Sparse Johnson-Lindenstrauss Transforms

Jelani Nelson
MIT

May 24, 2011
joint work with Daniel Kane (Harvard)

Metric Johnson-Lindenstrauss lemma

Metric JL (MJL) Lemma, 1984
Every set of n points in Euclidean space can be embedded into $O\left(\varepsilon^{-2} \log n\right)$-dimensional Euclidean space so that all pairwise distances are preserved up to a $1 \pm \varepsilon$ factor.

Metric Johnson-Lindenstrauss lemma

Metric JL (MJL) Lemma, 1984
Every set of n points in Euclidean space can be embedded into $O\left(\varepsilon^{-2} \log n\right)$-dimensional Euclidean space so that all pairwise distances are preserved up to a $1 \pm \varepsilon$ factor.

Uses:

- Speed up geometric algorithms by first reducing dimension of input [Indyk-Motwani, 1998], [Indyk, 2001]
- Low-memory streaming algorithms for linear algebra problems [Sarlós, 2006], [LWMRT, 2007], [Clarkson-Woodruff, 2009]
- Essentially equivalent to RIP matrices from compressive sensing [Baraniuk et al., 2008], [Krahmer-Ward, 2010] (used for sparse recovery of signals)

How to prove the JL lemma

Distributional JL (DJL) lemma
Lemma
For any $0<\varepsilon, \delta<1 / 2$ there exists a distribution $\mathcal{D}_{\varepsilon, \delta}$ on $\mathbb{R}^{k \times d}$ for $k=O\left(\varepsilon^{-2} \log (1 / \delta)\right)$ so that for any $x \in \mathcal{S}^{d-1}$,

$$
\operatorname{Pr}_{S \sim \mathcal{D}_{\varepsilon, \delta}}\left[\left|\|S x\|_{2}^{2}-1\right|>\varepsilon\right]<\delta
$$

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma

For any $0<\varepsilon, \delta<1 / 2$ there exists a distribution $\mathcal{D}_{\varepsilon, \delta}$ on $\mathbb{R}^{k \times d}$ for $k=O\left(\varepsilon^{-2} \log (1 / \delta)\right)$ so that for any $x \in \mathcal{S}^{d-1}$,

$$
\operatorname{Pr}_{S \sim \mathcal{D}_{\varepsilon, \delta}}\left[\left|\|S x\|_{2}^{2}-1\right|>\varepsilon\right]<\delta
$$

Proof of MJL: Set $\delta=1 / n^{2}$ in DJL and x as the difference vector of some pair of points. Union bound over the $\binom{n}{2}$ pairs.

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma

For any $0<\varepsilon, \delta<1 / 2$ there exists a distribution $\mathcal{D}_{\varepsilon, \delta}$ on $\mathbb{R}^{k \times d}$ for $k=O\left(\varepsilon^{-2} \log (1 / \delta)\right)$ so that for any $x \in \mathcal{S}^{d-1}$,

$$
\operatorname{Sr}_{S \sim \mathcal{D}_{\varepsilon, \delta}}\left[\| \| S x \|_{2}^{2}-1 \mid>\varepsilon\right]<\delta .
$$

Proof of MJL: Set $\delta=1 / n^{2}$ in DJL and x as the difference vector of some pair of points. Union bound over the $\binom{n}{2}$ pairs.
Theorem (Alon, 2003)
For every n, there exists a set of n points requiring target dimension $k=\Omega\left(\left(\varepsilon^{-2} / \log (1 / \varepsilon)\right) \log n\right)$.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-N., 2011)
For DJL, $k=\Theta\left(\varepsilon^{-2} \log (1 / \delta)\right)$ is optimal.

Proving the JL lemma

Older proofs

- [Johnson-Lindenstrauss, 1984], [Frankl-Maehara, 1988]: Random rotation, then projection onto first k coordinates.
- [Indyk-Motwani, 1998], [Dasgupta-Gupta, 2003]: Random matrix with independent Gaussian entries.
- [Achlioptas, 2001]: Independent Bernoulli entries.
- [Clarkson-Woodruff, 2009]: $O(\log (1 / \delta))$-wise independent Bernoulli entries.
- [Arriaga-Vempala, 1999], [Matousek, 2008]: Independent entries having mean 0 , variance $1 / k$, and subGaussian tails (for a Gaussian with variance $1 / k$).

Proving the JL lemma

Older proofs

- [Johnson-Lindenstrauss, 1984], [Frankl-Maehara, 1988]: Random rotation, then projection onto first k coordinates.
- [Indyk-Motwani, 1998], [Dasgupta-Gupta, 2003]: Random matrix with independent Gaussian entries.
- [Achlioptas, 2001]: Independent Bernoulli entries.
- [Clarkson-Woodruff, 2009]: $O(\log (1 / \delta))$-wise independent Bernoulli entries.
- [Arriaga-Vempala, 1999], [Matousek, 2008]: Independent entries having mean 0 , variance $1 / k$, and subGaussian tails (for a Gaussian with variance $1 / k$).

Downside: Performing embedding is dense matrix-vector multiplication, $O\left(k \cdot\|x\|_{0}\right)$ time

Fast JL Transforms

- [Ailon-Chazelle, 2006]: $x \mapsto P H D x, O\left(d \log d+k^{3}\right)$ time P is a random sparse matrix, H is Hadamard, D has random ± 1 on diagonal
- [Ailon-Liberty, 2008]: $O\left(d \log k+k^{2}\right)$ time, also based on fast Hadamard transform
- [Ailon-Liberty, 2011], [Krahmer-Ward]: $O(d \log d)$ for MJL, but with suboptimal $k=O\left(\varepsilon^{-2} \log n \log ^{4} d\right)$.

Fast JL Transforms

- [Ailon-Chazelle, 2006]: $x \mapsto P H D x, O\left(d \log d+k^{3}\right)$ time P is a random sparse matrix, H is Hadamard, D has random ± 1 on diagonal
- [Ailon-Liberty, 2008]: $O\left(d \log k+k^{2}\right)$ time, also based on fast Hadamard transform
- [Ailon-Liberty, 2011], [Krahmer-Ward]: $O(d \log d)$ for MJL, but with suboptimal $k=O\left(\varepsilon^{-2} \log n \log ^{4} d\right)$.

Downside: Slow to embed sparse vectors: running time is $\Omega\left(\min \left\{k \cdot\|x\|_{0}, d\right\}\right)$ even if $\|x\|_{0}=1$

Where Do Sparse Vectors Show Up?

- Documents as bags of words: $x_{i}=$ number of occurrences of word i. Compare documents using cosine similarity. $d=$ lexicon size; most documents aren't dictionaries
- Network traffic: $x_{i, j}=\#$ bytes sent from i to j $d=2^{64}$ (2 2^{256} in IPv6); most servers don't talk to each other
- User ratings: x_{i} is user's score for movie i on Netflix $d=\#$ movies; most people haven't watched all movies
- Streaming: x receives updates $x \leftarrow x+v \cdot e_{i}$ in a stream. Maintaining $S x$ requires calculating $S e_{i}$.

Sparse JL transforms

One way to embed sparse vectors faster: use sparse matrices.

Sparse JL transforms

One way to embed sparse vectors faster: use sparse matrices.
$s=\#$ non-zero entries per column
(so embedding time is $s \cdot\|x\|_{0}$)

reference	value of s	type
[JL84], [FM88], [IM98], \ldots	$k \approx 4 \varepsilon^{-2} \log (1 / \delta)$	dense
[Achlioptas01]	$k / 3$	sparse Bernoulli
[WDALS09]	no proof	hashing
[DKS10]	$\tilde{O}\left(\varepsilon^{-1} \log ^{3}(1 / \delta)\right)$	hashing
$[\mathrm{KN10a]},[\mathrm{BOR} 10]$	$\tilde{O}\left(\varepsilon^{-1} \log ^{2}(1 / \delta)\right)$	$" "$
[KN10b]	$O\left(\varepsilon^{-1} \log (1 / \delta)\right)$	hashing (random codes)

Sparse JL Constructions

Sparse JL Constructions

Sparse JL Constructions

Sparse JL Constructions (in matrix form)

Each black cell is $\pm 1 / \sqrt{s}$ at random

Sparse JL Constructions (nicknames)

Sparse JL intuition

- Let $h(j, r), \sigma(j, r)$ be random hash location and random sign for r th copy of x_{j}.

Sparse JL intuition

- Let $h(j, r), \sigma(j, r)$ be random hash location and random sign for r th copy of x_{j}.
- $(S x)_{i}=(1 / \sqrt{s}) \cdot \sum_{h(j, r)=i} x_{j} \cdot \sigma(j, r)$

Sparse JL intuition

- Let $h(j, r), \sigma(j, r)$ be random hash location and random sign for r th copy of x_{j}.
- $(S x)_{i}=(1 / \sqrt{s}) \cdot \sum_{h(j, r)=i} x_{j} \cdot \sigma(j, r)$

$$
\|S x\|_{2}^{2}=\|x\|_{2}^{2}+(1 / s) \cdot \sum_{\substack{(j, r)^{\prime} \\ \neq\left(j^{\prime}, r^{\prime}\right)}} x_{j} x_{j^{\prime}} \sigma(j, r) \sigma\left(j^{\prime}, r^{\prime}\right) \cdot \mathbf{1}_{h(j, r)=h\left(j^{\prime}, r^{\prime}\right)}
$$

Sparse JL intuition

- Let $h(j, r), \sigma(j, r)$ be random hash location and random sign for r th copy of x_{j}.
- $(S x)_{i}=(1 / \sqrt{s}) \cdot \sum_{h(j, r)=i} x_{j} \cdot \sigma(j, r)$

$$
\|S x\|_{2}^{2}=\|x\|_{2}^{2}+(1 / s) \cdot \sum_{\substack{(j, r)^{\prime} \\ \neq\left(j^{\prime}, r^{\prime}\right)}} x_{j} x_{j^{\prime}} \sigma(j, r) \sigma\left(j^{\prime}, r^{\prime}\right) \cdot \mathbf{1}_{h(j, r)=h\left(j^{\prime}, r^{\prime}\right)}
$$

- $x=(1 / \sqrt{2}, 1 / \sqrt{2}, 0, \ldots, 0)$ with $t<(1 / 2) \log (1 / \delta)$ collisions. All signs agree with probability $2^{-t}>\sqrt{\delta} \gg \delta$, giving error t / s. So, need $s=\Omega(t / \varepsilon)$. (Collisions are bad)

Sparse JL via Codes

- Graph construction: Constant weight binary code of weight s.
- Block construction: Code over q-ary alphabet, $q=k / s$.

Sparse JL via Codes

- Graph construction: Constant weight binary code of weight s.
- Block construction: Code over q-ary alphabet, $q=k / s$.
- Will show: Suffices to have minimum distance $s-O\left(s^{2} / k\right)$.

Analysis (block construction)

- $\eta_{i, j, r}$ indicates whether i, j collide in i th chunk.
- $\|S x\|_{2}^{2}=\|x\|_{2}^{2}+Z$
$Z=(1 / s) \sum_{r} Z_{r}$
$Z_{r}=\sum_{i \neq j} x_{i} x_{j} \sigma(i, r) \sigma(j, r) \eta_{i, j, r}$

Analysis (block construction)

- $\eta_{i, j, r}$ indicates whether i, j collide in i th chunk.
- $\|S x\|_{2}^{2}=\|x\|_{2}^{2}+Z$
$Z=(1 / s) \sum_{r} Z_{r}$
$Z_{r}=\sum_{i \neq j} x_{i} x_{j} \sigma(i, r) \sigma(j, r) \eta_{i, j, r}$
- Plan: $\operatorname{Pr}[|Z|>\varepsilon]<\varepsilon^{\ell} \cdot \mathbf{E}\left[Z^{\ell}\right]$

Analysis (block construction)

- $\eta_{i, j, r}$ indicates whether i, j collide in ith chunk.
- $\|S x\|_{2}^{2}=\|x\|_{2}^{2}+Z$
$Z=(1 / s) \sum_{r} Z_{r}$
$Z_{r}=\sum_{i \neq j} x_{i} x_{j} \sigma(i, r) \sigma(j, r) \eta_{i, j, r}$
- Plan: $\operatorname{Pr}[|Z|>\varepsilon]<\varepsilon^{\ell} \cdot \mathbf{E}\left[Z^{\ell}\right]$
- Z is a quadratic form in σ, so apply known moment bounds for quadratic forms

Analysis

Theorem (Hanson-Wright, 1971) z_{1}, \ldots, z_{n} independent Bernoulli, $B \in \mathbb{R}^{n \times n}$ symmetric. For $\ell \geq 2$,

$$
\mathbf{E}\left[\left|z^{T} B z-\operatorname{trace}(B)\right|^{\ell}\right]<C^{\ell} \cdot \max \left\{\sqrt{\ell}\|B\|_{F}, \ell\|B\|_{2}\right\}^{\ell}
$$

Reminder:

- $\|B\|_{F}=\sqrt{\sum_{i, j} B_{i, j}^{2}}$
- $\|B\|_{2}$ is largest magnitude of eigenvalue of B

Analysis

$$
Z=\frac{1}{s} \cdot \sum_{r=1}^{s} \sum_{i \neq j} x_{i} x_{j} \sigma(i, r) \sigma(j, r) \eta_{i, j, r}
$$

Analysis

$$
\begin{aligned}
Z & =\frac{1}{s} \cdot \sum_{r=1}^{s} \sum_{i \neq j} x_{i} x_{j} \sigma(i, r) \sigma(j, r) \eta_{i, j, r} \\
& =\sigma^{T} T \sigma
\end{aligned}
$$

$$
T=\frac{1}{s} \cdot \begin{array}{|l|lll|}
\hline T_{1} & 0 & \ldots & 0 \\
\hline 0 & T_{2} & \ldots & 0 \\
\cline { 3 - 4 } 0 & 0 & \ddots & 0 \\
0 & \ldots & 0 & T_{s} \\
\hline
\end{array}
$$

- $\left(T_{r}\right)_{i, j}=x_{i} x_{j} \eta_{i, j, r}$

Analysis (cont'd)

$$
T=\frac{1}{s} \cdot
$$

- $\left(T_{r}\right)_{i, j}=x_{i} x_{j} \eta_{i, j, r}$

Analysis (cont'd)

$$
T=\frac{1}{s} \cdot
$$

- $\left(T_{r}\right)_{i, j}=x_{i} x_{j} \eta_{i, j, r}$
- $\|T\|_{F}^{2}=\frac{1}{s^{2}} \sum_{i \neq j} x_{i}^{2} x_{j}^{2} \cdot(\#$ times i, j collide $)$

Analysis (cont'd)

$$
T=\frac{1}{s} \cdot
$$

- $\left(T_{r}\right)_{i, j}=x_{i} x_{j} \eta_{i, j, r}$
- $\|T\|_{F}^{2}=\frac{1}{s^{2}} \sum_{i \neq j} x_{i}^{2} x_{j}^{2} \cdot(\#$ times i, j collide $)$

$$
<O(1 / k) \cdot\|x\|_{2}^{4}=O(1 / k)(\text { good code! })
$$

Analysis (cont'd)

$$
T=\frac{1}{s} \cdot
$$

- $\left(T_{r}\right)_{i, j}=x_{i} x_{j} \eta_{i, j, r}$
- $\|T\|_{F}^{2}=\frac{1}{s^{2}} \sum_{i \neq j} x_{i}^{2} x_{j}^{2} \cdot(\#$ times i, j collide $)$

$$
<O(1 / k) \cdot\|x\|_{2}^{4}=O(1 / k)(\text { good code! })
$$

- $\|T\|_{2}=\max _{r}\left\|T_{r}\right\|_{2}$, can bound by $1 / s$

Analysis (cont'd)

$$
T=\frac{1}{s} \cdot \begin{array}{|l|lll|}
\hline T_{1} & 0 & \ldots & 0 \\
\hline 0 & T_{2} & \ldots & 0 \\
\cline { 2 - 5 } & 0 & \ddots & 0 \\
\hline 0 & \ldots & 0 & T_{s} \\
\hline
\end{array}
$$

- $\left(T_{r}\right)_{i, j}=x_{i} x_{j} \eta_{i, j, r}$
- $\|T\|_{F}^{2}=\frac{1}{s^{2}} \sum_{i \neq j} x_{i}^{2} x_{j}^{2} \cdot(\#$ times i, j collide $)$

$$
<O(1 / k) \cdot\|x\|_{2}^{4}=O(1 / k)(\text { good code! })
$$

- $\|T\|_{2}=\max _{r}\left\|T_{r}\right\|_{2}$, can bound by $1 / s$

$$
\operatorname{Pr}[|Z|>\varepsilon]<C^{\ell} \cdot \max \left\{\frac{1}{\varepsilon} \cdot \sqrt{\frac{\ell}{k}}, \frac{1}{\varepsilon} \cdot \frac{\ell}{s}\right\}^{\ell}
$$

$$
\ell=\log (1 / \delta), k=\Omega\left(\ell / \varepsilon^{2}\right), s=\Omega(\ell / \varepsilon), \mathbf{Q E D}
$$

Code-based Construction: Caveat

Need a sufficiently good code.

Code-based Construction: Caveat

Need a sufficiently good code.

- Each pair of codewords should agree on $O\left(s^{2} / k\right)$ coordinates.
- Can get this with random code by Chernoff + union bound over pairs, but then need: $s^{2} / k \geq \log (d / \delta) \Rightarrow$
$s \geq \sqrt{k \log (d / \delta)}=\Omega\left(\varepsilon^{-1} \sqrt{\log (d / \delta) \log (1 / \delta)}\right)$.

Code-based Construction: Caveat

Need a sufficiently good code.

- Each pair of codewords should agree on $O\left(s^{2} / k\right)$ coordinates.
- Can get this with random code by Chernoff + union bound over pairs, but then need: $s^{2} / k \geq \log (d / \delta) \Rightarrow$ $s \geq \sqrt{k \log (d / \delta)}=\Omega\left(\varepsilon^{-1} \sqrt{\log (d / \delta) \log (1 / \delta)}\right)$.
- Can assume $d=O\left(\varepsilon^{-2} / \delta\right)$ by first embedding into this dimension with $s=1$ and 4-wise independent σ, h
(Analysis: Chebyshev's inequality)
\Rightarrow Can get away with $s=O\left(\varepsilon^{-1} \sqrt{\log (1 /(\varepsilon \delta)) \log (1 / \delta)}\right)$.

Code-based Construction: Caveat

Need a sufficiently good code.

- Each pair of codewords should agree on $O\left(s^{2} / k\right)$ coordinates.
- Can get this with random code by Chernoff + union bound over pairs, but then need: $s^{2} / k \geq \log (d / \delta) \Rightarrow$
$s \geq \sqrt{k \log (d / \delta)}=\Omega\left(\varepsilon^{-1} \sqrt{\log (d / \delta) \log (1 / \delta)}\right)$.
- Can assume $d=O\left(\varepsilon^{-2} / \delta\right)$ by first embedding into this dimension with $s=1$ and 4-wise independent σ, h
(Analysis: Chebyshev's inequality)
\Rightarrow Can get away with $s=O\left(\varepsilon^{-1} \sqrt{\log (1 /(\varepsilon \delta)) \log (1 / \delta)}\right)$.
Can we avoid the loss incurred by this union bound?

Improving the Construction

- Idea: Random hashing gives a good code, but it gives much more! (it's random).

Improving the Construction

- Idea: Random hashing gives a good code, but it gives much more! (it's random).
- Pick h at random
- Analysis: Directly bound the $\ell=\log (1 / \delta)$ th moment of the error term Z, then apply Markov to Z^{ℓ}

Improving the Construction

- Idea: Random hashing gives a good code, but it gives much more! (it's random).
- Pick h at random
- Analysis: Directly bound the $\ell=\log (1 / \delta)$ th moment of the error term Z, then apply Markov to Z^{ℓ}
- $Z=(1 / s) \cdot \sum_{r=1}^{s} \sum_{i \neq j} x_{i} x_{j} \sigma(i, r) \sigma(j, r) \eta_{i, j, r}$

Improving the Construction

- Idea: Random hashing gives a good code, but it gives much more! (it's random).
- Pick h at random
- Analysis: Directly bound the $\ell=\log (1 / \delta)$ th moment of the error term Z, then apply Markov to Z^{ℓ}
- $Z=(1 / s) \cdot \sum_{r=1}^{s} \sum_{i \neq j} x_{i} x_{j} \sigma(i, r) \sigma(j, r) \eta_{i, j, r}$ $\left(Z=(1 / s) \sum_{r=1}^{s} Z_{r}\right)$

Improving the Construction

- Idea: Random hashing gives a good code, but it gives much more! (it's random).
- Pick h at random
- Analysis: Directly bound the $\ell=\log (1 / \delta)$ th moment of the error term Z, then apply Markov to Z^{ℓ}
- $Z=(1 / s) \cdot \sum_{r=1}^{s} \sum_{i \neq j} x_{i} x_{j} \sigma(i, r) \sigma(j, r) \eta_{i, j, r}$ $\left(Z=(1 / s) \sum_{r=1}^{s} Z_{r}\right)$

$$
\mathbf{E}_{h, \sigma}\left[Z^{\ell}\right]=\frac{1}{s^{\ell}} \cdot \sum_{\substack{r_{1}<\ldots<r_{n} \\ t_{1}, \ldots, t_{n}>1 \\ \sum_{i} t_{i}=\ell}}\binom{\ell}{t_{1}, \ldots, t_{n}} \cdot \prod_{i=1}^{n} \mathbf{E}_{h, \sigma}\left[Z_{r_{i}}^{t_{i}}\right]
$$

Bound the t th moment of any Z_{r}, then get the ℓ th moment bound for Z by plugging into the above

Bounding $\mathbf{E}\left[Z_{r}^{t}\right]$

- $Z_{r}=\sum_{i \neq j} x_{i} x_{j} \sigma(i, r) \sigma(j, r) \eta_{i, j, r}$

Bounding $\mathbf{E}\left[Z_{r}^{t}\right]$

- $Z_{r}=\sum_{i \neq j} x_{i} x_{j} \sigma(i, r) \sigma(j, r) \eta_{i, j, r}$
- Monomials appearing in expansion of Z_{r}^{t} are in correspondence with directed multigraphs.

$$
\left(x_{1} x_{2}\right) \cdot\left(x_{3} x_{4}\right) \cdot\left(x_{3} x_{8}\right) \cdot\left(x_{4} x_{8}\right) \cdot\left(x_{2} x_{10}\right)
$$

$$
\mapsto
$$

Bounding $\mathbf{E}\left[Z_{r}^{t}\right]$

- $Z_{r}=\sum_{i \neq j} x_{i} x_{j} \sigma(i, r) \sigma(j, r) \eta_{i, j, r}$
- Monomials appearing in expansion of Z_{r}^{t} are in correspondence with directed multigraphs.

$$
\left(x_{1} x_{2}\right) \cdot\left(x_{3} x_{4}\right) \cdot\left(x_{3} x_{8}\right) \cdot\left(x_{4} x_{8}\right) \cdot\left(x_{2} x_{10}\right)
$$

- Monomial contributes to expectation iff all degrees even
- Analysis: Group monomials appearing in Z_{r}^{t} according to isomorphism class then do some combinatorics.

Bounding $\mathbf{E}\left[Z_{r}^{t}\right]$

$m=\#$ connected components, $v=\#$ vertices, $d_{u}=$ degree of u

$$
\mathbf{E}_{h, \sigma}\left[Z_{r}^{t}\right]=\sum_{G \in \mathcal{G}_{t}} \sum_{\substack{i_{1} \neq j_{1}, \ldots, i_{i} \neq j_{t} \\ f\left(\left(i_{u}, j_{u}\right)_{u=1}^{t}\right)=G}} \mathbf{E}\left[\prod_{u=1}^{t} \eta_{i_{u}, j_{u}, r}\right] \cdot\left(\prod_{u=1}^{t} x_{i_{u}} x_{j_{u}}\right)
$$

Bounding $\mathbf{E}\left[Z_{r}^{t}\right]$

$m=\#$ connected components, $v=\#$ vertices, $d_{u}=$ degree of u

Bounding $\mathbf{E}\left[Z_{r}^{t}\right]$

$m=\#$ connected components, $v=\#$ vertices, $d_{u}=$ degree of u

$$
\begin{aligned}
\mathbf{E}_{h, \sigma}\left[Z_{r}^{t}\right] & =\sum_{G \in \mathcal{G}_{t}} \sum_{\substack{i_{1} \neq j_{1}, \ldots, i_{i} \neq j_{t} \\
f\left(\left(i_{u}, j_{u}\right)_{u=1}^{t}\right)=G}} \mathbf{E}\left[\prod_{u=1}^{t} \eta_{i_{u}, j_{u}, r}\right] \cdot\left(\prod_{u=1}^{t} x_{i_{u}} x_{j_{u}}\right) \\
& =\sum_{G \in \mathcal{G}_{t}}\left(\frac{s}{k}\right)^{v-m} \cdot\left(\sum_{\substack{i_{i \neq} \neq j_{1}, \ldots, i_{t} \neq j_{t} \\
f\left(\left(i_{u}, j_{u}\right)_{u=1}^{t}\right)=G}}\left(\prod_{u=1}^{t} x_{i_{u}} x_{j_{u}}\right)\right) \\
& \leq \sum_{G \in \mathcal{G}_{t}}\left(\frac{s}{k}\right)^{v-m} \cdot v!\cdot \frac{1}{\left(\begin{array}{c}
t \\
\left.d_{1} / 2, \ldots, d_{v} / 2\right)
\end{array}\right.}
\end{aligned}
$$

Bounding $\mathbf{E}\left[Z_{r}^{t}\right]$

$m=\#$ connected components, $v=\#$ vertices, $d_{u}=$ degree of u

$$
\begin{aligned}
& \leq \sum_{G \in \mathcal{G}_{t}}\left(\frac{s}{k}\right)^{v-m} \cdot v!\cdot \frac{1}{\left(d_{1} / 2, \ldots, d_{v} / 2\right)} \\
& \leq 2^{O(t)} \sum_{v, m} t^{-t} v^{v}\left(\frac{s}{k}\right)^{v-m} \cdot\left(\sum_{G} \prod_{u}{\sqrt{d_{u}}}^{d_{u}}\right)
\end{aligned}
$$

Bounding $\mathbf{E}\left[Z_{r}^{t}\right]$

$m=\#$ connected components, $v=\#$ vertices, $d_{u}=$ degree of u

$$
\begin{aligned}
\mathbf{E}_{h, \sigma}\left[Z_{r}^{t}\right] & =\sum_{G \in \mathcal{G}_{t}} \sum_{\substack{i_{1} \neq j_{1}, \ldots, i_{t} \neq j_{t} \\
f\left(\left(i_{u}, j_{u}\right) u_{u=1}^{t}\right)=G}} \mathbf{E}\left[\prod_{u=1}^{t} \eta_{i_{u}, j_{u}, r}\right] \cdot\left(\prod_{u=1}^{t} x_{i_{u}} x_{j_{u}}\right) \\
& =\sum_{G \in \mathcal{G}_{t}}\left(\frac{s}{k}\right)^{v-m} \cdot\left(\sum_{\substack{i_{1} \neq j_{1}, \ldots, i_{i} \neq j_{t} \\
f\left(\left(i_{u}, j_{u}\right)_{u=1}^{t}\right)=G}}\left(\prod_{u=1}^{t} x_{i_{u}} x_{j_{u}}\right)\right) \\
& \leq \sum_{G \in \mathcal{G}_{t}}\left(\frac{s}{k}\right)^{v-m} \cdot v!\cdot \frac{1}{\left(\begin{array}{c}
t \\
\left.d_{1} / 2, \ldots, d_{v} / 2\right) \\
\end{array}\right.} \\
& \leq 2^{O(t)} \sum_{v, m} t^{-t} v^{v}\left(\frac{s}{k}\right)^{v-m} \cdot\left(\sum_{G} \prod_{u}{\sqrt{d_{u}}}^{d_{u}}\right)
\end{aligned}
$$

Bounding $\mathbf{E}\left[Z_{r}^{t}\right]$

- Can bound the sum by forming G one edge at a time, in increasing order of label
For example, if we didn't worry about connected components:

$$
S_{i+1} / S_{i} \leq \sum_{u \neq v} \sqrt{d_{u} d_{v}} \leq\left(\sum_{u} \sqrt{d_{u}}\right)^{2} \stackrel{\mathrm{C}-\mathrm{S}}{\leq} 2 t v
$$

Bounding $\mathbf{E}\left[Z_{r}^{t}\right]$

- Can bound the sum by forming G one edge at a time, in increasing order of label

For example, if we didn't worry about connected components:

$$
S_{i+1} / S_{i} \leq \sum_{u \neq v} \sqrt{d_{u} d_{v}} \leq\left(\sum_{u} \sqrt{d_{u}}\right)^{2} \stackrel{C-S}{\leq} 2 t v
$$

- In the end, can show

$$
\mathrm{E}\left[Z_{r}^{t}\right] \leq 2^{O(t)} \cdot \begin{cases}s / k & t<\log (k / s) \\ (t / \log (k / s))^{t} & \text { otherwise }\end{cases}
$$

- Plug this into formula for $\mathbf{E}\left[Z^{\ell}\right]$, QED

Tightness of Analysis

Analysis of required s is tight:

- $s \leq 1 /(2 \varepsilon)$: Look at a vector with $t=\lfloor 1 /(s \varepsilon)\rfloor$ non-zero coordinates each of value $1 / \sqrt{t}$, and show probability of exactly one collision is $\gg \delta$, and $>\varepsilon$ error when this happens and signs agree.

Tightness of Analysis

Analysis of required s is tight:

- $s \leq 1 /(2 \varepsilon)$: Look at a vector with $t=\lfloor 1 /(s \varepsilon)\rfloor$ non-zero coordinates each of value $1 / \sqrt{t}$, and show probability of exactly one collision is $\gg \delta$, and $>\varepsilon$ error when this happens and signs agree.
- $1 /(2 \varepsilon)<s<c \varepsilon^{-1} \log (1 / \delta)$: Look at vector $(1 / \sqrt{2}, 1 / \sqrt{2}, 0, \ldots, 0)$ and show that probability of exactly $\lceil 2 s \varepsilon\rceil$ collisions is $\gg \sqrt{\delta}$, all signs agree with probability $\gg \sqrt{\delta}$, and $>\varepsilon$ error when this happens.

Open Problems

Open Problems

- OPEN: Devise distribution which can be sampled using few random bits
Current record:
$O(\log d+\log (1 / \varepsilon) \log (1 / \delta)+\log (1 / \delta) \log \log (1 / \delta))$ [Kane-Meka-N.]
Existential: $O(\log d+\log (1 / \delta))$
- OPEN: Can we embed a k-sparse vector into \mathbb{R}^{k} in $k \cdot \operatorname{polylog}(d)$ time with the optimal k ? This would give a fast amortized streaming algorithm without blowing up space (batch k updates at a time, since we're already spending k space storing the embedding). Note: Embedding should be correct for any vector, but time should depend on sparsity.
- OPEN: Embed any vector in $\tilde{O}(d)$ time into optimal k

