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Warning

This presentation shows graphical images of Brownian motion.

Viewer discretion is advised.
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• But you do not want Brownian motion. You want to 
sample from a distribution 𝜇.

• How do you sample from 𝜇 using your Brownian 
motion?
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The Skorokhod embedding problem

This is Skorokhod’s
embedding problem.

(This is Skorokhod)
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Uniform distribution 
on −1,1 ?
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Theorem statement
• This is a theorem!

Theorem: Let 𝜇 have 0 mean and finite 
variance. Then there exists a stopping time 𝑇
with 𝔼𝑇 < ∞ such that 𝐵𝑇~𝜇.

• This was proved more than once:
•

• Also Gross 19.

Skorokhod 61, Dubins 68, Root 68, Hall 68, 
Rost 71, Monroe 72, Chacon-Walsh 74, 
Azema Yor 79, Bass 83, Vallois 83, Perkins 85, 
Jacka 88, Bertoin and Le Jan 93, Vallois 94, 
FGPP 00, Cox and Hobson 04, Obloj-Yor 04,…
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A conformal solution

• Not a clever generalization of the Bernoulli ±1
method.

• Rather, uses conformal mappings

Theorem: Let 𝜇 have 0 mean and finite variance. Let 
𝐵𝑡 be a planar Brownian motion. There exists a 
simply connected domain Ω such that when 𝐵𝑡 exits 
Ω, its 𝑥 coordinate distributes as 𝜇.
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• The idea is simple, actually. 

• Here is the cdf of mu, 𝐹𝜇. 

• Here is its inverse cdf, 𝐹𝜇
−1. 

• The inverse mapping theorem 
says that if 𝑈 is uniform, then 

𝐹𝜇
−1 𝑈 ~𝜇

A conformal solution

𝐹𝜇 𝑥 = ℙ 𝑋 ≤ 𝑥 = ℙ 𝑇 𝑈 ≤ 𝑥 = ℙ 𝑈 ≤ 𝑇−1 𝑥 = 𝑇−1 𝑥 ]]

[[Any T satisfying 𝑇 𝑈 ~𝜇 must satisfy
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A conformal solution

• How convenient! Brownian motion 
is uniform on the circle

• How convenient! Brownian motion 
is conformally invariant

s
• That is, the image of Brownian motion under a 

conformal map is a (time-changed) Brownian 
motion as well

𝑓(𝑧) conformal
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• Since arg 𝐵𝑇𝑐𝑖𝑟𝑐𝑙𝑒 is uniform, all we need is a 
conformal map 𝜓 which  has

Re 𝜓 𝑒𝑖𝜃 = 𝐹𝜇
−1 𝜃

• Luckily for us,  on the unit circle, a Fourier series and a 
power series are the same thing.

𝑓 𝑧 = ෍

𝑛=0

∞

𝑎𝑛𝑧
𝑛 =෍

𝑖=0

∞

𝑎𝑛𝑒
𝑖𝑛𝜃 =෍

𝑖=0

∞

𝑎𝑛 cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃
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• Let 𝜓𝜇 𝑧 be the extension to the plane:

𝜓𝜇 𝑧 = ෍

𝑛=0

∞
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• On the unit circle, the x-coordinate (i.e real part) of 𝜓𝜇 agrees 
with 𝜑𝜇

𝑅𝑒 𝜓𝜇 𝑒𝑖𝜃 = ෍

𝑛=0

∞

ෞ𝜑𝜇 𝑛 cos 𝑛𝜃 = 𝜑𝜇 𝜃

• The Fourier coefficients decay, so 𝜓𝜇 is analytic inside the unit 
disc 



A potential problem

• Even though Brownian motion is preserved under 
analytic maps, in order to transform boundary to 
boundary we must be one-to-one

• Otherwise:

𝑓 𝑧 = 𝑧2



A potential problem

• For “nice” enough 𝜇, this is not a problem

• If 𝜇 is bounded and 𝐹𝜇 is strictly monotone increasing 
then 𝐹𝜇

−1 is continuous and bounded.

• 𝜓𝜇 then maps the circle’s boundary to a simple closed 
loop, which is the boundary of Ω



A potential problem

• For nasty 𝜇, we don’t have that luxury
• E.g: an atomic distribution with finite weight on every 

rational)

• E.g: The Cantor distribution



A potential problem

• For nasty 𝜇, we don’t have that luxury
• E.g: an atomic distribution with finite weight on every 

rational)

• E.g: The Cantor distribution



A potential problem

• For nasty 𝜇, we don’t have that luxury
• E.g: an atomic distribution with finite weight on every 

rational)

• E.g: The Cantor distribution

• In this case the mapping may diverge



• Theorem: Let 𝑓𝑘 𝑧 be a series of one-to-one 
functions on a domain 𝐷 which converge uniformly on 
every compact subset of 𝐷 to a function 𝑓. Then 𝑓 is 

either one-to-one or constant.

• If we take nice smooth functions 𝐹𝑘 (not necessarily 
CDFs) which converge to 𝐹𝑘, we’ll get 𝜓𝑘s which are 
one-to-one and which will converge to 𝜓𝜇.

A solution
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Examples

𝑃 𝑘 ~
1

2𝑘

Cantor



For more information, call

1-800-https://arxiv.org/abs/1905.00852

Thanks!

https://arxiv.org/abs/1905.00852

