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Netflix Prize

• One million big ones!

• Given 100 million ratings on a 
scale of 1 to 5, predict 3 million 
ratings to highest accuracy

• 17770 total movies
• 480189 total users
• Over 8 billion total ratings



Abstract Setup: Matrix Completion

• How do you fill in the missing data?

Mij known for black cells
Mij unknown for white cells

Rows index movies
Columns index users

M =

M L
R*

k x r r x nk x n

kn entries r(k+n) entries

=



G

K

Controller
Design

Constraints involving the rank of the Hankel Operator, Matrix, 
or Singular Values

Model 
Reduction

System
Identification

Multitask 
Learning

Euclidean
Embedding

Rank of: Matrix of 
Classifiers

Gram
Matrix

Recommender
Systems

Data
Matrix



Affine Rank Minimization
• PROBLEM: Find the matrix of lowest rank that 

satisfies/approximates the underdetermined linear 
system

• NP-HARD:

–Reduce to MAXCUT

–Hard to approximate

–Exact algorithms are awful

Φ(X) = y Φ : Rk×n → Rm

minimize rank(X)
subject to Φ(X) = y



Heuristic: Gradient Descent

• Just run gradient descent 

•  λ determines tradeoff between satisfying constraints and 
the size of the factors
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… … … …Gradient descent 
on low-rank

parameterization

Mixture of 
hundreds of 

models, including 
gradient descent



Low-rank Matrix Completion

• PROBLEM: Find the matrix of lowest rank has the 
specified entries

• When is this problem easy?

–Which algorithms? 

–Which sampling sets?

–Which low-rank matrices?



Compressed Sensing

• Model: most of the energy is in few wavelet coefficients

• Use the fact that the image is sparse in wavelet basis to 
reduce number of measurements required for signal 
acquisition.

• decode using l1 minimization

pixels large
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Cardinality Minimization
• PROBLEM: Find the vector of lowest cardinality that 

satisfies/approximates the underdetermined linear 
system

• NP-HARD:

–Reduce to EXACT-COVER [Natarajan 1995]

–Hard to approximate

–Known exact algorithms require enumeration

• HEURISTIC: Replace cardinality with l1 norm

• Compressed Sensing

Φx = y Φ : Rn → Rm



• 1-sparse vectors of 
Euclidean norm 1

• Convex hull is the 
 unit ball of the l1 norm
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minimize �x�1

subject to Φx = y

x1

x2

Φx=y

Compressed Sensing: Candes, Romberg, Tao, 
Donoho, Tanner, Etc...



• 2x2 matrices
• plotted in 3d

  rank 1
  x2 + z2 + 2y2 = 1

Convex hull:

Rank
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Which Algorithm?

• Nuclear Norm Heursistic. Proposed by Fazel (2002).

• Nuclear norm is the “numerical rank” in numerical analysis

• The “trace heuristic” from controls if X is p.s.d.

Convex Relaxation:

Affine Rank Minimization:
minimize rank(X)
subject to Φ(X) = y

minimize �X�∗ =
�k

i=1 σi(X)
subject to Φ(X) = y



• 2x2 matrices
• plotted in 3d

Nuclear Norm Heuristic

�X�∗ =
�

i

σi(X)



• 2x2 matrices
• plotted in 3d

• Projection onto x-z 
 plane is l1 ball



So when does it work?

• 2x2 matrices
• plotted in 3d

• Not polyhedral…



X = UΣV ∗

L = UΣ1/2

R = V Σ1/2

Low-rank parameterization

minimize �X�∗ =
�k

i=1 σi(X)
subject to Φ(X) = y

minimize 1
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subject to Φ(LR∗) = y

Method of Multipliers

Nuclear Norm minimization
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“The Blog Heuristic”



First theory result

• If m > c0r(k+n-r)log(kn), the heuristic succeeds for most 
maps Φ.

• Number of measurements c0 r(k+n-r) log(kn)

• Approach: Show that a random Φ is nearly an isometry 
on the manifold of low-rank matrices.

• Stable to noise in measurement vector y and returns as 
good an answer as a truncated SVD of the true X.

constant intrinsic 
dimension

ambient 
dimension

Recht, Fazel, and Parrilo. 2007.

Φ(X) = y Φ : Rk×n → Rm



Low-rank Matrix Completion

• How do you fill in the missing data?

Mij known for black cells
Mij unknown for white cells

M =



Which Sampling Sets?

• Row-column graph

–Vertices: indexed by rows and columns

–Edge if that entry is in Ω

rows columns



Which Sampling Sets?

• Row-column graph: all vertices must be observed

• M = xy*.  If you miss row 4, cannot determine x4.

rows columns



Which Sampling Sets?

• Row-column graph: must be connected

• If M = xy*, cannot distinguish between

rows columns



Which Sampling Sets?

• Row-column graph: must have at least r(n+k-r) 
edges

• The dimension of the manifold of rank r, k x n matrices 
is r(n+k-r) 

rows columns



If we can choose the samples...
• Generically, first r rows and r columns are sufficient:

• [Frieze, Kannan, Vempala 1998, Drineas, Kannan, 
Mahoney 2003, etc.]: sample proportional to norms 
of columns. Low-rank matrix approximations.

• Most sets with more than 2rnβ log(n) entries have at 
least one entry for every row and column, the row-
column graph is connected.

• [Achloptas, McSherry 2004]: random sampling 
sufficient to obtain an additive error approximation to 

If we can’t choose the samples...

M =
�

A B
C CA−1B

�



Which matrices?

• Any subset of entries that 
misses the (1,1) 
component tells you 
nothing!

• Still need to see the 
entire first row

• Want each entry to 
provide nearly the same 
amount of information

X =

X =



Incoherence
• Let U be a subspace of      of dimension r and PU be 

the orthogonal projection onto U.  Then the coherence 
of U (with respect to the standard basis ei) is defined 
to be

•  µ(U) ≥ 1

– e.g., span of r columns of the Fourier transform

•  µ(U) ≤ n/r 

– e.g., any subspace that contains a standard basis element

•  µ(U) = O(1)

– sampled from the uniform distribution with r > log n

Rn



Incoherence
• Let U be a subspace of      of dimension r and PU be 

the orthogonal projection onto U.  Then the coherence 
of U (with respect to the standard basis ei) is defined 
to be

•  µ(U) ≥ 1

– e.g., span of r columns of the Fourier transform

•  µ(U) ≤ n/r 

– e.g., any subspace that contains a standard basis element

•  µ(U) = O(1)

– sampled from the uniform distribution with r > log n

Rn

µ(U) small means leverage scores are uniform. 

[Drineas, Mahoney, Muthukrishnan 2006]: 
uniform row/column sampling gives exact 
reconstruction.

pi = �PUei�2



Bounds for Matrix Completion
• Suppose X is k x n (k≤n) has rank r and has row and 

column spaces with incoherence bounded above by µ. 
Then the nuclear norm heuristic recovers X from most 
subsets of entries Ω with cardinality at least

Candès and Recht. 2008

[Candès and Tao 2009]
stronger assumptions

[Keshavan et al, 2009]
rank = o(1), σ1/σr bounded

special case extensions:

|Ω| > C �nlog(n)

[Gross et al 2009,
Recht 2009, 
Gross2009]

|Ω| ≥ 32µ r(n + k) log2(2n)



Recent Extensions

• Noise robustness
• Candes-Plan, Keshavan et al 2009, Lounici et al, 

Neghaban and Wainwright 2010

• Deconvolving Sparse and Low-rank matrices
• Chandrasekaran et al 2009, Wright et al 2009

• Fast algorithms
• First order methods - Cai et al, Ma et al, Toh et al, 

Ji et al, etc...
• “Generalized Blog Heuristic” - Lee et al, Recht and 

Re



Linear Inverse Problems
• Find me a solution of

• Φ m x n, m<n

• Of the infinite collection of solutions, which one 
should we pick?

• Leverage structure:

• How do we design algorithms to solve 
underdetermined systems problems with priors?

y = Φx

Sparsity Rank Smoothness Symmetry



• 1-sparse vectors of 
Euclidean norm 1

• Convex hull is the 
 unit ball of the l1 norm
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minimize �x�1

subject to Φx = y

x1

x2

Φx=y

Compressed Sensing: Candes, Romberg, Tao, 
Donoho, Tanner, Etc...



• 2x2 matrices
• plotted in 3d

  rank 1
  x2 + z2 + 2y2 = 1

Convex hull:

Rank

�X�∗ =
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• 2x2 matrices
• plotted in 3d

Nuclear Norm Heuristic

Fazel 2002. 
Recht, Fazel, and Parillo 2007

Rank Minimization/Matrix Completion

�X�∗ =
�

i

σi(X)



• Integer solutions:
 all components of x 

are ±1

• Convex hull is the 
 unit ball of the l1 norm

(1,-1)

(1,1)

(-1,-1)

(-1,1)

Integer Programming



minimize �x�∞
subject to Φx = y

x1

x2

Φx=y

Donoho and Tanner 2008
Mangasarian and Recht. 2009.



• Search for best linear combination of fewest atoms
• “rank” = fewest atoms needed to describe the model

Parsimonious Models

atomsmodel weights

rank



Hierarchical dictionary for image patches

26/42

Model Based Compressive Sensing

• X has structured sparsity: linear combination of 
elements from a set of subspaces {Ug}.

• Atomic set: unit norm vectors living in one of the Ug

• Proposed by Jacob, Obozinski and Vert (2009).

�x�G = inf
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Permutation Matrices
• X a sum of a few permutation matrices
• Examples: Multiobject Tracking (Huang et al), 

Ranked elections (Jagabathula, Shah)

• Convex hull of the permutation matrices: Birkhoff 
Polytope of doubly stochastic matrices

• Permutahedra:  convex hull of permutations of a 
fixed vector.

[1,2,3,4]



• Curve of [1,t,t2,t3,t4,...],   t∈T, some basic set.

• System Identification, Image Processing, Numerical 
Integration, Statistical Inference...

• Convex hull is characterized by linear matrix 
inequalities (Toeplitz psd, Hankel psd, etc)
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µt ∼ E[etφi]



Cut Matrices
• Sums of rank-one sign matrices: 

• Collaborative Filtering (Srebro et al), Clustering in 
Genetic Networks (Tanay et al), Combinatorial 
Approximation Algorithms (Frieze and Kannan)

• Convex hull is the cut polytope.  Membership is NP-
hard to test

• Semidefinite approximations of this hull to within 
constant factors.

X =
�

i

piXi Xi = xix
∗
i Xij = ±1



Atomic Norms
• Given a basic set of atoms,     , define the function

• When      is centrosymmetric, we get a norm

• When does this work?  
• How do we solve the optimization problem?
• A: Chandrasekaran, Recht, Willsky, and Parrilo 2010

�x�A = inf{
�

a∈A
|ca| : x =

�

a∈A
caa}

�x�A = inf{t > 0 : x ∈ tconv(A)}

A

minimize �z�A
subject to Φz = yIDEA:

A



• Set of directions that decrease the norm from x 
form a cone:

• x is the unique minimizer if the intersection of this 
cone with the null space of Φ	  equals {0}

Tangent Cones

y = Φz x
minimize �z�A
subject to Φz = y

{z : �z�A ≤ �x�A}
TA(x)

TA(x) = {d : �x + αd�A ≤ �x�A for some α > 0}



Gaussian Widths
• When does a random subspace, U, intersect a 

convex cone C at the origin?

• Gordon 88: with high probability if

• Where                                               is the 
Gaussian width                                                  
( g is a normal Gaussian random vector.)

• Corollary: For inverse problems: if Φ is a random 
Gaussian matrix with m rows, need                           
for recovery of x.

codim(U) ≥ w(C)2

w(C) = E
�

max
x∈C∩Sn−1

�x, g�
�

m ≥ w(TA(x))2



• Suppose we observe

• If     is an optimal solution, then                           
provided that

Robust Recovery

minimize �z�A
subject to �Φz − y� ≤ δ

�w�2 ≤ δ

�x− x̂� ≤ 2δ

�
x̂

y = Φx + w

{z : �z�A ≤ �x�A}

�Φz − y� ≤ δ

m ≥ c0w(TA(x))2

(1− �)2



w(C) = E



 max
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�g − u�
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Duality

•        is the polar cone.  

•            is the normal 
cone. Equal to the cone 
induced by the 
subdifferential of the 
atomic norm at x.

C∗

TA(x)∗ = NA(x)
NA(x)

NA(x)

C∗ = {w : �w, z� ≤ 0 ∀ z ∈ C}



• Hypercube:

• Sparse Vectors, n vector, sparsity s<0.25n

• Block sparse, M groups (possibly overlapping), 
maximum group size B, k active groups

• Low-rank matrices: n1 x n2, (n1<n2), rank r

Re-derivations 
m ≥ n/2

m ≥ 2s

�
log

�
n− s

s

�
+ 1

�

m ≥ 3r(n1 + n2 − r)

m ≥ 2k (log (M − k) + B) + k



General Cones
• Theorem: Let C be a nonempty cone with polar 

cone C*.  Suppose C* subtends normalized solid 
angle µ.  Then

• Proof Idea:  The expected distance to C* can be 
bounded by the expected distance to a spherical cap 

• Isoperimetry: Out of all subsets of the sphere with 
the same measure, the one with the smallest 
neighborhood is the spherical cap

• The rest is just integrals...

w(C) ≤ 3

�

log
�

4
µ

�



Symmetric Polytopes
• Corollary: For a vertex-transitive (i.e., 

“symmetric”) polytope with p vertices, O(log p) 
Gaussian measurements are sufficient to recover a 
vertex via convex optimization.

• For n x n permutation matrix: m = O(n log n)
• For n x n cut matrix: m = O(n)

• (Semidefinite relaxation also gives m = O(n))



Algorithms

• Naturally amenable to projected gradient algorithm:

• Similar algorithm for atomic norm constraint

• Same basic ingredients for ALM, ADM, Bregman, 
Mirror Prox, etc... how to compute the shrinkage?

zk+1 = Πηµ(zk − ηΦ∗rk)

minimizez �Φz − y�2
2 + µ�z�A

rk = Φzk − y

“shrinkage”

residual

Πτ (z) = arg min
u

1
2�z − u�2 + τ�u�A



Relaxations

• Dual norm is efficiently computable if the set of 
atoms is polyhedral or semidefinite representable

• Convex relaxations of atoms yield approximations to 
the norm

• Hierarchy of relaxations based on θ-Bodies yield 
progressively tighter bounds on the atomic norm

A1 ⊂ A2 =⇒ �x�∗A1
≤ �x�∗A2

and �x�A2 ≤ �x�A1

�v�∗A = max
a∈A

�v, a�

NB! tangent cone 
gets wider



�v�∗A = max
a∈A

�v, a� ≤ τ ⇐⇒ �v, a� = τ − q(a)

• Suppose      is an algebraic variety

• Relaxation: restrict h to be sum of squares.
• Gives a lower bound on atomic norm
• Solvable by semidefinite programming (Gouveia, 

Parrilo, and Thomas, 2010)

Theta Bodies

g ∈ I

q = h + g

A = {x : f(x) = 0 ∀ f ∈ I}

h(x) ≥ 0 ∀x

A

positive 
everywhere

vanishes on 
atoms



Atomic Norm Decompositions

• Propose a natural convex heuristic for enforcing 
prior information in inverse problems

• Bounds for the linear case: heuristic succeeds for 
most sufficiently large sets of measurements

• Stability without restricted isometries

• Standard program for computing these bounds: 
distance to normal cones

• Approximation schemes for computationally difficult 
priors



Extensions...
• Width Calculations for more general structures

• Recovery bounds for structured measurement 
matrices (application specific)

• Incorporating stochastic noise models

• Understanding of the loss due to convex relaxation 
and norm approximation

• Scaling generalized shrinkage algorithms to massive 
data sets
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