Testing and Reconstruction of Lipschitz, Functions

Sofya Raskhodnikova Penn State University

Joint work with Madhav Jha (Penn State)

Lipschitz Continuous Functions

A function $f : D \rightarrow R$ has Lipschitz constant c if for all x,y in D, $distance_R(f(x), f(y)) \le c \cdot distance_D(x, y).$

A fundamental notion in

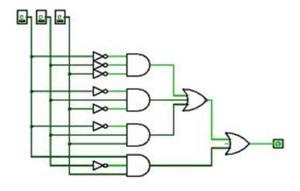
- mathematical analysis
- theory of differential equations

Example uses of a Lipschitz constant c of a given function f

- > probability theory: in tail bounds via McDiarmid's inequality
- program analysis: as a measure of robustness to noise
- data privacy: to scale noise added to preserve differential privacy

Computing a Lipschitz Constant?

- Infeasible
- Undecidable to even verify if f
 computed by a TM has Lipschitz constant c
- NP-hard to verify if f computed by a circuit has Lipschitz constant c
 - even for finite domains

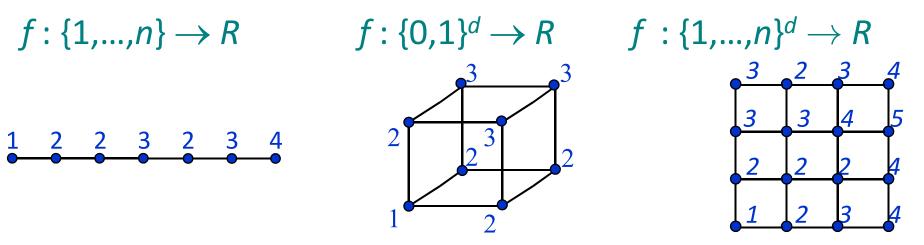


Lipschitz Functions Over Finite Domains

We call a function Lipschitz if it has Lipschitz constant 1.

 can rescale by 1/c to get a Lipschitz function from a function with Lipschitz constant c

Examples



nodes = points in the domain; edges = points at distance 1 node labels = values of the function

Application 1: Program Analysis

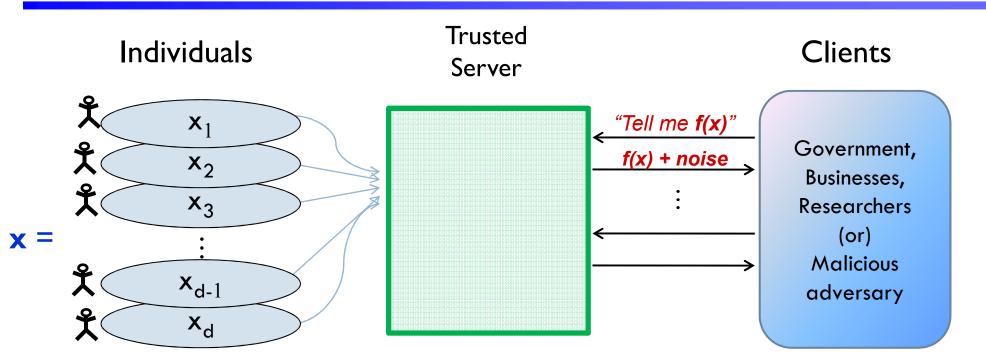
Certifying that a program computes a Lipschitz function [Chaudhuri Gulwani Lublinerman Navidpour 10]

To ensure that a program
➢ is robust to noise in its inputs (e.g., caused by communication/ measurement errors)
➢ responds well to compiler optimizations that lead to an

approximately equivalent program

Question: Can we test if a function is Lipschitz?

Application 2: Data Privacy



Typical examples: census, civic archives, medical records,... ≻[Dwork McSherry Nissim Smith 06]

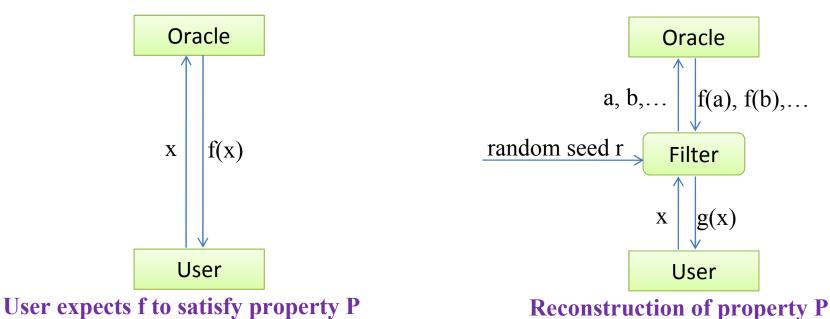
Lipschitz functions can be released with little noise while

satisfying differential privacy.

Question: Can we ensure that the server only answers queries about Lipschitz functions?

Local Property Reconstruction [Saks Seshadhri 10]

Extends [Ailon Chazelle Seshadhri Liu 08]



For each f and r, function g satisfies property P

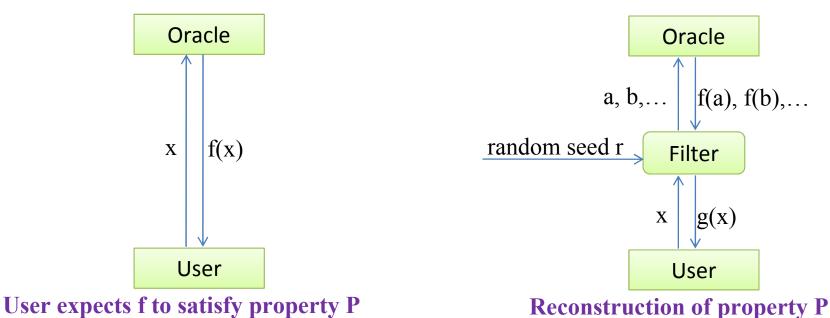
➤w.h.p. g is close to f (in Hamming distance)

g(x) can be computed quickly

Local filter: g does not depend on queries x

Local Property Reconstruction [Saks Seshadhri 10]

Extends [Ailon Chazelle Seshadhri Liu 08]



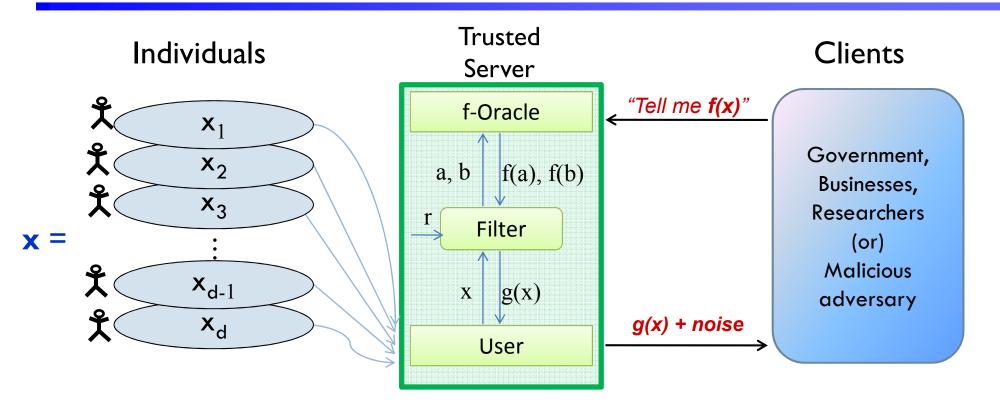
For each f and r, function g satisfies property P

>g = f if f satisfies property P

>g(x) can be computed quickly

Local filter: g does not depend on queries x

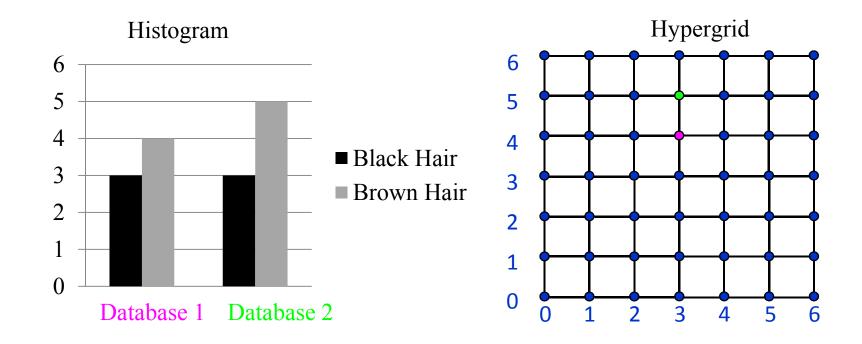
Filter Mechanism for Data Privacy



➤Question:

Can we quickly (locally) reconstruct Lipschitz property?

Using Local Lipschitz, Filter on the Hypergrid



➢Question:

Can we quickly locally reconstruct Lipschitz property for functions on the hypergrid domains?

Our Results: Lipschitz Testers

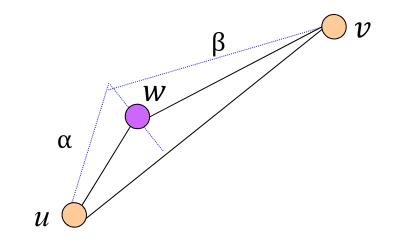
Line $f: \{1, \dots, n\} \rightarrow R$

- > Upper bound: $O(\log n / \epsilon)$ time
 - applies to all discretely metrically convex spaces R
 - $\checkmark \left(\mathbb{R}^{k}, \ell_{p}\right) \text{ for all } p \in [1, \infty), \ \left(\mathbb{R}^{k}, \ell_{\infty}\right), \ \left(\mathbb{Z}^{k}, \ell_{1}\right), \ \left(\mathbb{Z}^{k}, \ell_{\infty}\right)$
 - \checkmark the shortest path metric d_G for all graphs G
 - generalization of monotonicity tester via transitive-closure-spanners [Dodis Goldreich Lehman R Ron Samorodnitky 99, Bhattacharyya Grigorescu Jung R Woodruff 09]
 - applies to all edge-transitive properties that allow extension
- > Lower bound: $\Omega(\log n)$ queries for nondaptive 1-sided error tests
 - \circ holds even for range $\mathbb Z$

Metric Convexity

> a standard notion in geometric functional analysis

A metric space (R, d_R) is metrically convex if for all $u, v \in R$ and all positive $\alpha, \beta \in \mathbb{R}$ satisfying $d_R(u, v) \leq \alpha + \beta$ there exists $w \in R$ such that $d_R(u, w) \leq \alpha$ and $d_R(w, v) \leq \beta$

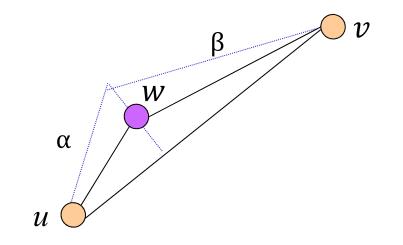


Discrete Metric Convexity

➤ a relaxation of

a standard notion in geometric functional analysis

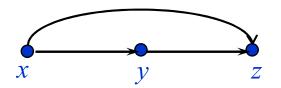
A metric space (R, d_R) is **discretely** metrically convex if for all $u, v \in R$ and all positive $\alpha, \beta \in \mathbb{Z}$ satisfying $d_R(u, v) \leq \alpha + \beta$ there exists $w \in R$ such that $d_R(u, w) \leq \alpha$ and $d_R(w, v) \leq \beta$



Class of Properties to Which Line Tester Applies

- A property is edge-transitive if
 - 1) it can be expressed in terms conditions on ordered pairs of domain points
 - 2) it is transitive: whenever (x, y) and (y, z) satisfy (1), so does (x, z)

X



V

- A property allows extension if
 - 3) any function that satisfies (1) on a subset of the domain can be extended to a function with the property

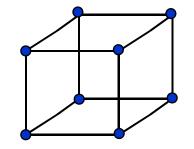
Our Results: Lipschitz Testers

Line $f: \{1, \dots, n\} \rightarrow R$

- > Upper bound: $O(\log n / \epsilon)$ time
 - applies to all discretely metrically convex spaces R
 - $\checkmark \left(\mathbb{R}^{k}, \ell_{p}\right) \text{ for all } p \in [1, \infty), \ \left(\mathbb{R}^{k}, \ell_{\infty}\right), \ \left(\mathbb{Z}^{k}, \ell_{1}\right), \ \left(\mathbb{Z}^{k}, \ell_{\infty}\right)$
 - ✓ the shortest path metric d_G for all graphs G
 - generalization of monotonicity tester via TC-spanners [DGLRRS99, BGJRW09]
 - applies to all edge-transitive properties that allow extension
- Lower bound: Ω(log n) queries for nondaptive 1-sided error tests
 holds even for range Z

Our Results: Lipschitz Testers

Hypercube $f: \{0,1\}^d \rightarrow R$



- > Upper bound: O(d · min(d, ImageDiam(f))/ ($\delta \epsilon$)) time for range $\delta \mathbb{Z}$
 - $_\circ~$ same time to distinguish Lipschitz and ϵ -far from (1+ δ)-Lipschitz for range $\mathbb R$

- > Lower bound: $\Omega(d)$ queries
 - tight for range {0,1,2}
 - reduction from a communication complexity problem

(new technique due to [Blais Brody Matulef 11])

Our Results: Local Lipschitz Reconstructors

Hypergrid $f: \{1, ..., n\}^d \rightarrow \mathbb{R}$

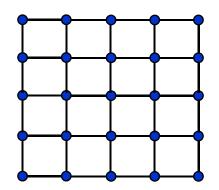
> Upper bound: $O((\log n + 1)^d)$ time

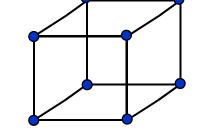
5

Lower bound:

$$2\left(\frac{(\ln n-1)^{d-1}}{d(4\pi)^d}\right)$$
eries

for nonadaptive filters





Hypercube $f: \{0,1\}^d \rightarrow \mathbb{R}$

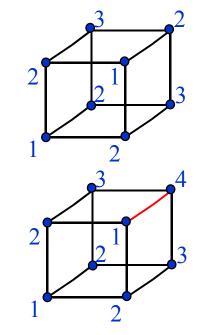
> Lower bound: $\Omega\left(\frac{2^{\alpha d}}{d}\right)$ eries, where $\alpha \approx 0.1620$,

for nonadaptive filters

Hypercube Test: Important Special Case

Testing if $f: \{0,1\}^d \to \mathbb{Z}$ is Lipschitz in O(d \cdot min(d, ImageDiam(f))/ ε) time

- *f* is Lipschitz if its values on endpoints of *every* edge differ by at most 1.
- A an edge $\{x, y\}$ is violated if |f(x) f(y)| > 1



Goal: Relate the number of violated edges, V(f), to the distance to the Lipschitz property.

Hypercube Test: Key Lemma

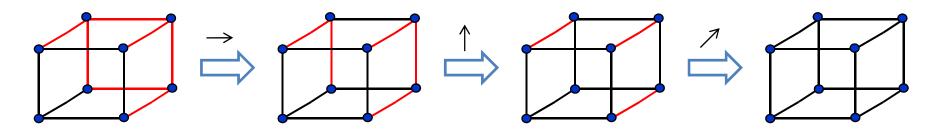
Key Lemma

If $f: \{0,1\}^d \to \mathbb{Z}$ is ε -far from Lipschitz then $V(f) \ge \frac{\varepsilon \cdot 2^{d-1}}{ImageDiam(f)}$

- Enough to show: we can make *f* Lipschitz
 by modifying 2 · V(*f*) · *ImageDiam*(*f*) values.
- Then $2 \cdot V(f) \cdot ImageDiam(f) \ge \varepsilon \cdot 2^d$ for ε -far f, implying Key Lemma.

Averaging Operator

Plan: Transform *f* into a Lipschitz function by repairing edges in one dimension at a time.

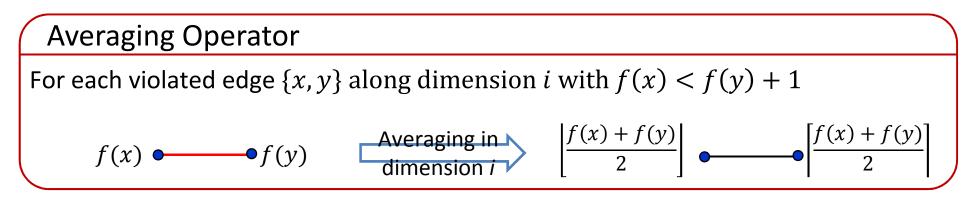


- As in the analysis of monotonicity tester in [DGLRRS99, GGLRS00]
 - Worked only for Boolean functions
 - General range was handled by induction on the size of the range
 - Function with range {0,1} are all Lipschitz,

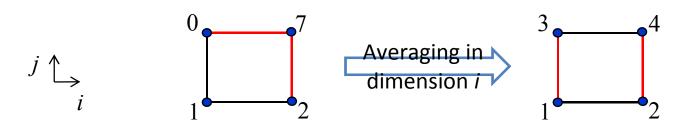
with range {0,2} are trivially testable

Averaging Operator

Plan: Repairing edges in one dimension at a time.



Issue: might increase the # of violated edges in other dimensions



Intuition: violation is "spread" among the edges in dimension j

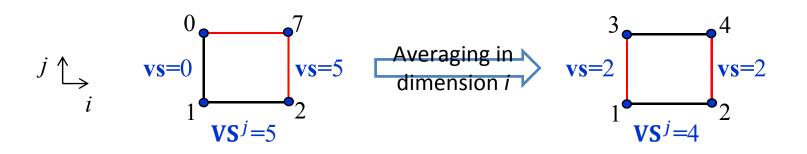
Potential Function Argument

Idea: Take into account the magnitude of violations.

Violation Score

• Violation score $vs(\{x, y\}) = max(0, |f(x) - f(y)| - 1)$

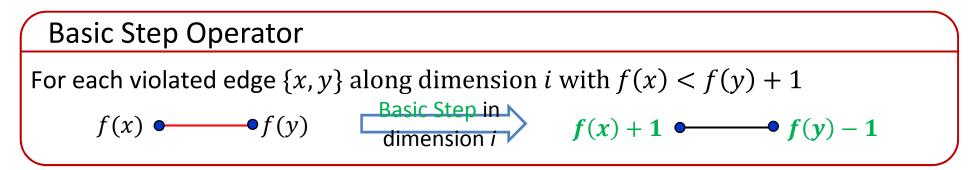
VS^j = sum of violation scores of edges along dimension j



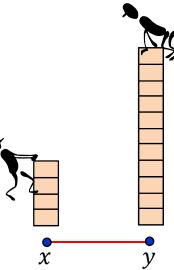
Want to show: Averaging in dimension *i* does not increase VS^{j} for all dimensions $j \neq i$

Issue: averaging operator is complicated

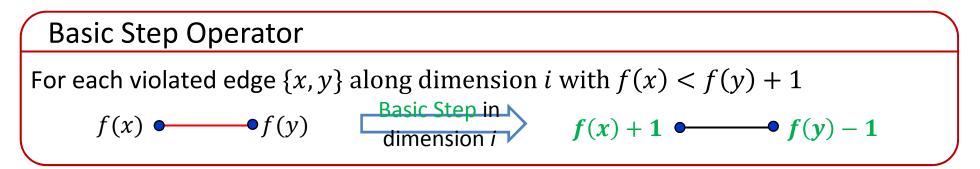
Idea: Break up the action of Averaging Operator into basic steps.



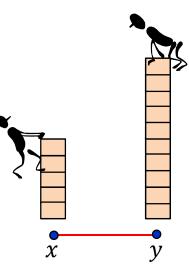
Averaging in dimension *i* = multiple Basic Steps in dimension *i*



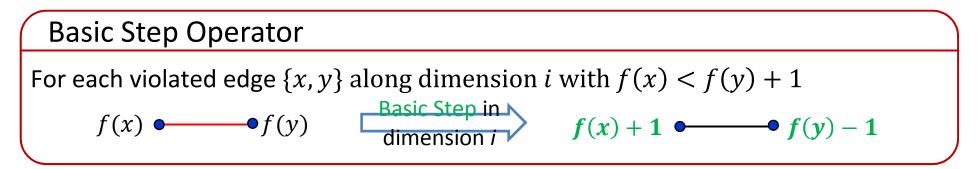
Idea: Break up the action of Averaging Operator into basic steps.



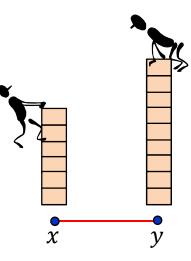
Averaging in dimension *i* = multiple Basic Steps in dimension *i*



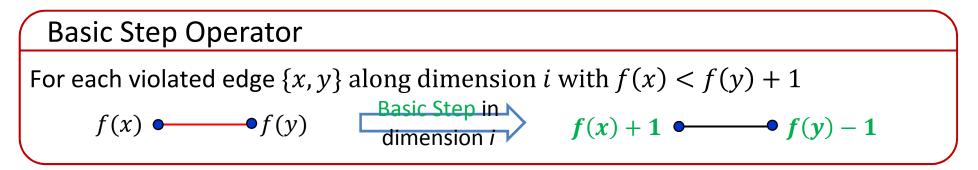
Idea: Break up the action of Averaging Operator into basic steps.



Averaging in dimension *i* = multiple Basic Steps in dimension *i*



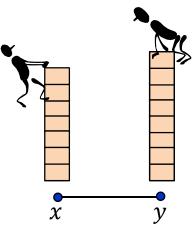
Idea: Break up the action of Averaging Operator into basic steps.



Averaging in dimension *i* = multiple Basic Steps in dimension *i*

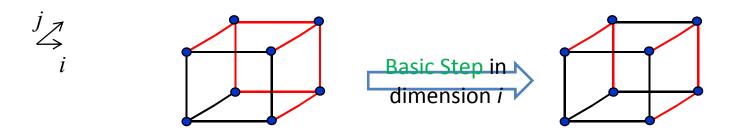
Enough to show:

Basic Step in dimension *i* does not increase $VS^j \forall$ dimensions $j \neq i$



Basic Step in dimension i does not increase VS^j

Enough to prove it for squares



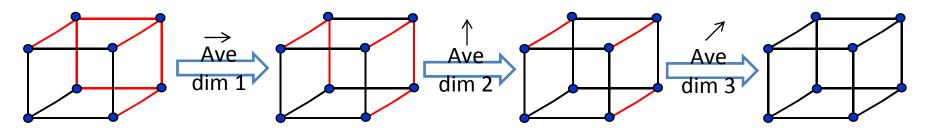
Can be proved by simple case analysis

Analysis of the Averaging Operator

Know: Averaging dimension *i*

- 1. repairs all violated edges in dimension i (brings VS^i down to 0)
- 2. doesn't increase $VS^j \forall dimensions j \neq i$

Averaging in dimensions i = 1, ..., d repairs all violations
 because VS^j = 0 means "no violated edges in dimension i"



Analysis of the Averaging Operator

How many function values are changed when averaging dimension i? 2 · (# of violated edges in dimension i after averaging dimensions 1, ..., i - 1)

- Let $V^{i}(f)$ be the # of edges in dimension i violated by f $V^{i}(f) \leq \mathbf{VS}^{i}(f) \leq V^{i}(f) \cdot ImageDiam(f)$
- Dimension *i* starts and ends up with $VS^i \leq V^i(f) \cdot ImageDiam(f)$
- # of violated edges in dimension *i* never exceeds $V^{i}(f) \cdot ImageDiam(f)$

of changes

= 2 · (# of violated edges in dimension *i* after averaging dimensions 1, ..., i - 1) $\leq 2 \cdot V(f) \cdot ImageDiam(f)$

Lipschitz Test for Functions $f: \{0,1\}^d \to \mathbb{Z}$

Key LemmaIf $f: \{0,1\}^d \rightarrow \mathbb{Z}$ is ε -far from Lipschitz then $V(f) \geq \frac{\varepsilon \cdot 2^{d-1}}{ImageDiam(f)}$

- i.e., fraction of violated edges is $\geq \frac{\varepsilon}{d \cdot ImagDiam(f)}$
- Enough to sample $\Theta(d \cdot ImageDiam(f)/\varepsilon)$ edges

Issue: ImageDiam(f) can be $> 2^d$

Observation: A Lipschitz function on {0,1}^d has image diameter at most d.

Algorithm

1. Sample $\Theta(1/\varepsilon)$ domain points x

2.
$$r = \max_{x} f(x) - \min_{x} f(x)$$

- 3. If r > d, reject
- 4. Sample $\Theta(d \cdot r/\varepsilon)$ edges, and **reject** if any edge is violated

Analysis of Lipschitz Hypercube Test

Algorithm

1. Sample $\Theta(1/\varepsilon)$ domain points x

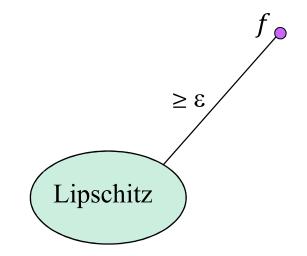
2.
$$r = \max_{x} f(x) - \min_{x} f(x)$$

- 3. If r > d, reject
- 4. Sample $\Theta(d \cdot r/\varepsilon)$ edges, and **reject** if any edge is violated

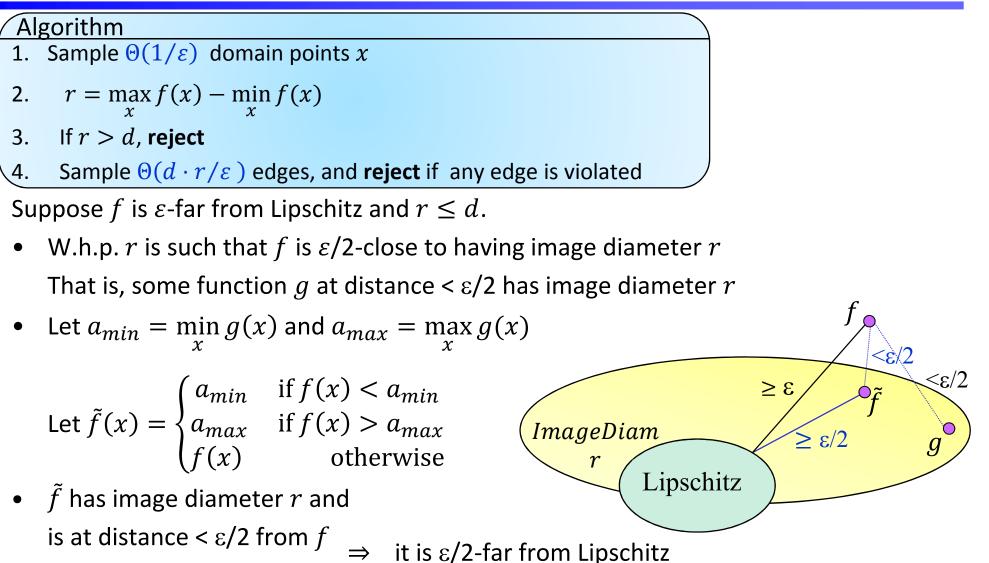
If f is Lipschitz, it is always accepted.

Suppose f is ε -far from Lipschitz.

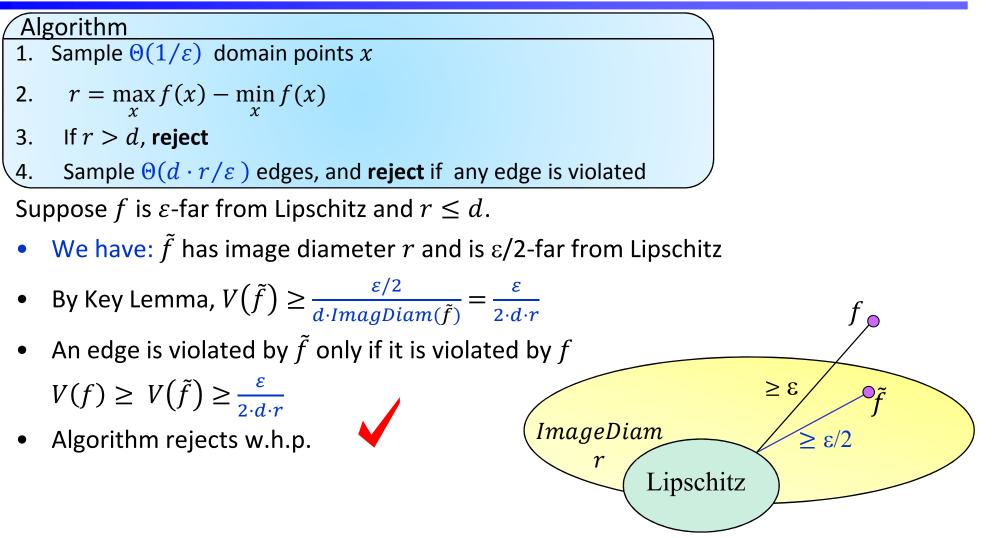
- If r > d, the algorithm rejects.
- It remains to consider the case $r \leq d$.



Analysis of Lipschitz Hypercube Test



Analysis of Lipschitz Hypercube Test



Our Results for the Lipschitz Property

TESTERS

Line $f: \{1, \dots, n\} \to R$

Hypercube $f: \{0,1\}^d \rightarrow R$

> Upper bound: $O(d \cdot min(d, ImageDiam(f))/(\delta \epsilon))$ time

for range $\delta\mathbb{Z}$

- $_\circ~$ same time to distinguish Lipschitz and ϵ -far from (1+ δ)-Lipschitz for range $\mathbb R$
- > Lower bound: $\Omega(d)$ queries
 - tight for range {0,1,2}

LOCAL RECONSTRUCTORS Hypergrid $f: \{1, ..., n\}^d \rightarrow \mathbb{R}$ Hypercube $f: \{0,1\}^d \rightarrow \mathbb{R}$

Open Questions

Lipschitz Property

- Tight bounds for testers on the hypercube
- Tester on the hypergrid
- Adaptive lower bounds for local filters on the hypercube/hypergrid
- (Nonlocal) reconstruction
- Explore more complicated ranges than ${\mathbb R}$
 - for testers on domains other than the line
 - for reconstructors

Other Properties

- Filters for data privacy mechanisms based on local notions of sensitivity
 - smooth sensitivity [Nissim Raskhodnikova Smith 07]