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The Problem

#® \ertex Cover: set S of vertices such that each edge has
endpoint in S
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The Problem

#® \Vertex Cover: set S of vertices such that each edge has
endpoint in S

o Our Goal:
(2, en)-estimate for the minimum vertex cover size

#® X isan («a,3)-estimate for Y if

Y <X<aY +8
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The Modé

Graph G of degree d:

Query access to adjacency list of each node
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Query Complexity

Positive results for (2, en)-estimation:

® Parnas, Ron (2007): ¢©Uog(d)/<)

» Marko, Ron (2007): d@es(d/e))

» Nguyen, O. (2008): 209 /¢

® Yoshida, Yamamoto, Ito (2009): O(d*/e?)
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Query Complexity

Positive results for (2, en)-estimation:

® Parnas, Ron (2007): ¢OUos(@)/¢’)

» Marko, Ron (2007): d©Uoe(d/e)

» Nguyen, O. (2008): 20(d) /¢2

® Yoshida, Yamamoto, Ito (2009): O(d*/e?)
® This work: O(d/€3)

A negative result due to Parnas and Ron (2007):
® (C| en)-estimation requires (d) queries for any constant C
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Quick Review
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General Approach

ldea of Parnas and Ron (2007):

# |If we had query access to a small vertex cover, we
could approximate its size up to +en by sampling

O(1/¢€%) vertices

w *— | Algorithm
.
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O(1/¢€%) vertices

# Construct oracle that provides guery access to a small
vertex cover
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General Approach

ldea of Parnas and Ron (2007):

# |If we had query access to a small vertex cover, we
could approximate its size up to +en by sampling

O(1/¢€%) vertices

# Construct oracle that provides guery access to a small
vertex cover

#® Parnas and Ron’s construction:
simulation of local distributed algorithms of Kuhn,

Moscibroda, and Wattenhofer (2006)

w Oracle Algorithm
— —l
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Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:
o Greedily find a maximal matching M
# Output the set of nodes matched in M
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Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:
o Greedily find a maximal matching M
# Output the set of nodes matched in M

The idea from Nguyen and O. (2008):
# Construction of M: consider edges in random order
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Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:
o Greedily find a maximal matching M
# Output the set of nodes matched in M

The idea from Nguyen and O. (2008):

# Construction of M: consider edges in random order
# (Try to) locally check if an edge belongs to M
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Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

Algorithm: To check if e € M

# recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M
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Complexity of the Simulation

# Nguyen, O. (2008):.

For every edge, the expected number of recursive
calls is 20(2)
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Complexity of the Simulation

# Nguyen, O. (2008):.
For every edge, the expected number of recursive
calls is 20(2)

#® We also proposed the following heuristic:

» For every edge e consider adjacent edges ¢ In
Increasing order of r(g)

» Once an adjacent edge in M detected, no need for
further recursive calls: e ¢ M.
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Complexity of the Simulation

# Nguyen, O. (2008):.
For every edge, the expected number of recursive
calls is 20(2)

#® We also proposed the following heuristic:

» For every edge e consider adjacent edges ¢ In
Increasing order of r(g)

» Once an adjacent edge in M detected, no need for
further recursive calls: e ¢ M.

# Yoshida, Yamamoto, Ito (2009):

The expected number of recursive calls is O(d) for
a random edge
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Our New Algorithm
(Part 1)
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Overview

What happens to three factors of d?
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2. Better bound on the number of recursive calls In a
specific version of the exploration method
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Overview

What happens to three factors of d?
1. Slight improvement in the analysis of Yoshida et al.

2. Better bound on the number of recursive calls In a
specific version of the exploration method

3. Technique for limiting the exploration of neighbor sets
In this talk:

® ltem 2 1n Part 1
® Iltem 3 In Part 2
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Our Exploration Method

How it works
(determining whether a vertex v is in the vertex cover):
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Our Exploration Method

How it works
(determining whether a vertex v is in the vertex cover):

# Consider edges incident to v in ascending order of their
random numbers

# To determine whether an edge is in the maximal
matching, use the previously described heuristic

Our bound:

The expected number of visited edges for a random
vertex is

O (average_degreeo maxmum_degree)

minimum_degree
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Analysis

® We reuse ideas from the bound of Yoshida et al.
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Analysis
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No clear reduction of our bound to their bound

Let X (e) = #oracle calls on e over all rankings of edges

when starting from an endpoint of the k-th edge in the
ranking
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Let X (e) = #oracle calls on e over all rankings of edges

when starting from an endpoint of the k-th edge in the
ranking

Using the idea of slight mutations of rankings, we show

Xk_|_1(€) — Xk(e) < (m — 2)' - d
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Analysis

We reuse ideas from the bound of Yoshida et al.
No clear reduction of our bound to their bound

Let X (e) = #oracle calls on e over all rankings of edges

when starting from an endpoint of the k-th edge in the
ranking

Using the idea of slight mutations of rankings, we show

Xk_|_1(€) — Xk(e) < (m — 2)' - d

This suffices to inductively obtain a sufficiently good
upper-bound on X (e)
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Quadratic Algorithm

» Pick O(1/¢?) random vertices and estimate the fraction
In the matching
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Quadratic Algorithm

» Pick O(1/¢?) random vertices and estimate the fraction
In the matching

o If the graph is near-regular,

maximum_degree

— = poly(1
minimum_degree poly(1/e),

the number of recursive calls is O(d/ poly(e))
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Pick O(1/¢%) random vertices and estimate the fraction
In the matching

If the graph is near-regular,
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= poly(1/e),

the number of recursive calls is O(d/ poly(e))

Non-regular graphs: can “regularize” on the fly
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For each recursive call, the query complexity is
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Quadratic Algorithm

» Pick O(1/¢?) random vertices and estimate the fraction
In the matching

o If the graph is near-regular,

maximum_degree
minimum_degree

= poly(1/e),

the number of recursive calls is O(d/ poly(e))

# Non-regular graphs: can “regularize” on the fly

# For each recursive call, the query complexity is
bounded by O(d)

» Total: O(d?/poly(e)) queries

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 14/24



Our New Algorithm
(Part 2)
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L imiting the Exploration of Neighbor Sets

® We always look at all adjacent O(d?/ poly(¢)) edges
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L imiting the Exploration of Neighbor Sets
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# Hope: To make recursive calls, only O(d/ poly(¢)) vertex
labels are necessary
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L imiting the Exploration of Neighbor Sets

® We always look at all adjacent O(d?/ poly(¢)) edges

# Hope: To make recursive calls, only O(d/ poly(¢)) vertex
labels are necessary
# Simplest attempt:

s For every vertex, assign random numbers to incident
edges without looking at them

» Query only the relevant edges with the lowest
numbers
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L imiting the Exploration of Neighbor Sets

® We always look at all adjacent O(d?/ poly(¢)) edges

# Hope: To make recursive calls, only O(d/ poly(¢)) vertex
labels are necessary

# Simplest attempt:

s For every vertex, assign random numbers to incident
edges without looking at them

» Query only the relevant edges with the lowest
numbers

® Problem:

» An edge can have different numbers assigned
at the endpoints

o This could result in an inconsistent execution
of the algorithm

s Hard to predict results
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Our Approach

We introduce data structures D|v| for each vertex v:

® D|v] provides access to the list of edges adjacent to v,
sorted according to their random numbers
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Our Approach

We introduce data structures D|v| for each vertex v:

® D|v] provides access to the list of edges adjacent to v,
sorted according to their random numbers

# For each edge (u,w), D|u] ad D|w| may communicate to
fix the random number assigned to (u, w).
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Our Approach

We introduce data structures D|v| for each vertex v:

® D|v] provides access to the list of edges adjacent to v,
sorted according to their random numbers

# For each edge (u,w), D|u] ad D|w| may communicate to
fix the random number assigned to (u, w).

How we implement this:
# Each Djv| tries to discover only the necessary head of the list

# We partition the range |0, 1] into a logarithmic number of “layers”
# The algorithm discovers edges in the next layer, only if need be
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Selecting a Random Number

# Partition (0, 1] into ©(logn) ranges:
ry (O,Q_IOgn]
o (27,27 for1 <i <logn

I() Il IQ Ig I4
|

: | |
0 1/16 1/8 1/4 1/2
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Selecting a Random Number

# Partition (0, 1] into ©(logn) ranges:
ry (O,Q_IOgn]
o (27,27 for1 <i <logn

I() Il IQ Ig I4
|

: | | |
0 1/16 1/8 1/4 1/2 1

# To assign a random number, consider ranges from left
to right:

for 2 = 0 to k:
| 7|

with probability S 7]

return random number In Z;
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Reducing the Query Complexity

One vertex’s point of view:

# We use this process to assign random numbers
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Reducing the Query Complexity

One vertex’s point of view:
# We use this process to assign random numbers

# Consecutive iterations of the loop need not be
simulated all at once
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Reducing the Query Complexity
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# We use this process to assign random numbers

# Consecutive iterations of the loop need not be
simulated all at once

# Each D|v] simulates this process for all edges
Incident to v
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Reducing the Query Complexity

One vertex’s point of view:
# We use this process to assign random numbers

# Consecutive iterations of the loop need not be
simulated all at once

# Each D|v] simulates this process for all edges
Incident to v

# Each iteration of the loop simulated simultaneously
for all incident edges
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Reducing the Query Complexity

Extending to the entire graph:

# The same iteration of the loop may be executed by both
u and v for an edge (u, v)
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Reducing the Query Complexity

Extending to the entire graph:

# The same iteration of the loop may be executed by both
u and v for an edge (u, v)

® We make sure that the decision made in the first
execution is in effect by making D[u] and D|v]| talk to
each other
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Reducing the Query Complexity

How do we reduce the number of queries?
# For an edge (u,v) as long as D|u] and D[v| don’t assign
a specific number:
» Their decisions are consistent
» NoO need to communicate
» No need to know each other
» No need to make a query
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# For an edge (u,v) as long as D|u] and D[v| don’t assign
a specific number:
» Their decisions are consistent
» NoO need to communicate
» No need to know each other
» No need to make a query

# The number of queries approximately proportional to
the number of recursive calls from an edge.
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Reducing the Query Complexity

How do we reduce the number of queries?
# For an edge (u,v) as long as D|u] and D[v| don’t assign
a specific number:
» Their decisions are consistent
» NoO need to communicate
» No need to know each other
» No need to make a query

# The number of queries approximately proportional to
the number of recursive calls from an edge.

Note: To reduce the running time, quickly select the edges
chosen for the currently selected range
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Open Questions
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Open Questions

® \Vertex Cover: almost done...
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Open Questions

® \Vertex Cover: almost done...

# Next problem: approximating the size of the maximum
matchings up to +en

s Best algorithm runs in ¢°1/<") time.
Is there a poly(d/e)-time algorithm?

(see [Nguyen, O. 2008] and [Yoshida, Yamamoto, Ito 2009])
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Open Questions

® \Vertex Cover: almost done...

#® Next problem: approximating the size of the maximum
matchings up to +en

s Best algorithm runs in ¢©/<) time.
Is there a poly(d/e)-time algorithm?

(see [Nguyen, O. 2008] and [Yoshida, Yamamoto, Ito 2009])

s Perhaps not.
Is there a poly(1/¢)-time algorithm for planar graphs?

(see [Hassidim, Kelner, Nguyen, O. 2009])
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Thank You
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