A Near-Optimal Sublinear-Time Algorithm for Approximating the Minimum Vertex Cover Size

Krzysztof Onak
CMU

Joint work with Dana Ron, Michal Rosen, and Ronitt Rubinfeld
The Problem

Vertex Cover: set S of vertices such that each edge has endpoint in S.

![Diagram of a graph with vertices covered by a vertex cover set](image)
The Problem

- **Vertex Cover:** set S of vertices such that each edge has endpoint in S

- **Our Goal:** $(2, \varepsilon n)$-estimate for the minimum vertex cover size

- X is an (α, β)-estimate for Y if

\[Y \leq X \leq \alpha Y + \beta \]
The Model

Graph G of degree d:

Query access to adjacency list of each node
Query Complexity

Positive results for \((2, \epsilon n)\)-estimation:

- Parnas, Ron (2007): \(d^{O(\log(d)/\epsilon^3)}\)
- Marko, Ron (2007): \(d^{O(\log(d/\epsilon))}\)
- Nguyen, O. (2008): \(2^{O(d)}/\epsilon^2\)
- Yoshida, Yamamoto, Ito (2009): \(O(d^4/\epsilon^2)\)
Query Complexity

Positive results for $(2, \epsilon n)$-estimation:

- Parnas, Ron (2007): $d^{O\left(\log(d)/\epsilon^3\right)}$
- Marko, Ron (2007): $d^{O\left(\log(d/\epsilon)\right)}$
- Nguyen, O. (2008): $2^{O(d)}/\epsilon^2$
- Yoshida, Yamamoto, Ito (2009): $O(d^4/\epsilon^2)$
- This work: $\tilde{O}(d/\epsilon^3)$
Query Complexity

Positive results for $(2, \epsilon n)$-estimation:

- Parnas, Ron (2007): $d^{O(\log(d)/\epsilon^3)}$
- Marko, Ron (2007): $d^{O(\log(d/\epsilon))}$
- Nguyen, O. (2008): $2^{O(d)}/\epsilon^2$
- Yoshida, Yamamoto, Ito (2009): $O(d^4/\epsilon^2)$
- This work: $\tilde{O}(d/\epsilon^3)$

A negative result due to Parnas and Ron (2007):

$(C, \epsilon n)$-estimation requires $\Omega(d)$ queries for any constant C
Quick Review
General Approach

Idea of Parnas and Ron (2007):

- If we had query access to a small vertex cover, we could approximate its size up to $\pm \epsilon n$ by sampling $O(1/\epsilon^2)$ vertices.
General Approach

Idea of Parnas and Ron (2007):

- If we had query access to a small vertex cover, we could approximate its size up to $\pm \epsilon n$ by sampling $O(1/\epsilon^2)$ vertices.
- Construct oracle that provides query access to a small vertex cover.
General Approach

Idea of Parnas and Ron (2007):

- If we had query access to a small vertex cover, we could approximate its size up to $\pm \epsilon n$ by sampling $O(1/\epsilon^2)$ vertices.
- Construct oracle that provides query access to a small vertex cover.
- Parnas and Ron’s construction: simulation of local distributed algorithms of Kuhn, Moscibroda, and Wattenhofer (2006).
Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:

- Greedily find a maximal matching M
- Output the set of nodes matched in M
Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:

- Greedily find a maximal matching M
- Output the set of nodes matched in M
Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:

- Greedily find a maximal matching M
- Output the set of nodes matched in M
Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:
- Greedily find a maximal matching M
- Output the set of nodes matched in M

The idea from Nguyen and O. (2008):
- Construction of M: consider edges in random order
Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:

- Greedily find a maximal matching M
- Output the set of nodes matched in M

The idea from Nguyen and O. (2008):

- Construction of M: consider edges in random order
- (Try to) locally check if an edge belongs to M
Simulation of the Greedy Algorithm

Random order \equiv \text{random numbers } r(e) \text{ assigned to each edge}

Algorithm: To check if \(e \in M \)
- recursively check if adjacent edges \(g \) s.t. \(r(g) < r(e) \) are in \(M \)
- \(e \in M \iff \text{none in } M \)
Simulation of the Greedy Algorithm

Random order ≡ random numbers $r(e)$ assigned to each edge

Algorithm: To check if $e \in M$

- recursively check if adjacent edges g s.t. $r(g) < r(e)$ are in M

- $e \in M \iff$ none in M
Simulation of the Greedy Algorithm

Random order \equiv random numbers $r(e)$ assigned to each edge

Algorithm: To check if $e \in M$

- recursively check if adjacent edges g s.t. $r(g) < r(e)$ are in M
- $e \in M \iff$ none in M
Simulation of the Greedy Algorithm

Random order \equiv random numbers $r(e)$ assigned to each edge

Algorithm: To check if $e \in M$
- recursively check if adjacent edges g s.t. $r(g) < r(e)$ are in M
- $e \in M \iff$ none in M
Simulation of the Greedy Algorithm

Random order ≡ random numbers $r(e)$ assigned to each edge

Algorithm: To check if $e \in M$
- recursively check if adjacent edges g
 s.t. $r(g) < r(e)$ are in M
- $e \in M \iff$ none in M
Simulation of the Greedy Algorithm

Random order \equiv random numbers \(r(e) \) assigned to each edge

Algorithm: To check if \(e \in M \)
- recursively check if adjacent edges \(g \)
 s.t. \(r(g) < r(e) \) are in \(M \)
- \(e \in M \) \(\iff \) none in \(M \)
Simulation of the Greedy Algorithm

Random order \equiv \text{random numbers } r(e) \text{ assigned to each edge}

Algorithm: To check if \(e \in M \)
- recursively check if adjacent edges \(g \)
 such that \(r(g) < r(e) \) are in \(M \)
- \(e \in M \iff \text{none in } M \)
Simulation of the Greedy Algorithm

Random order \equiv random numbers $r(e)$ assigned to each edge

Algorithm: To check if $e \in M$
 - recursively check if adjacent edges g
 s.t. $r(g) < r(e)$ are in M
 - $e \in M \iff$ none in M
Simulation of the Greedy Algorithm

Random order \equiv random numbers $r(e)$ assigned to each edge

Algorithm: To check if $e \in M$

- recursively check if adjacent edges g s.t. $r(g) < r(e)$ are in M
- $e \in M \iff$ none in M

Krzysztof Onak – *Approximating the Vertex Cover Size Near-Optimally* – p. 8/24
Simulation of the Greedy Algorithm

Random order \equiv \text{random numbers } r(e) \text{ assigned to each edge}

Algorithm: To check if \(e \in M \)
- recursively check if adjacent edges \(g \) s.t. \(r(g) < r(e) \) are in \(M \)
- \(e \in M \) \(\iff \) none in \(M \)
Simulation of the Greedy Algorithm

Random order \equiv \text{random numbers } r(e) \text{ assigned to each edge}

Algorithm: To check if \(e \in M \)
- recursively check if adjacent edges \(g \) s.t. \(r(g) < r(e) \) are in \(M \)
- \(e \in M \iff \text{none in } M \)
Simulation of the Greedy Algorithm

Random order \equiv random numbers $r(e)$ assigned to each edge

Algorithm: To check if $e \in M$

- recursively check if adjacent edges g s.t. $r(g) < r(e)$ are in M
- $e \in M \iff$ none in M

Krzysztof Onak – *Approximating the Vertex Cover Size Near-Optimally* – p. 8/24
Simulation of the Greedy Algorithm

Random order \equiv random numbers $r(e)$ assigned to each edge

Algorithm: To check if $e \in M$
- recursively check if adjacent edges g s.t. $r(g) < r(e)$ are in M
- $e \in M \iff$ none in M
Complexity of the Simulation

For every edge, the expected number of recursive calls is $2^{O(d)}$.
Complexity of the Simulation

For every edge, the expected number of recursive calls is $2^O(d)$

We also proposed the following heuristic:

- For every edge e consider adjacent edges g in increasing order of $r(g)$
- Once an adjacent edge in M detected, no need for further recursive calls: $e \notin M$.
Complexity of the Simulation

- **Nguyen, O. (2008):**

 For every edge, the expected number of recursive calls is $2^{O(d)}$

- **We also proposed the following heuristic:**

 For every edge e consider adjacent edges g in increasing order of $r(g)$

 Once an adjacent edge in M detected, no need for further recursive calls: $e \notin M$.

- **Yoshida, Yamamoto, Ito (2009):**

 The expected number of recursive calls is $O(d)$ for a random edge
Our New Algorithm (Part 1)
Overview

What happens to three factors of d?
Overview

What happens to three factors of d?

1. Slight improvement in the analysis of Yoshida et al.
Overview

What happens to three factors of d?

1. Slight improvement in the analysis of Yoshida et al.

2. Better bound on the number of recursive calls in a specific version of the exploration method
Overview

What happens to three factors of d?

1. Slight improvement in the analysis of Yoshida et al.

2. Better bound on the number of recursive calls in a specific version of the exploration method

3. Technique for limiting the exploration of neighbor sets
Overview

What happens to three factors of d?

1. Slight improvement in the analysis of Yoshida et al.
2. Better bound on the number of recursive calls in a specific version of the exploration method
3. Technique for limiting the exploration of neighbor sets

In this talk:
- Item 2 in Part 1
- Item 3 in Part 2
Our Exploration Method

How it works
(determining whether a vertex v is in the vertex cover):
Our Exploration Method

How it works (determining whether a vertex v is in the vertex cover):

- Consider edges incident to v in ascending order of their random numbers
Our Exploration Method

How it works (determining whether a vertex \(v \) is in the vertex cover):

- Consider edges incident to \(v \) in ascending order of their random numbers
- To determine whether an edge is in the maximal matching, use the previously described heuristic
Our Exploration Method

How it works
(determining whether a vertex v is in the vertex cover):

- Consider edges incident to v in ascending order of their random numbers
- To determine whether an edge is in the maximal matching, use the previously described heuristic

Our bound:

The expected number of visited edges for a random vertex is

$$O \left(\frac{\text{average}_\text{degree} \cdot \text{maximum}_\text{degree}}{\text{minimum}_\text{degree}} \right)$$
Analysis

We reuse ideas from the bound of Yoshida et al.
Analysis

- We reuse ideas from the bound of Yoshida et al.
- No clear reduction of our bound to their bound
Analysis

- We reuse ideas from the bound of Yoshida et al.
- No clear reduction of our bound to their bound
- Let $X_k(e)$ = number of oracle calls on e over all rankings of edges when starting from an endpoint of the k-th edge in the ranking.
Analysis

- We reuse ideas from the bound of Yoshida et al.
- No clear reduction of our bound to their bound
- Let $X_k(e) = \#\text{oracle calls on } e \text{ over all rankings of edges when starting from an endpoint of the } k\text{-th edge in the ranking}$
- Using the idea of slight mutations of rankings, we show

$$X_{k+1}(e) - X_k(e) \leq (m - 2)! \cdot d$$
Analysis

- We reuse ideas from the bound of Yoshida et al.
- No clear reduction of our bound to their bound
- Let $X_k(e) = \#\text{oracle calls on } e \text{ over all rankings of edges when starting from an endpoint of the } k\text{-th edge in the ranking}$
- Using the idea of slight mutations of rankings, we show

$$X_{k+1}(e) - X_k(e) \leq (m - 2)! \cdot d$$

- This suffices to inductively obtain a sufficiently good upper-bound on $X_k(e)$
 Quadratic Algorithm

- Pick $O(1/\epsilon^2)$ random vertices and estimate the fraction in the matching
Quadratic Algorithm

- Pick $O(1/\epsilon^2)$ random vertices and estimate the fraction in the matching.

- If the graph is near-regular,
 \[
 \frac{\text{maximum_degree}}{\text{minimum_degree}} = \text{poly}(1/\epsilon),
 \]
 the number of recursive calls is $O(d/\text{poly}(\epsilon))$.

Krzysztof Onak – *Approximating the Vertex Cover Size Near-Optimally* – p. 14/24
Quadratic Algorithm

- Pick $O(1/\epsilon^2)$ random vertices and estimate the fraction in the matching.
- If the graph is near-regular, \[\frac{\text{maximum_degree}}{\text{minimum_degree}} = \text{poly}(1/\epsilon), \]
 the number of recursive calls is $O(d/\text{poly}(\epsilon))$
- Non-regular graphs: can “regularize” on the fly
Quadratic Algorithm

- Pick $O(1/\epsilon^2)$ random vertices and estimate the fraction in the matching

- If the graph is near-regular,

 $$\frac{\text{maximum_degree}}{\text{minimum_degree}} = \text{poly}(1/\epsilon),$$

 the number of recursive calls is $O(d/\text{poly}(\epsilon))$

- Non-regular graphs: can “regularize” on the fly

- For each recursive call, the query complexity is bounded by $O(d)$
Quadratic Algorithm

- Pick $O(1/\epsilon^2)$ random vertices and estimate the fraction in the matching
- If the graph is near-regular,
 \[\frac{\text{maximum_degree}}{\text{minimum_degree}} = \text{poly}(1/\epsilon), \]
 the number of recursive calls is $O(d/\text{poly}(\epsilon))$
- Non-regular graphs: can “regularize” on the fly
- For each recursive call, the query complexity is bounded by $O(d)$
- Total: $O(d^2/\text{poly}(\epsilon))$ queries
Our New Algorithm (Part 2)
Limiting the Exploration of Neighbor Sets

We always look at all adjacent $O(d^2 / \text{poly}(\epsilon))$ edges
Limiting the Exploration of Neighbor Sets

- We always look at all adjacent $O(d^2 / \text{poly}(\epsilon))$ edges

- **Hope:** To make recursive calls, only $O(d / \text{poly}(\epsilon))$ vertex labels are necessary
Limiting the Exploration of Neighbor Sets

- We always look at all adjacent $O(d^2 / \text{poly}(\epsilon))$ edges

- **Hope:** To make recursive calls, only $O(d / \text{poly}(\epsilon))$ vertex labels are necessary

- **Simplest attempt:**
 - For every vertex, assign random numbers to incident edges without looking at them
 - Query only the relevant edges with the lowest numbers
Limiting the Exploration of Neighbor Sets

- We always look at all adjacent $O(d^2 / \text{poly}(\epsilon))$ edges
- **Hope:** To make recursive calls, only $O(d / \text{poly}(\epsilon))$ vertex labels are necessary
- **Simplest attempt:**
 - For every vertex, assign random numbers to incident edges without looking at them
 - Query only the relevant edges with the lowest numbers
- **Problem:**
 - An edge can have different numbers assigned at the endpoints
 - This could result in an inconsistent execution of the algorithm
 - Hard to predict results
Our Approach

We introduce data structures $D[v]$ for each vertex v:

- $D[v]$ provides access to the list of edges adjacent to v, sorted according to their random numbers.
Our Approach

We introduce data structures $D[v]$ for each vertex v:

- $D[v]$ provides access to the list of edges adjacent to v, sorted according to their random numbers.

- For each edge (u, w), $D[u]$ and $D[w]$ may communicate to fix the random number assigned to (u, w).
Our Approach

We introduce data structures $D[v]$ for each vertex v:

- $D[v]$ provides access to the list of edges adjacent to v, sorted according to their random numbers.
- For each edge (u, w), $D[u]$ and $D[w]$ may communicate to fix the random number assigned to (u, w).

How we implement this:

- Each $D[v]$ tries to discover only the necessary head of the list.
- We partition the range $[0, 1]$ into a logarithmic number of “layers”.
- The algorithm discovers edges in the next layer, only if need be.
Selecting a Random Number

- Partition \((0, 1]\) into \(\Theta(\log n)\) ranges:
 - \((0, 2^{-\log n}]\)
 - \((2^{-i}, 2^{-i+1}]\) for \(1 \leq i \leq \log n\)

\[
\begin{array}{cccccc}
\mathcal{I}_0 & \mathcal{I}_1 & \mathcal{I}_2 & \mathcal{I}_3 & \mathcal{I}_4 \\
0 & 1/16 & 1/8 & 1/4 & 1/2 & 1
\end{array}
\]
Selecting a Random Number

Partition \((0, 1]\) into \(\Theta(\log n)\) ranges:

- \((0, 2^{-\log n}]\)
- \((2^{-i}, 2^{-i+1}]\) for \(1 \leq i \leq \log n\)

\[
\begin{array}{cccccc}
\mathcal{I}_0 & \mathcal{I}_1 & \mathcal{I}_2 & \mathcal{I}_3 & \mathcal{I}_4 \\
0 & 1/16 & 1/8 & 1/4 & 1/2 & 1
\end{array}
\]

To assign a random number, consider ranges from left to right:

\[
\text{for } i = 0 \text{ to } k: \\
\text{with probability } \frac{|\mathcal{I}_i|}{\sum_{j=i}^{k} |\mathcal{I}_j|} \\
\text{return random number in } \mathcal{I}_i
\]
Reducing the Query Complexity

One vertex’s point of view:

- We use this process to assign random numbers
Reducing the Query Complexity

One vertex’s point of view:

- We use this process to assign random numbers
- Consecutive iterations of the loop need not be simulated all at once
Reducing the Query Complexity

One vertex’s point of view:

- We use this process to assign random numbers
- Consecutive iterations of the loop need not be simulated all at once
- Each $D[v]$ simulates this process for all edges incident to v
Reducing the Query Complexity

One vertex’s point of view:

- We use this process to assign random numbers

- Consecutive iterations of the loop need not be simulated all at once

- Each $D[v]$ simulates this process for all edges incident to v

- Each iteration of the loop simulated simultaneously for all incident edges
Reducing the Query Complexity

Extending to the entire graph:

The same iteration of the loop may be executed by both u and v for an edge (u, v)
Reducing the Query Complexity

Extending to the entire graph:

- The same iteration of the loop may be executed by both \(u \) and \(v \) for an edge \((u, v) \)

- We make sure that the decision made in the first execution is in effect by making \(D[u] \) and \(D[v] \) talk to each other
Reducing the Query Complexity

How do we reduce the number of queries?

- For an edge \((u, v)\) as long as \(D[u]\) and \(D[v]\) don’t assign a specific number:
 - Their decisions are consistent
 - No need to communicate
 - No need to know each other
 - No need to make a query
Reducing the Query Complexity

How do we reduce the number of queries?

- For an edge \((u, v)\) as long as \(D[u]\) and \(D[v]\) don’t assign a specific number:
 - Their decisions are consistent
 - No need to communicate
 - No need to know each other
 - No need to make a query

- The number of queries approximately proportional to the number of recursive calls from an edge.
Reducing the Query Complexity

How do we reduce the number of queries?

- For an edge \((u, v)\) as long as \(D[u]\) and \(D[v]\) don’t assign a specific number:
 - Their decisions are consistent
 - No need to communicate
 - No need to know each other
 - No need to make a query

- The number of queries approximately proportional to the number of recursive calls from an edge.

Note: To reduce the running time, quickly select the edges chosen for the currently selected range.
Open Questions
Open Questions

- **Vertex Cover**: almost done...
Open Questions

- **Vertex Cover**: almost done...

- Next problem: approximating the size of the maximum matchings up to $\pm \epsilon n$
Open Questions

- **Vertex Cover:** almost done...

- Next problem: approximating the size of the maximum matchings up to $\pm \epsilon n$

- Best algorithm runs in $d^{O(1/\epsilon^2)}$ time. Is there a $\text{poly}(d/\epsilon)$-time algorithm?

 (see [Nguyen, O. 2008] and [Yoshida, Yamamoto, Ito 2009])
Open Questions

- **Vertex Cover:** almost done...

- Next problem: approximating the size of the **maximum matchings** up to $\pm \epsilon n$

 - Best algorithm runs in $d^{O(1/\epsilon^2)}$ time. Is there a $\text{poly}(d/\epsilon)$-time algorithm? (see [Nguyen, O. 2008] and [Yoshida, Yamamoto, Ito 2009])

 - Perhaps not. Is there a $\text{poly}(1/\epsilon)$-time algorithm for planar graphs? (see [Hassidim, Kelner, Nguyen, O. 2009])
Thank You