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Lipschitz Continuous Functions

A fundamental notion in

� mathematical analysis

� theory of differential equations

Example uses of a Lipschitz constant c of a given function f

� probability theory: in tail bounds via McDiarmid’s inequality

� program analysis: as a measure of robustness to noise 

� data privacy: to scale noise added to preserve differential privacy

A function f : D → R has Lipschitz constant c

if for all x,y in D,       

distanceR(f(x),f(y)) ≤ c ∙ distanceD(x,y).
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Computing a Lipschitz Constant?  

• Infeasible

• Undecidable to even verify if f

computed by a TM has Lipschitz constant c

• NP-hard to verify if f computed by 

a circuit has Lipschitz constant c

– even  for finite domains

3Image sources: http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/coretechnologies.htm 

http://www.augustana.ab.ca/~mohrj/courses/2004.fall/csc110/assignments/lab2.html
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Lipschitz Functions Over Finite Domains

We call a function Lipschitz if it has Lipschitz constant 1.
• can rescale by 1 �	⁄ to get a Lipschitz function from a function with 

Lipschitz constant �
Examples

f : {1,…,n} → R              f : {0,1}d → R         f  : {1,…,n}d → R
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nodes = points in the domain; edges = points at distance 1

node labels  = values of the function
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Application 1: Program Analysis

Certifying that a program computes a Lipschitz function
[Chaudhuri Gulwani Lublinerman Navidpour 10]

To ensure that a program
� is robust to noise in its inputs

(e.g., caused by communication/ 
measurement errors)

� responds well to compiler
optimizations that lead to an 
approximately equivalent program

�Question: Can we test if a function is Lipschitz?
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Application 2: Data Privacy

6

Individuals

Government, 

Businesses, 

Researchers

(or)

Malicious

adversary

Clients
Trusted
Server

Typical examples: census, civic archives, medical records,…
�[Dwork McSherry Nissim Smith 06]

Lipschitz functions can be released with little noise while   

satisfying differential privacy. 

�Question: Can we ensure that the server only answers queries about 
Lipschitz functions?

x =

xd

xd-1

x3

x2

x1

MMMM

MMMM

“Tell me f(x)”

f(x) + noise



Local Property Reconstruction [Saks Seshadhri 10]

Extends [Ailon Chazelle Seshadhri Liu 08]
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Oracle

f(x)x

� for each f and r, function g satisfies property P

�w.h.p. g is close to f (in Hamming distance)

�g(x) can be computed quickly

�Local filter: g does not depend on queries x

User

User expects f to satisfy property P

Oracle

g(x)x

User

Reconstruction of property P

Filter

f(a), f(b),…a, b,…

random seed r



Local Property Reconstruction [Saks Seshadhri 10]

Extends [Ailon Chazelle Seshadhri Liu 08]
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Oracle

f(x)x

� for each f and r, function g satisfies property P

�g = f if f satisfies property P

�g(x) can be computed quickly

�Local filter: g does not depend on queries x

User

User expects f to satisfy property P

Oracle

g(x)x

User

Reconstruction of property P

Filter

f(a), f(b),…a, b,…

random seed r



Filter Mechanism for Data Privacy
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Individuals Clients
Trusted
Server

�Question: 
Can we quickly (locally) reconstruct Lipschitz property?
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Using Local Lipschitz Filter on the Hypergrid
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�Question: 
Can we quickly locally reconstruct Lipschitz property for 

functions on the hypergrid domains?
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Our Results: Lipschitz Testers

Line f : {1,…, n} → R 

� Upper bound: O(log n / ε) time

o applies to all discretely metrically convex spaces R

� R
� , ℓ� 	for all 	 ∈ 1,∞ , 	 R� , ℓ� , 	 Z� , ℓ
 , 	 Z� , ℓ�

� the shortest path metric  �� for all graphs �
o generalization of monotonicity tester via transitive-closure-spanners [Dodis Goldreich

Lehman R Ron Samorodnitky 99, Bhattacharyya Grigorescu Jung R Woodruff 09]

o applies to all edge-transitive properties that allow extension

� Lower bound: Ω(log n) queries for nondaptive 1-sided error tests

o holds even for range Z
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Metric Convexity

� a standard notion in geometric functional analysis

A metric space (�, ��) is metrically convex 

if for all �, � ∈ � and 

all  positive �, � ∈ R satisfying �� �, � ≤ � + �
there exists � ∈ � such that �� �,� ≤ α and �� �, � ≤ β
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Discrete Metric Convexity

� a relaxation of 

a standard notion in geometric functional analysis

A metric space (�, ��) is discretely metrically convex 

if for all �, � ∈ � and 

all  positive �, � ∈ Z satisfying �� �, � ≤ � + �
there exists � ∈ � such that �� �,� ≤ α and �� �, � ≤ β
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Class of Properties to Which Line Tester Applies

• A property is edge-transitive if

1) it can be expressed in terms conditions on ordered pairs of domain points

2) it is transitive: whenever (�, �) and (�,  ) satisfy (1), so does �,  

• A property allows extension if

3) any function that satisfies (1) on a subset of the domain can be extended to 

a function with the property
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Our Results: Lipschitz Testers

Line f : {1,…, n} → R 

� Upper bound: O(log n / ε) time

o applies to all discretely metrically convex spaces R

� R
� , ℓ� 	for all 	 ∈ 1,∞ , 	 R� , ℓ� , 	 Z� , ℓ
 , 	 Z� , ℓ�

� the shortest path metric  �� for all graphs �
o generalization of monotonicity tester via TC-spanners [DGLRRS99, BGJRW09]

o applies to all edge-transitive properties that allow extension

� Lower bound: Ω(log n) queries for nondaptive 1-sided error tests

o holds even for range Z
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Our Results: Lipschitz Testers

Hypercube f : {0,1}d → R 

� Upper bound: O(d ∙ min(d, ImageDiam(f))/ (δε)) time for range δZ

o same time to distinguish Lipschitz and ε-far from (1+ δ)-Lipschitz for range R

� Lower bound: Ω(d) queries

o tight for range {0,1,2}

o reduction from a communication complexity problem

(new technique due to [Blais Brody Matulef 11])
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Our Results: Local Lipschitz Reconstructors

Hypergrid f : {1,…, n}d → R

� Upper bound: O (log $ + 1)d time

� Lower bound:                                   queries 

for nonadaptive filters

Hypercube f : {0,1}d → R

� Lower bound: queries, where α % 0.1620,

for nonadaptive filters
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Hypercube Test: Important Special Case

Testing if f : {0,1}d → Z is Lipschitz

in O(d ∙ min(d, ImageDiam(f))/ ε) time

• f is Lipschitz if its values on endpoints of 

every edge differ by at most 1.

• A an edge {�, �} is violated if ( � − ( � > 1
Goal: Relate the number of violated edges, +((), to the distance

to the Lipschitz property.
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Hypercube Test: Key Lemma
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If f : {0,1}d → Z is ε-far from Lipschitz then + ( ≥ -⋅/012
345678954(:)

• Enough to show: we can make f Lipschitz

by modifying 2 ∙ V(f) ∙ ImageDiam(f) values.

• Then 2 ∙ V(f) ∙ ImageDiam(f) ≥ ε ⋅ 2<	for ε-far f, 

implying Key Lemma.

Key Lemma



Averaging Operator

Plan: Transform f into a Lipschitz function by repairing edges in one 

dimension at a time.

• As in the analysis of monotonicity tester in [DGLRRS99, GGLRS00]

– Worked only for Boolean functions

– General range was handled by induction on the size of the range

– Function with range {0,1} are all Lipschitz, 

with range {0,2} are trivially testable
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Plan: Repairing edges in one dimension at a time.

For each violated edge {�, �} along	dimension	D	with	( � < ( � + 1

Issue: might increase the # of violated edges in other dimensions

Intuition: violation is “spread” among the edges in dimension I

Averaging Operator
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Potential Function Argument

Idea: Take into account the magnitude of violations.

• Violation score vs({�, �}) = max(0, ( � − ( � − 1)• MNO= sum of violation scores of edges along dimension I

Want to show: Averaging in dimension D does not increase MNO for all 

dimensions I ≠ D
Issue: averaging operator is complicated
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Basic Step Operator

Idea: Break up the action of Averaging Operator into basic steps.

For each violated edge {�, �} along	dimension	D	with	( � < ( � + 1
Averaging in dimension D = multiple Basic Steps in dimension D
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Basic Step Operator

Idea: Break up the action of Averaging Operator into basic steps.

For each violated edge {�, �} along	dimension	D	with	( � < ( � + 1
Averaging in dimension D = multiple Basic Steps in dimension D
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Basic Step Operator

Idea: Break up the action of Averaging Operator into basic steps.

For each violated edge {�, �} along	dimension	D	with	( � < ( � + 1
Averaging in dimension D = multiple Basic Steps in dimension D
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Basic Step Operator

Idea: Break up the action of Averaging Operator into basic steps.

For each violated edge {�, �} along	dimension	D	with	( � < ( � + 1
Averaging in dimension D = multiple Basic Steps in dimension D

Enough to show: 

Basic Step in dimension D does not 

increase MNO	∀dimensions I ≠ D
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Basic Step in dimension D does not increase MNO
Enough to prove it for squares

Can be proved by simple case analysis
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Analysis of the Averaging Operator

Know: Averaging dimension D
1. repairs all violated edges in dimension D (brings	MN9 down to 0)

2. doesn’t increase MNO 	∀dimensions I ≠ D
• Averaging in dimensions D = 1,… , � repairs all violations

because MNO = 0 means “no violated edges in dimension D“
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Analysis of the Averaging Operator

How many function values are changed when averaging dimension D?
2 ∙ (# of violated edges in dimension D after averaging dimensions 1,… , D − 1)

• Let +9(() be the # of edges in dimension D violated by (+9 ( ≤ MN9 (() ≤ +9 ( ⋅ XYZ[\]DZY(()
• Dimension D	starts and ends up with  MN9 ≤ +9 ( ⋅ XYZ[\]DZY(()
• # of violated edges in dimension D never exceeds  +9 ( ⋅ XYZ[\]DZY(()
# of changes 

=  2 ∙ (# of violated edges in dimension D after averaging dimensions 1, … , D − 1)≤ 2 ⋅ + ( ⋅ XYZ[\]DZY(()
29



Lipschitz Test for Functions  f : {0,1}d→→→→ ZZZZ
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If f : {0,1}d → Z is ε-far from Lipschitz then + ( ≥ -⋅/012
345678954(:)

• i.e., fraction of violated edges is ≥ -<⋅34568954(:)
• Enough to sample Θ � ⋅ XYZ[\]DZY(() _⁄ 	 edges 

Issue: XYZ[\]DZY(() can be > 2<
Observation: A Lipschitz function on {0,1}d has image diameter at most d.

1. Sample Θ 1 _⁄ domain points �
2. ` = maxa ( � − mina ((�)
3. If ` > �, reject

4. Sample Θ � ⋅ ` _⁄ 	 edges, and reject if  any edge is violated

Key Lemma

Algorithm



Algorithm

Analysis of Lipschitz Hypercube Test

1. Sample Θ 1 _⁄ domain points �
2. ` = maxa ( � − mina ((�)
3. If ` > �, reject

4. Sample Θ � ⋅ ` _⁄ 	 edges, and reject if  any edge is violated

If ( is Lipschitz, it is always accepted.

Suppose ( is _-far from Lipschitz.

• If  ` > �, the algorithm rejects.

• It remains to consider the case ` ≤ �.
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Algorithm

Analysis of Lipschitz Hypercube Test

1. Sample Θ 1 _⁄ domain points �
2. ` = maxa ( � − mina ((�)
3. If ` > �, reject

4. Sample Θ � ⋅ ` _⁄ 	 edges, and reject if  any edge is violated

Suppose ( is _-far from Lipschitz and ` ≤ �.

• W.h.p. ` is such that ( is _/2-close to having image diameter `
That is, some function [ at distance < ε/2 has image diameter `

• Let Z49b = mina [ � and Z45a = maxa [(�)
Let (c � = dZ49b					if	( � < Z49bZ45a					if	( � > Z45a( � 															otherwise• (c has image diameter ` and 

is at distance < ε/2 from ( ⇒ it is ε/2-far from Lipschitz

32
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Algorithm

Analysis of Lipschitz Hypercube Test

1. Sample Θ 1 _⁄ domain points �
2. ` = maxa ( � − mina ((�)
3. If ` > �, reject

4. Sample Θ � ⋅ ` _⁄ 	 edges, and reject if  any edge is violated

Suppose ( is _-far from Lipschitz and ` ≤ �.

• We have: (c has image diameter ` and is ε/2-far from Lipschitz

• By Key Lemma, + (c ≥ -//<⋅34568954(:c) = -/⋅<⋅i
• An edge is violated by (c only if it is violated by (+ ( ≥ 	+ (c ≥ -/⋅<⋅i
• Algorithm rejects w.h.p.
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Our Results for the Lipschitz Property

TESTERS

Line f : {1,…, n} → R 

Hypercube f : {0,1}d → R 

� Upper bound: O(d ∙ min(d, ImageDiam(f))/ (δε)) time 

for range δZ

o same time to distinguish Lipschitz and ε-far from (1+ δ)-Lipschitz for range R

� Lower bound: Ω(d) queries

o tight for range {0,1,2}

LOCAL RECONSTRUCTORS

Hypergrid f : {1,…, n}d → R

Hypercube f : {0,1}d → R
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Open Questions

Lipschitz Property 

• Tight bounds for testers on the hypercube

• Tester on the hypergrid

• Adaptive lower bounds for local filters on the hypercube/hypergrid

• (Nonlocal) reconstruction

• Explore more complicated ranges than ℝ
– for testers on domains other than the line

– for reconstructors

Other Properties 

• Filters for data privacy mechanisms based on local notions of 

sensitivity

– smooth sensitivity [Nissim Raskhodnikova Smith 07]
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