What to do
When all you have is Brownian motion

Student probability day VII,
16/05/19

Renan Gross, WIS

Conformal mapping
Warning

This presentation shows graphical images of Brownian motion.

Viewer discretion is advised.
The Skorokhod embedding problem
The Skorokhod embedding problem

- Life gives you Brownian motion.
The Skorokhod embedding problem

- Life gives you Brownian motion.

- But you do not want Brownian motion. You want to sample from a distribution μ.

- How do you sample from μ using your Brownian motion?
The Skorokhod embedding problem

• A natural thing to do is wait for some time T and then stop the Brownian motion.

• If you choose T in a special way, then perhaps B_T distributes as μ?
The Skorokhod embedding problem

• A natural thing to do is wait for some time T and then stop the Brownian motion.

• If you choose T in a special way, then perhaps B_T distributes as μ?

This is Skorokhod’s embedding problem.
The Skorokhod embedding problem

• A natural thing to do is wait for some time T and then stop the Brownian motion.

• If you choose T in a special way, then perhaps B_T distributes as μ?

This is Skorokhod’s embedding problem.
Examples
Examples

- **Gaussian distribution**: Brownian motion is just a fancy name for Gaussians: $B_t \sim N(0, t)$.
Examples

- **Gaussian distribution**: Brownian motion is just a fancy name for Gaussians: $B_t \sim N(0, t)$.
- Stop at the deterministic time $T = 1$ to get $N(0, 1)$.
Examples

• **Gaussian distribution**: Brownian motion is just a fancy name for Gaussians: $B_t \sim N(0, t)$.

• Stop at the deterministic time $T = 1$ to get $N(0,1)$.

• **Bernoulli distribution**: How to get ±1, each with probability 1/2?
Examples

• **Gaussian distribution**: Brownian motion is just a fancy name for Gaussians: $B_t \sim N(0, t)$.
• Stop at the deterministic time $T = 1$ to get $N(0,1)$.

• **Bernoulli distribution**: How to get ± 1, each with probability $1/2$?
Examples

• **Gaussian distribution**: Brownian motion is just a fancy name for Gaussians: $B_t \sim N(0, t)$.
• Stop at the deterministic time $T = 1$ to get $N(0,1)$.

• **Bernoulli distribution**: How to get ± 1, each with probability $1/2$?

Uniform distribution on $[-1,1]$?
Theorem statement
Theorem statement

• This is a theorem!

Theorem: Let μ have 0 mean and finite variance. Then there exists a stopping time T with $\mathbb{E}T < \infty$ such that $B_T \sim \mu$.
Theorem statement

• This is a theorem!

Theorem: Let μ have 0 mean and finite variance. Then there exists a stopping time T with $\mathbb{E}T < \infty$ such that $B_T \sim \mu$.

• This was proved more than once:
Theorem statement

• This is a theorem!

Theorem: Let μ have 0 mean and finite variance. Then there exists a stopping time T with $\mathbb{E}T < \infty$ such that $B_T \sim \mu$.

• This was proved more than once:
• **Skorokhod** 61,
Theorem: Let μ have 0 mean and finite variance. Then there exists a stopping time T with $\mathbb{E}T < \infty$ such that $B_T \sim \mu$.

This was proved more than once:
- Skorokhod 61, Dubins 68,
Theorem statement

• This is a theorem!

Theorem: Let \(\mu \) have 0 mean and finite variance. Then there exists a stopping time \(T \) with \(\mathbb{E}T < \infty \) such that \(B_T \sim \mu \).

• This was proved more than once:
• **Skorokhod 61, Dubins 68, Root 68**,
Theorem statement

• This is a theorem!

Theorem: Let μ have 0 mean and finite variance. Then there exists a stopping time T with $\mathbb{E}T < \infty$ such that $B_T \sim \mu$.

• This was proved more than once:
 • Skorokhod 61, Dubins 68, Root 68, Hall 68,
Theorem statement

• This is a theorem!

Theorem: Let μ have 0 mean and finite variance. Then there exists a stopping time T with $\mathbb{E}T < \infty$ such that $B_T \sim \mu$.

• This was proved more than once:
 • **Skorokhod 61**, **Dubins 68**, **Root 68**, **Hall 68**, **Rost 71**, **Monroe 72**, **Chacon-Walsh 74**, ...
Theorem statement

• This is a theorem!

Theorem: Let μ have 0 mean and finite variance. Then there exists a stopping time T with $\mathbb{E}T < \infty$ such that $B_T \sim \mu$.

• This was proved more than once:
 • Skorokhod 61, Dubins 68, Root 68, Hall 68, Rost 71, Monroe 72, Chacon-Walsh 74, Azema Yor 79, Bass 83, Vallois 83, Perkins 85,
This is a theorem!

Theorem: Let μ have 0 mean and finite variance. Then there exists a stopping time T with $\mathbb{E}T < \infty$ such that $B_T \sim \mu$.

This was proved more than once:

- Skorokhod 61,
- Dubins 68,
- Root 68,
- Hall 68,
- Rost 71,
- Monroe 72,
- Chacon-Walsh 74,
- Azema Yor 79,
- Bass 83,
- Vallois 83,
- Perkins 85,
- Jacka 88,
- Bertoin and Le Jan 93,
- Vallois 94,
- FGPP 00,
- Cox and Hobson 04,
- Obloj-Yor 04,...
Theorem statement

• This is a theorem!

Theorem: Let μ have 0 mean and finite variance. Then there exists a stopping time T with $\mathbb{E}T < \infty$ such that $B_T \sim \mu$.

• This was proved more than once:
 • Skorokhod 61, Dubins 68, Root 68, Hall 68, Rost 71, Monroe 72, Chacon-Walsh 74, Azema Yor 79, Bass 83, Vallois 83, Perkins 85, Jacka 88, Bertoin and Le Jan 93, Vallois 94, FGPP 00, Cox and Hobson 04, Obloj-Yor 04, ...
 • Also Gross 19.
Solution 1: Dubins

- A clever generalization of the Bernoulli ±1 method.
Solution 1: Dubins

• A clever generalization of the Bernoulli ±1 method.
Solution 1: Dubins

• A clever generalization of the Bernoulli ±1 method.
Solution 1: Dubins

• A clever generalization of the Bernoulli ±1 method.
Solution 1: Dubins

- A clever generalization of the Bernoulli ±1 method.
Solution 1: Dubins

• A clever generalization of the Bernoulli ± 1 method.
Solution 1: Dubins

- A clever generalization of the Bernoulli ±1 method.
Solution 1: Dubins

- A clever generalization of the Bernoulli ±1 method.
Solution 2: Root

• Another clever generalization of the Bernoulli ± 1 method.

• The hitting time of the graph (X_t, t) with some barrier.
Solution 2: Root

- Another clever generalization of the Bernoulli ± 1 method.
- The hitting time of the graph (X_t, t) with some barrier.
Solution 2: Root

• Another clever generalization of the Bernoulli ± 1 method.

• The hitting time of the graph (X_t, t) with some barrier.
Solution 2: Root

• Another clever generalization of the Bernoulli ±1 method.

• The hitting time of the graph \((X_t, t)\) with some barrier.
A conformal solution
A conformal solution

• Not a clever generalization of the Bernoulli \(\pm 1 \) method.

• Rather, uses conformal mappings
A conformal solution

• Not a clever generalization of the Bernoulli ±1 method.
• Rather, uses conformal mappings

Theorem: Let μ have 0 mean and finite variance. Let B_t be a planar Brownian motion. There exists a simply connected domain Ω such that when B_t exits Ω, its x coordinate distributes as μ.
A conformal solution

- The idea is simple, actually.
A conformal solution

• The idea is simple, actually.
• Here is the cdf of μ, F_μ.
A conformal solution

• The idea is simple, actually.
• Here is the cdf of μ, F_μ.
• Here is its inverse cdf, F_μ^{-1}.
The idea is simple, actually.

Here is the cdf of mu, F_μ.

Here is its inverse cdf, F_μ^{-1}.

The inverse mapping theorem says that if U is uniform, then

$$F_\mu^{-1}(U) \sim \mu$$

Any T satisfying $T(U) \sim \mu$ must satisfy

$$F_\mu(x) = \mathbb{P}[X \leq x] = \mathbb{P}[T(U) \leq x] = \mathbb{P}[U \leq T^{-1}(x)] = T^{-1}(x)$$
A conformal solution
A conformal solution

• If only there was some way of using B_t to sample F_{μ}^{-1} uniformly!
A conformal solution

• If only there was some way of using B_t to sample F_μ^{-1} uniformly!

• How convenient! Brownian motion is uniform on the circle
A conformal solution

• If only there was some way of using B_t to sample F_μ^{-1} uniformly!

• How convenient! Brownian motion is uniform on the circle

• How convenient! Brownian motion is conformally invariant

• That is, the image of Brownian motion under a conformal map is a (time-changed) Brownian motion as well
A conformal solution

How convenient! Brownian motion is uniform on the circle

That is, the image of Brownian motion under a conformal map is a \(f(z) \) Brownian motion as well.
A conformal solution
A conformal solution

• Since $\arg(B_{T_{\text{circle}}})$ is uniform, all we need is a conformal map ψ which has

$$\text{Re}\{\psi(e^{i\theta})\} = F_{\mu}^{-1}(\theta)$$
A conformal solution

- Since \(\arg(B_{T_{circle}}) \) is uniform, all we need is a conformal map \(\psi \) which has
 \[
 \text{Re}\{\psi(e^{i\theta})\} = F_{\mu}^{-1}(\theta)
 \]

- Luckily for us, on the unit circle, a Fourier series and a power series are the same thing.

\[
\begin{align*}
 f(z) &= \sum_{n=0}^{\infty} a_n z^n \\
 &= \sum_{i=0}^{\infty} a_n e^{i n \theta} \\
 &= \sum_{i=0}^{\infty} a_n (\cos n \theta + i \sin n \theta)
\end{align*}
\]
A conformal solution

• Let $\varphi_\mu(\theta) = F_\mu^{-1}\left(\frac{\theta}{\pi}\right)$
A conformal solution

- Let $\varphi_\mu(\theta) = F^{-1}_\mu\left(\frac{|\theta|}{\pi}\right)$

- Expand $\varphi_\mu(\theta)$ as an even Fourier series:

$$\varphi_\mu(\theta) = \sum_{n=0}^{\infty} \hat{\varphi}_\mu(n) \cos n\theta$$
A conformal solution

• Let $\varphi_\mu(\theta) = F_\mu^{-1}\left(\frac{|\theta|}{\pi}\right)$

• Expand $\varphi_\mu(\theta)$ as an even Fourier series:

$$\varphi_\mu(\theta) = \sum_{n=0}^{\infty} \widehat{\varphi}_\mu(n) \cos n\theta$$

• Let $\psi_\mu(z)$ be the extension to the plane:

$$\psi_\mu(z) = \sum_{n=0}^{\infty} \widehat{\varphi}_\mu(n) z^n$$
A conformal solution

- Let \(\varphi_\mu(\theta) = F_\mu^{-1}\left(\frac{|\theta|}{\pi}\right) \)

- Expand \(\varphi_\mu(\theta) \) as an even Fourier series:
 \[
 \varphi_\mu(\theta) = \sum_{n=0}^{\infty} \hat{\varphi}_\mu(n) \cos n\theta
 \]

- Let \(\psi_\mu(z) \) be the extension to the plane:
 \[
 \psi_\mu(z) = \sum_{n=0}^{\infty} \hat{\varphi}_\mu(n) z^n
 \]

- On the unit circle, the x-coordinate (i.e., real part) of \(\psi_\mu \) agrees with \(\varphi_\mu \)
 \[
 \text{Re}\{\psi_\mu(e^{i\theta})\} = \sum_{n=0}^{\infty} \hat{\varphi}_\mu(n) \cos n\theta = \varphi_\mu(\theta)
 \]
A conformal solution

- Let $\varphi_\mu(\theta) = F_\mu^{-1}(\frac{|\theta|}{\pi})$
- Expand $\varphi_\mu(\theta)$ as an even Fourier series:
 \[\varphi_\mu(\theta) = \sum_{n=0}^{\infty} \hat{\varphi}_\mu(n) \cos n\theta \]
- Let $\psi_\mu(z)$ be the extension to the plane:
 \[\psi_\mu(z) = \sum_{n=0}^{\infty} \hat{\varphi}_\mu(n) z^n \]
- On the unit circle, the x-coordinate (i.e. real part) of ψ_μ agrees with φ_μ
 \[\text{Re}\{\psi_\mu(e^{i\theta})\} = \sum_{n=0}^{\infty} \hat{\varphi}_\mu(n) \cos n\theta = \varphi_\mu(\theta) \]
- The Fourier coefficients decay, so ψ_μ is analytic inside the unit disc
A potential problem

• Even though Brownian motion is preserved under analytic maps, in order to transform boundary to boundary we must be one-to-one

• Otherwise:

\[f(z) = z^2 \]
A potential problem

• For “nice” enough μ, this is not a problem
• If μ is bounded and F_μ is strictly monotone increasing then F_μ^{-1} is continuous and bounded.
• ψ_μ then maps the circle’s boundary to a simple closed loop, which is the boundary of Ω
A potential problem

- For nasty μ, we don’t have that luxury
 - E.g: an atomic distribution with finite weight on every rational
 - E.g: The Cantor distribution
A potential problem

- For nasty μ, we don’t have that luxury
 - E.g: an atomic distribution with finite weight on every rational)
 - E.g: The Cantor distribution
A potential problem

• For nasty μ, we don’t have that luxury
 • E.g: an atomic distribution with finite weight on every rational
 • E.g: The Cantor distribution

• In this case the mapping may diverge
A solution

- **Theorem:** Let \(\{f_k(z)\} \) be a series of one-to-one functions on a domain \(D \) which converge uniformly on every compact subset of \(D \) to a function \(f \). Then \(f \) is either one-to-one or constant.

- If we take nice smooth functions \(F_k \) (not necessarily CDFs) which converge to \(F_k \), we’ll get \(\psi_k \) s which are one-to-one and which will converge to \(\psi_\mu \).
Examples

Gaussian

Uniform
Examples

$$P[k] \sim \frac{1}{2^k}$$

Cantor
For more information, call 1-800-https://arxiv.org/abs/1905.00852

Thanks!