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Lipschit; Continuous Functions

A function f: D — R has Lipschitz constant ¢
if for all x,y in D,

distance,(f(x),f(y)) < c - distance,(x,y).

A fundamental notion in

» mathematical analysis

» theory of differential equations

Example uses of a Lipschitz constant c of a given function f

» probability theory: in tail bounds via McDiarmid’s inequality
» program analysis: as a measure of robustness to noise

» data privacy: to scale noise added to preserve differential privacy



Computing a Lipschitz Constant?

e |nfeasible

e Undecidable to even verify if f

computed by a TM has Lipschitz constant c

e NP-hard to verify if f computed by et

a circuit has Lipschitz constant ¢ =

o
— even for finite domains ﬂ
— —3




Lipschit; Functions Over Finite Domains

We call a function Lipschitz if it has Lipschitz constant 1.

e canrescale by 1/c to get a Lipschitz function from a function with
Lipschitz constant ¢

Examples
f:{1,...n} >R f:{0,1}¥ > R f:{1,..,n}¥ =R
03 .2 ‘3 04
1223233 Pt
.2 .2 2 .4
.1 02 .3 04
nodes = points in the domain; edges = points at distance 1

node labels =values of the function



Application 1: Program Analysis

Certifying that a program computes a Lipschitz function
[Chaudhuri Gulwani Lublinerman Navidpour 10]

To ensure that a program
» is robust to noise in its inputs %2
(e.g., caused by communication/ . i al"
measurement errors) Q. v
» responds well to compiler
optimizations that lead to an
approximately equivalent program

» Question: Can we test if a function is Lipschitz?



Application 2: Data Privacy

Vi Trusted .
Individuals c Clients
erver
o _ “Tell me f(x)” 4 P
A % > 100+ noise | Government,
Businesses,
i Researchers
T ¢; ) (or)
i . —> Malicious
" adversary

Typical examples: census, civic archives, medical records,...
» [Dwork McSherry Nissim Smith 06]

Lipschitz functions can be released with little noise while
satisfying differential privacy.
» Question: Can we ensure that the server only answers queries about
Lipschitz functions?



Local Property Reconstruction [Saks Seshadhri 10]

Extends [Ailon Chazelle Seshadhri Liu 08]

Oracle

X | |f(x)

User

User expects f to satisfy property P

»g(x) can be computed quickly

a, b,...

random seed r

Oracle

f(a), f(b),...

Filter

X | lgx)

User

Reconstruction of property P

» for each f and r, function g satisfies property P
»w.h.p. gis close to f (in Hamming distance)

» Local filter: g does not depend on queries x



Local Property Reconstruction [Saks Seshadhri 10]

Extends [Ailon Chazelle Seshadhri Liu 08]

Oracle

X | |f(x)

User

User expects f to satisfy property P

»g = fif f satisfies property P
»g(x) can be computed quickly

a, b,...

random seed r

Oracle

f(a), f(b),...

Filter

X | lgx)

User

Reconstruction of property P

» for each f and r, function g satisfies property P

» Local filter: g does not depend on queries x



Filter Mechanism for Data Privacy

. Trusted :
Individuals S Clients
erver
o o £-Oracle JTellme fx)” (" A
i " Government,
a,b | [f(a), f(b) Businesses,
i r : Researchers
. Loy Filter (or)
i Malicious
X | lg(x) adversary
g(x) + noise
i User > k /

» Question:

Can we quickly (locally) reconstruct Lipschitz property?



Using Local Lipschitz Filter on the Hypergrid

Histogram Hypergrid
6 6 @ O O O O O @
5 5 @ O O O O O Q
4 4 99— —9—9—9¢—9
m Black Hair
3 - — . L —O——0——0—0
Brown Hair
2 - — ) ¢—o—o—o—o—o—0
1 N [ 1 @ O O @ @ @ @
O O O O O O O O o
Database 1 O 1 2 3 4 5 6
» Question:

Can we quickly locally reconstruct Lipschitz property for
functions on the hypergrid domains!?
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Our Results: Lipschitz Testers

Linef:{l,...,n}—>R 0—0—0—0—0—0—0

> Upper bound: O(log n / €) time
o applies to all discretely metrically convex spaces R
v (R, ¢,)forallp € [1,), (R ¢,), (Z*¢,), (Z"¢x)
v the shortest path metric d for all graphs G

o generalization of monotonicity tester via transitive-closure-spanners [Dodis Goldreich
Lehman R Ron Samorodnitky 99, Bhattacharyya Grigorescu Jung R Woodruff 09]

o applies to all edge-transitive properties that allow extension

> Lower bound: (2(log n) queries for nondaptive 1-sided error tests

o holds even for range Z
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Metric Convexity

» astandard notion in geometric functional analysis

-

o

A metric space (R, dg) is metrically convex N
if forallu,v € R and
all positive a, B € R satisfying dp(u,v) < a+ f

there exists w € R such that dp(u,w) < aand dr(w,v) < B D
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Discrete Metric Convexity

> arelaxation of

a standard notion in geometric functional analysis

-

o

A metric space (R, dp) is discretely metrically convex )
if forallu,v € R and
all positive a, B € Z satisfying dp(u,v) < a +

there exists w € R such that dp(u,w) < aand dr(w,v) < B D
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Class of Properties to Which Line Tester Applies

e A property is edge-transitive if

1) it can be expressed in terms conditions on ordered pairs of domain points
O >®
X y

2) itis transitive: whenever (x, y) and (y, z) satisfy (1), so does (x, z)

N

X Y z

e A property allows extension if

3) any function that satisfies (1) on a subset of the domain can be extended to
a function with the property
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Our Results: Lipschitz Testers

Linef:{l,...,n}—>R 0—0—0—0—0—0

> Upper bound: O(log n / €) time
o applies to all discretely metrically convex spaces R
v (R, ¢,)forallp € [1,), (R ¢,), (Z*¢,), (Z"¢x)
v the shortest path metric d for all graphs G
o generalization of monotonicity tester via TC-spanners [DGLRRS99, BGJRWO09]

o applies to all edge-transitive properties that allow extension

> Lower bound: Q2(log n) queries for nondaptive 1-sided error tests

o holds even for range Z
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Our Results: Lipschitz Testers

Hypercube f:{0,1}¥ - R
> Upper bound: O(d - min(d, ImageDiam(f))/ (6¢)) time for range 67

o same time to distinguish Lipschitz and e-far from (1+ 8)-Lipschitz for range R

> Lower bound: (2(d) queries
o tight for range {0,1,2}
o reduction from a communication complexity problem

(new technique due to [Blais Brody Matulef 11])
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Our Results: Local Lipschitz Reconstructors

Hypergrid f: {1,..., n}9 > R o o o 4
> Upper bound: O((logn + 1)9) time 11 17

d— @ @ o O @
> Lower bound: (2 ( (ln;&;i))d 1 )ieries

for nonadaptive filters

Hypercube f:{0,1}¥ > R
> Lower bound: (2 (2ad/d)eries, where o ~ 0.1620,

for nonadaptive filters
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Hypercube Test: Important Special Case

Testing if f: {0,1}¢ — Z is Lipschitz
in O(d - min(d, ImageDiam(f))/ €) time

e 1 is Lipschitz if its values on endpoints of
every edge differ by at most 1.

e Aanedge {x,y}isviolatedif |f(x) — f(y)| > 1

Goal: Relate the number of violated edges, I/ (f), to the distance
to the Lipschitz property.
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Hypercube Test: Key Lemma

fKey Lemma

If f:{0,1}4 — Z is e-far from Lipschitz then V(f) =
-

g.zd—l

ImageDiam(f)

/

e Enough to show: we can make f Lipschitz
by modifying 2 - V(f) - ImageDiam(f) values.

e Then 2 - V(f) - ImageDiam(f) > ¢ - 2% for e-far f,

implying Key Lemma.
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Averaging Operator

Plan: Transform f into a Lipschitz function by repairing edges in one
dimension at a time.

pasipsiypialivid

e Asin the analysis of monotonicity tester in [DGLRRS99, GGLRS00]
— Worked only for Boolean functions
— General range was handled by induction on the size of the range
— Function with range {0,1} are all Lipschitz,
with range {0,2} are trivially testable
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Averaging Operator

Plan: Repairing edges in one dimension at a time.

/Averaging Operator

~

For each violated edge {x, y} along dimension i with f(x) < f(y) + 1

N fG)+ ) f+7)
0 C ooy \ 2 y“—‘[ 2 yb

Issue: might increase the # of violated edges in other dimensions

0 7 3 4
J L I:I aimension |/ : I:I
! 1 2 1 2

Intuition: violation is “spread” among the edges in dimension j
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Potential Function Argument

|Idea: Take into account the magnitude of violations.

/" Violation Score )
e Violation score vs({x, y}) = max(0, |f(x) — f(y)| — 1)

N VS’ = sum of violation scores of edges along dimension j )
0 7 3 4
J L vs=0 DVFS I dlmengsmgn - I:IVs=2
l 1= 12
VS/=5 VS/=4

Want to show: Averaging in dimension i does not increase VS’ for all
dimensions j # i

Issue: averaging operator is complicated
22



Basic Step Operator

|Idea: Break up the action of Averaging Operator into basic steps.

" Basic Step Operator )

For each violated edge {x, y} along dimension i with f(x) < f(y) + 1
f) o———=f () [ :> f(x)+1 &e———o f(y) —1

\
Averaging in dimension i = multiple Basic Steps in dimension i
3
»
o—0
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Basic Step Operator

|Idea: Break up the action of Averaging Operator into basic steps.

" Basic Step Operator

For each violated edge {x, y} along dimension i with f(x) < f(y) + 1
f) o———=f () [ :> f(x)+1 &e———o f(y) —1

\
Averaging in dimension i = multiple Basic Steps in dimension i
3
v
| §
o—0
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Basic Step Operator

|Idea: Break up the action of Averaging Operator into basic steps.

" Basic Step Operator )

For each violated edge {x, y} along dimension i with f(x) < f(y) + 1
f) o———=f () [ :> f(x)+1 &e———o f(y) —1

Averaging in dimension i = multiple Basic Steps in dimension i

-

b

»

rd
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Basic Step Operator

|Idea: Break up the action of Averaging Operator into basic steps.

" Basic Step Operator )

For each violated edge {x, y} along dimension i with f(x) < f(y) + 1
fx) oe———=f () [ :> f(x)+1 &e———o f(y) —1

Averaging in dimension i = multiple Basic Steps in dimension i

-

)
. »
Enough to show:
Basic Step in dimension i does not :
X y

increase VS’ Ydimensions j # i
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Basic Step in dimension i does not increase VS’

Enough to prove it for squares

7
l' - .
dimension |/ :

Can be proved by simple case analysis
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Analysis of the Averaging Operator

Know: Averaging dimension i
1. repairs all violated edges in dimension i (brings VS down to 0)

2. doesn’t increase VS’ Ydimensions j # i

e Averaging in dimensions i = 1, ..., d repairs all violations

because VS’ = 0 means “no violated edges in dimension i“

s TS0
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Analysis of the Averaging Operator

How many function values are changed when averaging dimension i?

2 - (# of violated edges in dimension i after averaging dimensions 1, ...,i — 1)

o LetVi(f) be the # of edges in dimension i violated by f
Vi(f) < VS' (f) < VH(f) - ImageDiam(f)

e Dimension i starts and ends up with VS! < VI(f) - ImageDiam(f)
e # of violated edges in dimension i never exceeds Vi(f) - ImageDiam(f)
# of changes

= 2 - (# of violated edges in dimension i after averaging dimensions 1, ...,i — 1)
<2-V(f) - ImageDiam(f)
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Lipschitz Test for Functions f: {0,1}9 — 7Z

KKey Lemma

If f:{0,1}4 — Z is e-far from Lipschitz then V(f) =
\

E-Zd_l

ImageDiam(f)

i.e., fraction of violated edges is >

&

d-ImagDiam(f)

Enough to sample ©(d - ImageDiam(f)/e) edges

Issue: ImageDiam(f) can be > 2¢

Observation: A Lipschitz function on {0,1}¢ has image diameter at most d.

/Algorithm R
1. Sample ©(1/g) domain points x
2. r=maxf(x)— min f(x)
X X
3. Ifr >d, reject
\4. Sample O(d - /¢ ) edges, and reject if any edge is violated -/
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Analysis of Lipschitz; Hypercube Test

Algorithm
1. Sample ©(1/g) domain points x

2. r= my?xf(x) — mxinf(x)

3. Ifr >d, reject
\4. Sample O(d - r/¢) edges, and reject if any edge is violated ~ /

If f is Lipschitz, it is always accepted. 6/

Suppose f is e-far from Lipschitz.
e If r > d, the algorithm rejects. 6/ =

e |t remains to consider the caser < d. @
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Analysis of Lipschitz; Hypercube Test

Algorithm
1. Sample ©(1/g) domain points x

2. r=maxf(x)— min f(x)
X X
3. Ifr >d, reject
\4. Sample O(d - r/¢) edges, and reject if any edge is violated ~ /
Suppose f is e-far from Lipschitz and r < d.

e W.h.p.rissuch that f is €/2-close to having image diameter r
That is, some function g at distance < &€/2 has image diameter r

e Leta,,;,;, = ming(x) and a,,q,, = max g(x)
X X

3 Amin iff(x) < Qnin
Let f(x) =< Amax I f(X) > apax
f(x) otherwise

. f has image diameter r and

ImageDiam

s at distance < £/2 from f = it is g/2-far from Lipschitz
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Analysis of Lipschitz; Hypercube Test

Algorithm
1. Sample ©(1/g) domain points x

2. r=maxf(x)— min f(x)
X X
3. Ifr >d, reject
\4. Sample O(d - r/¢) edges, and reject if any edge is violated ~ /
Suppose f is e-far from Lipschitz and r < d.

e We have: f has image diameter r and is ¢/2-far from Lipschitz
g/2 &
d-ImagDiam(f)  2-d-r f

e An edge is violated byf only if it is violated by f

e By KeylLemma, V(f) >

&

e Algorithm rejects w.h.p.

ImageDiam
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Our Results for the Lipschitz Property

TESTERS

Linef:{1,..,n} >R

Hypercube f:{0,1}¥ - R

> Upper bound: O(d - min(d, ImageDiam(f))/ (6¢)) time
for range 67

o same time to distinguish Lipschitz and e-far from (1+ 6)-Lipschitz for range R

> Lower bound: €2(d) queries
o tight for range {0,1,2}

LOCAL RECONSTRUCTORS
Hypergrid f: {1,..., n}9 > R
Hypercube f:{0,1}¥ > R
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Open Questions

Lipschitz Property

e Tight bounds for testers on the hypercube

e Tester on the hypergrid

e Adaptive lower bounds for local filters on the hypercube/hypergrid
e (Nonlocal) reconstruction

e Explore more complicated ranges than R
— for testers on domains other than the line
— for reconstructors

Other Properties

e Filters for data privacy mechanisms based on local notions of
sensitivity

— smooth sensitivity [Nissim Raskhodnikova Smith 07]
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