Sparse Johnson-Lindenstrauss Transforms

Jelani Nelson MIT

May 24, 2011

joint work with Daniel Kane (Harvard)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Metric Johnson-Lindenstrauss lemma

Metric JL (MJL) Lemma, 1984

Every set of n points in Euclidean space can be embedded into $O(\varepsilon^{-2} \log n)$ -dimensional Euclidean space so that all pairwise distances are preserved up to a $1 \pm \varepsilon$ factor.

Metric Johnson-Lindenstrauss lemma

Metric JL (MJL) Lemma, 1984

Every set of n points in Euclidean space can be embedded into $O(\varepsilon^{-2} \log n)$ -dimensional Euclidean space so that all pairwise distances are preserved up to a $1 \pm \varepsilon$ factor.

Uses:

- Speed up geometric algorithms by first reducing dimension of input [Indyk-Motwani, 1998], [Indyk, 2001]
- Low-memory streaming algorithms for linear algebra problems [Sarlós, 2006], [LWMRT, 2007], [Clarkson-Woodruff, 2009]

• Essentially equivalent to RIP matrices from compressive sensing [Baraniuk et al., 2008], [Krahmer-Ward, 2010] (used for sparse recovery of signals)

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma

For any $0 < \varepsilon, \delta < 1/2$ there exists a distribution $\mathcal{D}_{\varepsilon,\delta}$ on $\mathbb{R}^{k \times d}$ for $k = O(\varepsilon^{-2} \log(1/\delta))$ so that for any $x \in S^{d-1}$,

$$\Pr_{\boldsymbol{S}\sim\mathcal{D}_{\varepsilon,\delta}}\left[\left|\|\boldsymbol{S}\boldsymbol{x}\|_{2}^{2}-1\right|>\varepsilon\right]<\delta.$$

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma

For any $0 < \varepsilon, \delta < 1/2$ there exists a distribution $\mathcal{D}_{\varepsilon,\delta}$ on $\mathbb{R}^{k \times d}$ for $k = O(\varepsilon^{-2} \log(1/\delta))$ so that for any $x \in S^{d-1}$,

$$\Pr_{S\sim\mathcal{D}_{\varepsilon,\delta}}\left[\left|\|Sx\|_2^2-1\right|>\varepsilon\right]<\delta.$$

Proof of MJL: Set $\delta = 1/n^2$ in DJL and x as the difference vector of some pair of points. Union bound over the $\binom{n}{2}$ pairs.

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma

For any $0 < \varepsilon, \delta < 1/2$ there exists a distribution $\mathcal{D}_{\varepsilon,\delta}$ on $\mathbb{R}^{k \times d}$ for $k = O(\varepsilon^{-2} \log(1/\delta))$ so that for any $x \in S^{d-1}$,

$$\Pr_{S\sim\mathcal{D}_{\varepsilon,\delta}}\left[\left|\|Sx\|_2^2-1\right|>\varepsilon\right]<\delta.$$

Proof of MJL: Set $\delta = 1/n^2$ in DJL and x as the difference vector of some pair of points. Union bound over the $\binom{n}{2}$ pairs.

Theorem (Alon, 2003)

For every *n*, there exists a set of *n* points requiring target dimension $k = \Omega((\varepsilon^{-2}/\log(1/\varepsilon))\log n)$.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-N., 2011) For DJL, $k = \Theta(\varepsilon^{-2} \log(1/\delta))$ is optimal.

Proving the JL lemma

Older proofs

- [Johnson-Lindenstrauss, 1984], [Frankl-Maehara, 1988]: Random rotation, then projection onto first k coordinates.
- [Indyk-Motwani, 1998], [Dasgupta-Gupta, 2003]: Random matrix with independent Gaussian entries.
- [Achlioptas, 2001]: Independent Bernoulli entries.
- [Clarkson-Woodruff, 2009]: $O(\log(1/\delta))$ -wise independent Bernoulli entries.
- [Arriaga-Vempala, 1999], [Matousek, 2008]: Independent entries having mean 0, variance 1/k, and subGaussian tails (for a Gaussian with variance 1/k).

Proving the JL lemma

Older proofs

- [Johnson-Lindenstrauss, 1984], [Frankl-Maehara, 1988]: Random rotation, then projection onto first k coordinates.
- [Indyk-Motwani, 1998], [Dasgupta-Gupta, 2003]: Random matrix with independent Gaussian entries.
- [Achlioptas, 2001]: Independent Bernoulli entries.
- [Clarkson-Woodruff, 2009]: $O(\log(1/\delta))$ -wise independent Bernoulli entries.
- [Arriaga-Vempala, 1999], [Matousek, 2008]: Independent entries having mean 0, variance 1/k, and subGaussian tails (for a Gaussian with variance 1/k).

Downside: Performing embedding is dense matrix-vector multiplication, $O(k \cdot ||x||_0)$ time

Fast JL Transforms

- [Ailon-Chazelle, 2006]: x → PHDx, O(d log d + k³) time
 P is a random sparse matrix, H is Hadamard, D has random ±1 on diagonal
- [Ailon-Liberty, 2008]: $O(d \log k + k^2)$ time, also based on fast Hadamard transform

• [Ailon-Liberty, 2011], [Krahmer-Ward]: $O(d \log d)$ for MJL, but with suboptimal $k = O(\varepsilon^{-2} \log n \log^4 d)$.

Fast JL Transforms

- [Ailon-Chazelle, 2006]: x → PHDx, O(d log d + k³) time
 P is a random sparse matrix, H is Hadamard, D has random ±1 on diagonal
- [Ailon-Liberty, 2008]: $O(d \log k + k^2)$ time, also based on fast Hadamard transform

• [Ailon-Liberty, 2011], [Krahmer-Ward]: $O(d \log d)$ for MJL, but with suboptimal $k = O(\varepsilon^{-2} \log n \log^4 d)$.

Downside: Slow to embed sparse vectors: running time is $\Omega(\min\{k \cdot ||x||_0, d\})$ even if $||x||_0 = 1$

Where Do Sparse Vectors Show Up?

• **Documents as bags of words:** x_i = number of occurrences of word *i*. Compare documents using cosine similarity.

d = lexicon size; most documents aren't dictionaries

- Network traffic: x_{i,j} = #bytes sent from i to j
 d = 2⁶⁴ (2²⁵⁶ in IPv6); most servers don't talk to each other
- User ratings: x_i is user's score for movie i on Netflix
 d = #movies; most people haven't watched all movies
- Streaming: x receives updates x ← x + v ⋅ e_i in a stream. Maintaining Sx requires calculating Se_i.

• . . .

Sparse JL transforms

(ロ)、(型)、(E)、(E)、 E) の(の)

One way to embed sparse vectors faster: use sparse matrices.

Sparse JL transforms

One way to embed sparse vectors faster: use sparse matrices.

```
s = \#non-zero entries per column
(so embedding time is s \cdot ||x||_0)
```

reference	value of <i>s</i>	type
[JL84], [FM88], [IM98],	$kpprox 4arepsilon^{-2}\log(1/\delta)$	dense
[Achlioptas01]	k/3	sparse
		Bernoulli
[WDALS09]	no proof	hashing
[DKS10]	$ ilde{O}(arepsilon^{-1}\log^3(1/\delta))$	hashing
[KN10a], [BOR10]	$ ilde{O}(arepsilon^{-1}\log^2(1/\delta))$	"
[KN10b]	$O(arepsilon^{-1}\log(1/\delta))$	hashing
		(random codes)

Sparse JL Constructions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sparse JL Constructions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sparse JL Constructions

Sparse JL Constructions (in matrix form)

Each black cell is $\pm 1/\sqrt{s}$ at random

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sparse JL Constructions (nicknames)

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

 Let h(j, r), σ(j, r) be random hash location and random sign for rth copy of x_j.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Let h(j, r), σ(j, r) be random hash location and random sign for rth copy of x_j.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $(Sx)_i = (1/\sqrt{s}) \cdot \sum_{h(j,r)=i} x_j \cdot \sigma(j,r)$

 Let h(j, r), σ(j, r) be random hash location and random sign for rth copy of x_j.

•
$$(Sx)_i = (1/\sqrt{s}) \cdot \sum_{h(j,r)=i} x_j \cdot \sigma(j,r)$$

$$\|Sx\|_{2}^{2} = \|x\|_{2}^{2} + (1/s) \cdot \sum_{\substack{(j,r)' \\ \neq (j',r')}} x_{j} x_{j'} \sigma(j,r) \sigma(j',r') \cdot \mathbf{1}_{h(j,r) = h(j',r')}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Let h(j, r), σ(j, r) be random hash location and random sign for rth copy of x_j.

•
$$(Sx)_i = (1/\sqrt{s}) \cdot \sum_{h(j,r)=i} x_j \cdot \sigma(j,r)$$

$$\|Sx\|_{2}^{2} = \|x\|_{2}^{2} + (1/s) \cdot \sum_{\substack{(j,r)' \\ \neq (j',r')}} x_{j} x_{j'} \sigma(j,r) \sigma(j',r') \cdot \mathbf{1}_{h(j,r) = h(j',r')}$$

• $x = (1/\sqrt{2}, 1/\sqrt{2}, 0, ..., 0)$ with $t < (1/2) \log(1/\delta)$ collisions. All signs agree with probability $2^{-t} > \sqrt{\delta} \gg \delta$, giving error t/s. So, need $s = \Omega(t/\varepsilon)$. (Collisions are bad)

Sparse JL via Codes

- Graph construction: Constant weight binary code of weight s.
- Block construction: Code over q-ary alphabet, q = k/s.

Sparse JL via Codes

- Graph construction: Constant weight binary code of weight s.
- Block construction: Code over *q*-ary alphabet, q = k/s.
- Will show: Suffices to have minimum distance $s O(s^2/k)$.

Analysis (block construction)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• $\eta_{i,j,r}$ indicates whether i, j collide in *i*th chunk.

•
$$||Sx||_2^2 = ||x||_2^2 + Z$$

 $Z = (1/s) \sum_r Z_r$
 $Z_r = \sum_{i \neq j} x_i x_j \sigma(i, r) \sigma(j, r) \eta_{i,j,r}$

Analysis (block construction)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• $\eta_{i,j,r}$ indicates whether i, j collide in *i*th chunk.

•
$$||Sx||_2^2 = ||x||_2^2 + Z$$

 $Z = (1/s) \sum_r Z_r$
 $Z_r = \sum_{i \neq j} x_i x_j \sigma(i, r) \sigma(j, r) \eta_{i,j,r}$

• Plan: $\Pr[|Z| > \varepsilon] < \varepsilon^{\ell} \cdot \mathbf{E}[Z^{\ell}]$

Analysis (block construction)

• $\eta_{i,j,r}$ indicates whether i, j collide in *i*th chunk.

•
$$\|Sx\|_2^2 = \|x\|_2^2 + Z$$

 $Z = (1/s) \sum_r Z_r$
 $Z_r = \sum_{i \neq j} x_i x_j \sigma(i, r) \sigma(j, r) \eta_{i,j,r}$

- Plan: $\Pr[|Z| > \varepsilon] < \varepsilon^{\ell} \cdot \mathbf{E}[Z^{\ell}]$
- Z is a quadratic form in σ , so apply known moment bounds for quadratic forms

(日) (日) (日) (日) (日) (日) (日) (日)

Analysis

Theorem (Hanson-Wright, 1971)

 z_1, \ldots, z_n independent Bernoulli, $B \in \mathbb{R}^{n \times n}$ symmetric. For $\ell \geq 2$,

$$\mathsf{E}\left[\left|z^{\mathsf{T}}Bz - \operatorname{trace}(B)\right|^{\ell}\right] < C^{\ell} \cdot \max\left\{\sqrt{\ell}\|B\|_{\mathsf{F}}, \ell\|B\|_{2}\right\}^{\ell}$$

Reminder:

- $\|B\|_F = \sqrt{\sum_{i,j} B_{i,j}^2}$
- $||B||_2$ is largest magnitude of eigenvalue of B

Analysis

$$Z = \frac{1}{s} \cdot \sum_{r=1}^{s} \sum_{i \neq j} x_i x_j \sigma(i, r) \sigma(j, r) \eta_{i,j,r}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Analysis

$$Z = \frac{1}{s} \cdot \sum_{r=1}^{s} \sum_{i \neq j} x_i x_j \sigma(i, r) \sigma(j, r) \eta_{i,j,r}$$

$$= \sigma^T T \sigma$$

$$T = \frac{1}{s} \cdot \begin{bmatrix} T_1 & 0 & \dots & 0 \\ 0 & T_2 & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & \dots & 0 & T_s \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > = □

•
$$(T_r)_{i,j} = x_i x_j \eta_{i,j,r}$$

•
$$(T_r)_{i,j} = x_i x_j \eta_{i,j,r}$$

•
$$(T_r)_{i,j} = x_i x_j \eta_{i,j,r}$$

• $\|T\|_F^2 = \frac{1}{s^2} \sum_{i \neq j} x_i^2 x_j^2 \cdot (\# \text{times } i, j \text{ collide})$

•
$$(T_r)_{i,j} = x_i x_j \eta_{i,j,r}$$

• $||T||_F^2 = \frac{1}{s^2} \sum_{i \neq j} x_i^2 x_j^2 \cdot (\# \text{times } i, j \text{ collide})$
 $< O(1/k) \cdot ||x||_2^4 = O(1/k) \text{ (good code!)}$

•
$$(T_r)_{i,j} = x_i x_j \eta_{i,j,r}$$

• $||T||_F^2 = \frac{1}{s^2} \sum_{i \neq j} x_i^2 x_j^2 \cdot (\# \text{times } i, j \text{ collide})$
 $< O(1/k) \cdot ||x||_2^4 = O(1/k) \text{ (good code!)}$
• $||T||_2 = \max_r ||T_r||_2$, can bound by $1/s$

l

•
$$(T_r)_{i,j} = x_i x_j \eta_{i,j,r}$$

• $||T||_F^2 = \frac{1}{s^2} \sum_{i \neq j} x_i^2 x_j^2 \cdot (\# \text{times } i, j \text{ collide})$
 $< O(1/k) \cdot ||x||_2^4 = O(1/k) \text{ (good code!)}$
• $||T||_2 = \max_r ||T_r||_2$, can bound by $1/s$
 $\Pr[|Z| > \varepsilon] < C^\ell \cdot \max\left\{\frac{1}{\varepsilon} \cdot \sqrt{\frac{\ell}{k}}, \frac{1}{\varepsilon} \cdot \frac{\ell}{s}\right\}^\ell$
 $\ell = \log(1/\delta), \ k = \Omega(\ell/\varepsilon^2), \ s = \Omega(\ell/\varepsilon), \ \text{QED}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Need a sufficiently good code.

Need a sufficiently good code.

• Each pair of codewords should agree on $O(s^2/k)$ coordinates.

 Can get this with random code by Chernoff + union bound over pairs, but then need: s²/k ≥ log(d/δ) ⇒

$$s \geq \sqrt{k \log(d/\delta)} = \Omega(\varepsilon^{-1} \sqrt{\log(d/\delta) \log(1/\delta)}).$$

Need a sufficiently good code.

- Each pair of codewords should agree on $O(s^2/k)$ coordinates.
- Can get this with random code by Chernoff + union bound over pairs, but then need: s²/k ≥ log(d/δ) ⇒

$$s \geq \sqrt{k \log(d/\delta)} = \Omega(\varepsilon^{-1} \sqrt{\log(d/\delta) \log(1/\delta)}).$$

• Can assume $d = O(\varepsilon^{-2}/\delta)$ by first embedding into this dimension with s = 1 and 4-wise independent σ , h (Analysis: Chebyshev's inequality)

 \Rightarrow Can get away with $s = O(\varepsilon^{-1}\sqrt{\log(1/(\varepsilon\delta))\log(1/\delta)}).$

Need a sufficiently good code.

- Each pair of codewords should agree on $O(s^2/k)$ coordinates.
- Can get this with random code by Chernoff + union bound over pairs, but then need: s²/k ≥ log(d/δ) ⇒

$$s \geq \sqrt{k \log(d/\delta)} = \Omega(\varepsilon^{-1} \sqrt{\log(d/\delta) \log(1/\delta)}).$$

Can assume d = O(ε⁻²/δ) by first embedding into this dimension with s = 1 and 4-wise independent σ, h (Analysis: Chebyshev's inequality)
 ⇒ Can get away with s = O(ε⁻¹√log(1/(εδ))log(1/δ)).
 Can we avoid the loss incurred by this union bound?

 Idea: Random hashing gives a good code, but it gives much more! (it's <u>random</u>).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Idea: Random hashing gives a good code, but it gives much more! (it's <u>random</u>).
- Pick *h* at random
- Analysis: Directly bound the $\ell = \log(1/\delta)$ th moment of the error term Z, then apply Markov to Z^{ℓ}

- Idea: Random hashing gives a good code, but it gives much more! (it's <u>random</u>).
- Pick *h* at random
- Analysis: Directly bound the $\ell = \log(1/\delta)$ th moment of the error term Z, then apply Markov to Z^{ℓ}

• $Z = (1/s) \cdot \sum_{r=1}^{s} \sum_{i \neq j} x_i x_j \sigma(i, r) \sigma(j, r) \eta_{i,j,r}$

- Idea: Random hashing gives a good code, but it gives much more! (it's <u>random</u>).
- Pick *h* at random
- Analysis: Directly bound the $\ell = \log(1/\delta)$ th moment of the error term Z, then apply Markov to Z^{ℓ}

•
$$Z = (1/s) \cdot \sum_{r=1}^{s} \sum_{i \neq j} x_i x_j \sigma(i, r) \sigma(j, r) \eta_{i, j, r}$$
$$(Z = (1/s) \sum_{r=1}^{s} Z_r)$$

- Idea: Random hashing gives a good code, but it gives much more! (it's <u>random</u>).
- Pick h at random
- Analysis: Directly bound the $\ell = \log(1/\delta)$ th moment of the error term Z, then apply Markov to Z^{ℓ}
- $Z = (1/s) \cdot \sum_{r=1}^{s} \sum_{i \neq j} x_i x_j \sigma(i, r) \sigma(j, r) \eta_{i, j, r}$ $(Z = (1/s) \sum_{r=1}^{s} Z_r)$

$$\mathbf{E}_{h,\sigma}[Z^{\ell}] = \frac{1}{s^{\ell}} \cdot \sum_{\substack{r_1 < \ldots < r_n \\ t_1, \ldots, t_n > 1 \\ \sum_i t_i = \ell}} \binom{\ell}{t_1, \ldots, t_n} \cdot \prod_{i=1}^n \mathbf{E}_{h,\sigma}[Z_{r_i}^{t_i}]$$

Bound the *t*th moment of any Z_r , then get the ℓ th moment bound for Z by plugging into the above

• $Z_r = \sum_{i \neq j} x_i x_j \sigma(i, r) \sigma(j, r) \eta_{i,j,r}$

- $Z_r = \sum_{i \neq j} x_i x_j \sigma(i, r) \sigma(j, r) \eta_{i,j,r}$
- Monomials appearing in expansion of Z_r^t are in correspondence with directed multigraphs.

 $(x_1x_2) \cdot (x_3x_4) \cdot (x_3x_8) \cdot (x_4x_8) \cdot (x_2x_{10})$

•
$$Z_r = \sum_{i \neq j} x_i x_j \sigma(i, r) \sigma(j, r) \eta_{i,j,r}$$

• Monomials appearing in expansion of Z_r^t are in correspondence with directed multigraphs.

 $(x_1x_2) \cdot (x_3x_4) \cdot (x_3x_8) \cdot (x_4x_8) \cdot (x_2x_{10})$

- Monomial contributes to expectation iff all degrees even
- Analysis: Group monomials appearing in Z_r^t according to isomorphism class then do some combinatorics.

m = #connected components, v = #vertices, $d_u =$ degree of u

$$\mathbf{E}_{h,\sigma}[Z_r^t] = \sum_{G \in \mathcal{G}_t} \sum_{\substack{i_1 \neq j_1, \dots, i_t \neq j_t \\ f((i_u, j_u)_{u=1}^t) = G}} \mathbf{E} \left[\prod_{u=1}^t \eta_{i_u, j_u, r} \right] \cdot \left(\prod_{u=1}^t x_{i_u} x_{j_u} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

m = #connected components, v = #vertices, $d_u =$ degree of u

$$\mathbf{E}_{h,\sigma}[Z_r^t] = \sum_{G \in \mathcal{G}_t} \sum_{\substack{i_1 \neq j_1, \dots, i_t \neq j_t \\ f((i_u, j_u)_{u=1}^t) = G}} \mathbf{E} \left[\prod_{u=1}^t \eta_{i_u, j_u, r} \right] \cdot \left(\prod_{u=1}^t x_{i_u} x_{j_u} \right)$$

$$= \sum_{G \in \mathcal{G}_t} \left(\frac{s}{k} \right)^{v-m} \cdot \left(\sum_{\substack{i_1 \neq j_1, \dots, i_t \neq j_t \\ f((i_u, j_u)_{u=1}^t) = G}} \left(\prod_{u=1}^t x_{i_u} x_{j_u} \right) \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

m = #connected components, v = #vertices, $d_u =$ degree of u

$$\begin{aligned} \mathbf{E}_{h,\sigma}[Z_r^t] &= \sum_{G \in \mathcal{G}_t} \sum_{\substack{i_1 \neq j_1, \dots, i_t \neq j_t \\ f((i_u, j_u)_{u=1}^t) = G}} \mathbf{E} \left[\prod_{u=1}^t \eta_{i_u, j_u, r} \right] \cdot \left(\prod_{u=1}^t x_{i_u} x_{j_u} \right) \\ &= \sum_{G \in \mathcal{G}_t} \left(\frac{\mathbf{s}}{k} \right)^{\nu - m} \cdot \left(\sum_{\substack{i_1 \neq j_1, \dots, i_t \neq j_t \\ f((i_u, j_u)_{u=1}^t) = G}} \left(\prod_{u=1}^t x_{i_u} x_{j_u} \right) \right) \\ &\leq \sum_{G \in \mathcal{G}_t} \left(\frac{\mathbf{s}}{k} \right)^{\nu - m} \cdot \mathbf{v}! \cdot \frac{1}{\binom{t}{d_1/2, \dots, d_v/2}} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

m = #connected components, v = #vertices, $d_u =$ degree of u

$$\begin{aligned} \mathbf{E}_{h,\sigma}[Z_r^t] &= \sum_{G \in \mathcal{G}_t} \sum_{\substack{i_1 \neq j_1, \dots, i_t \neq j_t \\ f((i_u, j_u)_{u=1}^t) = G}} \mathbf{E} \left[\prod_{u=1}^t \eta_{i_u, j_u, r} \right] \cdot \left(\prod_{u=1}^t x_{i_u} x_{j_u} \right) \\ &= \sum_{G \in \mathcal{G}_t} \left(\frac{s}{k} \right)^{v-m} \cdot \left(\sum_{\substack{i_1 \neq j_1, \dots, i_t \neq j_t \\ f((i_u, j_u)_{u=1}^t) = G}} \left(\prod_{u=1}^t x_{i_u} x_{j_u} \right) \right) \\ &\leq \sum_{G \in \mathcal{G}_t} \left(\frac{s}{k} \right)^{v-m} \cdot v! \cdot \frac{1}{\left(\frac{t}{d_1/2, \dots, d_v/2} \right)} \\ &\leq 2^{\mathcal{O}(t)} \sum_{v, m} t^{-t} v^v \left(\frac{s}{k} \right)^{v-m} \cdot \left(\sum_{G} \prod_u \sqrt{d_u}^{d_u} \right) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

m = #connected components, v = #vertices, $d_u =$ degree of u

$$\begin{aligned} \mathbf{E}_{h,\sigma}[Z_r^t] &= \sum_{G \in \mathcal{G}_t} \sum_{\substack{i_1 \neq j_1, \dots, i_t \neq j_t \\ f((i_u, j_u)_{u=1}^t) = G}} \mathbf{E} \left[\prod_{u=1}^t \eta_{i_u, j_u, r} \right] \cdot \left(\prod_{u=1}^t x_{i_u} x_{j_u} \right) \\ &= \sum_{G \in \mathcal{G}_t} \left(\frac{s}{k} \right)^{v-m} \cdot \left(\sum_{\substack{i_1 \neq j_1, \dots, i_t \neq j_t \\ f((i_u, j_u)_{u=1}^t) = G}} \left(\prod_{u=1}^t x_{i_u} x_{j_u} \right) \right) \\ &\leq \sum_{G \in \mathcal{G}_t} \left(\frac{s}{k} \right)^{v-m} \cdot v! \cdot \frac{1}{\left(\frac{t}{d_1/2, \dots, d_v/2} \right)} \\ &\leq 2^{O(t)} \sum_{v, m} t^{-t} v^v \left(\frac{s}{k} \right)^{v-m} \cdot \left(\sum_{G} \prod_u \sqrt{d_u}^{d_u} \right) \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

• Can bound the sum by forming *G* one edge at a time, in increasing order of label

For example, if we didn't worry about connected components:

$$S_{i+1}/S_i \leq \sum_{u \neq v} \sqrt{d_u d_v} \leq \left(\sum_u \sqrt{d_u}\right)^2 \mathop{\leq}\limits_{\leq}^{\mathrm{C-S}} 2tv$$

• Can bound the sum by forming *G* one edge at a time, in increasing order of label

For example, if we didn't worry about connected components:

$$S_{i+1}/S_i \leq \sum_{u \neq v} \sqrt{d_u d_v} \leq \left(\sum_u \sqrt{d_u}\right)^2 \leq \sum_{\leq u \neq v} 2tv$$

• In the end, can show

$$\mathbf{E}[Z_r^t] \leq 2^{O(t)} \cdot egin{cases} s/k & t < \log(k/s) \ (t/\log(k/s))^t & ext{otherwise} \end{cases}$$

• Plug this into formula for $\mathbf{E}[Z^{\ell}]$, **QED**

Tightness of Analysis

Analysis of required s is tight:

s ≤ 1/(2ε): Look at a vector with t = [1/(sε)] non-zero coordinates each of value 1/√t, and show probability of exactly one collision is ≫ δ, and > ε error when this happens and signs agree.

Tightness of Analysis

Analysis of required s is tight:

- s ≤ 1/(2ε): Look at a vector with t = [1/(sε)] non-zero coordinates each of value 1/√t, and show probability of exactly one collision is ≫ δ, and > ε error when this happens and signs agree.
- $1/(2\varepsilon) < s < c\varepsilon^{-1} \log(1/\delta)$: Look at vector $(1/\sqrt{2}, 1/\sqrt{2}, 0, \dots, 0)$ and show that probability of exactly $\lceil 2s\varepsilon \rceil$ collisions is $\gg \sqrt{\delta}$, all signs agree with probability $\gg \sqrt{\delta}$, and $> \varepsilon$ error when this happens.

Open Problems

Open Problems

• **OPEN:** Devise distribution which can be sampled using few random bits

Current record:

 $O(\log d + \log(1/\varepsilon)\log(1/\delta) + \log(1/\delta)\log\log(1/\delta))$ [Kane-Meka-N.]

Existential: $O(\log d + \log(1/\delta))$

- OPEN: Can we embed a k-sparse vector into ℝ^k in k · polylog(d) time with the optimal k? This would give a fast amortized streaming algorithm without blowing up space (batch k updates at a time, since we're already spending k space storing the embedding). Note: Embedding should be correct for any vector, but time should depend on sparsity.
- **OPEN:** Embed any vector in $\tilde{O}(d)$ time into optimal k