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The Gap-Hamming-Distance Problem

Input: Alice gets x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n.
Output:

• ghd(x, y) = 1 if ∆(x, y) > n
2 +
√
n

• ghd(x, y) = 0 if ∆(x, y) < n
2 −
√
n

Want: randomized, constant error protocol

Cost: Worst case number of bits communicated
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Implications

Data stream lower bounds

• Distinct elements

• Frequency moments

• Norms

• Entropy

• General form of bound: ps = Ω(1/ε2)

Distributed functional monitoring lower bounds

Connections to differential privacy
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The Reductions

E.g., Distinct Elements (Other problems: similar)
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Alice: x 7−→ σ = 〈(1, x1), (2, x2), . . . , (n, xn)〉
Bob: y 7−→ τ = 〈(1, y1), (2, y2), . . . , (n, yn)〉

Notice: F0(σ ◦ τ) = n+∆(x, y) =





< 3n
2 −
√
n, or

> 3n
2 +
√
n.

Set ε = 1√
n
.
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Ancient History
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One-Pass Bounds

Indyk, Woodruff [FOCS 2003]

• Considered one-pass lower bound for dist-elem

• Recognized relevance of ghd, difficulty of lower-bounding

• Defined “related” problem Πℓ2 , showed R→(Πℓ2) = Ω(n)

• Concluded Ω(ε−2) bound for dist-elemm,ε with m = Ω̃(1/ε9)
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One-Pass Bounds

Indyk, Woodruff [FOCS 2003]

• Considered one-pass lower bound for dist-elem

• Recognized relevance of ghd, difficulty of lower-bounding

• Defined “related” problem Πℓ2 , showed R→(Πℓ2) = Ω(n)

• Concluded Ω(ε−2) bound for dist-elemm,ε with m = Ω̃(1/ε9)

Woodruff [SODA 2004]

• Worked with ghd itself, showed R→(ghd) = Ω(n)

• Very intricate combinatorial proof, with hairy probability estimations

• Conjectured R(ghd) = Ω(n), implying multi-pass lower bounds
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The VC-Dimension Technique

• Consider communication matrix of ghd as set system

• The system has Ω(n) VC-dimension
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• Thus, R→(ghd) = Ω(n)
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The Middle Ages
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A Nice Simplification

Jayram, Kumar, Sivakumar [circa 2005]

• Simpler proof of R→(ghd) = Ω(n)

• Much simpler: direct reduction from index

• Geometric intuition:

Alice: x ∈ {0, 1}n 7−→ x̃ ∈
{

1√
n
,− 1√

n

}n

∈ R
n

Bob: j ∈ [n] 7−→ ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
n

• Observe: 〈x̃, ej〉 6≈ 0, and xj determined by sgn〈x̃, ej〉

• We’ve reduced index to “gap-inner-product”, or gip
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Inner Product ↔ Hamming Distance

• Obviously, ghd→ gip:

〈x̃, ỹ〉 = 1− 2∆(x, y)

n

〈x̃, ỹ〉 ≷ ∓ 2√
n
⇒ ∆(x, y) ≶

n

2
±
√
n

• Also, gip→ ghd by “discretization transform”:

Pick random Gaussians r1, . . . , rN , with N = 10n

Alice: x̄ ∈ R
n 7−→ x = (sgn〈x̄, r1〉, . . . , sgn〈x̄, rN 〉) ∈ {±1}N

Bob: ȳ ∈ R
n 7−→ y = (sgn〈ȳ, r1〉, . . . , sgn〈ȳ, rN 〉) ∈ {±1}N

〈x̄, ȳ〉 ≷ ∓ 1√
n

whp
=⇒ ∆(x, y) ≶ N

2 ±O(
√
N)
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The Renaissance Era

Amit Chakrabarti 11



Optimal Lower Bound for GHD May 2011

Round Elimination

Brody, Chakrabarti [CCC 2009]

• Can we at least rule out a two-pass improvement for dist-elem?

• A cheap first message makes little progress? Then rinse, repeat

• Tends to decimate problem [Miltersen-Nisan-Safra-Wigderson’98] [Sen’03]

Input:

(k rounds) ⇒
Padding:

(k−1 rounds)

Input:
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Another VC-Dimension Argument: Subcube Lifting

First message constant on large set:
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Alice, Bob lift their (n/3)-dim inputs from inner coords to full n-dim space

First message now redundant, so eliminate!
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(Rest: outer coords, padding)

S:

Alice, Bob lift their (n/3)-dim inputs from inner coords to full n-dim space

First message now redundant, so eliminate!
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Another VC-Dimension Argument: Subcube Lifting

First message constant on large set:
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Another VC-Dimension Argument: Subcube Lifting
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Alice, Bob lift their (n/3)-dim inputs from inner coords to full n-dim space

First message now redundant, so eliminate! [Brody-C.’09]
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Better Round Elimination

Brody, Chakrabarti, Regev, Vidick, de Wolf [RANDOM 2010]

• Previous argument reduced dimension too rapidly

• Gives Rk(ghd) = n/2O(k2)

• Can improve to Rk(ghd) = n/O(k2)
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Round Elimination V2.0: Geometric Perturbation

First message constant over large set A

xz

c
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Round Elimination V2.0: Geometric Perturbation

First message constant over large set A

xz

c
1/2
n

y

A

ERR

{0,1}
n

Alice: replace x with z = NearestNeighbour(x,A)
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Modern History
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Main Theorem

Chakrabarti, Regev [STOC 2011]

And now, we show:

R(ghd) = Ω(n)
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The Rectangle Property

Input universe U = {0, 1}n × {0, 1}n

Deterministic protocol P , communicating ≤ c bits

partitions U into ≤ 2c rectangles Ai ×Bi, where Ai, Bi ⊆ {0, 1}n

Bob
A

lic
e

If P computes f : U → {0, 1}, then f−1(1) = R1 ∪R2 ∪ · · · ∪R2c
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The Rectangle Property

Input universe U = {0, 1}n × {0, 1}n

Deterministic protocol P , communicating ≤ c bits

partitions U into ≤ 2c rectangles Ai ×Bi, where Ai, Bi ⊆ {0, 1}n

Bob
A

lic
e

If P computes f : U → {0, 1}, then f−1(0) = R1 ∪R2 ∪ · · · ∪R2c
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The Corruption Technique and a Twist

Deterministic: f−1(0) = R1 ∪R2 ∪ · · · ∪R2c

Randomized: {P outputs 0} = R1 ∪R2 ∪ · · · ∪R2c

• Partition covers most of f−1(0)

• Each Ri mostly uncorrupted: contains much fewer 1s than 0s.
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Randomized: {P outputs 0} = R1 ∪R2 ∪ · · · ∪R2c

• Partition covers most of f−1(0)

• Each Ri mostly uncorrupted: contains much fewer 1s than 0s.

For lower bound:

• Show every large rectangle (size ≥ 20.99n × 20.99n) is corrupted

µ1(R) ≥ αµ0(R)
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Randomized: {P outputs 0} = R1 ∪R2 ∪ · · · ∪R2c

• Partition covers most of f−1(0)

• Each Ri mostly uncorrupted: contains much fewer 1s than 0s.

For lower bound:

• Show every large rectangle (size ≥ 20.99n × 20.99n) is corrupted

µ1(R) ≥ αµ0(R)

• Caveat: not true! E.g., {(x, y) : x1:100
√
n = y1:100

√
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The Corruption Technique and a Twist

Deterministic: f−1(0) = R1 ∪R2 ∪ · · · ∪R2c

Randomized: {P outputs 0} = R1 ∪R2 ∪ · · · ∪R2c

• Partition covers most of f−1(0)

• Each Ri mostly uncorrupted: contains much fewer 1s than 0s.

For lower bound:

• Show every large rectangle (size ≥ 20.99n × 20.99n) is corrupted

µ1(R) ≥ αµ0(R)

• Caveat: not true! E.g., {(x, y) : x1:100
√
n = y1:100

√
n = ~0}

• Show weaker inequality

µ1(R) + β µ⋆(R) ≥ αµ0(R) (α > β)
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Corruption with Jokers

Pick distribs µ0, µ1 on f−1(0), f−1(1), and another distrib µ⋆

Argue that for all large rectangles R, we have

µ1(R) + β µ⋆(R) ≥ αµ0(R) (α > β)
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Corruption with Jokers

Pick distribs µ0, µ1 on f−1(0), f−1(1), and another distrib µ⋆

Argue that for all large rectangles R, we have

µ1(R) + β µ⋆(R) ≥ αµ0(R) (α > β)

Sum over partition {P outputs 0} = ⋃2c

i=1Ri:

µ1(P
−1(0)) + β µ⋆(P

−1(0)) ≥ αµ0(P
−1(0))
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Corruption with Jokers

Pick distribs µ0, µ1 on f−1(0), f−1(1), and another distrib µ⋆

Argue that for all large rectangles R, we have

µ1(R) + β µ⋆(R) ≥ αµ0(R) (α > β)

Sum over partition {P outputs 0} = ⋃2c

i=1Ri:

µ1(P
−1(0)) + β µ⋆(P

−1(0)) ≥ αµ0(P
−1(0)) ≥ α(1− ε)

Amit Chakrabarti 20-b



Optimal Lower Bound for GHD May 2011

Corruption with Jokers

Pick distribs µ0, µ1 on f−1(0), f−1(1), and another distrib µ⋆

Argue that for all large rectangles R, we have

µ1(R) + β µ⋆(R) ≥ αµ0(R) (α > β)

Sum over partition {P outputs 0} = ⋃2c

i=1Ri:

ε+ β ≥ µ1(P
−1(0)) + β µ⋆(P

−1(0)) ≥ αµ0(P
−1(0)) ≥ α(1− ε)
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The Corruption Inequality and Its Proof

Let
µ0 = Uniform on {(x, y) : 〈x̃, ỹ〉 = 0}
µ1 = Uniform on {(x, y) : 〈x̃, ỹ〉 = −10/

√
n}

µ⋆ = Uniform on {(x, y) : 〈x̃, ỹ〉 = 10/
√
n}

The Key Inequality: For |A|, |B| ≥ 20.99n

1
2 (µ1(A×B) + µ⋆(A×B)) ≥ 9

10 µ0(A×B)

“Inner product between large sets not too concentrated around zero”
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The Corruption Inequality and Its Proof

Let
µ0 = Uniform on {(x, y) : 〈x̃, ỹ〉 = 0}
µ1 = Uniform on {(x, y) : 〈x̃, ỹ〉 = −10/

√
n}

µ⋆ = Uniform on {(x, y) : 〈x̃, ỹ〉 = 10/
√
n}

The Key Inequality: For |A|, |B| ≥ 20.99n

1
2 (µ1(A×B) + µ⋆(A×B)) ≥ 9

10 µ0(A×B)

“Inner product between large sets not too concentrated around zero”

Proof Strategy: For A,B ⊆ R
n with γ(A), γ(B) ≥ 2−0.01n

distrib of 〈x̂, ŷ〉 “spread out” like N(0, 1)

where γ = n-dim Gaussian, (x̂, ŷ)← A×B
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Proof Details

Goal: For A,B ⊆ R
n with γ(A), γ(B) ≥ 2−0.01n

distrib of 〈x̂, ŷ〉 “spread out” like N(0, 1)

Think

A = {directions}
Abad = {bad directions in A}

= {x̂ ∈ A : 〈x̂, ŷ〉 not spread out, for ŷ ← B}
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Goal: For A,B ⊆ R
n with γ(A), γ(B) ≥ 2−0.01n

distrib of 〈x̂, ŷ〉 “spread out” like N(0, 1)

Think

A = {directions}
Abad = {bad directions in A}

= {x̂ ∈ A : 〈x̂, ŷ〉 not spread out, for ŷ ← B}

For a contradiction, suppose γ(Abad) > 2−0.02n

Then (Raz’s Lemma): A contains orthogonal bad dirs x̂1, . . . , x̂n/2
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Proof Details

Goal: For A,B ⊆ R
n with γ(A), γ(B) ≥ 2−0.01n

distrib of 〈x̂, ŷ〉 “spread out” like N(0, 1)

Think

A = {directions}
Abad = {bad directions in A}

= {x̂ ∈ A : 〈x̂, ŷ〉 not spread out, for ŷ ← B}

For a contradiction, suppose γ(Abad) > 2−0.02n

Then (Raz’s Lemma): A contains orthogonal bad dirs x̂1, . . . , x̂n/2

Therefore (Information Theory): ŷ ← B can’t have enough entropy

Contradicts γ(B) ≥ 2−0.01n
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Geometric and Info Theoretic Intuition

Large set A
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Geometric and Info Theoretic Intuition

Large set of dirs bad for B

Large set A

0.99n ≤ H(y) ≤ H(〈y, x1〉, . . . , 〈y, xn〉)
=

∑n/2
k=1 H(〈y, xk〉 | 〈y, x1〉, . . . , 〈y, xk−1〉)

+
∑n

k=n/2+1H(〈y, xk〉 | 〈y, x1〉, . . . , 〈y, xk−1〉)

≤ ∑n/2
k=1 0.7 +

∑n
k=n/2+1 1 = 0.85n
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The Future
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The Future

Two simplifications of our proof [not yet published]

• Vidick shows following anti-concentration inequality:

E[〈x̃, ỹ〉2] = Ω(1/n)

Avoids “continuous information theory”; just concentration of measure

• Sherstov: anti-concetration gives corruption-based proof that

R(near-orthogonal) = Ω(n)

and reduces near-orthogonal to ghd; thus avoids “jokers”

• Also, Sherstov proves anti-concentration using Talagrand’s inequality
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Conclusions

• Settled communication complexity of ghd, proving a long-conjectured

Ω(n) bound

• As a result, understood multi-pass space complexity of a number of

data stream problems
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Conclusions

• Settled communication complexity of ghd, proving a long-conjectured

Ω(n) bound

• As a result, understood multi-pass space complexity of a number of

data stream problems

Open Problem

Prove that ghd is hard under the uniform distribution
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