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Metric Johnson-Lindenstrauss lemma

Metric JL (MJL) Lemma, 1984

Every set of n points in Euclidean space can be embedded into
O(c2 log n)-dimensional Euclidean space so that all pairwise
distances are preserved up to a 1+ ¢ factor.
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Metric JL (MJL) Lemma, 1984

Every set of n points in Euclidean space can be embedded into
O(c2 log n)-dimensional Euclidean space so that all pairwise
distances are preserved up to a 1+ ¢ factor.

Uses:

e Speed up geometric algorithms by first reducing dimension of
input [Indyk-Motwani, 1998], [Indyk, 2001]

e Low-memory streaming algorithms for linear algebra problems
[Sarlés, 2006], [LWMRT, 2007], [Clarkson-Woodruff, 2009]

e Essentially equivalent to RIP matrices from compressive
sensing [Baraniuk et al., 2008], [Krahmer-Ward, 2010]
(used for sparse recovery of signals)
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Distributional JL (DJL) lemma

Lemma
For any 0 < &, < 1/2 there exists a distribution D. 5 on Rx*9 for
k = O(¢?log(1/6)) so that for any x € S971,
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How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma
For any 0 < &, < 1/2 there exists a distribution D. 5 on Rx*9 for
k = O(¢?log(1/6)) so that for any x € S971,

P 5-1 :
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Proof of MJL: Set § = 1/n? in DJL and x as the difference vector
of some pair of points. Union bound over the (3) pairs.

Theorem (Alon, 2003)

For every n, there exists a set of n points requiring target
dimension k = Q((¢72/ log(1/¢)) log n).

Theorem (Jayram-Woodruff, 2011; Kane-Meka-N., 2011)

For DJL, k = ©(c¢~?log(1/6)) is optimal.



Proving the JL lemma

Older proofs

e [Johnson-Lindenstrauss, 1984], [Frankl-Maehara, 1988]:
Random rotation, then projection onto first k coordinates.

[Indyk-Motwani, 1998], [Dasgupta-Gupta, 2003]:
Random matrix with independent Gaussian entries.

[Achlioptas, 2001]: Independent Bernoulli entries.

[Clarkson-Woodruff, 2009]:

O(log(1/0))-wise independent Bernoulli entries.
[Arriaga-Vempala, 1999], [Matousek, 2008]:
Independent entries having mean 0, variance 1/k, and
subGaussian tails (for a Gaussian with variance 1/k).



Proving the JL lemma

Older proofs

e [Johnson-Lindenstrauss, 1984], [Frankl-Maehara, 1988]:
Random rotation, then projection onto first k coordinates.

[Indyk-Motwani, 1998], [Dasgupta-Gupta, 2003]:
Random matrix with independent Gaussian entries.

[Achlioptas, 2001]: Independent Bernoulli entries.

[Clarkson-Woodruff, 2009]:

O(log(1/0))-wise independent Bernoulli entries.
[Arriaga-Vempala, 1999], [Matousek, 2008]:
Independent entries having mean 0, variance 1/k, and
subGaussian tails (for a Gaussian with variance 1/k).

Downside: Performing embedding is dense matrix-vector
multiplication, O(k - ||x|lo) time



Fast JL Transforms

e [Ailon-Chazelle, 2006]: x — PHDx, O(dlogd + k3) time
P is a random sparse matrix, H is Hadamard, D has random
+1 on diagonal

o [Ailon-Liberty, 2008]: O(d log k + k?) time, also based on fast
Hadamard transform

e [Ailon-Liberty, 2011], [Krahmer-Ward]: O(d log d) for MJL,
but with suboptimal k = O(¢~2log nlog* d).



Fast JL Transforms

e [Ailon-Chazelle, 2006]: x — PHDx, O(dlogd + k3) time
P is a random sparse matrix, H is Hadamard, D has random
+1 on diagonal

o [Ailon-Liberty, 2008]: O(d log k + k?) time, also based on fast
Hadamard transform

e [Ailon-Liberty, 2011], [Krahmer-Ward]: O(d log d) for MJL,
but with suboptimal k = O(¢~2log nlog* d).

Downside: Slow to embed sparse vectors: running time is
Q(min{k - ||x]lo,d}) even if ||x][o =1



Where Do Sparse Vectors Show Up?

Documents as bags of words: x; = number of occurrences
of word i. Compare documents using cosine similarity.

d = lexicon size; most documents aren’t dictionaries
Network traffic: x; ; = #bytes sent from / to j

d = 2% (225 in IPv6); most servers don't talk to each other
User ratings: x; is user’s score for movie / on Netflix

d = #movies; most people haven't watched all movies

Streaming: x receives updates x < x + v - € in a stream.
Maintaining Sx requires calculating Se;.



Sparse JL transforms
One way to embed sparse vectors faster: use sparse matrices.



Sparse JL transforms
One way to embed sparse vectors faster: use sparse matrices.

S = #£non-zero entries per column
(so embedding time is s - ||x||o)

reference value of s type
[JL84], [FM88], [IM98], ... | k ~ 4c—?log(1/6) dense
[Achlioptas01] k/3 sparse
Bernoulli
[WDALSO09] no proof hashing
[DKS10] O(stlog®(1/0)) hashing
[KN10a], [BOR10] O(c1log?(1/6)) "
[KN10b] O(stlog(1/9)) hashing
(random codes)




Sparse JL Constructions

[DKS, 2010]
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Sparse JL Constructions
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[DKS, 2010] CTTT T TTT] s = &(cllog?(1/6))
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[this work] CITTT I T s = 0(cLlog(1/6))
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[this work] /s s =0(elog(1/6))




Sparse JL Constructions (in matrix form)
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Each black cell is +1//s at random



Sparse JL Constructions (nicknames)
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—kfso “Block” construction




Sparse JL intuition

e Let h(j,r),o(j, r) be random hash location and random sign
for rth copy of x;.
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Sparse JL intuition

e Let h(j,r),o(j, r) be random hash location and random sign
for rth copy of x;.

° ()i = (1/V3) - Xonjn=iXi-olsr)

I1x115 = lIxI3+ (1/5) - > xpp0G.)o (s r') - Lngi.ry=hr.)

o x=(1/3/2,1/1/2,0,...,0) with t < (1/2)log(1/4) collisions.
All signs agree with probability 2=t > v/§ >> 6, giving error
t/s. So, need s = Q(t/¢e). (Collisions are bad)



Sparse JL via Codes
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e Graph construction: Constant weight binary code of weight s.

e Block construction: Code over g-ary alphabet, g = k/s.
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e Graph construction: Constant weight binary code of weight s.
e Block construction: Code over g-ary alphabet, g = k/s.

e Will show: Suffices to have minimum distance s — O(s?/k).



Analysis (block construction)
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e 7;j.r indicates whether 7, collide in ith chunk.
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Analysis (block construction)

0 O O B N B N A A A

T[T

—k/s~ =

k

-

n; j,r indicates whether /, j collide in ith chunk.

1Sx113 = IIx[I3 + Z

Z=(1/5)%, 2,

Zr = Zi;éj xixjo (i, r)o(J, r)nir

Plan: Pr[|Z| > ¢] < &* - E[Z/]

Z is a quadratic form in o, so apply known moment bounds
for quadratic forms



Analysis

N N B 7/ N A O O A A

T[T
—k/s— = “

Theorem (Hanson-Wright, 1971)

z1,...,2, independent Bernoulli, B € R™" symmetric. For{ > 2,

¢ 4
E UZTBZ —trace(B)‘ ] <ct. max{\/Z||BHF,e||B||2}

Reminder:

* [BllF= \/Zi,j Biz,j

e ||B]|2 is largest magnitude of eigenvalue of B
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Z =23 xgolis ol g

r=1 i#j
71 [0 0
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T==-. .
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0 0o [T ]

° (Tr),”j = XiXiNijr



Analysis (cont'd)
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Analysis (cont'd)

o (T1)ij = xiXnijr
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Analysis (cont'd)

T: |0 0
1 0 T2 0
T==. :
s 0 0 - 10
0 0 | T |

o (T1)ij = XiXiMij,r
e |ITI2=3 Doz x,-2xj2 - (#times i, j collide)
< O(1/k) - ||x]|4 = O(1/k) (good code!)



Analysis (cont'd)
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o (Th)ij = Xmei,j,
° ”TH%— =2 Z,?ﬁj X, X - (#£times i, j collide)

< O(1/k) - [Ix[I3 = O(1/k) (good code!)
e || T|j2 = max, || T,||l2, can bound by 1/s



Analysis (cont'd)

T | 0 0
1 0 T 0
T==. :
s 0 0 .10
0 0 Ts\

o (Tr)ij = XiXjmijr
o [ TIZ =5 Y0 x2x? - (#times i,j collide)

< O(1/k) - [|x||I3 = O(1/k) (good code!)
e || T||2 = max, || T;||2, can bound by 1/s

¢
1 01 ¢
Pr[|Z|>6]<Ce-max{-\/>,.}
€ ke s

0 =log(1/6), k = Q(¢/?), s = Q(¢/<), QED
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e Each pair of codewords should agree on O(s?/k) coordinates.

e Can get this with random code by Chernoff 4+ union bound
over pairs, but then need: s2/k > log(d/§) =

s> /klog(d/5) = Q(ce~1\/log(d/d) log(1/5)).
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Code-based Construction: Caveat

Need a sufficiently good code.
e Each pair of codewords should agree on O(s?/k) coordinates.

e Can get this with random code by Chernoff 4+ union bound
over pairs, but then need: s2/k > log(d/§) =

s> /klog(d/5) = Q(ce~1\/log(d/d) log(1/5)).

e Can assume d = O(e72/9) by first embedding into this
dimension with s = 1 and 4-wise independent o, h
(Analysis: Chebyshev's inequality)
= Can get away with s = O(e~1/log(1/(¢0)) log(1/6)).

Can we avoid the loss incurred by this union bound?
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more! (it's random).
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Improving the Construction

Idea: Random hashing gives a good code, but it gives much
more! (it's random).
Pick h at random

Analysis: Directly bound the ¢ = log(1/§)th moment of the
error term Z, then apply Markov to Z¢

=(1/s)- 37 Zi;éj xixjo (i, r)a(J, r)mir
(Z=(1/s)>712Z)

elzl-5 % (, " )Hehg[ﬁ

n<..<rm
t1,...,th>1

i ti=t

Bound the tth moment of any Z,, then get the /th moment
bound for Z by plugging into the above



Bounding E[Z]]

* 2= Y500 ) i
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L d Zr = Z,;éj XI'XjO-(ia r)a(j, r)ni,j,r
e Monomials appearing in expansion of Z! are in
correspondence with directed multigraphs.

(x1x2) - (x3xa) - (x3xg) - (xaxg) - (x2X10)



Bounding E[Z]]

o/, = Zi;éj xixjo (i, r)o(j, r)nij,r
e Monomials appearing in expansion of Z! are in
correspondence with directed multigraphs.
(x1x2) - (x3xa) - (x3x8) - (xaxs) - (x2x10)
}_>

1 5 2 4

3
e Monomial contributes to expectation iff all degrees even

e Analysis: Group monomials appearing in Z! according to
isomorphism class then do some combinatorics.



Bounding E[Z]]
m = #connected components, v = #vertices, d, = degree of u
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Bounding E[Z]]

m = #connected components, v = #vertices, d, = degree of u

EnolZf]

t t

Z Z E [H niuJu7r] : <H Xquju>

GEG: NH#1enitF e u=1 uel
f((iuJu)E:l):G

x| s (i)

Gegr A it \u=1
f((’mJu)Z:l):G

< Z (%)Vﬁm.vg.;

Geg: (d1/2,.?.,dv/2)



Bounding E[Z]]

m = #connected components, v = #vertices, d, = degree of u

t t
Bz = Y Y E[Hn](n)
GEGt h#f1y-itF#]t u=1 u=1
f((fuu)i_1)=G

t
s\v—m
X 2 (M)
GeG AFEf1 it Ejt u=1
f((’.mju)zzl):c

< 2

Geg:

zom;t_tvv (5) (;Hﬁd)

d1/2,..t.,dv/2)

IN



Bounding E[Z]]

m = #connected components, v = #vertices, d, = degree of u

Eh,a[Zrt]

SOy e [Hn] ~ (H )

GEGt nFji,- it At u=1
f((iuJU)E:1):G

X X (M)

GegG: A1y it £t u=1
f((iuJu)Z:I):G
s\v—m 1
< — vl ———
< X)) Gonta )
GEQ: d1/2 7777 dV/2

IN

T (7 ()



Bounding E[Z]]

e Can bound the sum by forming G one edge at a time, in
increasing order of label

For example, if we didn’t worry about connected components:

2
Siv1/Si < Z d,d, < (Z \/d>u> €25 2ty

u#v



Bounding E[Z]]

e Can bound the sum by forming G one edge at a time, in
increasing order of label

For example, if we didn’t worry about connected components:

2
Siv1/Si < Z dud, < (Z \/d>u> €25 2ty

u#v
e In the end, can show

E[Zt] < 20(1) . {S/k t < log(k/s)
T (t/log(k/s))t otherwise

e Plug this into formula for E[Z¢], QED



Tightness of Analysis

Analysis of required s is tight:

e s <1/(2¢): Look at a vector with t = [1/(se)| non-zero
coordinates each of value 1/1/t, and show probability of
exactly one collision is > §, and > ¢ error when this happens
and signs agree.



Tightness of Analysis

Analysis of required s is tight:

e s <1/(2¢): Look at a vector with t = [1/(se)| non-zero
coordinates each of value 1/1/t, and show probability of
exactly one collision is > §, and > ¢ error when this happens
and signs agree.

e 1/(2¢) < s < cellog(1/6): Look at vector
(1/4/2,1/4/2,0,...,0) and show that probability of exactly
[2se] collisions is > 1/, all signs agree with probability
> /8, and > ¢ error when this happens.



Open Problems



Open Problems

e OPEN: Devise distribution which can be sampled using few
random bits

Current record:

O(log d + log(1/¢) log(1/9) + log(1/9) log log(1/6))
[Kane-Meka-N.]
Existential: O(log d + log(1/0))

e OPEN: Can we embed a k-sparse vector into R¥ in
k - polylog(d) time with the optimal k? This would give a
fast amortized streaming algorithm without blowing up space
(batch k updates at a time, since we're already spending k
space storing the embedding). Note: Embedding should be
correct for any vector, but time should depend on sparsity.

o OPEN: Embed any vector in O(d) time into optimal k



