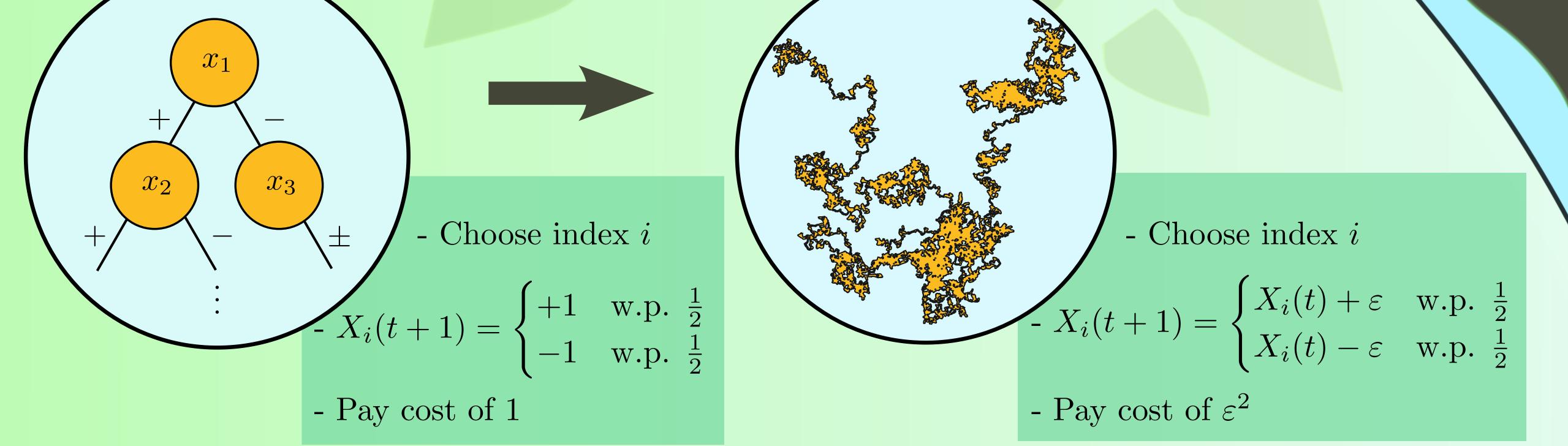
Can reading half a bit help speed up your decision tree?

Renan Gross Weizmann Institute

Given $f: \{-1,1\}^n \to \mathbb{R}$ and a uniform input $x \in \{-1,1\}^n$, compute f(x) while querying as few bits as possible.

Decision trees: OUT! Fractional query algorithms: IN

The problem



• $X(\infty)$ is uniform on $\{-1,1\}^n$.

✓ The process X(t) is a martingale, and so is $f(X(t)) = \sum_{S \subseteq [n]} \hat{f}(S) \prod_{i \in S} X_i(t)$.

The Schramm-Steif theorem

For a fractional query algorithm X(t), let τ be the time that $f(X(\infty))$'s value is known, and define $\delta := \max_{i \in [n]} \mathbb{E} [X_i(\tau)^2]$.

Theorem: For every $k \ge 1$, we have

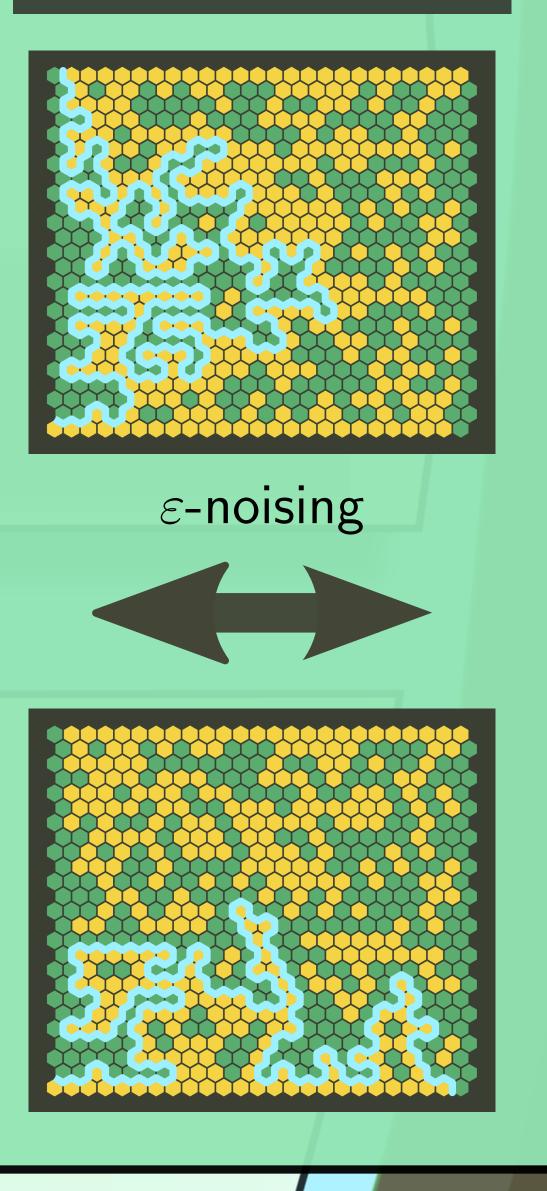
$$\sum_{|S|=k} \hat{f}(S)^2 \le \delta k \|f\|_2^2.$$

Lower bounds from partial differential equations

Let
$$u_{\varepsilon}$$
 be the optimal $\sum_{i} \mathbb{E} \left[X_{i}(\tau)^{2} \right]$ when $X(0) = x$. Then
 $u_{\varepsilon}(x) = \min_{i} \frac{u_{\varepsilon}(x + \varepsilon e_{i}) + u_{\varepsilon}(x - \varepsilon e_{i})}{2} + \varepsilon^{2}$

and when $\varepsilon \to 0$, we have

$$\min_{i} \frac{\partial^2 u}{\partial x_i^2} = -2$$



Noise sensitivity

Recursively solving the Dirichlet problem on the boundary gives complexity lower bounds.

Advantage???

Is there asymptotic advantage?

Example: n-bit OR

Always update the largest bit. This reveals 1 bit as $n \to \infty$, but decision trees need 2.

