
Bounds on Locally Testable Codes

with Unique Tests†

Gillat Kol Ran Raz

Abstract

The Unique Games Conjecture (UGC) is an important open problem in the re-

search of PCPs and hardness of approximation. The conjecture is a strengthening

of the PCP Theorem, predicting the existence of a special type of PCP veri�ers:

2-query veri�ers that only make unique tests. Moreover, the UGC predicts that

such PCP veri�ers can have almost-perfect completeness and low-soundness.

The computational complexity notion of a PCP is closely related to the combi-

natorial notion of a Locally Testable Code (LTC). LTCs are error-correcting codes

with codeword testers that only make a constant number of queries to the tested

word. All known PCP constructions use LTCs as building blocks. Furthermore,

to obtain PCPs with certain properties, one usually uses LTCs with corresponding

properties.

In light of the strong connection between PCPs and LTCs, one may conjecture

the existence of LTCs with properties similar to the ones required by the UGC.

In this work we show limitations on such LTCs: We consider 2-query LTCs with

codeword testers that only make unique tests. Roughly speaking, we show that

any such LTC with relative distance close to 1, almost-perfect completeness and

low-soundness, is of constant size.

While our result does not imply anything about the correctness of the UGC, it

does show some limitations of unique tests, compared, for example, to projection

tests.

†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Israel.
Research supported by Binational Science Foundation (BSF) and Israel Science Foundation (ISF).

1

1 Introduction

1.1 The Unique Games Conjecture

The discovery of the PCP theorem [4, 10, 2, 1] in 1992 has led to breakthrough results

in the �eld of hardness of approximation. Yet, for many fundamental problems, optimal

hardness results are still not known. To deal with such problems, a strengthening of the

PCP Theorem, called the Unique Games Conjecture (UGC) was proposed by Subhash

Khot in 2002 [13].

The PCP Theorem states that any statement of the form �ϕ ∈ SAT � has a proof

that can be checked probabilistically by reading only a constant number of locations in

the proof. Moreover, the check can be performed by an e�cient probabilistic algorithm

called a veri�er.

We say that a veri�er has completeness 1 − ε, if for every ϕ ∈ SAT , there exists a
proof that causes the veri�er to accept with probability at least 1 − ε. A veri�er has

soundness (error) s if for any ϕ /∈ SAT , no matter which proof is provided, the veri�er

accepts with probability at most s. The PCP Theorem shows the existence of a veri�er

achieving completeness 1 (�perfect completeness�) and constant soundness s > 0.

The UGC considers a special type of PCP veri�ers: veri�ers that read at most

two locations in the proof, and only make unique tests. That is, given the value read

from the �rst location, there is a unique value for the second location that makes the

veri�er accept, and vice versa. The conjecture states that for any arbitrarily small

constants ε, s > 0, there exists a constant size alphabet set Σ (whose size may depend

on ε and s), satisfying the following: There exists a veri�er with unique tests that

checks proof strings over the alphabet Σ, and has completeness 1− ε and soundness s.

We mention that such a veri�er is known to exist when the uniqueness requirement is

relaxed to projection [22].

The UGC has been shown to imply optimal hardness results for Vertex Cover [15]

and Max-Cut [14, 20]. In addition, the conjecture, or variants of it, has been used to

obtain improved hardness results for other problems [13, 16, 7, 9]. Furthermore, for

every constraint satisfaction problem, there exists an approximation algorithm (based

on Semi-De�nite Programming) that is known to be optimal under the UGC [21].

2

1.2 Locally Testable Codes

The computational complexity notion of a PCP is closely related to the combinatorial

notion of a Locally Testable Code (LTC). LTCs are error-correcting codes that have local

codeword testers. A local codeword tester is an e�cient algorithm that probabilistically

checks whether a given word belongs to the code, by only reading a constant number

of locations in the word. We say that a tester has completeness 1− ε, if it accepts every
codeword with probability at least 1− ε. The tester has soundness (error) s, if for any

word that agrees with every codeword on at most a δ = 2
3
-fraction of the coordinates,

the tester accepts with probability at most s.

Known PCP constructions use LTCs as building blocks. For example, Reed-Muller,

Hadamard, and the Long Code are codes that have been extensively used in PCP

constructions. Furthermore, to obtain PCPs with certain properties, one usually uses

LTCs with corresponding properties. For instance, low-error PCP constructions (i.e.,

PCPs with sub-constant soundness in the size of ϕ), use low-error LTCs [23, 3, 8, 17, 18,

19]. Furthermore, for known PCP constructions, there exist LTCs with corresponding

properties.

In the opposite direction, some PCP constructions were shown to imply LTCs [11].

Moreover, in the high-error (constant soundness) region, the existence of a special type

of PCP, called PCP of Proximity (PCPP), is known to imply LTCs [5]. Note, however,

that the reduction of PCPPs to LTCs yields LTCs with soundness of at least 1
2
, and

thus cannot be used to construct low-error LTCs. For further discussion of the relations

between PCPs and LTCs, see [11].

1.2.1 Low-Error Locally Testable Codes

In light of the strong connection between PCPs and LTCs, in this work we study

LTCs with properties corresponding to the UGC. Since proving the UGC requires the

construction of PCPs with arbitrarily small constant soundness (error), we will be

interested in LTCs with arbitrarily small constant soundness (error). Recall that the

soundness requirement of an LTC (see Subsection 1.2) was that for any word that agrees

with every codeword on at most a δ-fraction of the coordinates, the tester accepts with

probability at most s. Note that if δ is a �xed constant (say, δ = 2
3
), and the number

of queries is a �xed constant, we cannot get s to be lower than some �xed constant.

Hence, we will consider an arbitrarily small δ, and take s to be a function of δ.

We assume that the dependence of the acceptance probability s, on the agreement

3

with the code δ, is given by an arbitrary weakly monotone increasing function s :

(0, 1) → [0, 1]. We say that the tester has a soundness function s (δ), if for any word

that agrees with every codeword on at most a δ-fraction of the coordinates, the tester

accepts with probability at most s (δ). We mention that, typically, low-error PCP

constructions use codes with soundness function s (δ) = c1δ
c2 where c1 is a large constant

(say, 100), and c2 is a small constant (say, 1
100

) (for non-negligible δ). See for example

[23, 3, 8, 17, 18, 19].

We now give the formal de�nition of an LTC. We use the following notations. For

a natural number t ∈ N, denote [t]
.
= {1, ..., t}. Let Σ be a �nite alphabet set, and

let n ∈ N be a natural number. The agreement set of two words u,w ∈ Σn is de�ned

as agree (u,w)
.
= {i ∈ [n] | ui = wi}, and the distance between u and w is ∆ (u,w)

.
=

1 − 1
n
|agree (u,w)|. A subset C ⊆ Σn is called a code. The relative distance of the

code C is minu6=w∈C {∆ (u,w)}, and the distance of a word v ∈ Σn from the code C is

∆ (v, C)
.
= minu∈C {∆ (v, u)}.

De�nition 1 (Local Tester, LTC, Generalized Version). Let Σ be a �nite alphabet

set, n ∈ N be a natural number, and C ⊆ Σn be a code. Let ε ∈ [0, 1) be a real number,

and let s : (0, 1)→ [0, 1] be a weakly monotone increasing function. Assume that T is a

probabilistic, non-adaptive, oracle machine with access to a string v ∈ Σn. In addition,

assume that T makes a constant number of queries to v, and outputs either accept or

reject. Then, T is an (ε, s)-local tester for C if it satis�es the following conditions:

• Completeness: If v ∈ C, then Pr [T v = accept] ≥ 1− ε.

• Soundness: For every δ ∈ (0, 1) the following holds. If ∆ (v, C) > 1 − δ, then
Pr [T v = accept] ≤ s (δ). In other words, if Pr [T v = accept] > s (δ), then there

exists a codeword u such that |agree (v, u)| ≥ δn.

A code C is an (α, ε, s)-LTC if it has relative distance at least 1−α, and has an (ε, s)-local

tester.

In known PCP constructions, the error of the veri�er originates from the relative

distance of the LTC used, as well as its completeness and soundness. Therefore, in

order to get PCPs with error close to 0, we study (α, ε, s)-LTCs for which there exists

δ ∈ (0, 1) such that α, ε, s (δ) are simultaneously close to 0.

4

1.3 Unique Locally Testable Codes

To match the requirements of the UGC, we de�ne the notion of unique LTCs. Unique

LTCs are LTCs with local testers that read at most two locations in the tested word,

and only make unique tests. That is, given the value read from the �rst location, there

is a unique value for the second location that makes the tester accept, and vice versa.

Formally, an (α, ε, s)-unique LTC is an (α, ε, s)-LTC that only makes unique tests.

De�nition 2 (Unique Local Tester, Unique LTC). Let Σ be a �nite alphabet set,

n ∈ N be a natural number, and C ⊆ Σn be a code. Let ε ∈ [0, 1) be a real number,

and let s : (0, 1)→ [0, 1] be a weakly monotone increasing function. Assume that T is a

probabilistic, non-adaptive, oracle machine with access to a string v ∈ Σn. In addition,

assume that T makes at most two queries to v, and outputs either accept or reject.

Then, T is an (ε, s)-unique local tester for C if it satis�es the following conditions:

• Uniqueness: For every pair of indices (i, j) ∈ [n]2 that may be queried by T in a

single execution, there exists a permutation πij : Σ→ Σ satisfying the following.

After querying vi and vj, T outputs accept if and only if vj = πij(vi).

• Completeness: If v ∈ C, then Pr [T v = accept] ≥ 1− ε.

• Soundness: For every δ ∈ (0, 1) the following holds. If ∆ (v, C) > 1 − δ, then
Pr [T v = accept] ≤ s (δ). In other words, if Pr [T v = accept] > s (δ), then there

exists a codeword u such that |agree (v, u)| ≥ δn.

A code C is an (α, ε, s)-unique LTC if it has relative distance at least 1− α, and has an

(ε, s)- unique local tester.

1.4 Our Result

As discussed above, in known PCP constructions, the error of the veri�er originates

from the relative distance of the LTC used, as well as its completeness and soundness.

Recall that the UGC predicts the existence of a PCP veri�er with unique tests and

arbitrarily small constant error. Therefore, in terms of codes, one may expect the

existence of (α, ε, s)-unique LTCs for arbitrarily small α and ε, and s that attains

arbitrarily small values. However, the following theorem shows that if s attains a value

smaller than 10−5, then there exists a constant δ′ (that depends on s), such that the

following holds. Every (α, ε, s)-unique LTC with both α and ε smaller than δ′, is of

5

constant size (where the constant size depends on |Σ| and δ′). Speci�cally, δ′ = 10−10δ2,

where δ is as in the theorem below.

Theorem 3 (Main). Let s : (0, 1)→ [0, 1] be a weakly monotone increasing function,

attaining a value no larger than 10−5. Let δ ∈ (0, 1) be such that s (δ) ≤ 10−5.1 Then,

there exist su�ciently small constants α, ε ∈ (0, 1) (speci�cally, α = ε
.
= 10−10δ2) such

that for every �nite alphabet set Σ, and every natural number n ∈ N, the following

holds. Every (α, ε, s)-unique locally testable code C ⊆ Σn satis�es

|C| ≤ 103 |Σ|√
α

= 108 |Σ|
δ
.

While our result does not imply anything about the UGC, it does show some limi-

tations of unique tests, compared, for example, to projection tests.

1.5 Previous Works

In [6] it is shown that linear 2-query LTCs with constant distance and alphabet size,

must be of constant size (where linear means that the code is a linear subspace of

the vector space Fn, for some �nite �eld F). The same result is obtained for general

(non-linear) LTCs, when perfect completeness and binary alphabet are assumed [6].

In [12], binary LTCs with almost-perfect completeness (say 1−ε, for ε approaching 0)

are investigated. It is shown that such codes must either have a constant size, or have

soundness s of at least 1−O(ε).

The results described above are incomparable to ours. On the one hand, to match

the parameters of the UGC, our result considers the more general case of LTCs over

arbitrarily large alphabet sets, with almost-perfect completeness. (We mention that the

UGC with a small alphabet set, or with perfect completeness, is known to be false).

On the other hand, we only consider LTCs with unique tests.

1.6 Discussion

1.6.1 Can the UGC be Proven Using Unique LTCs?

Our result does not exclude the possibility of proving the UGC using codes with local

testability features. However, such a proof may need to consider a di�erent de�nition

1We mention that the proof only makes use of the fact that for this �xed δ it holds that s (δ) ≤ 10−5,
and makes no assumptions as to the values attained by s in other points.

6

of LTCs than the one used here (for example, a de�nition that is satis�ed by the long

code. See Subsection 1.6.2), or use a family of LTCs with an extremely weak soundness

condition (see Appendix 8).

1.6.2 The Long Code

The long code is an error correcting code that encodes a message i ∈ [n] by the dictator-

ship function χi : {1,−1}n → {1,−1}, χi (x1, ..., xn) = xi (χi can be viewed as a 2n-bit

truth table string). Although the long code has a poor (but non-trivial) rate, it is very

useful for hardness of approximation as it is locally testable using unique tests [14, 20].

The long code's codeword test is a stability test: To test a function f : {1,−1}n →
{1,−1}, one selects two inputs x, y ∈ {1,−1}n such that x is a random input, and y

is a noisy version of x, then checks whether f (x) = f (y). For concreteness, assume y

is produced by taking x and �ipping each of its coordinates with a small probability

µ > 0. The analysis of the test uses the fact that dictatorship functions are the stablest

functions among all balanced boolean functions.

We mention that the long code, as well as the noise stability test, was generalized to

work over a q-symbol alphabet, for arbitrarily large qs. The codewords of the generalized

code are the n dictatorships χi : [q]n → [q].

The long code is not an LTC according to the de�nition of LTCs used in this paper,

as it violates the soundness requirement (and indeed, the long code is not of constant

size). That is, there exist strings that are far (in Hamming distance) from the code, but

are accepted by the test above with high probability. Consider, for example, the Junta

(a function that depends on a small number of variables) f (x) = x1 + x2. Note that f

agrees with every dictatorship on 1
q
-fraction of the coordinates. However, whenever the

test selects a y such that y1 = x1 and y2 = x2 (that is, no noise is introduced to the

�rst two coordinates of x), it holds that f(x) = f (y), and the test accepts. This event

occurs with a high probability of (1− µ)2.

We mention that our proof relies on the fact that for every code satisfying our

de�nition of an LTC, the following holds: Every word that is a hybrid of k codewords

(for a �xed constant k), agreeing with each on roughly 1
k
-fraction of the coordinates, is

rejected by the codeword test with high probability (see Subsection 1.6.3). The long

code can be shown to violate the above property.

7

1.6.3 Technique

The theorem is proved by way of contradiction. We assume the existence of such an

LTC, and analyze the constraint graph induced by its tester. The vertex set of the graph

is [n], and there is an edge (i, j) if the tester may query the pair of locations (i, j). We

say that a word v satis�es a given edge if v satis�es the corresponding constraint.

Our main task is to decompose the graph into small connected components, by

removing only a small number of edges. Speci�cally, we want to be left with a graph G∗

containing at least 2 · 10−4-fraction of the edges. Using G∗, we then construct a word

that is far from any codeword, but is accepted with probability greater than 10−5, thus

violating the soundness property.

The word is constructed by taking a hybrid v∗ of k di�erent codewords v1, ..., vk (for

a constant k � 1
ε
), such that v∗ agrees with each vi on a set of connected components

of G∗ containing roughly 1
k
-fraction of the coordinates. On the one hand, v∗ is far from

every codeword, as the relative distance of the code is high. On the other hand, v∗

satis�es all the edges in G∗ that are also satis�ed by every vi. Therefore, v
∗ satis�es at

least 2 · 10−4 − kε > 10−5-fraction of the edges.

As mentioned before, our main e�ort goes into partitioning the graph. We suggest

a decomposition algorithm that proceeds in a sequence of iterations, each aimed at

disconnecting one small set of vertices from the rest of the graph. Our �rst attempt at

disconnecting a set is selecting two di�erent codewords u and w, and disconnecting the

set of coordinates A that they agree on, by simply removing all the edges between A

and its complement [n] \A. Clearly, A is small, as the code has a high relative distance.

In order to show that only a small number of edges are removed by the process,

we use the following observation: Each of the removed edges e violates either u or w.

Otherwise, since u and w agree on the endpoint of e that is in A, and since they both

satisfy e, they must agree on e's other endpoint, making it in A as well. Now, since u

and w are codewords, only a small number of edges can be violated by either of them.

Unfortunately, a careful analysis shows that the number of edges removed can still

be greater than we can a�ord. The main di�culty is showing that while some vertices

in A are �expensive�, in the sense that disconnecting them requires the removal of many

edges, there always exist vertices in A that are �cheap� to disconnect. We then only

disconnect the subset of A containing cheap vertices. Most of the hard, technical work

in the proof is done in order to overcome this di�culty.

8

1.6.4 Unique LTCs with A�ne Tests Do Not Exist (a Follow-Up Work)

In a follow-up work, we consider the special case of unique LTCs where the tests are

a�ne. Formally, we assume that the alphabet set is a �nite �eld Σ = F, and consider

testers that perform tests of the form avi − bvj = c, where v ∈ Fn is the tested word,

i, j ∈ [n] and a, b, c ∈ F. We note that many of the LTCs used in PCP constructions

are a�ne, e.g. variants of Reed-Muller, Hadamard, and the Long Code. Moreover, the

UGC with a�ne tests was shown to be equivalent to the UGC [14].

In the current work we show that low-error unique LTCs are of constant size. The

follow-up paper shows that in the a�ne case, unique LTCs with a large constant error,

are of constant size. Furthermore, the paper gives a better upper bound on the size of

such LTCs (the bound depends only on the size of the alphabet set).

The follow-up work uses a di�erent (and simpler) technique. We mention that an

attempt of generalizing the technique of the new paper, using the reduction of UGC

with a�ne tests to the UGC ([14]), fails. The reason is that, when applied to LTCs

(instead of PCPs), the reduction does not preserve the relative distance of the original

code.

2 De�nitions

Let SΣ be the set of all permutations over Σ. A unique constraint graph (UCG) is a triple

G = (H = (V,E) ,Σ,Π), whereH is an undirected multigraph (we allow parallel edges),

Σ is a �nite label set, and Π : E → SΣ is a function mapping edges to permutations.

We denote E (G)
.
= E and V (G)

.
= V .

Let G = (H = (V,E) ,Σ,Π) and G′ = (H ′ = (V ′, E ′) ,Σ,Π′) be a pair of UCGs. We

say that G′ is a subgraph of G if V ′ ⊆ V , E ′ ⊆ E ∩ (V ′)2, and Π′ is the restriction of Π

to E ′. The UCG G′ is an edges subgraph of G if it is a subgraph of G, and also V ′ = V .

When the label set and permutation mapping of a UCG G are known, we sometimes

refer to G simply as a graph. Furthermore, if G′ is a subgraph of a known UCG G, we

only describe the vertex and edge sets of G′. Finally, if G′ is an edges subgraph of G,

we only describe the edge set of G′.

Let G = (H = (V,E) ,Σ,Π) be a UCG. Let e = (i, j) ∈ E be an edge of G, let

π = Π (e) be the permutation mapped to e, and let v ∈ Σn be a word. We say that v

satis�es e if vj = π(vi). Otherwise, we say that v violates e. We denote by G (v) the

edges subgraph of G containing the edges satis�ed by v.

9

Let T be a unique local tester for a code C ⊆ Σn. Let Q be the set of all the

pairs of indices (i, j) that may be queried by T in a single execution. Assume that

all the pairs in Q are queried by T with an equal probability. Then, T gives rise to

the following natural UCG, denoted GT . The vertex set of GT is [n], the edge set

is Q, and the label set is Σ. An edge e = (i, j) of GT is mapped to the permutation πij

promised by the uniqueness property of T . If T queries di�erent pairs in Q with di�erent

probabilities, then the number of edges between a pair of vertices in Q is proportional

to the probability of this pair being queried.

Note that GT fully characterizes the behavior of T in the event that T makes exactly

two queries: Assume that T tests a word v, and decides to make two queries. Then,

T can be thought of as operating as follows: It �rst selects a random edge e = (i, j) ∈
E (GT), and queries vi and vj. It accepts if v satis�es e , and otherwise rejects.

3 Proof of Main Theorem

In this section we prove the main result, Theorem 3, using two key lemmas. We state

the lemmas, then prove the theorem using the lemmas.

The theorem is proved by way of contradiction. We assume to be given a function s

and a value δ, as described by the theorem. We denote α = ε
.
= 10−10δ2. We let Σ

be a �nite alphabet set, and let n ∈ N be a natural number. We then assume for

contradiction the existence of a code C ⊆ Σn, satisfying the following properties:

• The relative distance of C is at least 1− α.

• There exists an (ε, s)-unique local tester T for C.

• |C| > 103 |Σ|√
α
.

We next state the key lemmas. Both lemmas hold under the above assumptions. The

�rst lemma constructs a �special� edges subgraph G∗ of GT . The graph G∗ is special

since it contains a constant fraction of GT 's edges, but has no large connected compo-

nents. The second lemma uses the graph G∗ to create a �special� word v∗ ∈ Σn. The

word v∗ is special since it is accepted by T with constant probability, but is very far

from the code C. Speci�cally, as the code's parameters keep improving (ε and α tend

to 0), the distance of v∗ from the code becomes larger (tends to 1). Below are the

formal statements of the lemmas.

10

We denote by Q2 the event that T makes exactly two oracle calls, and by Q2 the

event that T makes at most one call. For simplicity of notation, we write ET
.
= E (GT)

and eT
.
= |ET |.

Lemma 4 (Graph Decomposition). Assume that Pr [Q2] ≥ 1
2
(the probability is

taken over T 's randomness). Then, there exists an edges subgraph G∗ of GT satisfying

both of the following:

• |E (G∗)| > 2 · 10−4eT .

• Every connected component of G∗ is of size at most αn.

Lemma 5 (Existence of a Special Word). There exists a word v∗ ∈ Σn satisfying

both of the following:

• Pr
[
T v
∗

= accept
]
> 10−5.

• Denote β
.
=
√
α =
√
ε. Then, ∆ (v∗, C) > 1− 3β.

The proof of lemma 4 requires most of the e�ort, and can be found in Sections 5

and 6. The proof of Lemma 5 is presented in Section 7. Overviews of both proofs can

be found in Section 4.

Theorem 3 is an easy corollary of Lemma 5.

Proof of Theorem 3. Let v∗ be the special word guaranteed by Lemma 5. The lemma

shows

Pr
[
T v
∗

= accept
]
> 10−5 ≥ s (δ) .

Due to T 's soundness, it must hold that ∆ (v∗, C) ≤ 1 − δ. However, it follows from

Lemma 5 that

∆ (v∗, C) > 1− 3β = 1− 3
√
α = 1− 3

(
10−5δ

)
> 1− 3

(
1

3
δ

)
= 1− δ.

We have reached a contradiction.

4 Overview of Key Lemmas

This section is devoted to informal sketches of the proofs of the two key lemmas. The

sketches assume for simplicity that GT is d-regular, and that T always makes exactly

two oracle calls.

11

4.1 Overview of Lemma 4

The proof suggests an algorithm called decompose (Figure 2). The algorithm proceeds

in iterations. The goal of each iteration is to disconnect a new, non-empty, set of

vertices A from the rest of GT 's vertices. The set A should be of size at most αn, and

should be disconnected by the removal of less than 1 − 2 · 10−4 fraction of the edges

touching it in GT . We next describe and analyze the �rst iteration. The following

iterations are similar, and work on the part of GT induced by the vertices that are not

yet disconnected. Since the sets disconnected in di�erent iterations are disjoint, the

result follows.

The decompose Algorithm

First Attempt. As a warm up, consider the following algorithm for the �rst itera-

tion of decompose:

1. Randomly select a pair of di�erent codewords u and w:

(a) Let A = agree (u,w).

(b) Let E be the set of edges of GT that do not belong to at least one of GT (u)

and GT (w) (i.e., violated by at least one of u and w).

2. Let G1
T be the graph obtained from GT by removing every edge in E that has

exactly one endpoint in A.

In the case that A is empty, we repeat the algorithm. Recall that |C| > |Σ|, therefore
a non-empty A will eventually be found. In addition, since the relative distance of the

code C is at least 1− α, it holds that |A| ≤ αn. We next claim that A is disconnected

from the rest of G1
T . Let e = (i, j) be an edge of G1

T , and assume for contradiction

that i ∈ A (i.e., ui = wi), but j /∈ A (i.e., uj 6= wj). Since e was not removed, it must

be satis�ed by both u and w. Therefore, uj = πij (ui) = πij (wi) = wj, a contradiction.

Problem. The key problem is that the algorithm may remove too many edges.

According to T 's completeness, a codeword may violate up to ε fraction of GT 's edges.

Note that the algorithm may remove all the edges violated by either u or w. Therefore,

it may remove up to 2εeT edges. Consider a random code for example. Since u and w

are random words, A's expected size is n
|Σ| . For A of size n

|Σ| , on average over i ∈ A,
the algorithm may remove up to 2εeT

|A| = ε |Σ| d of the edges touching i. Since |Σ| can
be larger than 1

ε
, all the edges touching i may be removed.

12

We are therefore interested in disconnecting a �cheap� subset of A. The subset

should have the following property. On average over i in the subset, less than 1−4 ·10−4

fraction of the edges touching i are removed while disconnecting the subset.

Solution. Let v be a word, i ∈ [n] be an index, and G be a subgraph of GT . We

say that i is expensive with respect to G, if G contains less than 0.1 fraction of the edges

touching i in GT . Speci�cally, i is expensive with respect to GT (v) if v violates more

than 0.9 fraction of edges touching i in GT . Let Gv be the graph obtained from GT (v)

by the execution of the following remove− expensive procedure (Figure 1): While there

exists an expensive vertex i with respect to GT (v), remove i and all the edges touching i

from GT (v). We say that i is iteratively expensive with respect to v if it is eventually

removed by the above procedure.

To obtain a �cheap� subset, we remove from A all iteratively expensive indices

with respect to either u or w, for the following reason. Let v be either u or w. If A

contains an expensive index i with respect toGT (v), thenG1
T may remove more than 0.9

fraction of the edges touching i in GT . Thus, we remove from A all the indices that

are expensive with respect to GT (v). However, some of the vertices in the updated A

may be connected to expensive vertices just removed from A. To make sure that

the updated A is still disconnected, we delete all the edges touching expensive vertices.

Note that the removal of more edges may cause some of the vertices that were originally

cheap to become expensive. We therefore need to iterate this process, removing the

new expensive vertices from A, and removing edges touching expensive vertices.

The following is a corrected version of the previously suggested �rst iteration of

decompose:

1. For a pair of codewords u′ and w′:

(a) Let Au′,w′ be the set obtained from agree (u′, w′) by removing all the indices

that are iteratively expensive with respect to either u′ or w′.

(b) Let Eu′,w′ be the set of edges of GT that do not belong to at least one of Gu′

and Gw′ .

2. Let u and w be a pair of di�erent codewords for which A
.
= Au,w 6= φ, and

E
.
= Eu,w contains less than 1− 2 · 10−4 fraction of edges touching A in GT . (We

will next see that such u and w exist).

3. Let G1
T be the graph obtained from GT by removing every edge in E that has

exactly one endpoint in A.

13

Proof Overview

In order to prove that decompose performs properly, we show the followings: (i) There

exist codewords u and w satisfying the requirements of Step 2 of the algorithm (Lemma 6).

(ii) |A| ≤ αn. (iii) A is disconnected from the rest of G1
T .

As before, |A| ≤ |agree (u,w)| ≤ αn. In addition, A is disconnected from the

rest of G1
T for the following reason. Let e = (i, j) be an edge of G1

T , and assume for

contradiction that i ∈ A, but j /∈ A. Since e was not removed, it belongs to both Gu

and Gw. In particular, j is not iteratively expensive with respect to either u or w. As

before, since i ∈ A ⊆ agree (u,w), it holds that uj = πij (ui) = πij (wi) = wj, and

j ∈ agree (u,w). We conclude that j ∈ A and reach a contradiction.

The main challenge is proving Lemma 6. In order to do so, we show the following

claim: There exists a pair of di�erent codewords u and w satisfying the following. On

average over i ∈ A
.
= Au,w, the set E

.
= Eu,w contains strictly less than 1 − 4 · 10−4

fraction of the edges touching i in GT . Note that since we demand a strict inequality,

the claim also implies that A 6= φ. We remark that the claim does not follow directly

from the fact that A contains no iteratively expensive indices with respect to either u

or w. The latter implies that u satis�es at least 0.1 fraction of the edges touching i,

and so does w. However, it may be the case that there is not even a single edge that

they both satisfy.

We next describe the steps taken towards proving Lemma 6. We loosely state the

needed lemmas and sketch their proofs. We use the following notations. Let i ∈ [n] be

an index, and let σ ∈ Σ be a symbol. Denote by Li the set of codewords for which i is

not iteratively expensive with respect to. In addition, denote Li,σ
.
= {v ∈ Li | vi = σ}.

Step 1 (Lemma 10). Let v be a codeword. Then, remove− expensive removes at

most ε
4
eT of the edges of GT (v). We represent a subgraph G of GT as a linked list. Each

node represents a vertex i of G, and stores the names of i's neighbors in a d-element

array. If i has less than d neighbors, the unused array elements are called free slots.

To begin with, GT (v) contains at most 2εeT free slots, as GT (v) is obtained by

deleting at most ε fraction of GT 's edges. Now, assume that iteration t removes vertex i,

as well as e of the edges touching it. Due to the edge removal, an additional e slots may

now be free. However, since i is expensive, more than 9e of its slots are free. These slots

are lost because i is removed from the list. Therefore, after ε
4
eT edges are removed, the

number of free slots drops to less than 2εeT − (9− 1) ε
4
eT = 0.

Step 2 (Lemma 11). Let i ∈ [n] be a random index. The expected size of Li is

14

at least 0.2 |C|. Fix a codeword v. Using Lemma 10, remove− expensive removes at

most ε
4
eT of the edges of GT (v). Therefore, Gv contains at least (1− ε) eT− ε

4
eT ≥ 0.2eT

edges. Since we assume that GT is regular, Gv contains at least 0.2 fraction of GT 's

vertices. These vertices are not iteratively expensive with respect to v. We conclude

that v ∈ Li with probability at least 0.2.

Step 3 (Lemma 13). Fix i ∈ [n] and σ ∈ Σ, and assume that |Li ,σ| > 100 .

Let u′ and w′ be a pair of di�erent codewords selected at random from Li,σ. Then, in

expectation, more than 0.9 · (0.1)2 = 0.009 fraction of the edges touching i in GT are

contained in both Gu ′ and Gw ′ . For v ∈ Li,σ, let Sv be the set of edges touching i

in Gv. Note that every Sv contains at least 0.1 fraction of the edges touching i in GT . If

|Li,σ| = 10, for example, then the 10 sets (Sv)v∈Li,σ may be disjoint, causing the desired

expectation to be 0. But, for |Li,σ| > 10 disjointness is impossible, thus the expectation

is positive. A combinatorial argument shows that as |Li,σ| gets larger, the sets (Sv)v∈Li,σ
behave like random sets, and the desired expectation gets closer to (0.1)2.

Step 4 (Proof of Lemma 6). Randomly select a quadruple (u,w, i, σ) that

satis�es u 6= w ∈ Li,σ. Observe that the quadruple may be viewed as being selected as

follows. First randomly select a triple (u,w, i) that satis�es u 6= w ∈ C and i ∈ Au,w.
Then, set σ

.
= ui = wi. In order to prove the claim it su�ces to show that, in

expectation, the following holds. The fraction of edges touching i that are removed

by the algorithm is less than 1− 4 · 10−4.

For simplicity, assume that all the sets (Li,σ)i∈[n],σ∈Σ are of the same size. Using

Lemma 11 and the assumption that |C| > 103|Σ|√
ε
, every such set is of size at least

0.2|C|
|Σ| > 100. Note that u and w are a pair of di�erent codewords randomly selected

from Li,σ. Therefore, using Lemma 13, at least 0.009 fraction of the edges touching i

in GT are in both Gu and Gw. These edges are not removed.

4.2 Overview of Lemma 5

The following algorithm, called create− special− word (Figure 3), creates v∗:

1. Set k
.
= bβ−1c, and arbitrarily select k di�erent codewords v1, ..., vk.

2. Let G∗ be the graph promised by Lemma 4, and let G′ be a subgraph of G∗

containing only edges that are satis�ed by all v1, ..., vk.

3. Partition [n] to at most k subsets S1, ..., Sk, such that every set St satis�es:

15

(a) St is a union of connected components of G′.

(b) n
k
≤ |St| < n

k
+ αn.

4. Let v∗ be the word that agrees with the codeword vt on St for every t.

First note that Step 1 is always possible, as k ≤ β−1 = ε−
1
2 < |C|. In addition, Step 3

is always possible, as all the connected components of G∗ (and thus also of G′) are of

size at most αn.

We next claim that T accepts v∗ with probability greater than 10−5. The graph G∗

contains more than 2 ·10−4 fraction of GT 's edges. In addition, each of v1, ..., vk violates

at most ε fraction of GT 's edges. Since k was chosen to be much smaller than 1
ε
, a

calculation shows that 2 · 10−4 − kε > 10−5. Therefore, G′ contains more than 10−5

fraction of GT 's edges. Since v
∗ satis�es G′, the claim follows.

Our last claim is that for every codeword v it holds that ∆ (v∗, v) > 1− 3β. Recall

that v∗ is a hybrid of v1, ..., vk. If v /∈ {v1, ..., vk} then agree (v∗, v) ⊆
⋃
t∈[k] agree (vt, v) .

Otherwise, if v = vr then agree (v∗, v) ⊆
(⋃

t∈[k]\{r} agree (vt, v)
)
∪ Sr. The set St is

small for every t. In addition, the set agree (vt, v) is small for v 6= vt. Therefore, in

both cases the set agree (v∗, v) is small.

5 Graph Decomposition (Proof of Lemma 4)

Let G = (H = (V,E) ,Σ,Π) be a UCG, and let i ∈ V be a vertex of G. The degree

of the vertex i in G is de�ned as degG (i)
.
= |{j ∈ V | (i, j) ∈ E}|. The degree of a set

of vertices U ⊆ V in G is degG (U)
.
=
∑

i∈U degG (i). The degree of the graph G is

degG
.
= degG (V). Let G1 and G2 be a pair of subgraphs of G. We denote by G1 ∩ G2

the subgraph of G whose vertex set is V (G1)∩V (G2), and edge set is E (G1)∩E (G2).

Consider the remove− expensive algorithm described in Figure 1, and the decompose

algorithm described in Figure 2. decompose receives the graph GT as an input. It either

returns failure, or else returns an edges subgraph G∗ of GT . The main claim of this

section is that the graph G∗ satis�es the requirements of Lemma 4.

16

remove-expensive(GT , G)

1. While there exists a vertex i in G satisfying degG (i) < 0.1degGT (i)

(a) Remove vertex i, and all the edges touching i, from G.

Figure 1: remove− expensive algorithm

decompose(GT)

1. Initialization:

(a) Set I = φ. (I is the set of vertices already disconnected)

(b) Set E = φ. (E is the set of edges to be removed from GT to obtain G∗)

2. While degGT (I) < 0.2degGT

(a) Remove Expensive Vertices: For every codeword v

i. Let G be the edges subgraph obtained from GT after removing the
edges in E. Set Gv = G (v).

ii. Update Gv by running remove− expensive(GT , Gv).
Let I ′v be the set vertices removed by the execution, and set Iv = I ′v\I.

(b) Disconnect a Cheap Vertex Set:
For a pair of codewords w and u denote G∩u,w

.
= Gu ∩Gw,

and Au,w
.
= agree (u,w) \ (I ∪ Iu ∪ Iw).

i. Find a pair of di�erent codewords w and u satisfying

degG∩u,w (Au,w) > 10−3degGT (Au,w) .

If no such pair exists, return failure.

ii. Add to E every edge in ET\E
(
G∩u,w

)
with exactly one endpoint in Au,w.

iii. Add to I all the vertices in Au,w.

3. Create Singletons: Add to E every edge in ET\E with two endpoints in [n] \I.

4. Create G∗: Return the graph G∗ obtained by removing the edges in E
from GT .

Figure 2: decompose algorithm

17

The following three lemmas prove Lemma 4.

Lemma 6. Assume that Pr [Q2] ≥ 1
2
. Then, decompose (GT) always returns a graph G∗.

That is, the execution of decompose (GT) always terminates in �nite time, and never

returns failure.

Lemma 7. Every connected component of G∗ is of size at most αn.

Lemma 8. |E (G∗)| > 2 · 10−4eT .

We begin by proving Lemmas 7 and 8. The proof of Lemma 6 is more involved,

and is deferred to Section 6. The proofs use the following notations. Assume that

the execution of decompose (GT) consists of s iterations of Step 2. Let t ∈ [s] be an

iteration, and let v be a codeword. Denote by ut and wt the pair of codewords selected

in Step 2(b)i of iteration t. Denote by It, Et, Gt,v, It,v, G
∩
t and At the values of the sets

I, E, Gv, Iv, G
∩
ut,wt and Aut,wt (respectively), at the end of iteration t. Set I0 = A0 = φ.

Let Gt be the edges subgraph obtained from GT by removing the edges in Et.

We begin by showing the following claim.

Claim 9. For every t ∈ {0, ..., s}, the set At is a union of connected components of Gt

(and therefore also of G∗). In other words, no edge of Gt crosses the cut (At, [n] \At).

Proof. We prove the claim by induction on t. For t = 0, the claim holds trivially. Let

r ∈ [s] and assume that the claim holds for t ≤ r − 1. We prove the claim for t = r.

Assume for contradiction that there exits an edge e = (i, j) in Gr such that i ∈ Ar,

but j /∈ Ar.
We �rst show that j /∈ Ir−1. Using the induction hypothesis and the fact that

Ir−1 =
⋃
t∈{0,..,r−1}At, it holds that Ir−1 is a union of connected components of Gr.

Since we assume that i ∈ Ar ⊆ [n] \Ir−1, it must hold that j /∈ Ir−1.

We next show that j /∈ Ir,ur ∪ Ir,wr . Observe that e has exactly one endpoint

in Ar, but it was not added to E by iteration r. Therefore, according to Step 2(b)ii

of decompose, it holds that e ∈ E (G∩r). In particular, j ∈ V (Gr,ur) ⊆ [n] \Ir,ur and

j ∈ V (Gr,wr) ⊆ [n] \Ir,wr .
Finally, we show that j ∈ agree (ur, wr). Let π be the permutation mapped to e

in Gr. Since e ∈ E (G∩r), e is satis�ed by both ur and wr. In addition, the assumption

that i ∈ Ar implies (ur)i = (wr)i. Thus, (ur)j = π ((ur)i) = π ((wr)i) = (wr)j .

We conclude that j ∈ agree (ur, wr) \ (Ir−1 ∪ Ir,ur ∪ Ir,wr) = Ar, and reach a contra-

diction.

18

Proof of Lemma 7. We �rst claim that Is is a union of connected components of G∗,

each of size at most αn. Recall that Is =
⋃
t∈[s] At. Claim 9 shows that for every t ∈ [s],

the set At is a union of connected components of G∗. In addition, since ut and wt are

di�erent codewords, it holds that |At| ≤ |agree (ut, wt)| ≤ αn.

Step 3 makes sure that every i ∈ [n] \Is is a singleton (connected component of

size 1) of G∗.

Proof of Lemma 8. Fix an iteration t ∈ [s]. We �rst claim that the edges touching At

in G∩t are never added to E, and conclude degG∗ (At) = degG∩t (At). Clearly, no edges

of G∩t are added to E during iteration t. Consider an iteration r > t ∈ [s]. Claim 9

shows that At is a union of connected components of Gt, and therefore also of Gr−1.

Since At ⊆ It ⊆ Ir−1 and Ar ⊆ [n] \Ir−1, it holds that At ∩ Ar = φ. Therefore, since

iteration r only adds to E edges touching Ar in Gr−1, it does not add edges touching At.

Recall that ut and wt satisfy the condition in Step 2(b)i, and conclude

degG∗ (At) ≥ degG∩t (At) > 10−3degGT (At) .

Since Is can be written as a disjoint union Is =
⋃
t∈[s] At, it holds that

degG∗ ≥ degG∗ (Is) =
∑
t∈[s]

degG∗ (At) > 10−3
∑
t∈[s]

degGT (At) = 10−3degGT (Is) .

We assume that Step 2 is executed exactly s times. Therefore, it must hold that

degGT (Is) ≥ 0.2degGT . Conclude,

|E (G∗)| = 0.5degG∗ > 0.5 · 10−3degGT (Is) ≥ 0.5 · 10−3 · 0.2degGT = 2 · 10−4eT .

6 Finding a Cheap Vertex Set (Proof of Lemma 6)

In this section we prove Lemma 6. As described in the sketch (see Subsection 4.1), the

lemma in proved in four steps.

19

6.1 Step 1

The following lemma bounds the number of edges removed by remove− expensive.

Lemma 10. Let G be an edges subgraph of GT , satisfying |E (G)| ≥ λeT . Let Erem be

the set of edges removed from G by the execution of remove− expensive (GT , G). Then,

|Erem| ≤
1− λ

4
eT .

Recall that the sketch assumed that T always makes two oracle calls. Therefore, for a

codeword v, T 's completeness implies |E (GT (v))| > (1− ε) eT . In this case, Lemma 10

shows that the execution of remove− expensive (GT , GT (v)) removes at most ε
4
eT edges,

as claimed in the sketch.

Proof. We represent a subgraph F of GT as a linked list of |V (F)| nodes. Each node

represents a vertex j of F , and stores the names of j's neighbors in a degGT (j)-element

array. By �node j�, we refer to the node that corresponds to vertex j. If j has less than

degGT (j) neighbors in F , then the unused array elements are called free slots. Formally,

the node j contains degGT (j)− degF (j) free slots. The number of free slots in F is the

total number of free slots in all the |V (F)| nodes in the representation of F .

To begin with, G contains at most 2 (1− λ) eT free slots, as G is obtained by deleting

at most 1−λ fraction ofGT 's edges. Now, assume that during iteration t of the execution

vertex i is removed, as well as e of the edges touching it. Observe that each of the e

edges removed has exactly one endpoint in V (G) \ {i}. Therefore, the total number of
free slots in all the nodes excluding i increases by e.

After iteration t− 1, it holds that degG (i) = e. Since i was selected for removal by

iteration t, it is the case that e < 0.1degGT (i), i.e, degGT (i) > 10e. Therefore, after

iteration t − 1, the number of free slots in node i is degGT (i) − degG (i) > 9e. Since

iteration t removes node i, the free slots in node i are lost.

We conclude that iteration t causes the number of free slots in G to drop by more

than 9e − e = 8e. Therefore, if more than 1−λ
4
eT edges are removed by the execution,

then the number of free slots in G drops to less than 2 (1− λ) eT − 8
(

1−λ
4
eT
)

= 0.

But this is impossible as the number of free slots is non-negative for every subgraph

of GT .

20

6.2 Step 2

For the rest of Section 6, we �x t and assume that the execution of decompose (GT)

has just reached the tth iteration of Step 2. The sets I,E,Iv and graph G are updated

by decompose throughout its execution. When any of these variables is used in the

following lemmas, we refer to its value at the end of Step 2(a)ii of iteration t.

For an index i ∈ [n], we denote

Li
.
= {v ∈ C | i ∈ [n] \ (I ∪ Iv)} .

Let `i
.
= |Li|. The main result of this subsection is the following lemma.

Lemma 11. Assume that Pr [Q2] ≥ 1
2
. Then,∑

i∈[n]

`idegGT (i) > 0.2 |C| degGT .

Recall that the sketch assumed that GT is d-regular. In this case, the above lemma

suggests

E
i∈[n]

[`i] =
1

n

∑
i∈[n]

`i =
1

dn

∑
i∈[n]

`idegGT (i) >
1

dn
· 0.2 |C| degGT = 0.2 |C| ,

as claimed in the sketch.

The proof of Lemma 11 uses the following claim. The claim shows that if T makes

two queries with high probability, then every codeword satis�es almost all of GT 's edges.

Claim 12. Let v be a codeword, and assume that Pr [Q2] ≥ 1
2
. Then,

|E (GT (v))| ≥ (1− 2ε) eT .

Proof. Due to T 's completeness, it holds that Pr [T v = reject] ≤ ε. Using Bayes'

formula, and the assumption that Pr [Q2] ≥ 1
2
, it holds that

Pr [T v = reject |Q2] =
Pr [T v = reject∧Q2]

Pr [Q2]
≤ ε

Pr [Q2]
≤ 2ε.

Conclude that Pr [T v = accept |Q2] ≥ 1− 2ε, and the claim follows.

21

Proof of Lemma 11. Denote

R
.
=
∑
i∈[n]

`idegGT (i) .

It holds that

R =
∑
i∈[n]

∑
v∈Li

degGT (i) =
∑
v∈C

∑
i∈[n]\(I∪Iv)

degGT (i) =
∑
v∈C

(degGT − degGT (I)− degGT (Iv)) .

We assume that decompose has entered the tth iteration of Step 2. Therefore, the

following condition holds

degGT (I) < 0.2degGT .

Let v be a codeword, and let EIv be the set of edges in GT with at least one

endpoint in Iv. We turn to bound degGT (Iv), by bounding the size of EIv . We de�ne

the following three sets E1, E2 and E3, that satisfy EIv ⊆ E1 ∪ E2 ∪ E3. The �rst two

sets are E1
.
= ET\E (G) and E2

.
= E (G) \E (G (v)). The third set, E3, contains the

edges in E (G (v)) with at least one endpoint in Iv. We next bound the sizes of E1, E2

and E3 separately.

Consider E1. Note that E1 = E, as G was obtained in Step 2(a)i by the removal of

the edges in E from GT . In addition, |E| ≤ degGT (I), as only edges touching vertices

in I were added to E. Thus,

|E1| = |E| ≤ degGT (I) < 0.2degGT .

Consider E2. Claim 12 shows that v violates at most 2εeT of GT 's edges. Therefore,

v violates at most 2εeT of G's edges. Recall that ε < 10−10 and get

|E2| ≤ 2εeT < 0.01degGT .

Consider E3. Observe that E3 is contained in the set of edges removed by the

execution of remove− expensive(GT , Gv) in Step 2(a)ii. We use Lemma 10 to bound

the size of E3. In order to do so, we �rst upper bound the size of E (G (v)). It holds

that

|E (G (v))| = eT − (|E1|+ |E2|) > (1− 2 (0.2 + 0.01)) eT = 0.58eT .

22

Now, using Lemma 10 with λ = 0.58, we get

|E3| ≤
(1− λ)

4
eT < 0.06degGT .

Using the bounds obtained for E1, E2 and E3, we conclude,

degGT (Iv) ≤ 2 |EIv | ≤ 2 (|E1|+ |E2|+ |E3|) < 0.6degGT .

We return to lower bounding R,

R >
∑
v∈C

(degGT − 0.2degGT − 0.6degGT) = 0.2 |C| degGT ,

as claimed.

6.3 Step 3

For an index i ∈ [n] and a symbol σ ∈ Σ, we denote

Li,σ
.
= {v ∈ Li | vi = σ} .

Let `i,σ
.
= |Li,σ|. Let pairs(x) : R+ ∪{0} → R be the function pairs(x)

.
= x(x− 1). For

x ∈ N ∪ {0}, the value pairs (x) is the number of possible ways of selecting an ordered

pair of elements out of an x-element set. Note that pairs (x) < 0 for x ∈ (0, 1). The

main result of this subsection is the following lemma.

Lemma 13. Let i ∈ [n] and σ ∈ Σ. Then,∑
u6=w∈Li,σ

degG∩u,w(i) ≥ degGT (i) · pairs (0.1`i,σ) .

Recall that the sketch assumed that GT is d-regular. In addition, observe that if `i,σ

is large, it follows that pairs (0.1`i,σ) ≈ (0.1)2 pairs (`i,σ). In particular, a calculation

shows that if `i,σ > 100 then pairs (0.1`i,σ) > 0.009pairs (`i,σ). Conclude,

E
u6=w∈Li,σ

[
degG∩u,w(i)

]
=

1

pairs (`i,σ)

∑
u6=w∈Li,σ

degG∩u,w(i) ≥ pairs (0.1`i,σ)

pairs (`i,σ)
degGT (i) > 0.009d,

as claimed in the sketch.

23

The proof of Lemma 13 uses the following combinatorial claim.

Claim 14. Let `,m ∈ N be natural numbers, and let S1, ..., S` be subsets of [m]. Assume

that for every t ∈ [`] it holds that |St| ≥ 0.1m. Then,∑
t6=r∈[`]

|St ∩ Sr| ≥ m · pairs (0.1`) .

Note that the bound suggested by the claim is negative for 0 < ` < 10.

Proof. Denote

R
.
=
∑
t6=r∈[`]

|St ∩ Sr| .

For i ∈ [m], denote by xi the number of sets containing the element i. That is,

xi = |{St | t ∈ [`] , i ∈ St}| .

It holds that ∑
i∈[m]

xi =
∑
t∈[`]

|St| ≥ 0.1`m.

In addition, note that

R =
∑
i∈[m]

pairs (xi) .

Therefore, in order to lower boundR, we need to minimize the function
∑

i∈[m] pairs (xi)

under the constraint
∑

i∈[m] xi ≥ 0.1`m. Since pairs is a convex function, the minimum

is attained for xi = 0.1`m
m

= 0.1`. Conclude,

R ≥
∑
i∈[m]

pairs (0.1`) = m · pairs (0.1`) ,

as claimed.

Proof of Lemma 13. Denote `
.
= `i,σ and m

.
= degGT (i). For a codeword v ∈ Li,σ,

denote by Sv the set of neighbors of vertex i in Gv. This de�nes ` sets. Each such set is

a subset of the m-element set containing all the neighbors of i in GT . In addition, for

v ∈ Li,σ it holds that i ∈ [n] \ (I ∪ Iv). Therefore, degGv (i) ≥ 0.1degGT (i). Conclude,

|Sv| = degGv (i) ≥ 0.1degGT (i) = 0.1m.

24

For a pair of codewords u,w ∈ Li,σ it holds that

degG∩u,w(i) = |Su ∩ Sw| .

We use Claim 14, and get∑
u6=w∈Li,σ

degG∩u,w(i) =
∑

u6=w∈Li,σ

|Su ∩ Sw| ≥ m · pairs (0.1`) = degGT (i) · pairs (0.1`i,σ) ,

as claimed.

6.4 Step 4 (Proof of Lemma 6)

Proof of Lemma 6. In order to show that decompose never returns failure, we need

to show that every time it reaches Step 2(b)i, there exists two di�erent codewords u

and w satisfying

degG∩u,w (Au,w) > 10−3degGT (Au,w) .

Note that since we require a strict inequality, the above condition also implies Au,w 6= φ.

Therefore, decompose always terminates in �nite time.

Denote

R
.
=

∑
u6=w∈C

degG∩u,w(Au,w)− 10−3degGT (Au,w)

=
∑

u6=w∈C

∑
i∈Au,w

∑
σ=ui=wi

(
degG∩u,w (i)− 10−3degGT (i)

)
.

(Note that the sum over σ sums over one element). We aim to show that R > 0, and

the result follows.

Currently, R sums over the set

B1
.
=
{

(u,w, i, σ) ∈ C2 × [n]× Σ | u 6= w, i ∈ Au,w, σ = ui = wi
}
.

We change the summation to be over the set

B2
.
=
{

(u,w, i, σ) ∈ C2 × [n]× Σ | u 6= w ∈ Li,σ
}
.

We next show that B1 = B2, and therefore the value of the sum does not change. Recall

25

that Au,w = agree (u,w) \ (I ∪ Iu ∪ Iw).

• B1 ⊇ B2: Let (u,w, i, σ) ∈ B2. Since w, u ∈ Li it holds that i ∈ [n] \ (I ∪ Iu) and
i ∈ [n] \ (I ∪ Iw). In addition, it holds that wi = ui = σ, and in particular

i ∈ agree (u,w). Conclude i ∈ Au,w.

• B1 ⊆ B2: Let (u,w, i, σ) ∈ B1. Since i ∈ Au,w it holds that i ∈ [n] \ (I ∪ Iu ∪ Iw).

Therefore, u,w ∈ Li. Since σ = ui = wi it holds that u,w ∈ Li,σ.

After the change,

R =
∑
i∈[n]
σ∈Σ

∑
u6=w∈Li,σ

(
degG∩u,w (i)− 10−3degGT (i)

)

=
∑
i∈[n]
σ∈Σ

 ∑
u6=w∈Li,σ

degG∩u,w (i)− 10−3
∑

u6=w∈Li,σ

degGT (i)


Using Lemma 13,

R ≥
∑
i∈[n]
σ∈Σ

(
pairs (0.1`i,σ)− 10−3 · pairs (`i,σ)

)
degGT (i) .

By expending the pairs function,

R ≥
∑
i∈[n]

(∑
σ∈Σ

(
0.009`2

i,σ − 0.099`i,σ
))

degGT (i) .

Note that for every x ∈ R it holds that

0.009x2 − 0.099x > 0.01x− 1.

26

Hence,

R >
∑
i∈[n]

(∑
σ∈Σ

(0.01`i,σ − 1)

)
degGT (i)

= 0.01
∑
i∈[n]

(∑
σ∈Σ

`i,σ

)
degGT (i)−

∑
i∈[n]

(∑
σ∈Σ

1

)
degGT (i)

= 0.01

∑
i∈[n]

`idegGT (i)

− |Σ| degGT .
Recall that we assume Pr [Q2] ≥ 1

2
. Therefore, we may use Lemma 11 and get

R > (0.002 |C| − |Σ|) degGT .

The assumption Pr [Q2] ≥ 1
2
suggests that degGT > 0. In addition, the assumption

|C| > 103|Σ|√
α

implies 0.002 |C| − |Σ| > 0. We conclude R > 0, as claimed.

7 Existence of a Special Word (Proof of Lemma 5)

Consider the create− special− word algorithm described in Figure 3. The algorithm

receives the graph GT as an input, and returns a word v∗ ∈ Σn. The main claim of this

section is that the word v∗ satis�es the requirements of Lemma 5.

The following three lemmas prove Lemma 5.

Lemma 15. create− special− word (GT) never returns failure.

Lemma 16. Pr
[
T v
∗

= accept
]
> 10−5.

Lemma 17. ∆ (v∗, C) > 1− 3β.

Proof of Lemma 15. Assume that Pr [Q2] ≥ 1
2
. We next construct k sets S1, ..., Sk

that satisfy the requirements of Step 2b. Using Lemma 4, every connected component

of G∗ (and therefore also of G′) is of size at most αn. Hence, we may construct the sets

S1, ..., Sk one-by-one as follows. To construct St: Start with an empty set. As long as

|St| < n
k
and there exits a vertex i that does not belong to any of S1, ..., St−1, add to St

all the vertices in the connected component of i in G′.

27

create-special-word(GT)

1. Let k
.
= bβ−1c. Note that k ≤ β−1 = ε−

1
2 < |C|.

Let v1, . . . , vk be k di�erent codewords, arbitrarily selected.

2. Partition [n] to k subsets S1, ..., Sk as follows:

(a) If Pr
[
Q2

]
> 1

2
:

i. For every t ∈ [k], |St| ≤
⌈
n
k

⌉
(the sets are of almost equal sizes).

(b) If Pr [Q2] ≥ 1
2
:

i. Let G∗ be the graph returned by decompose (GT). Let G′ be the edges
subgraph of G∗ containing only edges satis�ed by all v1, ..., vk.

ii. For every t ∈ [k], the set St should either be empty or satisfy both
of the followings:

A. St is a union of connected components of G′.

B. |St| < n
k

+ αn.

If no such partition exists, return failure.

3. Return the word v∗ ∈ Σn created as follows: For every t ∈ [k] and i ∈ St,
set v∗i = (vt)i.

Figure 3: create− special− word algorithm

Proof of Lemma 16. We �rst bound the term kε. Recall that ε < 10−10, and get

kε =
⌊
β−1
⌋
ε ≤

(√
ε
)−1

ε =
√
ε < 10−5.

Denote by Acc the event that T accepts v∗, and by Acc the event that T rejects v∗. We

consider the following two cases, and show that in both cases Pr [Acc] > 10−5.

Case 1: Pr
[
Q2

]
> 1

2
(Partition according to Step 2a).

Due to T 's completeness, and since v∗ is a hybrid of the k codewords v1, ..., vk, it holds

that

Pr
[
Q2 ∧ Acc

]
≤
∑
t∈[k]

Pr [T vt = reject] ≤ kε < 10−5.

28

Therefore,

Pr [Acc] ≥ Pr
[
Q2 ∧ Acc

]
= Pr

[
Q2

]
− Pr

[
Q2 ∧ Acc

]
>

1

2
− 10−5 > 10−5.

Case 2: Pr [Q2] ≥ 1
2
(Partition according to Step 2b).

The conditions of Lemma 4 and Claim 12 are satis�ed. Lemma 4 suggests that G∗

contains more than 2 · 10−4 fraction of GT 's edges. Using Claim 12, for every t ∈ [k],

the codeword vt violates at most 2ε fraction of GT 's edges. Therefore,

|E (G′)| >
(
2 · 10−4 − k · 2ε

)
eT >

(
2 · 10−4 − 2 · 10−5

)
eT > 10−4eT .

That is,

Pr [Acc | Q2] > 10−4.

Conclude,

Pr [Acc] ≥ Pr [Q2 ∧ Acc] = Pr [Acc | Q2] · Pr [Q2] > 10−4 · 1

2
> 10−5.

Proof of Lemma 17. Let v be a codeword. We consider the following two cases, and

show that in both cases |agree (v∗, v)| < 3βn.

Case 1: For every t ∈ [k] , it holds that v 6= vt.

Since v∗ is a hybrid of the codewords v1, ..., vk, it follows that

|agree (v∗, v)| ≤
k∑
t=1

|agree (vt, v)| .

The code C has relative distance at least 1− α. Therefore, since v and vt are di�erent

codewords for every t ∈ [k], it holds that

|agree (v∗, v)| ≤ kαn ≤
(
β−1
)
β2n ≤ βn.

Case 2: There exists r ∈ [k] such that v = vr.

We claim that |Sr| < n
k

+ αn. The claim holds for the case that Pr [Q2] ≥ 1
2
by

de�nition. Consider the case that Pr
[
Q2

]
> 1

2
. Since |C| > |Σ| there exists two

29

di�erent codewords that agree on at least one coordinate. Therefore, α ≥ 1
n
. Conclude,

|Sr| ≤
⌈
n
k

⌉
< n

k
+ 1 ≤ n

k
+ αn.

As before, since v∗ is a hybrid of the codewords (vt)t∈[k]\{r} and v, it follows that

|agree (v∗, v)| ≤

 ∑
t∈[k]\{r}

|agree (vt, v)|

+ |Sr|

< (k − 1)αn+
(n
k

+ αn
)

= kαn+
n

k

≤ βn+
n

bβ−1c
.

Recall that β < 10−5. Therefore, bβ−1c > β−1 − 1 > 1
2
β−1. Conclude,

|agree (v∗, v)| < βn+
n

1
2
β−1

= 3βn.

30

References

[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.

Proof veri�cation and the hardness of approximation problems. Journal of the

ACM, 45(3):501�555, 1998.

[2] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new charac-

terization of NP. Journal of the ACM, 45(1):70�122, 1998.

[3] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications.

Combinatorica, 23(3):365�426, 2003.

[4] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential

time has two-prover interactive protocols. Computational Complexity, 1:3�40, 1991.

[5] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P.

Vadhan. Robust PCPs of proximity, shorter PCPs, and applications to coding.

SIAM Journal on Computing, 36(4):889�974, 2006.

[6] Eli Ben-Sasson, Oded Goldreich, and Madhu Sudan. Bounds on 2-query codeword

testing. RANDOM-APPROX, pages 216�227, 2003.

[7] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivaku-

mar. On the hardness of approximating multicut and sparsest-cut. Computational

Complexity, 15(2):94�114, 2006.

[8] Irit Dinur, Eldar Fischer, Guy Kindler, Ran Raz, and Shmuel Safra. PCP char-

acterizations of NP: towards a polynomially-small error-probability. STOC, pages

29�40, 1999.

[9] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approxi-

mate coloring. STOC, pages 344�353, 2006.

[10] Uriel Feige, Sha� Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy.

Interactive proofs and the hardness of approximating cliques. Journal of the ACM,

43(2):268�292, 1996.

[11] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-

linear length. Journal of the ACM, 53(4):558�655, 2006.

31

[12] Venkatesan Guruswami. On 2-query codeword testing with near-perfect complete-

ness. ISAAC, pages 267�276, 2006.

[13] Subhash Khot. On the power of unique 2-prover 1-round games. STOC, pages

767�775, 2002.

[14] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O'Donnell. Optimal

inapproximability results for MAX-CUT and other 2-variable CSPs? Journal of

the ACM, 37(1):319�357, 2007.

[15] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to

within 2-ε. Journal of Computer and System Sciences, 74(3):335�349, 2008.

[16] Subhash Khot and Nisheeth K. Vishnoi. The unique games conjecture, integrality

gap for cut problems and embeddability of negative type metrics into `1. FOCS,

pages 53�62, 2005.

[17] Dana Moshkovitz and Ran Raz. Sub-constant error probabilistically checkable

proof of almost linear size. ECCC Report TR07-026, 2007.

[18] Dana Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-linear

size. SIAM Journal on Computing, 38(1):140�180, 2008.

[19] Dana Moshkovitz and Ran Raz. Two query PCP with sub-constant error. FOCS,

pages 314�323, 2008.

[20] Elchanan Mossel, Ryan O'Donnell, and Krzysztof Oleszkiewicz. Noise stability

of functions with low in�uences: invariance and optimality. FOCS, pages 21�30,

2005.

[21] Prasad Raghavendra. Optimal algorithms and inapproximability results for every

CSP? STOC, pages 245�254, 2008.

[22] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763�

803, 1998.

[23] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a

sub-constant error-probability PCP characterization of NP. STOC, pages 475�484,

1997.

32

Appendix

8 On Proving the UGC Using Our De�nition of Unique

LTCs

For a soundness function s (δ), we denote δs
.
= supδ {δ ∈ (0, 1) | s (δ) ≤ 10−5}. Our

result shows that for any n ∈ N, and any soundness function s, there is no (α, ε, s)-

unique LTC C ⊆ Σn with both α and ε smaller than 10−10δ2
s (unless C is of constant

size). However, it does not rule out the possibility of having, for every n ∈ N, a sequence
of soundness functions (sk,n)k∈N with limk→∞ limn→∞ δsk,n = 0, for which the following

holds. For every n ∈ N, there exists a sequence (Ck,n)k∈N, Ck,n ⊆ Σn of (αk,n, εk,n, sk,n)-

unique LTCs with limk→∞ limn→∞ αk,n = limk→∞ limn→∞ εk,n = 0. Our result does not

exclude the possibility of proving the UGC using such a sequence of LTCs.

Note, however, that such a sequence of LTCs is weaker than the families of LTCs

typically used in PCP constructions, and seems much harder to use. Note also, that

known constructions of low-error PCPs use a single soundness function s (typically of

the form s (δ) = c1δ
c2 , for non-negligible δ). Furthermore, the errors of the resulting

PCPs depend polynomially on 1
δs
, as this is the number of codewords obtained from the

list decoding procedure that is typically used in low-error PCP constructions. Therefore,

when bounding the errors of such PCPs, the term 1
δs
should also be taken into account.

33

