 2k,
n = (2/3) · k3 + O(k2), thusk > n1/3 − O(n2/9), and finally

�(S,G) � 1

2
n2/3 − O

(
n4/9),

completing the proof. �
We also trivially have a

√
n-lower bound for non-uniform weighted planar graphs.

Corollary 3.11. There exists a graph familyPw consisting of bounded degree weight
planar graphs whose weights are non negative integers inO(

√
n ), such that for everyn,

�(Pw
n ) = Ω(n3/2).

3.6. A lower bound on trees

When applying the general approach for trees, considering the setF of all labeled trees
on the setVn = {1, . . . , n} as a(Vn,1)-family, one gets|F | = nn−2 (known as Cayley’s
formula). Unfortunately, this implies only the trivial logn lower bound on the average
maximum label length.

In this section we prove a stronger lower bound, namely, that for the familyT M of
weighted trees with integral weights from the range[0,M) for M � 2, any distance
labeling scheme requires�(T M

n ) = Ω((logM + logn) logn). This bound is tight given
the O((logM + logn) logn) distance labeling scheme given for this class in [11]. N
that for unweighted trees we obtain a lower bound ofΩ(log2 n).

3.6.1. The class of trees
For the lower bound proof we focus on a special class of binary weighted trees

(h,M)-trees, M � 2, defined as follows. Forh = 1, a(1,M)-treeT is composed of a roo
with a single child and two grandchildren. An integral weightx ∈ [0,M) is associated with
each of the two edges connecting the child tothe two grandchildren, and the weightM − x

is associated with the edge connecting the root to the child.
For h � 2, a (h,M)-tree is constructed by taking a(1,M)-tree and attaching to eac

of its two leaves an(h − 1,M)-tree. Hence an(h,M)-tree contains 2h leaves, denote
a1, . . . , a2h . Let C(h,M) denote the class of all(h,M)-trees. Note that all of those tre
have the same structure, and they differ only in their weight assignment. Figure 3 d
a (3,M)-tree.

Note that a(h,M)-treeT is completely defined by the tripleT = (T0, T1, x), where
x is the weight associated with the two edges of the top(1,M)-tree, andT0 and T1
are the two(h − 1,M)-trees attached to the leaves of the top tree. The subcla
C(h,M) consisting of(h,M)-trees with topmost weightx is denotedC(h,M,x). Hence
C(h,M) = ⋃M−1C(h,M,x).
x=0
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Fig. 3. A (3,M)-tree.

By the definition of these binary trees we have

Lemma 3.12. For every two leavesa, a′ of a treeT ∈ C(h,M,x):

1. If a ∈ T0 anda′ ∈ T1 thendT (a, a′) = 2(h − 1)M + 2x.
2. If a, a′ ∈ Ti (for i ∈ {0,1}) thendT (a, a′) = dTi (a, a′).

This implies the following lemma.

Lemma 3.13. Consider two(h,M)-treesT = (T0, T1, x) and T ′ = (T ′
0, T

′
1, x

′). For any
leavesa0 ∈ T0, a1 ∈ T1, a′

0 ∈ T ′
0 anda′

1 ∈ T ′
1,

dT (a0, a1) = dT ′
(
a′

0, a
′
1

) ⇔ x = x ′.

3.6.2. The proof
For a distance labeling scheme〈L,f 〉 onC(h,M), let W(L,h,M) denote the set of a

labels assigned byL to nodes in trees ofC(h,M), and letg(h,M) denote the minimum
cardinality|W(L,h,M)| over all distance labeling schemes onC(h,M).

Hereafter, we fix〈L,f 〉 to be some distance labeling scheme attainingg(h,M), i.e.,
such that|W(L,h,M)| = g(h,M).

Let W(x) denote the set of possible pairs of labels(v0, v1) assigned byL to some
leavesaj ∈ T0 andat ∈ T1 respectively, for some treeT = (T0, T1, x) ∈ C(h,M,x). Let
W = ⋃M−1

x=0 W(x). AsW ⊆ W(L,h,M) × W(L,h,M) we have

Lemma 3.14. |W| � g(h,M)2.
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Lemma 3.15. For every0 � x �= x ′ < M, the setsW(x) andW(x ′) are disjoint.

Proof. If there is a pair of labels in common, then the distances between each pair of no
must be the same, which by Lemma 3.13 impliesx = x ′. �

The crux of the analysis lies in the following lemma.

Lemma 3.16. For every0 � x < M, |W(x)| � g(h − 1,M2).

Proof. In any (h − 1,M2)-tree, a weightw ∈ [0,M2) can be represented by the pair
weightsw0 = w modM, w1 = �w/M	, such thatw0,w1 ∈ [0,M) andw = w0 + Mw1.

Consequently, one can associate with any(h − 1,M2)-treeT ′ a pair of (h − 1,M)-
treesT0 andT1 as follows. For any edgee of T ′ with weight w = w0 + M · w1, let the
corresponding weight ofe in T0 (respectively,T1) be w0 (respectively,w1). These two
trees define also a(h,M)-treeT = (T0, T1, x) in C(h,M,x).

Every leafaj of T ′ is now associated with two homologous leaves ofT , namely, the
leafa0

j = aj (occurring in the left part ofT , i.e.,T0), and the leafa1
j = aj+2h−1 (occurring

in T1). For every two leavesaj , at of T ′ we now have

dT ′(aj , at ) = dT0

(
a0
j , a

0
t

) + M · dT1

(
a1
j , a

1
t

) = dT

(
a0
j , a

0
t

) + M · dT

(
a1
j , a

1
t

)
. (3)

We use this observation to derive a labeling scheme for all(h− 1,M2)-trees using at mos
|W(x)| labels. Given an(h − 1,M2)-treeT ′, consider the pair of(h − 1,M)-treesT0,
T1 defined above, and use the labelingL to label the treeT = (T0, T1, x). Now use the
resulting labeling to define a labeling functionL′ for the nodes ofT ′ as follows. A leaf
aj ∈ T ′ receives as its label the pairL′(aj , T

′) = 〈L(a0
j , T ),L(a1

j , T )〉. Note that this pair
belongs toW(x).

The distance decoderf ′ for (h − 1,M2)-trees is now obtained by setting

f ′(L′(aj , T
′),L′(at , T

′)) = f ′(〈L(
a0
j , T

)
,L

(
a1
j , T

)〉
,
〈
L

(
a0
t , T

)
,L

(
a1
t , T

)〉)
= f

(
L

(
a0
j , T

)
,L

(
a0
t , T

)) + M · f (
L

(
a1
j , T

)
,L

(
a1
t , T

))
.

As L is a distance labeling scheme for(h,M)-trees we havef (L(a0
j , T ),L(a0

t , T )) =
dT (a0

j , a
0
t ) andf (L(a1

j , T ),L(a1
t , T )) = dT (a1

j , a
1
t ), so by Eq. (3),

f ′(L′(aj , T
′),L′(at , T

′)) = dT

(
a0
j , a

0
t

) + M · dT

(
a1
j , a

1
t

) = dT ′(aj , at ).

So we have obtained a labeling scheme〈L′, f ′〉 labeling any(h − 1,M2)-tree with labels
taken fromW(x). It follows that|W(x)| � g(h − 1,M2). �
Corollary 3.17. g(h,M) �

√
M · √g(h − 1,M2).

Proof. By Lemmas 3.15, 3.14 and 3.16,g(h,M)2 � |W| � M · g(h − 1,M2). �
Lemma 3.18. g(h,M) � Mh/2.
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Proof. By induction onh. Forh = 1, we have|W(x)| � 1, and so|W| � M. On the other
hand, by Lemma 3.14 we have|W| � g(1,M)2. Henceg(1,M) �

√
M , as claimed.

Assuming the claim forh − 1, we get by Corollary 3.17 and the inductive hypothes

g(h,M) �
√

M

√
g(h − 1,M2) �

√
M

√
(M2)(h−1)/2 = √

M

√
Mh−1

= Mh/2. �
This allows us to conclude with the lower bound.

Theorem 3.19. For the familyT M of binary trees with weights from the range[0,M),
M � 2,

�
(
T M

n

)
� 1

2
(logn − 2) logM.

Proof. By Lemma 3.18, for the classC(h,M) we have�(C(h,M)) � (h/2) · logM. The
number of nodes of the an unweighted(h,M)-tree isn = 3·2h−2. This yields the theorem
as

�
(
T M

n

)
� 1

2
· log

(
n + 2

3

)
· logM � 1

2
(logn − 2) logM. �

Corollary 3.20. For the familyT of unweighted binary trees,

�(Tn) � 1

8
log2 n − O(logn).

Proof. A (h,M)-tree can be transformed into anunweighted tree byreplacing each edgee
of weightw with a path ofw (unweighted) edges. Lett (h,M) be the maximal number o
nodes of the unweighted tree corresponding to the construction of a(h,M)-tree. Then
t (h,M) � 3 · 2h · M. Fixing n and takingh = log

√
n/3 andM = √

n/3, and applying
Lemma 3.18, we obtain

g(h,M) � 2
h
2 logM � 2

1
8 log2 (n/3)

for sufficiently largen. Moreover, we obtain an unweighted tree with at mostt (h,M) � n

nodes. Note that the depth is at most 2hM <
√

n logn. So for unweighted binary trees wi
n nodes and depthO(

√
n logn), at least log2 n/8− O(logn) bits may be necessary.�

Corollary 3.21. For the familyT M of binary trees with weights from the range[0,M),
M � 2,

�
(
T M

n

) = Θ
(
(logM + logn) logn

)
.

Proof. If M is bounded by some polynomial inn, we can apply Corollary 3.20 and sho
that�(T M

n ) = Ω(log2 n). If M is super-polynomial inn, then by Theorem 3.19,�(T M
n ) =

Ω(logM logn). So �(T M
n ) = Ω(max{log2 n, logM logn}) = Ω((logM + logn) logn).

The upper bound follows from [11].�
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4. Time complexity

The time complexity for computing the distance function is sometimes crucial
instance, a distance labeling for Cayley graphs can be built usingO(logn) bit labels
(by giving the full description of the generators, and labeling the nodes by a u
identifier taken from the set{1, . . . , n}). However, there is no known efficient algorith
for computing the distance knowing the generators only. For instance, it is still an
problem to find a closed formula for the maximal distance between two nodes (name
diameter) for the Pancake graph, which is a Cayley graph.

In this section we show, in particular, that for everyn there exists ann-node graphG for
which there exists a distance labeling scheme for the class of all graphs giving itO(logn)

bit labels. However, for every distance labeling scheme〈L,f 〉 that uses total label lengt
less thanΩ(n2) for G, the time complexity of the distance functionf must be larger than
any (constant size) stack of exponentials. The result holds even if〈L,f 〉 has a stretch< 3.

Given a binary sequenceS, letCt(n)(S|n) be the bounded time Kolmogorov complex
of S given n, i.e., the length of the smallest program that printsS on inputn, and halts
in time at mostt (n), wheret is a total recursivefunction (namely, a function computab
by a Turing Machine and defined everywhere). For every integeri, we denoteSi the ith
bit of S. A recursivesequence is a sequenceS for which there exists a Turing Machin
that computesSi for every inputi. For an infinite sequenceS, and every integern > 0,
let [S]n be the sequence composed of the firstn bits of S, i.e., [S]n = S1S2 . . . Sn. Using a
construction of a binary sequence by diagonalization (see for instance Theorem 7.4, p. 3
of [9] for a proof), it is possible to show the following.

Lemma 4.1. For any unbounded total recursive functionst andg there exists an infinite
recursive binary sequenceS such thatCt(n)([S]n|n) � n − g(n), for infinitely manyn.

Paraphrasing Lemma 4.1, there is a binary sequenceS of lengthn compressible up to
constant number of bits (knowingn) for which the time to decompress any representa
of S with less thann − g(n) bits has arbitrarily large complexity, sayt (n).

For every integerh � 0, let ξh(n) be the total recursive function defined byξh(n) =
2ξh−1(n), andξ0(n) = n. This defines a stack of exponentials of fixed sizeh, e.g.,ξ2(n) =
22n

. The functionξh is used later for concreteness as the functiont of Lemma 4.1, but it
could be replace by any sufficiently large total recursive function.

Given a total recursive functionτ , a family of graphsF is calledτ (n)-recognizable
if there exists an algorithm that answers in time at mostτ (n) whetherG ∈ F or not for
everyn-node graphG. E.g., planar and bipartite graphs are respectivelyO(n)- andO(n2)-
recognizable families of graphs.

For everyA ⊆ Vn, we denote byχA thecharacteristic sequenceof A, that is the binary
sequenceS such thatSi = 1 if and only if i ∈ A.

Theorem 4.2. Let Fn be a τ (n)-recognizable(A, k)-family of n-node graphs such tha
there exists a constanth0 such thatξh0(|Fn|) > n. Then, for infinitely manyn, there exists
G ∈ Fn with the following two properties:
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1. There exists a distance labeling scheme〈L,f 〉 of stretch1 onFn such thatLmax(G) �
3 logn + O(log logn).

2. For every distance labeling scheme〈L,f 〉 of stretch s < k on Fn such that
Lsum(A,G) � log|Fn|− |A| log log|Fn|−Cτ(n)(χA|n)−O(logn), the space and th
time complexities off are greater thanξh(n) − τ (n) for any large enough constanth.

Proof. Let G1,G2, . . . ,Gi, . . . be an enumeration of all graphs ofFn; it can be defined
by generating all 2(

n
2) possiblen-node labeled graphs onVn (say, in lexicographic orde

of their adjacency matrices) and testing whether thej th general graph belongs toFn

or not. Clearly, this yields also a procedureGen(i) for generating theith graphGi in
this enumeration ofFn. Let S be a sequence satisfying Lemma 4.1 (fort, g that will be
specified later on), and let TMS be a Turing Machine computingSi for every inputi. Let
m = 
log|Fn|�, and leti0 be the integer whose binary representation is the sequence[S]m.
We will prove the two claims for the graphGi0 ∈Fn.

Short labels forGi0

Let us build a distance labeling scheme〈L,f 〉 onFn for whichLmax(Gi0) � 3 logn +
O(log logn). L is defined as follows. For everyGi ∈Fn, and for everyu ∈ Vn, we set

L(u,Gi) =
{ 〈0, u, i〉 if i �= i0,

〈1, u,m,TMS〉 if i = i0.

Given two labelsλ1 = L(u,G) andλ2 = L(v,G), the distance betweenu andv in G, i.e.,
f (λ1, λ2), is obtained as follows.

1. Extract the second field ofλ1 andλ2, providing the nodesu,v ∈ Vn.
2. If the first bit ofλ1 is 0, extract fromλ1 the third field,i.
3. If the first bit ofλ1 is 1, extractm and TMS , and compute[S]m = S1 . . . Sm. Compute

the integeri whose binary representation corresponds to the sequence[S]m.
4. Invoking procedureGen(i), construct the graphGi .
5. ComputedGi (u, v) with any shortest path algorithm, like Dijkstra’s algorithm.

This defines a distance labeling of stretch 1 onFn. Let us bound|L(u,Gi0)|. The coding
of an integerz ∈ {1, . . . ,Z} into a binary sequenceσ is said to beself-delimitingif z

can be recovered fromσ without any knowledge ofZ. In particular, if σ and σ ′ are,
respectively, two self-delimiting codings ofz ∈ {1, . . . ,Z} andz′ ∈ {1, . . . ,Z′}, then the
binary sequenceσσ ′ composed of the concatenation of the bits ofσ and ofσ ′ represents a
coding of the pair〈z, z′〉. Everyz ∈ {1, . . . ,Z} supports a self-delimiting coding of leng
logz + O(log logZ).

To code each labelL(u,Gi) we use a binary string consisting of the concatenatio
one bit and of the self-delimiting code of each field of the label. Therefore, forGi0 we have

∣∣L(u,Gi0)
∣∣ � 1+ logu + O(log logu) + logm + O(log logm) + O(1),
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noting that TMS depends on the recursive functionst and g only and is independen
of n. Thus TMS can be coded by a constant number of bits. Becauseu ∈ Vn, and
m ∈ {1, . . . ,

(
n
2

)}, it follows that

Lmax(Gi0) � 3 logn + O(log logn).

Exponential complexity for any distance function onGi0

Consider now any distance labeling scheme〈L,f 〉 of stretchs < k onFn. Let tf (n) be
the time complexity of the distance functionf .

In order to prove the second claim we will build a constant size programP that, from
a suitable input of sizelP bits, and in time at mosttP , outputs[S]m. As S was chosen in
accordance with Lemma 4.1, it must be the case than eithertP is larger than any constan
stack of exponentials, orlP is of size larger thanm − o(m). Thus, expressingtP as a
function of tf , andlP as a function ofLmax(A,Fn), we will conclude that ifLmax(A,Fn)

is too small, thentf must be very large. More precisely, we will constructP such thatlP
andtP verifies:

1. lP = Lsum(A,Gi0) + |A| logm + Cτ(n)(χA|n) + O(logn).

2. tP = n4 · tf (n) + τ (n)2 · 22n2
.

Assume that such a programP exists. FromP and its suitable input of lengthlP , one
can output[S]m in time at mosttP . ThusCtP ([S]m|m) � lP + O(1). From Lemma 4.1
we conclude that: eitherCtP ([S]m|m) � m − O(logm) (choosingg(m) = c logm for
some suitable computable constantc), or the functiontP is larger than any total recursiv
function inm, in particulartP > ξh(m) for every constanth.

Assume that〈L,f 〉 satisfiesLsum(A,Gi0) � m − |A| logm − Cτ(n)(χA|n) − O(logn),
i.e., the assumption of the second claim. It follows thatCtP ([S]m|m) � lP + O(1) <

m − O(logm) (recall thatm < n2). From the above discussion, it turns out that

tP = n4 · tf (n) + τ (n)2 · 22n2
> ξh(m) for all m,n, and every constanth. (4)

Becausem � log|Fn| andξh0(|Fn|) > n, we have for everyh > h0,

ξh(m) � ξh

(
log|Fn|

)
� ξh−1

(|Fn|
) = ξh−1−h0

(
ξh0

(|Fn|
))

> ξh−1−h0(n).

Inequality (4) implies thattf (n) > ξh(n) − τ (n) for every constanth > h0 + 3. Note that
any program that halts aftertf (n) steps requires space at least logtf (n).

Therefore, for such programP , the time and the space complexities off must be larger
than any stack of power of two of constant size. It remains to build such a programP .

Description of the programP
We are going to use the set of labels to determine the distances between the nodA,

and then using procedureGen for F we determine the unique graph which complies w
these distances (up to the stretch factors < k). This graph isGi0, and we outputi0, which
is equal to[S]m.

W.l.o.g. A = {a1, . . . , aα} ⊆ Vn is ordered so thata1 < · · · < aα . Let q = (
α
2

)
. Let us

consider a functionµ that maps every integerp ∈ {1, . . . , q} to any pair of integers o
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{1, . . . , α}. Moreover assume thatµ(p) = {i, j } can be computed in time at mostO(q).
The choice ofµ is not important, and clearly every “reasonable”N → N

2 mapping has
such time requirement (for instance the program consisting in enumerating of po
pairs of{1, . . . , α}). For everyG ∈ Fn and everyp ∈ {1, . . . , q}, let δG(p) = dG(ai, aj )

where{i, j } = µ(p). Let LA = 〈L(a1,Gi0), . . . ,L(aα,Gi0)〉.
Consider the following programP on inputs〈LA,χA,q,n, k, f 〉:

1. For everyp ∈ {1, . . . , q}, computeµ(p) = {i, j }, and extractλi, λj respectively the
ith andj th field ofLA. Computexp = f (λi, λj ).

2. For everyGi in the enumeration ofFn, check whetherδGi (p) � xp < k · δGi (p) for
all p ∈ {1, . . . , q}. If the test succeeds for allp then seti0 = i and go to Step 3. Thi
computation can be done involvingGen(i), and using Dijkstra’s algorithm applied o
the pair of nodes ofA indexed byµ(p) extracted fromVn with χA.

3. Write i0 in binary, yielding the sequence[S]m.

Let us show thatP outputs[S]m. By the definition of an(A, k)-family, for every two
distinct graphsG,H ∈ Fn, there exists a pair of nodes ofA whose distances differ by
factor at leastk. Because in Step 1,δGi0

(p) � xp � s · δGi0
(p) for everyp, it follows that

the sequences ofxp ’s uniquely identifiesGi0 in Fn. Hence Step 2 findsi0, and Step 3
writes[S]m.

The length of the inputs is bounded by

Lsum(A,Gi0) + α logm + Cτ(n)(χA|n) + O(logn) = lP as claimed,

noting thatq,n, k ∈ {1, . . . , n2} (so representable onO(logn) bits), and thatLsum(A,Gi0)+ α logm bits are enough to describe the sequenceLA in an easy way to extract all th
labels. Note also thatf depends onFn only (andFn is τ (n)-recognizable, so givenn it
has a constant size procedureGen). Thereforef can be stored with a constant number
bits knowingn.

Let us compute the time complexity ofP . In Step 1, there areq calls to the functionsµ
andf . Thus it costsO(q(q + tf (n))) = O(n4 + n2tf (n)). In Step 2, there are 2m calls to

procedureGen (each one costs 2(
n
2) · τ (n)), and for each one there areq calls toµ, χA, and

to Dijkstra’s algorithm. Thus it costsO(2m · 2(n
2) · τ (n) · (n2 + τ (n) + n2 logn)). In total,

for n large enough and boundingm �
(
n
2

)
, the time is bounded by

O
(
n4 · tf (n)

) + O
(
τ (n) · 2m+(n

2) · (n3 + τ (n)
))

� n4 · tf (n) + τ (n)2 · 22n2 = tP

as required. �
For all the(A, k)-families we constructed in Section 3.1, we haveCn(χA|n) = O(1).

Therefore, denoting byLsum(G) = ∑
u∈V (G) |L(u,G)|, we have the following corollaries

Corollary 4.3. Let G be the family of all graphs. For infinitely manyn there exists som
graphG ∈ Gn with the following two properties:

1. There exists a distance labeling scheme〈L,f 〉 of stretch1 satisfyingLmax(G) �
3 logn + o(logn).
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2. For every distance labeling scheme〈L,f 〉 of stretchs < 2 satisfyingLsum(G) �
n2/2 − O(n logn), the time and space complexities of the distance functionf are
larger than any(constant size) stack of exponentials.

Corollary 4.4. LetBk be the family of graphs having ak-separator. For infinitely manyn
there exists some graphG ∈ Bk

n with the following two properties:

1. There exists a distance labeling scheme〈L,f 〉 of stretch1 satisfyingLmax(G) �
3 logn + o(logn).

2. For every distance labeling scheme〈L,f 〉 of stretchs < 3 satisfyingLsum(G) �
k(n − k) − O(n logn), the time and space complexities of the distance functiof

are larger than any(constant size) stack of exponentials.

Corollary 4.5. LetD be the family of maximum degree three graphs. For infinitely man
there exists some graphG ∈ Dn with the following two properties:

1. There exists a distance labeling scheme〈L,f 〉 of stretch1 satisfyingLmax(G) �
3 logn + o(logn).

2. For every distance labeling scheme〈L,f 〉 satisfyingLsum(G) � Θ(n3/2), the time
and space complexities of the distance functionf are larger than any(constant size)
stack of exponentials.

Corollary 4.6. LetP be the family of bounded degree planar graphs. For infinitely m
n there exists some graphG ∈Pn with the following two properties:

1. There exists a distance labeling scheme〈L,f 〉 satisfying Lmax(G) � 3 logn +
o(logn).

2. For every distance labeling scheme〈L,f 〉 satisfyingLsum(A,G) � Θ(n2/3) for a
subsetA of O(n1/3) nodes, the time and space complexities of the distance functf

are larger than any(constant size) stack of exponentials.

4.1. Conclusion

We have proved several upper and lower bounds on the label length required to co
distances between pair of nodes in ann-node graph for different classes. This paper lea
some open questions.

• Find the smallest constantc such that there is a distancelabeling scheme on arbitrar
graphs with labels of length at mostcn + o(n) bits. The current range forc is
c ∈ [1/2, log3].

• Find the complexity of the maximum label length for unweighted planar graphs
current complexity ranging betweenΩ(n1/3) andO(

√
n logn).

• Find the complexity of the maximum label length for bounded degree graphs
current complexity ranging betweenΩ(

√
n ) andO(n).
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