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Metric Johnson-Lindenstrauss lemma

Metric JL (MJL) Lemma, 1984

Every set of n points in Euclidean space can be embedded into
O(ε−2 log n)-dimensional Euclidean space so that all pairwise
distances are preserved up to a 1± ε factor.

Uses:

• Speed up geometric algorithms by first reducing dimension of
input [Indyk-Motwani, 1998], [Indyk, 2001]

• Low-memory streaming algorithms for linear algebra problems
[Sarlós, 2006], [LWMRT, 2007], [Clarkson-Woodruff, 2009]

• Essentially equivalent to RIP matrices from compressive
sensing [Baraniuk et al., 2008], [Krahmer-Ward, 2010]
(used for sparse recovery of signals)
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How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma
For any 0 < ε, δ < 1/2 there exists a distribution Dε,δ on Rk×d for
k = O(ε−2 log(1/δ)) so that for any x ∈ Sd−1,

Pr
S∼Dε,δ

[∣∣‖Sx‖2
2 − 1

∣∣ > ε
]
< δ.

Proof of MJL: Set δ = 1/n2 in DJL and x as the difference vector
of some pair of points. Union bound over the

(n
2

)
pairs.

Theorem (Alon, 2003)

For every n, there exists a set of n points requiring target
dimension k = Ω((ε−2/ log(1/ε)) log n).

Theorem (Jayram-Woodruff, 2011; Kane-Meka-N., 2011)

For DJL, k = Θ(ε−2 log(1/δ)) is optimal.
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Proving the JL lemma

Older proofs

• [Johnson-Lindenstrauss, 1984], [Frankl-Maehara, 1988]:
Random rotation, then projection onto first k coordinates.

• [Indyk-Motwani, 1998], [Dasgupta-Gupta, 2003]:
Random matrix with independent Gaussian entries.

• [Achlioptas, 2001]: Independent Bernoulli entries.

• [Clarkson-Woodruff, 2009]:
O(log(1/δ))-wise independent Bernoulli entries.

• [Arriaga-Vempala, 1999], [Matousek, 2008]:
Independent entries having mean 0, variance 1/k , and
subGaussian tails (for a Gaussian with variance 1/k).

Downside: Performing embedding is dense matrix-vector
multiplication, O(k · ‖x‖0) time
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Fast JL Transforms

• [Ailon-Chazelle, 2006]: x 7→ PHDx , O(d log d + k3) time

P is a random sparse matrix, H is Hadamard, D has random
±1 on diagonal

• [Ailon-Liberty, 2008]: O(d log k + k2) time, also based on fast
Hadamard transform

• [Ailon-Liberty, 2011], [Krahmer-Ward]: O(d log d) for MJL,
but with suboptimal k = O(ε−2 log n log4 d).

Downside: Slow to embed sparse vectors: running time is
Ω(min{k · ‖x‖0, d}) even if ‖x‖0 = 1
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Where Do Sparse Vectors Show Up?

• Documents as bags of words: xi = number of occurrences
of word i . Compare documents using cosine similarity.

d = lexicon size; most documents aren’t dictionaries

• Network traffic: xi ,j = #bytes sent from i to j

d = 264 (2256 in IPv6); most servers don’t talk to each other

• User ratings: xi is user’s score for movie i on Netflix

d = #movies; most people haven’t watched all movies

• Streaming: x receives updates x ← x + v · ei in a stream.
Maintaining Sx requires calculating Sei .

• . . .



Sparse JL transforms
One way to embed sparse vectors faster: use sparse matrices.

s = #non-zero entries per column
(so embedding time is s · ‖x‖0)

reference value of s type

[JL84], [FM88], [IM98], . . . k ≈ 4ε−2 log(1/δ) dense

[Achlioptas01] k/3 sparse
Bernoulli

[WDALS09] no proof hashing

[DKS10] Õ(ε−1 log3(1/δ)) hashing

[KN10a], [BOR10] Õ(ε−1 log2(1/δ)) ”

[KN10b] O(ε−1 log(1/δ)) hashing
(random codes)



Sparse JL transforms
One way to embed sparse vectors faster: use sparse matrices.

s = #non-zero entries per column
(so embedding time is s · ‖x‖0)

reference value of s type

[JL84], [FM88], [IM98], . . . k ≈ 4ε−2 log(1/δ) dense

[Achlioptas01] k/3 sparse
Bernoulli

[WDALS09] no proof hashing
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Sparse JL Constructions

[DKS, 2010] s = Θ̃(ε−1 log2(1/δ))
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Sparse JL Constructions (in matrix form)

=

0

0 k

0
0

k/s =

0

0
k

0
0

Each black cell is ±1/
√
s at random



Sparse JL Constructions (nicknames)

“Graph” construction

k/s “Block” construction



Sparse JL intuition

• Let h(j , r), σ(j , r) be random hash location and random sign
for r th copy of xj .

• (Sx)i = (1/
√
s) ·
∑

h(j ,r)=i xj · σ(j , r)

‖Sx‖2
2 = ‖x‖2

2 + (1/s) ·
∑
(j ,r)′

6=(j ′,r ′)

xjxj ′σ(j , r)σ(j ′, r ′) ·1h(j ,r)=h(j ′,r ′)

• x = (1/
√

2, 1/
√

2, 0, . . . , 0) with t < (1/2) log(1/δ) collisions.
All signs agree with probability 2−t >

√
δ � δ, giving error

t/s. So, need s = Ω(t/ε). (Collisions are bad)
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Sparse JL via Codes

=

0

0 k

0
0

k/s =

0

0
k

0
0

• Graph construction: Constant weight binary code of weight s.

• Block construction: Code over q-ary alphabet, q = k/s.

• Will show: Suffices to have minimum distance s − O(s2/k).
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Analysis (block construction)

k/s =

0

0
k

0
0

• ηi ,j ,r indicates whether i , j collide in ith chunk.

• ‖Sx‖2
2 = ‖x‖2

2 + Z

Z = (1/s)
∑

r Zr

Zr =
∑

i 6=j xixjσ(i , r)σ(j , r)ηi ,j ,r

• Plan: Pr[|Z | > ε] < ε` · E[Z `]

• Z is a quadratic form in σ, so apply known moment bounds
for quadratic forms
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Analysis

k/s =

0

0
k

0
0

Theorem (Hanson-Wright, 1971)

z1, . . . , zn independent Bernoulli, B ∈ Rn×n symmetric. For ` ≥ 2,

E

[∣∣∣zTBz − trace(B)
∣∣∣`] < C ` ·max

{√
`‖B‖F , `‖B‖2

}`
Reminder:

• ‖B‖F =
√∑

i ,j B
2
i ,j

• ‖B‖2 is largest magnitude of eigenvalue of B



Analysis

Z =
1

s
·

s∑
r=1

∑
i 6=j

xixjσ(i , r)σ(j , r)ηi ,j ,r

= σTTσ

T =
1

s
·

T1 0 . . . 0
0 T2 . . . 0

0 0
. . . 0

0 . . . 0 Ts

• (Tr )i ,j = xixjηi ,j ,r
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Analysis (cont’d)

T =
1

s
·

T1 0 . . . 0
0 T2 . . . 0

0 0
. . . 0

0 . . . 0 Ts

• (Tr )i ,j = xixjηi ,j ,r

• ‖T‖2
F = 1

s2

∑
i 6=j x

2
i x

2
j · (#times i , j collide)

< O(1/k) · ‖x‖4
2 = O(1/k) (good code!)

• ‖T‖2 = maxr ‖Tr‖2, can bound by 1/s

Pr[|Z | > ε] < C ` ·max

{
1

ε
·
√
`

k
,

1

ε
· `
s

}`
` = log(1/δ), k = Ω(`/ε2), s = Ω(`/ε), QED
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Code-based Construction: Caveat

Need a sufficiently good code.

• Each pair of codewords should agree on O(s2/k) coordinates.

• Can get this with random code by Chernoff + union bound
over pairs, but then need: s2/k ≥ log(d/δ)⇒
s ≥

√
k log(d/δ) = Ω(ε−1

√
log(d/δ) log(1/δ)).

• Can assume d = O(ε−2/δ) by first embedding into this
dimension with s = 1 and 4-wise independent σ, h
(Analysis: Chebyshev’s inequality)

⇒ Can get away with s = O(ε−1
√

log(1/(εδ)) log(1/δ)).

Can we avoid the loss incurred by this union bound?
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Improving the Construction

• Idea: Random hashing gives a good code, but it gives much
more! (it’s random).

• Pick h at random

• Analysis: Directly bound the ` = log(1/δ)th moment of the
error term Z , then apply Markov to Z `

• Z = (1/s) ·
∑s

r=1

∑
i 6=j xixjσ(i , r)σ(j , r)ηi ,j ,r

(Z = (1/s)
∑s

r=1 Zr )

Eh,σ[Z `] =
1

s`
·
∑

r1<...<rn
t1,...,tn>1∑

i ti=`

(
`

t1, . . . , tn

)
·

n∏
i=1

Eh,σ[Z ti
ri

]

Bound the tth moment of any Zr , then get the `th moment
bound for Z by plugging into the above
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more! (it’s random).

• Pick h at random

• Analysis: Directly bound the ` = log(1/δ)th moment of the
error term Z , then apply Markov to Z `

• Z = (1/s) ·
∑s

r=1

∑
i 6=j xixjσ(i , r)σ(j , r)ηi ,j ,r

(Z = (1/s)
∑s

r=1 Zr )

Eh,σ[Z `] =
1

s`
·
∑

r1<...<rn
t1,...,tn>1∑

i ti=`

(
`

t1, . . . , tn

)
·

n∏
i=1

Eh,σ[Z ti
ri

]

Bound the tth moment of any Zr , then get the `th moment
bound for Z by plugging into the above



Bounding E[Z t
r ]

• Zr =
∑

i 6=j xixjσ(i , r)σ(j , r)ηi ,j ,r

• Monomials appearing in expansion of Z t
r are in

correspondence with directed multigraphs.

(x1x2) · (x3x4) · (x3x8) · (x4x8) · (x2x10)

7→
1 5 2 4

3

• Monomial contributes to expectation iff all degrees even

• Analysis: Group monomials appearing in Z t
r according to

isomorphism class then do some combinatorics.
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Bounding E[Z t
r ]

m = #connected components, v = #vertices, du = degree of u

Eh,σ[Z t
r ] =

∑
G∈Gt

∑
i1 6=j1,...,it 6=jt

f ((iu ,ju)tu=1)=G

E

[
t∏

u=1

ηiu ,ju ,r

]
·

(
t∏

u=1

xiuxju

)

=
∑
G∈Gt

( s
k

)v−m
·

 ∑
i1 6=j1,...,it 6=jt

f ((iu ,ju)tu=1)=G

(
t∏

u=1

xiuxju

)
≤

∑
G∈Gt

( s
k

)v−m
· v ! · 1( t

d1/2,...,dv/2

)
≤ 2O(t)

∑
v ,m

t−tv v
( s
k

)v−m
·

(∑
G

∏
u

√
du

du

)
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Bounding E[Z t
r ]

• Can bound the sum by forming G one edge at a time, in
increasing order of label

For example, if we didn’t worry about connected components:

Si+1/Si ≤
∑
u 6=v

√
dudv ≤

(∑
u

√
du

)2

C−S
≤ 2tv

• In the end, can show

E[Z t
r ] ≤ 2O(t) ·

{
s/k t < log(k/s)

(t/ log(k/s))t otherwise

• Plug this into formula for E[Z `], QED
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Tightness of Analysis

Analysis of required s is tight:

• s ≤ 1/(2ε): Look at a vector with t = b1/(sε)c non-zero
coordinates each of value 1/

√
t, and show probability of

exactly one collision is � δ, and > ε error when this happens
and signs agree.

• 1/(2ε) < s < cε−1 log(1/δ): Look at vector
(1/
√

2, 1/
√

2, 0, . . . , 0) and show that probability of exactly
d2sεe collisions is �

√
δ, all signs agree with probability

�
√
δ, and > ε error when this happens.
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Open Problems



Open Problems

• OPEN: Devise distribution which can be sampled using few
random bits

Current record:
O(log d + log(1/ε) log(1/δ) + log(1/δ) log log(1/δ))
[Kane-Meka-N.]

Existential: O(log d + log(1/δ))

• OPEN: Can we embed a k-sparse vector into Rk in
k · polylog(d) time with the optimal k? This would give a
fast amortized streaming algorithm without blowing up space
(batch k updates at a time, since we’re already spending k
space storing the embedding). Note: Embedding should be
correct for any vector, but time should depend on sparsity.

• OPEN: Embed any vector in Õ(d) time into optimal k


