Distributed Summaries

Graham Cormode

graham@research.att.com

Pankaj Agarwal (Duke) Zengfeng Huang (HKUST) Jeff Philips (Utah) Zheiwei Wei (HKUST) Ke Yi (HKUST)

Summaries

Summaries allow approximate computations:

- Euclidean distance (Johnson-Lindenstrauss lemma)
- Vector Inner-product, Matrix product (sketches)
- Distinct items (Flajolet-Martin onwards)
- Frequent Items (Misra-Gries onwards)
- Compressed sensing
- Subset-sums (samples)

Approximation and Parallel Computation

Why use approximate when data storage is cheap?

- Parallelize computation: partition and summarize data
 - Consider holistic aggregates, e.g. count-distinct
- Faster computation (only send summaries, not full data)
 - Less marshalling, load balancing needed
- Implicit in some tools (Sawzall)

Mergability

Ideally, summaries are algebraic: associative, commutative

- Allows arbitrary computation trees (see also synopsis diffusion [Nath+04], MUD model)
- Distribution "just works", whatever the architecture

- Summaries should have bounded size
 - Ideally, independent of base data size
 - Or sublinear in base data (logarithmic, square root)
 - Should **not** depend on number of merges
 - Rule out "trivial" solution of keeping union of input

Models of Summary Construction

- Offline computation: e.g. sort data, take percentiles
- Streaming: summary merged with one new item each step
- One-way merge: each summary merges into at most one
 - Single level hierarchy merge structure
 - Caterpillar graph of merges

- Equal-size merges: can only merge summaries of same arity
- Full mergeability: allow arbitrary merging schemes
 - Our main interest

Merging: sketches

- Example: most sketches (random projections) fully mergeable
- Count-Min sketch of vector x[1..U]:
 - Creates a small summary as an array of $\mathbf{w} \times \mathbf{d}$ in size
 - Use d hash functions h to map vector entries to [1..w]
 - Estimate x[i] = min_i CM[h_i(i), j]
- Trivially mergeable: CM(x + y) = CM(x) + CM(y)

Merging: sketches

- Consequence of sketch mergability:
 - Full mergability of quantiles, heavy hitters, F0, F2, dot product...
 - Easy, widely implemented, used in practice
- Limitations of sketch mergeability:
 - Probabilistic guarantees
 - May require discrete domain (ints, not reals or strings)
 - Some bounds are logarithmic in domain size

Summaries for heavy hitters

- Misra-Gries (MG) algorithm finds up to k items that occur more than 1/k fraction of the time in a stream
- Keep k different candidates in hand. For each item in stream:
 - If item is monitored, increase its counter
 - Else, if < k items monitored, add new item with count 1
 - Else, decrease all counts by 1

Streaming MG analysis

- N = total weight of input
- M = sum of counters in data structure
- Error in any estimated count at most (N-M)/(k+1)
 - Estimated count a lower bound on true count
 - Each decrement spread over (k+1) items: 1 new one and k in MG
 - Equivalent to deleting (k+1) distinct items from stream
 - At most (N-M)/(k+1) decrement operations
 - Hence, can have "deleted" (N-M)/(k+1) copies of any item

Merging two MG Summaries

Merging alg:

- Merge the counter sets in the obvious way
- Take the (k+1)th largest counter = C_{k+1} , and subtract from all
- Delete non-positive counters
- Sum of remaining counters is M_{12}
- This alg gives full mergeability:
 - Merge subtracts at least (k+1)C_{k+1} from counter sums
 - $\text{ So } (k+1)C_{k+1} \leq (M_1 + M_2 M_{12})$
 - By induction, error is $((N_1-M_1) + (N_2-M_2) + (M_1+M_2-M_{12}))/(k+1) = ((N_1+N_2) - M_{12})/(k+1)$

Quantiles

- Quantiles / order statistics generalize the median:
 - Exact answer: $CDF^{-1}(\phi)$ for $0 < \phi < 1$
 - Approximate version: tolerate answer in $CDF^{-1}(\phi \epsilon)...CDF^{-1}(\phi + \epsilon)$
- Hoeffding bound: sample of size $O(1/\epsilon^2 \log 1/\delta)$ suffices
- Easy result: one-way mergeability in $O(1/\epsilon \log (\epsilon n))$
 - Assume a streaming summary (e.g. Greenwald-Khanna)
 - Extract an approximate CDF F from the summary
 - Generate corresponding distribution **f** over **n** items
 - Feed **f** to summary, error is bounded
 - Limitation: repeatedly extracting/inserting causes error to grow

Equal-weight merging quantiles

- A classic result (Munro-Paterson '78):
 - Input: two summaries of equal size k
 - Base case: fill summary with k input items
 - Merge, sort summaries to get size 2k
 - Take every other element
- Deterministic bound:
 - Error grows proportional to height of merge tree
 - Implies $O(1/\epsilon \log^2 n)$ sized summaries (for n known upfront)
- Randomized twist:
 - Randomly pick whether to take odd or even elements

Equal-size merge analysis

- Analyze error in range count for any interval after m merges
- Absolute error introduced by i'th level merge is 2ⁱ⁻¹
- Unbiased: expected error is 0 (50-50 +2ⁱ⁻¹ / -2ⁱ⁻¹)
- Apply Chernoff bound to sum of errors
- Summary size = O($1/\epsilon \log^{1/2} 1/\delta$) gives ϵN error w/prob $1-\delta$
 - Neat: naïve sampling bound requires $O(1/\epsilon^2 \log 1/\delta)$
 - Tightens randomized result of [Suri Toth Zhou 04]

Fully mergeable quantiles

• Use equal-size merging in a standard logarithmic trick:

- Merge two summaries as binary addition
- Fully mergeable quantiles, in O(1/ $\epsilon \log (\epsilon n) \log^{1/2} 1/\delta$)
 - n = number of items summarized, not known a priori
- But can we do better?

Hybrid summary

 Observation: when summary has high weight, low order blocks don't contribute much

Wt 32

- Can't ignore them entirely, might merge with many small sets

- Wt 16

Wt 8

Buffer

- Hybrid structure:
 - Keep top $O(\log 1/\epsilon)$ levels as before
 - Also keep a "buffer" sample of (few) items
 - Merge/keep equal-size summaries, and sample rest into buffer
- Analysis rather delicate:
 - Points go into/out of buffer, but always moving "up"
 - Gives constant probability of accuracy in $O(1/\epsilon \log^{1.5}(1/\epsilon))$

Other Fully Mergeable Summaries

- Samples on distinct (aggregated) keys
- ε -approximations in constant VC-dimension v in O($\varepsilon^{-2v/(v+1)}$)
- ε -kernels in d-dimensional space in O($\varepsilon^{(1-d)/2}$)
 - For "fat" pointsets: bounded ratio between extents in any direction
- Equal-weight merging for k-median implicit from streaming
 - Implies O(poly n) fully-mergeable summary via logarithmic trick

Open Problems

- Weight-based sampling over non-aggregated data
- Fully mergeable ε-kernels without assumptions
- More complex functions, e.g. cascaded aggregates
- Lower bounds for mergeable summaries
- Implementation studies (e.g. in Hadoop)