What to do When all you have is Brownian motion

Student probability day VII, 16/05/19

Renan Gross, WIS

Conformal mapping

This presentation shows graphical images of Brownian motion.

Viewer discretion is advised.

• Life gives you Brownian motion.

• Life gives you Brownian motion.

- But you do not want Brownian motion. You want to sample from a distribution μ .
- How do you sample from μ using your Brownian motion?

- A natural thing to do is wait for some time T and then stop the Brownian motion.
- If you choose T in a special way, then perhaps B_T distributes as μ ?

- A natural thing to do is wait for some time T and then stop the Brownian motion.
- If you choose T in a special way, then perhaps B_T distributes as μ ?

This is Skorokhod's embedding problem.

- A natural thing to do is wait for some time T and then stop the Brownian motion.
- If you choose T in a special way, then perhaps B_T distributes as μ ?

This is Skorokhod's embedding problem.

(This is Skorokhod)

• Gaussian distribution: Brownian motion is just a fancy name for Gaussians: $B_t \sim N(0, t)$.

- Gaussian distribution: Brownian motion is just a fancy name for Gaussians: $B_t \sim N(0, t)$.
- Stop at the deterministic time T = 1 to get N(0,1).

- Gaussian distribution: Brownian motion is just a fancy name for Gaussians: $B_t \sim N(0, t)$.
- Stop at the deterministic time T = 1 to get N(0,1).
- Bernoulli distribution: How to get ± 1 , each with probability 1/2?

- Gaussian distribution: Brownian motion is just a fancy name for Gaussians: $B_t \sim N(0, t)$.
- Stop at the deterministic time T = 1 to get N(0,1).
- Bernoulli distribution: How to get ± 1 , each with probability 1/2?

- Gaussian distribution: Brownian motion is just a fancy name for Gaussians: $B_t \sim N(0, t)$.
- Stop at the deterministic time T = 1 to get N(0,1).
- Bernoulli distribution: How to get ± 1 , each with probability 1/2?

• This is a theorem!

• This is a theorem!

Theorem: Let μ have 0 mean and finite variance. Then there exists a stopping time T with $\mathbb{E}T < \infty$ such that $B_T \sim \mu$.

• This was proved more than once:

• This is a theorem!

- This was proved more than once:
- Skorokhod 61,

• This is a theorem!

- This was proved more than once:
- Skorokhod 61, Dubins 68,

• This is a theorem!

- This was proved more than once:
- Skorokhod 61, Dubins 68, Root 68,

• This is a theorem!

- This was proved more than once:
- Skorokhod 61, Dubins 68, Root 68, Hall 68,

• This is a theorem!

- This was proved more than once:
- Skorokhod 61, Dubins 68, Root 68, Hall 68, Rost 71, Monroe 72, Chacon-Walsh 74,

• This is a theorem!

- This was proved more than once:
- Skorokhod 61, Dubins 68, Root 68, Hall 68, Rost 71, Monroe 72, Chacon-Walsh 74, Azema Yor 79, Bass 83, Vallois 83, Perkins 85,

• This is a theorem!

- This was proved more than once:
- Skorokhod 61, Dubins 68, Root 68, Hall 68, Rost 71, Monroe 72, Chacon-Walsh 74, Azema Yor 79, Bass 83, Vallois 83, Perkins 85, Jacka 88, Bertoin and Le Jan 93, Vallois 94, FGPP 00, Cox and Hobson 04, Obloj-Yor 04,...

• This is a theorem!

- This was proved more than once:
- Skorokhod 61, Dubins 68, Root 68, Hall 68, Rost 71, Monroe 72, Chacon-Walsh 74, Azema Yor 79, Bass 83, Vallois 83, Perkins 85, Jacka 88, Bertoin and Le Jan 93, Vallois 94, FGPP 00, Cox and Hobson 04, Obloj-Yor 04,...
- Also Gross 19.

- Another clever generalization of the Bernoulli ± 1 method.
- The hitting time of the graph (X_t, t) with some barrier.

- Another clever generalization of the Bernoulli ± 1 method.
- The hitting time of the graph (X_t, t) with some barrier.

- Another clever generalization of the Bernoulli ± 1 method.
- The hitting time of the graph (X_t, t) with some barrier.

- Another clever generalization of the Bernoulli ± 1 method.
- The hitting time of the graph (X_t, t) with some barrier.

- Not a clever generalization of the Bernoulli ± 1 method.
- Rather, uses conformal mappings

- Not a clever generalization of the Bernoulli ± 1 method.
- Rather, uses conformal mappings

Theorem: Let μ have 0 mean and finite variance. Let B_t be a planar Brownian motion. There exists a simply connected domain Ω such that when B_t exits Ω , its x coordinate distributes as μ .

• The idea is simple, actually.

- The idea is simple, actually.
- Here is the cdf of mu, F_{μ} .

- The idea is simple, actually.
- Here is the cdf of mu, F_{μ} .
- Here is its inverse cdf, F_{μ}^{-1} .

- The idea is simple, actually.
- Here is the cdf of mu, F_{μ} .
- Here is its inverse cdf, F_{μ}^{-1} .
- The inverse mapping theorem says that if U is uniform, then

 $F_{\mu}^{-1}(U) \sim \mu$

[[Any T satisfying $T(U) \sim \mu$ must satisfy

 $F_{\mu}(x) = \mathbb{P}[X \le x] = \mathbb{P}[T(U) \le x] = \mathbb{P}[U \le T^{-1}(x)] = T^{-1}(x)]$

• If only there was some way of using B_t to sample F_{μ}^{-1} uniformly!

- If only there was some way of using B_t to sample F_{μ}^{-1} uniformly!
- How convenient! Brownian motion is uniform on the circle

- If only there was some way of using B_t to sample F_{μ}^{-1} uniformly!
- How convenient! Brownian motion is uniform on the circle
- How convenient! Brownian motion is conformally invariant

 That is, the image of Brownian motion under a conformal map is a (time-changed) Brownian motion as well

• Since $\arg(B_{T_{circle}})$ is uniform, all we need is a conformal map ψ which has

$$\operatorname{Re}\left\{\psi\left(e^{i\theta}\right)\right\} = F_{\mu}^{-1}(\theta)$$

- Since $\arg(B_{T_{circle}})$ is uniform, all we need is a conformal map ψ which has $\operatorname{Re}\{\psi(e^{i\theta})\} = F_{\mu}^{-1}(\theta)$
- Luckily for us, on the unit circle, a Fourier series and a power series are the same thing.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = \sum_{i=0}^{\infty} a_n e^{in\theta} = \sum_{i=0}^{\infty} a_n (\cos n\theta + i \sin n\theta)$$

• Let $\varphi_{\mu}(\theta) = F_{\mu}^{-1}(\frac{|\theta|}{\pi})$

- Let $\varphi_{\mu}(\theta) = F_{\mu}^{-1}(\frac{|\theta|}{\pi})$
- Expand $\varphi_{\mu}(\theta)$ as an even Fourier series:

$$\varphi_{\mu}(\theta) = \sum_{n=0}^{\infty} \widehat{\varphi_{\mu}}(n) \cos n\theta$$

- Let $\varphi_{\mu}(\theta) = F_{\mu}^{-1}(\frac{|\theta|}{\pi})$
- Expand $\varphi_{\mu}(\theta)$ as an even Fourier series:

$$\varphi_{\mu}(\theta) = \sum_{n=0} \widehat{\varphi_{\mu}}(n) \cos n\theta$$

• Let $\psi_{\mu}(z)$ be the extension to the plane: $\psi_{\mu}(z) = \sum_{n=0}^{\infty} \widehat{\varphi_{\mu}}(n) z^{n}$

- Let $\varphi_{\mu}(\theta) = F_{\mu}^{-1}(\frac{|\theta|}{\pi})$
- Expand $\varphi_{\mu}(\theta)$ as an even Fourier series:

$$\varphi_{\mu}(\theta) = \sum_{n=0} \widehat{\varphi_{\mu}}(n) \cos n\theta$$

• Let $\psi_{\mu}(z)$ be the extension to the plane:

$$\psi_{\mu}(z) = \sum_{n=0}^{\infty} \widehat{\varphi_{\mu}}(n) z^n$$

- On the unit circle, the x-coordinate (i.e real part) of ψ_{μ} agrees with φ_{μ}

$$Re\{\psi_{\mu}(e^{i\theta})\} = \sum_{n=0}^{\infty} \widehat{\varphi_{\mu}}(n) \cos n\theta = \varphi_{\mu}(\theta)$$

- Let $\varphi_{\mu}(\theta) = F_{\mu}^{-1}(\frac{|\theta|}{\pi})$
- Expand $\varphi_{\mu}(\theta)$ as an even Fourier series:

$$\varphi_{\mu}(\theta) = \sum_{n=0} \widehat{\varphi_{\mu}}(n) \cos n\theta$$

• Let $\psi_{\mu}(z)$ be the extension to the plane:

$$\psi_{\mu}(z) = \sum_{n=0} \widehat{\varphi_{\mu}}(n) z^n$$

- On the unit circle, the x-coordinate (i.e real part) of ψ_{μ} agrees with φ_{μ}

$$Re\{\psi_{\mu}(e^{i\theta})\} = \sum_{n=0}^{\infty} \widehat{\varphi_{\mu}}(n) \cos n\theta = \varphi_{\mu}(\theta)$$

- The Fourier coefficients decay, so ψ_{μ} is analytic inside the unit disc

- Even though Brownian motion is preserved under analytic maps, in order to transform boundary to boundary we must be one-to-one
- Otherwise:

- For "nice" enough μ , this is not a problem
- If μ is bounded and F_{μ} is strictly monotone increasing then F_{μ}^{-1} is continuous and bounded.
- ψ_{μ} then maps the circle's boundary to a simple closed loop, which is the boundary of Ω

- For nasty μ , we don't have that luxury
 - E.g: an atomic distribution with finite weight on every rational)
 - E.g: The Cantor distribution

- For nasty μ , we don't have that luxury ...
 - E.g: an atomic distribution with finite we ^{0.2} rational)
 - E.g: The Cantor distribution

- For nasty μ , we don't have that luxury ...
 - E.g: an atomic distribution with finite we ^{0.2} rational)
 - E.g: The Cantor distribution
- In this case the mapping may diverge

A solution

- **Theorem**: Let $\{f_k(z)\}$ be a series of one-to-one functions on a domain D which converge uniformly on every compact subset of D to a function f. Then f is either one-to-one or constant.
- If we take nice smooth functions F_k (not necessarily CDFs) which converge to F_k , we'll get ψ_k s which are one-to-one and which will converge to ψ_μ .

For more information, call

1-800-<u>https://arxiv.org/abs/1905.00852</u> Thanks!

