
1

Testing and Reconstruction of

Lipschitz Functions

Sofya Raskhodnikova

Penn State University

Joint work with Madhav Jha (Penn State)

Lipschitz Continuous Functions

A fundamental notion in

� mathematical analysis

� theory of differential equations

Example uses of a Lipschitz constant c of a given function f

� probability theory: in tail bounds via McDiarmid’s inequality

� program analysis: as a measure of robustness to noise

� data privacy: to scale noise added to preserve differential privacy

A function f : D → R has Lipschitz constant c

if for all x,y in D,

distanceR(f(x),f(y)) ≤ c ∙ distanceD(x,y).

2

Computing a Lipschitz Constant?

• Infeasible

• Undecidable to even verify if f

computed by a TM has Lipschitz constant c

• NP-hard to verify if f computed by

a circuit has Lipschitz constant c

– even for finite domains

3Image sources: http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/coretechnologies.htm

http://www.augustana.ab.ca/~mohrj/courses/2004.fall/csc110/assignments/lab2.html

3 2 3 4

3 3 4 5

2 2 2 4

1 2 3 4

Lipschitz Functions Over Finite Domains

We call a function Lipschitz if it has Lipschitz constant 1.
• can rescale by 1 �	⁄ to get a Lipschitz function from a function with

Lipschitz constant �
Examples

f : {1,…,n} → R f : {0,1}d → R f : {1,…,n}d → R

4

2 3 2 4321

nodes = points in the domain; edges = points at distance 1

node labels = values of the function

2

1

3

2

3

2

3

2

Application 1: Program Analysis

Certifying that a program computes a Lipschitz function
[Chaudhuri Gulwani Lublinerman Navidpour 10]

To ensure that a program
� is robust to noise in its inputs

(e.g., caused by communication/
measurement errors)

� responds well to compiler
optimizations that lead to an
approximately equivalent program

�Question: Can we test if a function is Lipschitz?

5

Application 2: Data Privacy

6

Individuals

Government,

Businesses,

Researchers

(or)

Malicious

adversary

Clients
Trusted
Server

Typical examples: census, civic archives, medical records,…
�[Dwork McSherry Nissim Smith 06]

Lipschitz functions can be released with little noise while

satisfying differential privacy.

�Question: Can we ensure that the server only answers queries about
Lipschitz functions?

x =

xd

xd-1

x3

x2

x1

MMMM

MMMM

“Tell me f(x)”

f(x) + noise

Local Property Reconstruction [Saks Seshadhri 10]

Extends [Ailon Chazelle Seshadhri Liu 08]

7

Oracle

f(x)x

� for each f and r, function g satisfies property P

�w.h.p. g is close to f (in Hamming distance)

�g(x) can be computed quickly

�Local filter: g does not depend on queries x

User

User expects f to satisfy property P

Oracle

g(x)x

User

Reconstruction of property P

Filter

f(a), f(b),…a, b,…

random seed r

Local Property Reconstruction [Saks Seshadhri 10]

Extends [Ailon Chazelle Seshadhri Liu 08]

8

Oracle

f(x)x

� for each f and r, function g satisfies property P

�g = f if f satisfies property P

�g(x) can be computed quickly

�Local filter: g does not depend on queries x

User

User expects f to satisfy property P

Oracle

g(x)x

User

Reconstruction of property P

Filter

f(a), f(b),…a, b,…

random seed r

Filter Mechanism for Data Privacy

9

Individuals Clients
Trusted
Server

�Question:
Can we quickly (locally) reconstruct Lipschitz property?

x =

xd

xd-1

x3

x2

x1

MMMM

“Tell me f(x)”

g(x) + noise

f-Oracle

g(x)x

User

Filter

f(a), f(b)a, b

r

Government,

Businesses,

Researchers

(or)

Malicious

adversary

Using Local Lipschitz Filter on the Hypergrid

10

�Question:
Can we quickly locally reconstruct Lipschitz property for

functions on the hypergrid domains?

0

1

2

3

4

5

6

Black Hair

Brown Hair

Database 1 Database 2

Histogram Hypergrid

2 3 541 60

2

3

5

4

1

6

0

Our Results: Lipschitz Testers

Line f : {1,…, n} → R

� Upper bound: O(log n / ε) time

o applies to all discretely metrically convex spaces R

� R
� , ℓ� 	for all 	 ∈ 1,∞ , 	 R� , ℓ� , 	 Z� , ℓ
 , 	 Z� , ℓ�

� the shortest path metric �� for all graphs �
o generalization of monotonicity tester via transitive-closure-spanners [Dodis Goldreich

Lehman R Ron Samorodnitky 99, Bhattacharyya Grigorescu Jung R Woodruff 09]

o applies to all edge-transitive properties that allow extension

� Lower bound: Ω(log n) queries for nondaptive 1-sided error tests

o holds even for range Z

11

Metric Convexity

� a standard notion in geometric functional analysis

A metric space (�, ��) is metrically convex

if for all �, � ∈ � and

all positive �, � ∈ R satisfying �� �, � ≤ � + �
there exists � ∈ � such that �� �,� ≤ α and �� �, � ≤ β

12

u

�
� β

α

Discrete Metric Convexity

� a relaxation of

a standard notion in geometric functional analysis

A metric space (�, ��) is discretely metrically convex

if for all �, � ∈ � and

all positive �, � ∈ Z satisfying �� �, � ≤ � + �
there exists � ∈ � such that �� �,� ≤ α and �� �, � ≤ β

13

u

�
� β

α

Class of Properties to Which Line Tester Applies

• A property is edge-transitive if

1) it can be expressed in terms conditions on ordered pairs of domain points

2) it is transitive: whenever (�, �) and (�,) satisfy (1), so does �,

• A property allows extension if

3) any function that satisfies (1) on a subset of the domain can be extended to

a function with the property

14

x y z

x y

Our Results: Lipschitz Testers

Line f : {1,…, n} → R

� Upper bound: O(log n / ε) time

o applies to all discretely metrically convex spaces R

� R
� , ℓ� 	for all 	 ∈ 1,∞ , 	 R� , ℓ� , 	 Z� , ℓ
 , 	 Z� , ℓ�

� the shortest path metric �� for all graphs �
o generalization of monotonicity tester via TC-spanners [DGLRRS99, BGJRW09]

o applies to all edge-transitive properties that allow extension

� Lower bound: Ω(log n) queries for nondaptive 1-sided error tests

o holds even for range Z

15

Our Results: Lipschitz Testers

Hypercube f : {0,1}d → R

� Upper bound: O(d ∙ min(d, ImageDiam(f))/ (δε)) time for range δZ

o same time to distinguish Lipschitz and ε-far from (1+ δ)-Lipschitz for range R

� Lower bound: Ω(d) queries

o tight for range {0,1,2}

o reduction from a communication complexity problem

(new technique due to [Blais Brody Matulef 11])

16

Today

Our Results: Local Lipschitz Reconstructors

Hypergrid f : {1,…, n}d → R

� Upper bound: O (log $ + 1)d time

� Lower bound: queries

for nonadaptive filters

Hypercube f : {0,1}d → R

� Lower bound: queries, where α % 0.1620,

for nonadaptive filters

17

Hypercube Test: Important Special Case

Testing if f : {0,1}d → Z is Lipschitz

in O(d ∙ min(d, ImageDiam(f))/ ε) time

• f is Lipschitz if its values on endpoints of

every edge differ by at most 1.

• A an edge {�, �} is violated if (� − (� > 1
Goal: Relate the number of violated edges, +((), to the distance

to the Lipschitz property.

18

2

1

1

2

3

2

2

3

2

1

1

2

3

2

4

3

Hypercube Test: Key Lemma

19

If f : {0,1}d → Z is ε-far from Lipschitz then + (≥ -⋅/012
345678954(:)

• Enough to show: we can make f Lipschitz

by modifying 2 ∙ V(f) ∙ ImageDiam(f) values.

• Then 2 ∙ V(f) ∙ ImageDiam(f) ≥ ε ⋅ 2<	for ε-far f,

implying Key Lemma.

Key Lemma

Averaging Operator

Plan: Transform f into a Lipschitz function by repairing edges in one

dimension at a time.

• As in the analysis of monotonicity tester in [DGLRRS99, GGLRS00]

– Worked only for Boolean functions

– General range was handled by induction on the size of the range

– Function with range {0,1} are all Lipschitz,

with range {0,2} are trivially testable

20

Plan: Repairing edges in one dimension at a time.

For each violated edge {�, �} along	dimension	D	with	(� < (� + 1

Issue: might increase the # of violated edges in other dimensions

Intuition: violation is “spread” among the edges in dimension I

Averaging Operator

21

((�) Averaging in

dimension i
((�) (� + ((�)2 (� + ((�)2

i

j

0

1 2

7 3

1 2

4

Averaging in

dimension i

Averaging Operator

Potential Function Argument

Idea: Take into account the magnitude of violations.

• Violation score vs({�, �}) = max(0, (� − (� − 1)• MNO= sum of violation scores of edges along dimension I

Want to show: Averaging in dimension D does not increase MNO for all

dimensions I ≠ D
Issue: averaging operator is complicated

22

i

j

0

1 2

7 3

1 2

4

Averaging in

dimension i
vs=0 vs=5

MNO=5
vs=2 vs=2

MNO=4

Violation Score

Basic Step Operator

Idea: Break up the action of Averaging Operator into basic steps.

For each violated edge {�, �} along	dimension	D	with	(� < (� + 1
Averaging in dimension D = multiple Basic Steps in dimension D

23

((�) Basic Step in

dimension i
((�) Q R + S Q T − S

Basic Step Operator

� �

Basic Step Operator

Idea: Break up the action of Averaging Operator into basic steps.

For each violated edge {�, �} along	dimension	D	with	(� < (� + 1
Averaging in dimension D = multiple Basic Steps in dimension D

24

((�) Basic Step in

dimension i
((�) Q R + S Q T − S

Basic Step Operator

� �

Basic Step Operator

Idea: Break up the action of Averaging Operator into basic steps.

For each violated edge {�, �} along	dimension	D	with	(� < (� + 1
Averaging in dimension D = multiple Basic Steps in dimension D

25

((�) Basic Step in

dimension i
((�) Q R + S Q T − S

Basic Step Operator

� �

Basic Step Operator

Idea: Break up the action of Averaging Operator into basic steps.

For each violated edge {�, �} along	dimension	D	with	(� < (� + 1
Averaging in dimension D = multiple Basic Steps in dimension D

Enough to show:

Basic Step in dimension D does not

increase MNO	∀dimensions I ≠ D
26

((�) Basic Step in

dimension i
((�) Q R + S Q T − S

Basic Step Operator

� �

Basic Step in dimension D does not increase MNO
Enough to prove it for squares

Can be proved by simple case analysis

27

i

j

Basic Step in

dimension i

Analysis of the Averaging Operator

Know: Averaging dimension D
1. repairs all violated edges in dimension D (brings	MN9 down to 0)

2. doesn’t increase MNO 	∀dimensions I ≠ D
• Averaging in dimensions D = 1,… , � repairs all violations

because MNO = 0 means “no violated edges in dimension D“

28

Ave

dim 1

Ave

dim 2

Ave

dim 3

Analysis of the Averaging Operator

How many function values are changed when averaging dimension D?
2 ∙ (# of violated edges in dimension D after averaging dimensions 1,… , D − 1)

• Let +9(() be the # of edges in dimension D violated by (+9 (≤ MN9 (() ≤ +9 (⋅ XYZ[\]DZY(()
• Dimension D	starts and ends up with MN9 ≤ +9 (⋅ XYZ[\]DZY(()
• # of violated edges in dimension D never exceeds +9 (⋅ XYZ[\]DZY(()
of changes

= 2 ∙ (# of violated edges in dimension D after averaging dimensions 1, … , D − 1)≤ 2 ⋅ + (⋅ XYZ[\]DZY(()
29

Lipschitz Test for Functions f : {0,1}d→→→→ ZZZZ

30

If f : {0,1}d → Z is ε-far from Lipschitz then + (≥ -⋅/012
345678954(:)

• i.e., fraction of violated edges is ≥ -<⋅34568954(:)
• Enough to sample Θ � ⋅ XYZ[\]DZY(() _⁄ 	 edges

Issue: XYZ[\]DZY(() can be > 2<
Observation: A Lipschitz function on {0,1}d has image diameter at most d.

1. Sample Θ 1 _⁄ domain points �
2. ` = maxa (� − mina ((�)
3. If ` > �, reject

4. Sample Θ � ⋅ ` _⁄ 	 edges, and reject if any edge is violated

Key Lemma

Algorithm

Algorithm

Analysis of Lipschitz Hypercube Test

1. Sample Θ 1 _⁄ domain points �
2. ` = maxa (� − mina ((�)
3. If ` > �, reject

4. Sample Θ � ⋅ ` _⁄ 	 edges, and reject if any edge is violated

If (is Lipschitz, it is always accepted.

Suppose (is _-far from Lipschitz.

• If ` > �, the algorithm rejects.

• It remains to consider the case ` ≤ �.

31

(
≥ ε

Lipschitz

Algorithm

Analysis of Lipschitz Hypercube Test

1. Sample Θ 1 _⁄ domain points �
2. ` = maxa (� − mina ((�)
3. If ` > �, reject

4. Sample Θ � ⋅ ` _⁄ 	 edges, and reject if any edge is violated

Suppose (is _-far from Lipschitz and ` ≤ �.

• W.h.p. ` is such that (is _/2-close to having image diameter `
That is, some function [at distance < ε/2 has image diameter `

• Let Z49b = mina [� and Z45a = maxa [(�)
Let (c � = dZ49b					if	(� < Z49bZ45a					if	(� > Z45a(� 															otherwise• (c has image diameter ` and

is at distance < ε/2 from (⇒ it is ε/2-far from Lipschitz

32

XYZ[\]DZY`
Lipschitz

(
≥ ε (c [≥ ε/2

<ε/2
<ε/2

Algorithm

Analysis of Lipschitz Hypercube Test

1. Sample Θ 1 _⁄ domain points �
2. ` = maxa (� − mina ((�)
3. If ` > �, reject

4. Sample Θ � ⋅ ` _⁄ 	 edges, and reject if any edge is violated

Suppose (is _-far from Lipschitz and ` ≤ �.

• We have: (c has image diameter ` and is ε/2-far from Lipschitz

• By Key Lemma, + (c ≥ -//<⋅34568954(:c) = -/⋅<⋅i
• An edge is violated by (c only if it is violated by (+ (≥ 	+ (c ≥ -/⋅<⋅i
• Algorithm rejects w.h.p.

33

XYZ[\]DZY`
Lipschitz

(
≥ ε (c≥ ε/2

Our Results for the Lipschitz Property

TESTERS

Line f : {1,…, n} → R

Hypercube f : {0,1}d → R

� Upper bound: O(d ∙ min(d, ImageDiam(f))/ (δε)) time

for range δZ

o same time to distinguish Lipschitz and ε-far from (1+ δ)-Lipschitz for range R

� Lower bound: Ω(d) queries

o tight for range {0,1,2}

LOCAL RECONSTRUCTORS

Hypergrid f : {1,…, n}d → R

Hypercube f : {0,1}d → R

34

Open Questions

Lipschitz Property

• Tight bounds for testers on the hypercube

• Tester on the hypergrid

• Adaptive lower bounds for local filters on the hypercube/hypergrid

• (Nonlocal) reconstruction

• Explore more complicated ranges than ℝ
– for testers on domains other than the line

– for reconstructors

Other Properties

• Filters for data privacy mechanisms based on local notions of

sensitivity

– smooth sensitivity [Nissim Raskhodnikova Smith 07]

35

