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This presentation shows graphical images of Brownian motion.

Viewer discretion is advised.
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sample from a distribution p.

* How do you sample from u using your Brownian
motion?
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* A natural thing to do is wait for some time T and then stop
the Brownian motion.

* If you choose T in a special way, then perhaps B distributes
as u?

This is Skorokhod’s
embedding problem.

(This is Skorokhod)
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Examples ',

* Gaussian distribution: Brownian motion is just a
fancy name for Gaussians: B; ~N (0, t).

* Stop at the deterministictime T = 1 to get N(0,1).

* Bernoulli distribution: How to get +1, each with
probability 1/27?

Uniform distribution
on|[—1,1]?
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 This is a theorem!

Theorem: Let 1 have 0 mean and finite
variance. Then there exists a stopping time T
with [ET < oo such that Br~u.

* This was proved more than once:

e Skorokhod 61, Dubins 68, Root 68, Hall 68,
Rost 71, Monroe 72, Chacon-Walsh 74,

Azema Yor 79, Bass 83, Vallois 83, Perkins 85,
Jacka 88, Bertoin and Le Jan 93, Vallois 94,

FGPP 00, Cox and Hobson 04, Obloj-Yor 04,...

e Also Gross 19.
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A conformal solution

* Not a clever generalization of the Bernoulli +1
method.

e Rather, uses conformal mappings

Theorem: Let u have 0 mean and finite variance. Let
B; be a planar Brownian motion. There exists a
simply connected domain {1 such that when B; exits
(), its x coordinate distributes as u.
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A conformal solution

0.8

* The idea is simple, actually.

* Here is the cdf of mu, F,.

0.2

* Here is its inverse cdf, F; .
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A conformal solution

* The idea is simple, actually.

* Here is the cdf of mu, F,.

* Here is its inverse cdf, F; .

0.2

* The inverse mapping theorem

says that if U is uniform, then

F - (U)~u

[Any T satisfying T(U)~u must satisfy ~ ©
F,u(x) = P[X < X] = P[T(U) < x] — ]]D[U < T—l(x)] — T_l(x)]]
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* If only there was some way of using
B, to sample F; ' uniformly!

* How convenient! Brownian motion
is uniform on the circle

* How convenient! Brownian motion
is conformally invariant

* Thatis, the image of Brownian motion under a
conformal map is a (time-changed) Brownian
motion as well



f(z) conformal ——
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* Since arg(BTcircle) is uniform, all we need is a
conformal map Y which has

Re(1('®)} = E4(6)

* Luckily for us, on the unit circle, a Fourier series and a
power series are the same thing.
(00

f(z) = 2 a,z" a,e"? = 2 a,,(cosnf + isinnd )

o
n=0 =0 =0
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9

T

* Let 9, (0) = F;'(
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A conformal solution

0
T

* Let @, (0) = (%)

* Expand ¢, (0) as an even Footérier series:
¢,(0) = Z ®,(n) cosnb
n=0
* Let Y, (z) be the extension to E(be plane:

() = ) Gul)z”
n=0

* On the unit circle, the x-coordinate (i.e real part) of 1, agrees
with @,

Re{t/)”(eie)} = z ®,(n) cosnb = ¢,(0)
n=0
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A conformal solution Sdor )

P
* Let ¢, (8) = F, 1(%

* Expand ¢, (0) as an even Fourier series:
®,(0) = Z ®,(n) cosnb
n=0
* Let Y, (2) be the extension to E(be plane:
(@) = ) Faz"
n=0

* On the unit circle, the x-coordinate (i.e real part) of 1, agrees
with @,

Re{y,(e'?)} = Z @, (n) cosnb = ¢, (6)
n=0

* The Fourier coefficients decay, so Y, is analytic inside the unit
disc



A potential problem S

* Even though Brownian motion is preserved under
analytic maps, in order to transform boundary to
boundary we must be one-to-one

e Otherwise:




A potential problem S
* For “nice” enough u, this is not a problem

* If yis bounded and £, is strictly monotone increasing
then F; ' is continuous and bounded.

* 1, then maps the circle’s boundary to a simple closed
loop, which is the boundary of ()

m—)
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A potential problem

* For nasty u, we don’t have that luxury ..
e E.g: an atomic distribution with finite we -

rational)
e E.g: The Cantor distribution

* In this case the mapping may diverge

—)
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A solution

* Theorem: Let {f,,(z)} be a series of one-to-one
functions on a domain D which converge uniformly on
every compact subset of D to a function f. Then f is

either one-to-one or constant.
* If we take nice smooth functions F; (not necessarily

CDFs) which converge to F;,, we'll get ;s which are
one-to-one and which will converge to ¢,,.
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For more information, call

1-800-https://arxiv.org/abs/1905.00852

Thanks!
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