A Near-Optimal Sublinear-Time
Algorithm for Approximating the
Minimum Vertex Cover Size

Krzysztof Onak
CMU

Joint work with Dana Ron, Michal Rosen,
and Ronitt Rubinfeld

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 1/24

The Problem

#® \ertex Cover: set S of vertices such that each edge has
endpoint in S

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 2/24

The Problem

#® \Vertex Cover: set S of vertices such that each edge has
endpoint in S

o Our Goal:
(2, en)-estimate for the minimum vertex cover size

#® X isan («a,3)-estimate for Y if

Y <X<aY +8

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 2/24

The Modé

Graph G of degree d:

Query access to adjacency list of each node

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 3/24

Query Complexity

Positive results for (2, en)-estimation:

® Parnas, Ron (2007): ¢©Uog(d)/<)

» Marko, Ron (2007): d@es(d/e))

» Nguyen, O. (2008): 209 /¢

® Yoshida, Yamamoto, Ito (2009): O(d*/e?)

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 4/24

Query Complexity

Positive results for (2, en)-estimation:

® Parnas, Ron (2007): ¢©Uog(d)/<)

» Marko, Ron (2007): d@es(d/e))

» Nguyen, O. (2008): 209 /¢

® Yoshida, Yamamoto, Ito (2009): O(d*/e?)
® This work: O(d/€3)

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 4/24

Query Complexity

Positive results for (2, en)-estimation:

® Parnas, Ron (2007): ¢OUos(@)/¢’)

» Marko, Ron (2007): d©Uoe(d/e)

» Nguyen, O. (2008): 20(d) /¢2

® Yoshida, Yamamoto, Ito (2009): O(d*/e?)
® This work: O(d/€3)

A negative result due to Parnas and Ron (2007):
® (C| en)-estimation requires (d) queries for any constant C

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 4/24

Quick Review

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 5/24

General Approach

ldea of Parnas and Ron (2007):

|If we had query access to a small vertex cover, we
could approximate its size up to +en by sampling

O(1/¢€%) vertices

w *— | Algorithm
.

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 6/24

General Approach

ldea of Parnas and Ron (2007):

|If we had query access to a small vertex cover, we
could approximate its size up to +en by sampling

O(1/¢€%) vertices

Construct oracle that provides guery access to a small
vertex cover

w Oracle Algorithm
— —l

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 6/24

General Approach

ldea of Parnas and Ron (2007):

|If we had query access to a small vertex cover, we
could approximate its size up to +en by sampling

O(1/¢€%) vertices

Construct oracle that provides guery access to a small
vertex cover

#® Parnas and Ron’s construction:
simulation of local distributed algorithms of Kuhn,

Moscibroda, and Wattenhofer (2006)

w Oracle Algorithm
— —l

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 6/24

Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:
o Greedily find a maximal matching M
Output the set of nodes matched in M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 7/24

Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:
Greedily find a maximal matching M
Output the set of nodes matched in M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 7/24

Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:
#® Greedily find a maximal matching M
#» Output the set of nodes matched in M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 7/24

Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:
o Greedily find a maximal matching M
Output the set of nodes matched in M

The idea from Nguyen and O. (2008):
Construction of M: consider edges in random order

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 7/24

Simulation of the Greedy Algorithm

Classical 2-approximation algorithm [Gavril, Yannakakis]:
o Greedily find a maximal matching M
Output the set of nodes matched in M

The idea from Nguyen and O. (2008):

Construction of M: consider edges in random order
(Try to) locally check if an edge belongs to M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 7/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

37

23
45

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

37

23
45

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

37

45

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

37

45

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

37

45

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

37

45

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

37

23
45

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

37

23
45

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Simulation of the Greedy Algorithm

Random order = random numbers r(e) assigned to each edge

Algorithm: To check if e € M

recursively check if adjacent edges ¢
Ss.t.r(g) <r(e) arein M

® ccM < nonein M

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 8/24

Complexity of the Simulation

Nguyen, O. (2008):.

For every edge, the expected number of recursive
calls is 20(2)

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 9/24

Complexity of the Simulation

Nguyen, O. (2008):.
For every edge, the expected number of recursive
calls is 20(2)

#® We also proposed the following heuristic:

» For every edge e consider adjacent edges ¢ In
Increasing order of r(g)

» Once an adjacent edge in M detected, no need for
further recursive calls: e ¢ M.

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 9/24

Complexity of the Simulation

Nguyen, O. (2008):.
For every edge, the expected number of recursive
calls is 20(2)

#® We also proposed the following heuristic:

» For every edge e consider adjacent edges ¢ In
Increasing order of r(g)

» Once an adjacent edge in M detected, no need for
further recursive calls: e ¢ M.

Yoshida, Yamamoto, Ito (2009):

The expected number of recursive calls is O(d) for
a random edge

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 9/24

Our New Algorithm
(Part 1)

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 10/24

Overview

What happens to three factors of d?

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 11/24

Overview

What happens to three factors of d?

1. Slight improvement in the analysis of Yoshida et al.

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 11/24

Overview

What happens to three factors of d?
1. Slight improvement in the analysis of Yoshida et al.

2. Better bound on the number of recursive calls In a
specific version of the exploration method

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 11/24

Overview

What happens to three factors of d?
1. Slight improvement in the analysis of Yoshida et al.

2. Better bound on the number of recursive calls In a
specific version of the exploration method

3. Technique for limiting the exploration of neighbor sets

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 11/24

Overview

What happens to three factors of d?
1. Slight improvement in the analysis of Yoshida et al.

2. Better bound on the number of recursive calls In a
specific version of the exploration method

3. Technique for limiting the exploration of neighbor sets
In this talk:

® ltem 2 1n Part 1
® Iltem 3 In Part 2

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 11/24

Our Exploration Method

How it works
(determining whether a vertex v is in the vertex cover):

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 12/24

Our Exploration Method

How it works
(determining whether a vertex v Is In the vertex cover):

Consider edges incident to v in ascending order of their
random numbers

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 12/24

Our Exploration Method

How it works
(determining whether a vertex v Is In the vertex cover):

Consider edges incident to v in ascending order of their
random numbers

To determine whether an edge is in the maximal
matching, use the previously described heuristic

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 12/24

Our Exploration Method

How it works
(determining whether a vertex v is in the vertex cover):

Consider edges incident to v in ascending order of their
random numbers

To determine whether an edge is in the maximal
matching, use the previously described heuristic

Our bound:

The expected number of visited edges for a random
vertex is

O (average_degreeo maxmum_degree)

minimum_degree

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 12/24

Analysis

® We reuse ideas from the bound of Yoshida et al.

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 13/24

Analysis

® We reuse ideas from the bound of Yoshida et al.

® No clear reduction of our bound to their bound

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 13/24

Analysis

We reuse ideas from the bound of Yoshida et al.
No clear reduction of our bound to their bound

Let X (e) = #oracle calls on e over all rankings of edges

when starting from an endpoint of the k-th edge in the
ranking

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 13/24

Analysis

We reuse ideas from the bound of Yoshida et al.
No clear reduction of our bound to their bound

Let X (e) = #oracle calls on e over all rankings of edges

when starting from an endpoint of the k-th edge in the
ranking

Using the idea of slight mutations of rankings, we show

Xk_|_1(€) — Xk(e) < (m — 2)' - d

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 13/24

Analysis

We reuse ideas from the bound of Yoshida et al.
No clear reduction of our bound to their bound

Let X (e) = #oracle calls on e over all rankings of edges

when starting from an endpoint of the k-th edge in the
ranking

Using the idea of slight mutations of rankings, we show

Xk_|_1(€) — Xk(e) < (m — 2)' - d

This suffices to inductively obtain a sufficiently good
upper-bound on X (e)

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 13/24

Quadratic Algorithm

» Pick O(1/¢?) random vertices and estimate the fraction
In the matching

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 14/24

Quadratic Algorithm

» Pick O(1/¢?) random vertices and estimate the fraction
In the matching

o If the graph is near-regular,

maximum_degree

— = poly(1
minimum_degree poly(1/e),

the number of recursive calls is O(d/ poly(e))

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 14/24

Quadratic Algorithm

Pick O(1/¢%) random vertices and estimate the fraction
In the matching

If the graph is near-regular,

maximum_degree
minimum_degree

= poly(1/e),

the number of recursive calls is O(d/ poly(e))

Non-regular graphs: can “regularize” on the fly

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 14/24

Quadratic Algorithm

Pick O(1/¢%) random vertices and estimate the fraction
In the matching

If the graph is near-regular,

maximum_degree
minimum_degree

= poly(1/e),

the number of recursive calls is O(d/ poly(e))
Non-regular graphs: can “regularize” on the fly

For each recursive call, the query complexity is
bounded by O(d)

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 14/24

Quadratic Algorithm

» Pick O(1/¢?) random vertices and estimate the fraction
In the matching

o If the graph is near-regular,

maximum_degree
minimum_degree

= poly(1/e),

the number of recursive calls is O(d/ poly(e))

Non-regular graphs: can “regularize” on the fly

For each recursive call, the query complexity is
bounded by O(d)

» Total: O(d?/poly(e)) queries

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 14/24

Our New Algorithm
(Part 2)

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 15/24

L imiting the Exploration of Neighbor Sets

® We always look at all adjacent O(d?/ poly(¢)) edges

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 16/24

L imiting the Exploration of Neighbor Sets

® We always look at all adjacent O(d?/ poly(¢)) edges

Hope: To make recursive calls, only O(d/ poly(¢)) vertex
labels are necessary

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 16/24

L imiting the Exploration of Neighbor Sets

® We always look at all adjacent O(d?/ poly(¢)) edges

Hope: To make recursive calls, only O(d/ poly(¢)) vertex
labels are necessary
Simplest attempt:

s For every vertex, assign random numbers to incident
edges without looking at them

» Query only the relevant edges with the lowest
numbers

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 16/24

L imiting the Exploration of Neighbor Sets

® We always look at all adjacent O(d?/ poly(¢)) edges

Hope: To make recursive calls, only O(d/ poly(¢)) vertex
labels are necessary

Simplest attempt:

s For every vertex, assign random numbers to incident
edges without looking at them

» Query only the relevant edges with the lowest
numbers

® Problem:

» An edge can have different numbers assigned
at the endpoints

o This could result in an inconsistent execution
of the algorithm

s Hard to predict results

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 16/24

Our Approach

We introduce data structures D|v| for each vertex v:

® D|v] provides access to the list of edges adjacent to v,
sorted according to their random numbers

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 17/24

Our Approach

We introduce data structures D|v| for each vertex v:

® D|v] provides access to the list of edges adjacent to v,
sorted according to their random numbers

For each edge (u,w), D|u] ad D|w| may communicate to
fix the random number assigned to (u, w).

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 17/24

Our Approach

We introduce data structures D|v| for each vertex v:

® D|v] provides access to the list of edges adjacent to v,
sorted according to their random numbers

For each edge (u,w), D|u] ad D|w| may communicate to
fix the random number assigned to (u, w).

How we implement this:
Each Djv| tries to discover only the necessary head of the list

We partition the range |0, 1] into a logarithmic number of “layers”
The algorithm discovers edges in the next layer, only if need be

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 17/24

Selecting a Random Number

Partition (0, 1] into ©(logn) ranges:
ry (O,Q_IOgn]
o (27,27 for1 <i <logn

I() Il IQ Ig I4
|

: | |
0 1/16 1/8 1/4 1/2

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 18/24

Selecting a Random Number

Partition (0, 1] into ©(logn) ranges:
ry (O,Q_IOgn]
o (27,27 for1 <i <logn

I() Il IQ Ig I4
|

: | | |
0 1/16 1/8 1/4 1/2 1

To assign a random number, consider ranges from left
to right:

for 2 = 0 to k:
| 7|

with probability S 7]

return random number In Z;

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 18/24

Reducing the Query Complexity

One vertex’s point of view:

We use this process to assign random numbers

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 19/24

Reducing the Query Complexity

One vertex’s point of view:
We use this process to assign random numbers

Consecutive iterations of the loop need not be
simulated all at once

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 19/24

Reducing the Query Complexity

One vertex’s point of view:
We use this process to assign random numbers

Consecutive iterations of the loop need not be
simulated all at once

Each D|v] simulates this process for all edges
Incident to v

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 19/24

Reducing the Query Complexity

One vertex’s point of view:
We use this process to assign random numbers

Consecutive iterations of the loop need not be
simulated all at once

Each D|v] simulates this process for all edges
Incident to v

Each iteration of the loop simulated simultaneously
for all incident edges

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 19/24

Reducing the Query Complexity

Extending to the entire graph:

The same iteration of the loop may be executed by both
u and v for an edge (u, v)

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 20/24

Reducing the Query Complexity

Extending to the entire graph:

The same iteration of the loop may be executed by both
u and v for an edge (u, v)

® We make sure that the decision made in the first
execution is in effect by making D[u] and D|v]| talk to
each other

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 20/24

Reducing the Query Complexity

How do we reduce the number of queries?
For an edge (u,v) as long as D|u] and D[v| don’t assign
a specific number:
» Their decisions are consistent
» NoO need to communicate
» No need to know each other
» No need to make a query

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 21/24

Reducing the Query Complexity

How do we reduce the number of queries?
For an edge (u,v) as long as D|u] and D[v| don’t assign
a specific number:
» Their decisions are consistent
» NoO need to communicate
» No need to know each other
» No need to make a query

The number of queries approximately proportional to
the number of recursive calls from an edge.

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 21/24

Reducing the Query Complexity

How do we reduce the number of queries?
For an edge (u,v) as long as D|u] and D[v| don’t assign
a specific number:
» Their decisions are consistent
» NoO need to communicate
» No need to know each other
» No need to make a query

The number of queries approximately proportional to
the number of recursive calls from an edge.

Note: To reduce the running time, quickly select the edges
chosen for the currently selected range

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 21/24

Open Questions

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 22/24

Open Questions

® \Vertex Cover: almost done...

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 23/24

Open Questions

® \Vertex Cover: almost done...

Next problem: approximating the size of the maximum
matchings up to +en

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 23/24

Open Questions

® \Vertex Cover: almost done...

Next problem: approximating the size of the maximum
matchings up to +en

s Best algorithm runs in ¢°1/<") time.
Is there a poly(d/e)-time algorithm?

(see [Nguyen, O. 2008] and [Yoshida, Yamamoto, Ito 2009])

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 23/24

Open Questions

® \Vertex Cover: almost done...

#® Next problem: approximating the size of the maximum
matchings up to +en

s Best algorithm runs in ¢©/<) time.
Is there a poly(d/e)-time algorithm?

(see [Nguyen, O. 2008] and [Yoshida, Yamamoto, Ito 2009])

s Perhaps not.
Is there a poly(1/¢)-time algorithm for planar graphs?

(see [Hassidim, Kelner, Nguyen, O. 2009])

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 23/24

Thank You

Krzysztof Onak — Approximating the Vertex Cover Size Near-Optimally — p. 24/24

	The Problem
	The Problem

	The Model
	Query Complexity
	Query Complexity
	Query Complexity

	General Approach
	General Approach
	General Approach

	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm

	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm
	Simulation of the Greedy Algorithm

	Complexity of the Simulation
	Complexity of the Simulation
	Complexity of the Simulation

	Overview
	Overview
	Overview
	Overview
	Overview

	Our Exploration Method
	Our Exploration Method
	Our Exploration Method
	Our Exploration Method

	Analysis
	Analysis
	Analysis
	Analysis
	Analysis

	Quadratic Algorithm
	Quadratic Algorithm
	Quadratic Algorithm
	Quadratic Algorithm
	Quadratic Algorithm

	psscalebox {.9 1}{Limiting the Exploration of Neighbor Sets}
	psscalebox {.9 1}{Limiting the Exploration of Neighbor Sets}
	psscalebox {.9 1}{Limiting the Exploration of Neighbor Sets}
	psscalebox {.9 1}{Limiting the Exploration of Neighbor Sets}

	Our Approach
	Our Approach
	Our Approach

	Selecting a Random Number
	Selecting a Random Number

	Reducing the Query Complexity
	Reducing the Query Complexity
	Reducing the Query Complexity
	Reducing the Query Complexity

	Reducing the Query Complexity
	Reducing the Query Complexity

	Reducing the Query Complexity
	Reducing the Query Complexity
	Reducing the Query Complexity

	Open Questions
	Open Questions
	Open Questions
	Open Questions

