Gap-Hamming-Distance: The Journey to an Optimal Lower Bound

Amit Chakrabarti

DARTMOUTH COLLEGE

Main result joint with

Oded Regev, Tel Aviv University

Sublinear Algorithms Workshop at Bertinoro, May 2011

The Gap-Hamming-Distance Problem

Input: Alice gets $x \in \{0,1\}^n$, Bob gets $y \in \{0,1\}^n$.

Output:

• GHD
$$(x,y) = 1$$
 if $\Delta(x,y) > \frac{n}{2} + \sqrt{n}$

• GHD
$$(x,y) = 0$$
 if $\Delta(x,y) < \frac{n}{2} - \sqrt{n}$

Want: randomized, constant error protocol

Cost: Worst case number of bits communicated

$$n = 12; \quad \Delta(x, y) = 3 \in [6 - \sqrt{12}, 6 + \sqrt{12}]$$

Implications

Data stream lower bounds

- Distinct elements
- Frequency moments
- Norms
- Entropy
- General form of bound: $ps = \Omega(1/\varepsilon^2)$

Distributed functional monitoring lower bounds

Connections to differential privacy

The Reductions

E.g., Distinct Elements (Other problems: similar)

Alice: $x \mapsto \sigma = \langle (1, x_1), (2, x_2), \dots, (n, x_n) \rangle$

Bob: $y \mapsto \tau = \langle (1, y_1), (2, y_2), \dots, (n, y_n) \rangle$

Notice:
$$F_0(\sigma \circ \tau) = n + \Delta(x,y) = \begin{cases} < \frac{3n}{2} - \sqrt{n}, \text{ or } \\ > \frac{3n}{2} + \sqrt{n}. \end{cases}$$
 Set $\varepsilon = \frac{1}{\sqrt{n}}$.

Ancient History

One-Pass Bounds

Indyk, Woodruff [FOCS 2003]

- Considered one-pass lower bound for DIST-ELEM
- Recognized relevance of GHD, difficulty of lower-bounding
- Defined "related" problem Π_{ℓ_2} , showed $R^{\rightarrow}(\Pi_{\ell_2}) = \Omega(n)$
- Concluded $\Omega(\varepsilon^{-2})$ bound for DIST-ELEM $_{m,\varepsilon}$ with $m=\widetilde{\Omega}(1/\varepsilon^9)$

One-Pass Bounds

Indyk, Woodruff [FOCS 2003]

- Considered one-pass lower bound for DIST-ELEM
- Recognized relevance of GHD, difficulty of lower-bounding
- Defined "related" problem Π_{ℓ_2} , showed $R^{\rightarrow}(\Pi_{\ell_2}) = \Omega(n)$
- ullet Concluded $\Omega(arepsilon^{-2})$ bound for DIST-ELEM $_{m,arepsilon}$ with $m=\widetilde{\Omega}(1/arepsilon^9)$

Woodruff [SODA 2004]

- Worked with GHD itself, showed $R^{\rightarrow}(GHD) = \Omega(n)$
- Very intricate combinatorial proof, with hairy probability estimations
- Conjectured $R(GHD) = \Omega(n)$, implying multi-pass lower bounds

Amit Chakrabarti 6-a

The VC-Dimension Technique

- Consider communication matrix of GHD as set system
- The system has $\Omega(n)$ VC-dimension

```
      1
      0
      1
      0
      0
      0
      1

      0
      0
      1
      1
      1
      0
      1

      1
      1
      1
      1
      1
      1
      1
      1

      1
      1
      1
      0
      1
      0
      0
      0

      1
      0
      1
      0
      1
      0
      1
      1
```

The VC-Dimension Technique

- Consider communication matrix of GHD as set system
- The system has $\Omega(n)$ VC-dimension

The VC-Dimension Technique

- Consider communication matrix of GHD as set system
- The system has $\Omega(n)$ VC-dimension

• Thus, $R^{\rightarrow}(GHD) = \Omega(n)$

The Middle Ages

A Nice Simplification

Jayram, Kumar, Sivakumar [circa 2005]

- Simpler proof of $R^{\rightarrow}(GHD) = \Omega(n)$
- *Much* simpler: direct reduction from INDEX
- Geometric intuition:

Alice:
$$x \in \{0,1\}^n \longmapsto \widetilde{x} \in \left\{\frac{1}{\sqrt{n}}, -\frac{1}{\sqrt{n}}\right\}^n \in \mathbb{R}^n$$

Bob: $j \in [n] \longmapsto e_j = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{R}^n$

- Observe: $\langle \widetilde{x}, e_j \rangle \not\approx 0$, and x_j determined by $\operatorname{sgn} \langle \widetilde{x}, e_j \rangle$
- We've reduced INDEX to "gap-inner-product", or GIP

Inner Product ↔ **Hamming Distance**

• Obviously, GHD \rightarrow GIP:

$$\langle \widetilde{x}, \widetilde{y} \rangle = 1 - \frac{2\Delta(x, y)}{n}$$

 $\langle \widetilde{x}, \widetilde{y} \rangle \geqslant \mp \frac{2}{\sqrt{n}} \Rightarrow \Delta(x, y) \lessgtr \frac{n}{2} \pm \sqrt{n}$

ullet Also, GIP o GHD by "discretization transform":

Pick random Gaussians r_1, \ldots, r_N , with N = 10n

Alice:
$$\bar{x} \in \mathbb{R}^n \longmapsto x = (\operatorname{sgn}\langle \bar{x}, r_1 \rangle, \dots, \operatorname{sgn}\langle \bar{x}, r_N \rangle) \in \{\pm 1\}^N$$

Bob: $\bar{y} \in \mathbb{R}^n \longmapsto y = (\operatorname{sgn}\langle \bar{y}, r_1 \rangle, \dots, \operatorname{sgn}\langle \bar{y}, r_N \rangle) \in \{\pm 1\}^N$
 $\langle \bar{x}, \bar{y} \rangle \gtrless \mp \frac{1}{\sqrt{n}} \stackrel{\mathsf{whp}}{\Longrightarrow} \Delta(x, y) \lessgtr \frac{N}{2} \pm O(\sqrt{N})$

The Renaissance Era

Round Elimination

Brody, Chakrabarti [CCC 2009]

- Can we at least rule out a *two-pass* improvement for DIST-ELEM?
- A cheap first message makes little progress? Then rinse, repeat
- Tends to decimate problem [Miltersen-Nisan-Safra-Wigderson'98] [Sen'03]

First message constant on large set:

Alice, Bob lift their (n/3)-dim inputs from inner coords to full n-dim space First message now redundant, so eliminate! [Brody-C.'09]

Amit Chakrabarti 13-a

Better Round Elimination

Brody, Chakrabarti, Regev, Vidick, de Wolf [RANDOM 2010]

- Previous argument reduced dimension too rapidly
- Gives $R^k(GHD) = n/2^{O(k^2)}$
- Can improve to $R^k(\mathrm{GHD}) = n/O(k^2)$

Round Elimination V2.0: Geometric Perturbation

First message constant over large set A

Round Elimination V2.0: Geometric Perturbation

First message constant over large set A

Alice: replace x with z = NearestNeighbour(x, A)

Amit Chakrabarti 15-a

Modern History

Main Theorem

Chakrabarti, Regev [STOC 2011]

And now, we show:

 $R(GHD) = \Omega(n)$

Input universe $U = \{0,1\}^n \times \{0,1\}^n$

Deterministic protocol P, communicating $\leq c$ bits

partitions U into $\leq 2^c$ rectangles $A_i \times B_i$, where $A_i, B_i \subseteq \{0, 1\}^n$

Input universe $U = \{0,1\}^n \times \{0,1\}^n$

Deterministic protocol P, communicating $\leq c$ bits

partitions U into $\leq 2^c$ rectangles $A_i \times B_i$, where $A_i, B_i \subseteq \{0, 1\}^n$

Input universe $U = \{0,1\}^n \times \{0,1\}^n$

Deterministic protocol P, communicating $\leq c$ bits

partitions U into $\leq 2^c$ rectangles $A_i \times B_i$, where $A_i, B_i \subseteq \{0, 1\}^n$

Input universe $U = \{0,1\}^n \times \{0,1\}^n$

Deterministic protocol P, communicating $\leq c$ bits

partitions U into $\leq 2^c$ rectangles $A_i \times B_i$, where $A_i, B_i \subseteq \{0,1\}^n$

Input universe $U = \{0,1\}^n \times \{0,1\}^n$

Deterministic protocol P, communicating $\leq c$ bits

partitions U into $\leq 2^c$ rectangles $A_i \times B_i$, where $A_i, B_i \subseteq \{0, 1\}^n$

Input universe $U = \{0,1\}^n \times \{0,1\}^n$

Deterministic protocol P, communicating $\leq c$ bits

partitions U into $\leq 2^c$ rectangles $A_i \times B_i$, where $A_i, B_i \subseteq \{0, 1\}^n$

If P computes $f: U \to \{0,1\}$, then $f^{-1}(0) = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

Deterministic: $f^{-1}(0) = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

Randomized: $\{P \text{ outputs } 0\} = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

- Partition covers most of $f^{-1}(0)$
- Each R_i mostly uncorrupted: contains much fewer 1s than 0s.

Deterministic: $f^{-1}(0) = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

Randomized: $\{P \text{ outputs } 0\} = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

- Partition covers most of $f^{-1}(0)$
- Each R_i mostly uncorrupted: contains much fewer 1s than 0s.

For lower bound:

• Show every large rectangle (size $\geq 2^{0.99n} \times 2^{0.99n}$) is *corrupted*

$$\mu_1(R) \geq \alpha \mu_0(R)$$

Amit Chakrabarti 19-a

Deterministic: $f^{-1}(0) = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

Randomized: $\{P \text{ outputs } 0\} = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

- Partition covers most of $f^{-1}(0)$
- Each R_i mostly uncorrupted: contains much fewer 1s than 0s.

For lower bound:

• Show every large rectangle (size $\geq 2^{0.99n} \times 2^{0.99n}$) is *corrupted*

$$\mu_1(R) \geq \alpha \mu_0(R)$$

Deterministic: $f^{-1}(0) = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

Randomized: $\{P \text{ outputs } 0\} = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

- Partition covers most of $f^{-1}(0)$
- Each R_i mostly uncorrupted: contains much fewer 1s than 0s.

For lower bound:

• Show every large rectangle (size $\geq 2^{0.99n} \times 2^{0.99n}$) is *corrupted*

$$\mu_1(R) \geq \alpha \mu_0(R)$$

• Caveat: not true! E.g., $\{(x,y): x_{1:100\sqrt{n}} = y_{1:100\sqrt{n}} = \vec{0}\}$

Deterministic: $f^{-1}(0) = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

Randomized: $\{P \text{ outputs } 0\} = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

- Partition covers most of $f^{-1}(0)$
- Each R_i mostly uncorrupted: contains much fewer 1s than 0s.

For lower bound:

• Show every large rectangle (size $\geq 2^{0.99n} \times 2^{0.99n}$) is *corrupted*

$$\mu_1(R) \geq \alpha \mu_0(R)$$

- Caveat: not true! E.g., $\{(x,y): x_{1:100\sqrt{n}} = y_{1:100\sqrt{n}} = \vec{0}\}$
- Show weaker inequality

$$\mu_1(R) + \beta \,\mu_{\star}(R) \geq \alpha \,\mu_0(R) \qquad (\alpha > \beta)$$

Corruption with Jokers

Pick distribs μ_0, μ_1 on $f^{-1}(0), f^{-1}(1)$, and another distrib μ_{\star}

Argue that for all large rectangles R, we have

$$\mu_1(R) + \beta \,\mu_{\star}(R) \geq \alpha \,\mu_0(R) \qquad (\alpha > \beta)$$

Corruption with Jokers

Pick distribs μ_0, μ_1 on $f^{-1}(0), f^{-1}(1)$, and another distrib μ_{\star}

Argue that for all large rectangles R, we have

$$\mu_1(R) + \beta \,\mu_{\star}(R) \geq \alpha \,\mu_0(R) \qquad (\alpha > \beta)$$

Sum over partition $\{P \text{ outputs } 0\} = \bigcup_{i=1}^{2^c} R_i$:

$$\mu_1(P^{-1}(0)) + \beta \,\mu_{\star}(P^{-1}(0)) \geq \alpha \,\mu_0(P^{-1}(0))$$

Amit Chakrabarti 20-a

Corruption with Jokers

Pick distribs μ_0, μ_1 on $f^{-1}(0), f^{-1}(1)$, and another distrib μ_{\star}

Argue that for all large rectangles R, we have

$$\mu_1(R) + \beta \,\mu_{\star}(R) \geq \alpha \,\mu_0(R) \qquad (\alpha > \beta)$$

Sum over partition $\{P \text{ outputs } 0\} = \bigcup_{i=1}^{2^c} R_i$:

$$\mu_1(P^{-1}(0)) + \beta \,\mu_{\star}(P^{-1}(0)) \geq \alpha \,\mu_0(P^{-1}(0)) \geq \alpha(1-\varepsilon)$$

Amit Chakrabarti 20-b

Corruption with Jokers

Pick distribs μ_0, μ_1 on $f^{-1}(0), f^{-1}(1)$, and another distrib μ_{\star}

Argue that for all large rectangles R, we have

$$\mu_1(R) + \beta \,\mu_{\star}(R) \geq \alpha \,\mu_0(R) \qquad (\alpha > \beta)$$

Sum over partition $\{P \text{ outputs } 0\} = \bigcup_{i=1}^{2^c} R_i$:

$$\varepsilon + \beta \ge \mu_1(P^{-1}(0)) + \beta \mu_{\star}(P^{-1}(0)) \ge \alpha \mu_0(P^{-1}(0)) \ge \alpha(1 - \varepsilon)$$

Amit Chakrabarti 20-c

The Corruption Inequality and Its Proof

Let

$$\begin{array}{ll} \mu_0 &=& \text{Uniform on } \{(x,y): \langle \widetilde{x},\widetilde{y}\rangle = 0\} \\ \\ \mu_1 &=& \text{Uniform on } \{(x,y): \langle \widetilde{x},\widetilde{y}\rangle = -10/\sqrt{n}\} \\ \\ \mu_\star &=& \text{Uniform on } \{(x,y): \langle \widetilde{x},\widetilde{y}\rangle = 10/\sqrt{n}\} \end{array}$$

The Key Inequality: For $|A|, |B| \ge 2^{0.99n}$

$$\frac{1}{2}(\mu_1(A \times B) + \mu_{\star}(A \times B)) \geq \frac{9}{10} \mu_0(A \times B)$$

"Inner product between large sets not too concentrated around zero"

The Corruption Inequality and Its Proof

Let

$$\begin{array}{ll} \mu_0 &=& \text{Uniform on } \{(x,y): \langle \widetilde{x},\widetilde{y}\rangle = 0\} \\ \\ \mu_1 &=& \text{Uniform on } \{(x,y): \langle \widetilde{x},\widetilde{y}\rangle = -10/\sqrt{n}\} \\ \\ \mu_\star &=& \text{Uniform on } \{(x,y): \langle \widetilde{x},\widetilde{y}\rangle = 10/\sqrt{n}\} \end{array}$$

The Key Inequality: For $|A|, |B| \ge 2^{0.99n}$

$$\frac{1}{2}(\mu_1(A \times B) + \mu_{\star}(A \times B)) \geq \frac{9}{10} \mu_0(A \times B)$$

"Inner product between large sets not too concentrated around zero"

Proof Strategy: For $A, B \subseteq \mathbb{R}^n$ with $\gamma(A), \gamma(B) \ge 2^{-0.01n}$

distrib of $\langle \hat{x}, \hat{y} \rangle$ "spread out" like N(0,1)

where $\gamma = n$ -dim Gaussian, $(\hat{x}, \hat{y}) \leftarrow A \times B$

Proof Details

Goal: For $A, B \subseteq \mathbb{R}^n$ with $\gamma(A), \gamma(B) \ge 2^{-0.01n}$

distrib of $\langle \hat{x}, \hat{y} \rangle$ "spread out" like N(0,1)

Think

```
\begin{array}{lll} A & = & \{ \text{directions} \} \\ \\ A_{\text{bad}} & = & \{ \text{bad directions in } A \} \\ \\ & = & \{ \hat{x} \in A : \, \langle \hat{x}, \hat{y} \rangle \text{ not spread out, for } \hat{y} \leftarrow B \} \end{array}
```

Proof Details

Goal: For $A, B \subseteq \mathbb{R}^n$ with $\gamma(A), \gamma(B) \ge 2^{-0.01n}$

distrib of $\langle \hat{x}, \hat{y} \rangle$ "spread out" like N(0,1)

Think

$$\begin{array}{lll} A & = & \{ \text{directions} \} \\ \\ A_{\text{bad}} & = & \{ \text{bad directions in } A \} \\ \\ & = & \{ \hat{x} \in A : \langle \hat{x}, \hat{y} \rangle \text{ not spread out, for } \hat{y} \leftarrow B \} \end{array}$$

For a contradiction, suppose $\gamma(A_{\mathsf{bad}}) > 2^{-0.02n}$

Then (Raz's Lemma): A contains orthogonal bad dirs $\hat{x}_1, \ldots, \hat{x}_{n/2}$

Amit Chakrabarti 22-a

Proof Details

Goal: For $A, B \subseteq \mathbb{R}^n$ with $\gamma(A), \gamma(B) \ge 2^{-0.01n}$

distrib of $\langle \hat{x}, \hat{y} \rangle$ "spread out" like N(0,1)

Think

$$\begin{array}{lll} A & = & \{ \text{directions} \} \\ \\ A_{\text{bad}} & = & \{ \text{bad directions in } A \} \\ \\ & = & \{ \hat{x} \in A : \langle \hat{x}, \hat{y} \rangle \text{ not spread out, for } \hat{y} \leftarrow B \} \end{array}$$

For a contradiction, suppose $\gamma(A_{\mathsf{bad}}) > 2^{-0.02n}$

Then (Raz's Lemma): A contains orthogonal bad dirs $\hat{x}_1, \ldots, \hat{x}_{n/2}$

Therefore (Information Theory): $\hat{y} \leftarrow B$ can't have enough entropy

Contradicts $\gamma(B) \geq 2^{-0.01n}$

Amit Chakrabarti 22-b

Large set A

$$0.99n \leq H(y) \leq H(\langle y, x_1 \rangle, \dots, \langle y, x_n \rangle)$$

$$= \sum_{k=1}^{n/2} H(\langle y, x_k \rangle \mid \langle y, x_1 \rangle, \dots, \langle y, x_{k-1} \rangle)$$

$$+ \sum_{k=n/2+1}^{n} H(\langle y, x_k \rangle \mid \langle y, x_1 \rangle, \dots, \langle y, x_{k-1} \rangle)$$

$$\leq \sum_{k=1}^{n/2} 0.7 + \sum_{k=n/2+1}^{n} 1 = 0.85n$$

The Future

The Future

Two simplifications of our proof [not yet published]

Vidick shows following anti-concentration inequality:

$$\mathbb{E}[\langle \widetilde{x}, \widetilde{y} \rangle^2] = \Omega(1/n)$$

Avoids "continuous information theory"; just concentration of measure

Sherstov: anti-concetration gives corruption-based proof that

$$R(NEAR-ORTHOGONAL) = \Omega(n)$$

and reduces NEAR-ORTHOGONAL to GHD; thus avoids "jokers"

Also, Sherstov proves anti-concentration using Talagrand's inequality

Conclusions

- Settled communication complexity of GHD, proving a long-conjectured $\Omega(n)$ bound
- As a result, understood multi-pass space complexity of a number of data stream problems

Conclusions

- Settled communication complexity of GHD, proving a long-conjectured $\Omega(n)$ bound
- As a result, understood multi-pass space complexity of a number of data stream problems

Open Problem

Prove that GHD is hard under the uniform distribution

Amit Chakrabarti 26-b