Distributed Algorithms
Tutorial

Roger Wattenhofer
Distributed Algorithms

- Message Passing
- Shared Memory
Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.
• Find a Maximal Independent Set (MIS)
 – a non-extendable set of pair-wise non-adjacent nodes
Example: Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes
Example: Maximal Independent Set (MIS)

- Given a network with \(n \) nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes
Example: Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes
Example: Maximal Independent Set (MIS)

- Given a network with \(n \) nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes
Example: Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes

• Traditional (sequential) computation:
The simple greedy algorithm finds MIS (in linear time)
What about a Distributed Algorithm?

- Nodes are agents with unique ID’s that can communicate with neighbors by sending messages. In each **synchronous round**, every node can send a (different) message to each neighbor.
What about a Distributed Algorithm?

- Nodes are agents with unique ID’s that can communicate with neighbors by sending messages. In each **synchronous round**, every node can send a (different) message to each neighbor.

```
each round:
every node:
1. send msgs
2. rcv msgs
3. compute
```
A Simple Distributed Algorithm

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS → join MIS

Each round:
1. send msgs
2. rcv msgs
3. compute
A Simple Distributed Algorithm

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS → join MIS

Each round:
1. send msgs
2. rcv msgs
3. compute
A Simple Distributed Algorithm

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS → join MIS

What’s the problem with this distributed algorithm?

Each round:
1. send msgs
2. rcv msgs
3. compute
Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS → join MIS

69 — 17 — 11 — 10 — 7 — 4 — 3 — 1
Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS
Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS → join MIS

What if we have minor changes?
Example

• Wait until all neighbors with higher ID decided
• If no higher ID neighbor is in MIS → join MIS

What if we have minor changes?
Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS → join MIS

1. What if we have minor changes?
Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

![Diagram showing nodes with IDs]

What if we have minor changes?
Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS → join MIS

What if we have minor changes?
Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

- What if we have minor changes?

- Proof by animation: In the worst case, the algorithm is slow (linear in the number of nodes). In addition, we have a terrible „butterfly effect“.
What about a **Fast** Distributed Algorithm?

- Can you find a distributed algorithm that is *polylogarithmic* in the number of nodes n, for any graph?
What about a **Fast** Distributed Algorithm?

- Surprisingly, for **deterministic** distributed algorithms, this is an **Open** problem!

- However, **randomization** helps! In each synchronous round, nodes should choose a random value. If your value is larger than the value of your neighbors, join MIS!
What about a Fast Distributed Algorithm?

• Surprisingly, for deterministic distributed algorithms, this is an open problem!

• However, randomization helps! In each synchronous round, nodes should choose a random value. If your value is larger than the value of your neighbors, join MIS!
What about a Fast Distributed Algorithm?

- Surprisingly, for deterministic distributed algorithms, this is an open problem!

- However, randomization helps! In each synchronous round, nodes should choose a random value. If your value is larger than the value of your neighbors, join MIS!
What about a Fast Distributed Algorithm?

- Surprisingly, for deterministic distributed algorithms, this is an open problem!

- However, randomization helps! In each synchronous round, nodes should choose a random value. If your value is larger than the value of your neighbors, join MIS!

- How many synchronous rounds does this take in expectation (or whp)?
Analysis

• Event \((u \rightarrow v)\): node \(u\) got largest random value in combined neighborhood \(N_u \cup N_v\).
• We only count edges of \(v\) as deleted.

\[
\begin{align*}
\text{\includegraphics[width=200px]{image}}
\end{align*}
\]

• Similarly event \((v \rightarrow u)\) deletes edges of \(u\).
• We only double-counted edges.
• Using linearity of expectation, in expectation at least half of the edges are removed in each round.
• In other words, whp it takes \(O(\log n)\) rounds to compute an MIS.
Results: MIS

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo
Local Algorithms

- Each node can exchange a message with all neighbors, for t communication rounds, and must then decide.
- Or: Given a graph, each node must determine its decision as a function of the information available within radius t of the node.
- Or: Change can only affect nodes up to distance t.
- Or: ...

![Diagram of network with node v and radius $t = 3$]
Locality

Local Algorithms

Sublinear Algorithms
Locality is Everywhere!

- Self-Assembling Robots
- Applications e.g. Multicore
- Self-Stabilization
- Local Algorithms
- Dynamics
- Sublinear Algorithms
Locality is Everywhere!

- Self-Assembling Robots
- Applications e.g. Multicore
- Self-Stabilization
- Local Algorithms
- Dynamics
- Sublinear Algorithms
[Afek, Alon, Barad, et al., 2011]
What about an **Even Faster** Distributed Algorithm?

- Since the 1980s, nobody was able to improve this simple algorithm.

- What about **lower bounds**?

- There is an interesting lower bound, essentially using a Ramsey theory argument, that proves that an MIS needs at least $\Omega(\log^* n)$ time.
 - \log^* is the so-called iterated logarithm – how often you need to take the logarithm until you end up with a value smaller than 1.
 - This lower bound already works on simple networks such as the linked list.
Coloring Lower Bound on Oriented Ring

- Build graph G_t, where nodes are possible views of nodes for distributed algorithms of time t. Connect views that could be neighbors in ring.
- Here is for instance of G_1:

- Chromatic number of G_t is exactly minimum possible colors in time t.
Coloring Lower Bound on Oriented Ring

- Build graph G_t, where nodes are possible views of nodes for distributed algorithms of time t. Connect views that could be neighbors in ring.
- Here is for instance of G_1:

![Graph Diagram]

- Chromatic number of G_t is exactly minimum possible colors in time t.

Results: MIS

General Graphs, Randomized [Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Decomposition, Determ. [Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

Linked List [Linial, 1992]
Results: MIS

Linked List, Deterministic [Cole and Vishkin, 1986]

General Graphs, Randomized [Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Decomposition, Determ. [Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

Linked List [Linial, 1992]
Results: MIS

<table>
<thead>
<tr>
<th>IS(N_2)</th>
<th>∈ O(1)</th>
</tr>
</thead>
</table>

Growth-Bounded Graphs
[Schneider et al., 2008]

Linked List, Deterministic
[Cole and Vishkin, 1986]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Decomposition, Deterministic
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

1 \[\log^* n\] \[\log n\] \[n^\epsilon\] \[n\]

Linked List
[Linial, 1992]
Results: MIS

<table>
<thead>
<tr>
<th>IS(N₂)</th>
<th>∈ O(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth-Bounded Graphs</td>
<td>[Schneider et al., 2008]</td>
</tr>
<tr>
<td>Linked List, Deterministic</td>
<td>[Cole and Vishkin, 1986]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n^ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decomposition, Determ.</td>
</tr>
<tr>
<td>[Panconesi et al., 1996]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>log n</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Luby, 1986]</td>
</tr>
<tr>
<td>[Israeli and Itai, 1986]</td>
</tr>
<tr>
<td>[Alon, Babai, and Itai, 1986]</td>
</tr>
<tr>
<td>General Graphs, Randomized</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>log* n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other problems</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linked List</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Algo</td>
</tr>
</tbody>
</table>
Results: MIS

<table>
<thead>
<tr>
<th>1</th>
<th>$\log^* n$</th>
<th>$\log n$</th>
<th>n^ϵ</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linked List, Deterministic [Cole and Vishkin, 1986]</td>
<td>General Graphs, Randomized [Alon, Babai, and Itai, 1986] [Israeli and Itai, 1986] [Luby, 1986] [Métivier et al., 2009]</td>
<td>e.g., coloring, CDS, matching, max-min LPs, facility location</td>
<td>e.g., covering/packing LPs with only local constraints: constant approximation in time $O(\log n)$ or $O(\log^2 \Delta)$</td>
<td>Naïve Algo</td>
</tr>
<tr>
<td>Growth-Bounded Graphs [Schneider et al., 2008]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Minimum Vertex Cover (MVC)

- Given a network with n nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
 - a minimum set of nodes such that all edges are adjacent to node in MVC
Example: Minimum Vertex Cover (MVC)

- Given a network with n nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
 - a minimum set of nodes such that all edges are adjacent to node in MVC
Example: Minimum Vertex Cover (MVC)

- Given a network with n nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
 - a minimum set of nodes such that all edges are adjacent to node in MVC
Differences between MIS and MVC

- Central (non-local) algorithms: MIS is trivial, whereas MVC is NP-hard.
- Instead: Find an MVC that is “close” to minimum (approximation).
- Trade-off between time complexity and approximation ratio.

MVC: Various simple (non-distributed) 2-approximations exist!
- What about distributed algorithms?!?
Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $|S_0| = \delta |S_1|$
- The MVC is just all the nodes in S_1
- Distributed Algorithm...
Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $|S_0| = \delta |S_1|$
- The MVC is just all the nodes in S_1
- Distributed Algorithm...
Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $|S_0| = \delta |S_1|$
- The MVC is just all the nodes in S_1
- Distributed Algorithm...
$N_2(\text{node in } S_0)$

$N_2(\text{node in } S_1)$
Graph is “symmetric”, yet highly non-regular!
Lower Bound: The Argument

- The example graph is for $t = 3$.
- All edges are in fact special bipartite graphs with large enough girth.
- If you use the graph of recursion level t, then a distributed algorithm cannot find a good MVC approximation in time t.
• Choose degrees δ_i such that $\delta_{i+1}/\delta_i = 2^i \delta$.
• We have $|S_0| > \delta/2 \, |L_1|$, with $|L_1|$ nodes on level 1
Lower Bound: The Math

- Choose degrees δ_i such that $\delta_{i+1}/\delta_i = 2^i \delta$.

- We have $|S_0| > \delta/2 \; |L_1|$, with $|L_1|$ nodes on level 1.

- By induction we have a $(1 - \Theta(1/\delta))$ fraction of the nodes is in S_0.

- Now δ, n, Δ are depending on the recursion level t.
Lower Bound: The Math

- Choose degrees δ_i such that $\frac{\delta_{i+1}}{\delta_i} = 2^i \delta$.
- We have $|S_0| > \frac{\delta}{2} |L_1|$, with $|L_1|$ nodes on level 1.

By induction we have a $(1 - \Theta(1/\delta))$ fraction of the nodes is in S_0.
- Now δ, n, Δ are depending on the recursion level t.

Graph useful for proving lower bounds in sublinear algos?
Lower Bound: Results

- We can show that for $\epsilon > 0$, in t time, the approximation ratio is at least

$$\Omega \left(n \frac{1/4 - \epsilon}{t^2} \right) \text{ and } \Omega \left(\Delta \frac{1 - \epsilon}{t + 1} \right)$$

- Constant approximation needs at least $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time.
- Polylog approximation $\Omega(\log \Delta / \log \log \Delta)$ and $\Omega(\sqrt{\log n / \log \log n})$.
Lower Bound: Results

- We can show that for $\epsilon > 0$, in t time, the approximation ratio is at least

\[\Omega \left(n^{\frac{1}{4} - \frac{\epsilon}{t^2}} \right) \text{ and } \Omega \left(\frac{1 - \epsilon}{t + 1} \right) \]

- Constant approximation needs at least $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time.
- Polylog approximation $\Omega(\log \Delta / \log \log \Delta)$ and $\Omega(\sqrt{\log n / \log \log n})$.

tight for MVC
Lower Bound: Reductions

- Many “local looking” problems need non-trivial t, in other words, the bounds $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ hold for a variety of classic problems.
Many “local looking” problems need non-trivial t, in other words, the bounds $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ hold for a variety of classic problems.
Results: MIS

<table>
<thead>
<tr>
<th>IS(N2)</th>
<th>∈ O(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth-Bounded Graphs</td>
<td>[Schneider et al., 2008]</td>
</tr>
<tr>
<td>Linked List, Deterministic</td>
<td>[Cole and Vishkin, 1986]</td>
</tr>
</tbody>
</table>

Other problems e.g., [Kuhn et al., 2006]

e.g., coloring, CDS, matching, max-min LPs, facility location

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Decomposition, Determin.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

1 \log^* n \sqrt{\log n} \ldots \log n n^\epsilon n

Linked List [Linial, 1992]
General Graphs [Kuhn et al., 2004, 2006]
0(1)-APX, O(1) - time
Series-parallel
→ planar
planar
→ planar prof.
plane
→ no K_{3,5}
→ no K_5
→ bounded arb.
→ bounded diam.
→ gb + sparse
→ cliques
d-regular
→ bounded degree
→ sparse, d_2, d_3
growth-bounded
→ O(1)-APX
WA-APX
log^* time
triangle-free
→ some forbidden ind. subgr.
sparse
→ dom. p.
claw-free
line graph
→ E(n)-reg.
Open
Open
Open
Open
Open
Open
Open
Open
Summary

1 \log^* n \sqrt{\log n} ... \log n \text{Diameter}

- **Growth-Bounded Graphs** (various problems)
 - E.g., dominating set approximation in planar graphs

- **Approximations of dominating set, vertex cover, etc.**

- **MIS, maximal matching, etc.**

- **Covering and packing LPs**
 - E.g., dominating set approximation in planar graphs

- **MST, Sum, etc.**
Thank You!

Questions & Comments?

Thanks to my co-authors
Fabian Kuhn
Thomas Moscibroda
Johannes Schneider

www.disco.ethz.ch
Open Problems

- Close the gap between $\sqrt{\log n}$ and $\log n$ (for randomized algorithms)!
- Find a fast deterministic MIS algorithm (or strong det. lower bound)!
- Where are the boundaries between constant, \log^*, \log, and diameter?
- What about algorithms that cannot even exchange messages?
- Can the lower bound graph be used in the context of sublinear algorithms?