Submodular Maximization in a Data Streaming Setting

Amit Chakrabarti

Dartmouth College
Hanover, NH, USA

Based on joint work with Sagar Kale

Sublinear Algorithms Workshop
Bertinoro, May 2014

Maximum Matching

Maximum Matching

The cardinality version

Maximum Matching

The weighted version

Maximum Matching in a Graph Stream

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in[n] \times[n]$
- Describes graph $G=(V, E): n$ vertices, m edges, undirected, simple
- Each edge appears exactly once in stream
- Goal
- Output a matching $M \subseteq E$, with $|M|$ maximal

Maximum Matching in a Graph Stream

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in[n] \times[n]$
- Describes graph $G=(V, E): n$ vertices, m edges, undirected, simple
- Each edge appears exactly once in stream
- Goal
- Output a matching $M \subseteq E$, with $|M|$ maximal
- Use sublinear (in m) working memory
- Ideally O (n polylog n) ... "semi-streaming"
- Need $\Omega(n \log n)$ to store M

Maximum Matching in a Graph Stream

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in[n] \times[n]$
- Describes graph $G=(V, E): n$ vertices, m edges, undirected, simple
- Goal: output a matching $M \subseteq E$, with $|M|$ maximal

Maximum Matching in a Graph Stream

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in[n] \times[n]$
- Describes graph $G=(V, E)$: n vertices, m edges, undirected, simple
- Goal: output a matching $M \subseteq E$, with $|M|$ maximal

Maximum weight matching (MWM)

- Input: stream of weighted edges $\left(u, v, w_{u v}\right) \in[n] \times[n] \times \mathbb{R}^{+}$
- Goal: output matching $M \subseteq E$, with $w(M)=\sum_{e \in M} w(e)$ maximal

Maximum Matching in a Graph Stream

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in[n] \times[n]$
- Describes graph $G=(V, E)$: n vertices, m edges, undirected, simple
- Goal: output a matching $M \subseteq E$, with $|M|$ maximal

Maximum weight matching (MWM)

- Input: stream of weighted edges $\left(u, v, w_{u v}\right) \in[n] \times[n] \times \mathbb{R}^{+}$
- Goal: output matching $M \subseteq E$, with $w(M)=\sum_{e \in M} w(e)$ maximal

Maximum submodular-function matching (MSM)
\leftarrow this talk

- Input: unweighted edges (u, v), plus submodular $f: 2^{E} \rightarrow \mathbb{R}^{+}$
- Goal: output matching $M \subseteq E$, with $f(M)$ maximal

Maximum Submodular Matching

Input

- Stream of edges $\sigma=\left\langle e_{1}, e_{2}, \ldots, e_{m}\right\rangle$
- Valuation function $f: 2^{E} \rightarrow \mathbb{R}^{+}$
- Submodular, i.e., $\forall X \subseteq Y \subseteq E \forall e \in E$

$$
f(X+e)-f(X) \geq f(Y+e)-f(Y)
$$

- Monotone, i.e., $X \subseteq Y \Longrightarrow f(X) \leq f(Y)$
- Normalized, i.e., $f(\varnothing)=0$
- Oracle access to f : query at $X \subseteq E$, get $f(X)$
- May only query at $X \subseteq$ (stream so far)

Goal

- Output matching $M \subseteq E$, with $f(M)$ maximal "large"
- Store $O(n)$ edges and f-values

Our Results

Can't solve MSM exactly

- MCM, approx $<e /(e-1) \Longrightarrow$ space $\omega(n$ polylog $n) \quad[$ Kapralov'13]
- Offline MSM, approx $<e /(e-1) \Longrightarrow n^{\omega(1)}$ oracle calls [this work]
- Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Our Results

Can't solve MSM exactly

- MCM, approx $<e /(e-1) \Longrightarrow$ space $\omega(n$ polylog $n) \quad$ [Kapralov'13]
- Offline MSM, approx $<e /(e-1) \Longrightarrow n^{\omega(1)}$ oracle calls [this work]
- Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Our results, using $O(n)$ storage:
Theorem 1 MSM, one pass: 7.75-approx
Theorem 2 MSM, $(3+\varepsilon)$-approx in $O\left(e^{-3}\right)$ passes

Our Results

Can't solve MSM exactly

- MCM, approx $<e /(e-1) \Longrightarrow$ space $\omega(n$ polylog $n) \quad$ [Kapralov'13]
- Offline MSM, approx $<e /(e-1) \Longrightarrow n^{\omega(1)}$ oracle calls [this work]
- Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Our results, using $O(n)$ storage:
Theorem 1 MSM, one pass: 7.75-approx
Theorem 2 MSM, $(3+\varepsilon)$-approx in $O\left(e^{-3}\right)$ passes

More importantly:
Meta-Thm 1 Every compliant MWM approx alg \rightarrow MSM approx alg

Our Results

Can't solve MSM exactly

- MCM, approx $<e /(e-1) \Longrightarrow$ space $\omega(n$ polylog $n) \quad$ [Kapralov'13]
- Offline MSM, approx $<e /(e-1) \Longrightarrow n^{\omega(1)}$ oracle calls [this work]
- Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Our results, using $O(n)$ storage:
Theorem 1 MSM, one pass: 7.75-approx
Theorem 2 MSM, $(3+\varepsilon)$-approx in $O\left(e^{-3}\right)$ passes

More importantly:
Meta-Thm 1 Every compliant MWM approx alg \rightarrow MSM approx alg
Meta-Thm 2 Similarly, max weight independent set (MWIS) \rightarrow MSIS

Some Previous Work on MWM

Greedy maximal matching: 2-approx for MCM, useless for MWM Maintain "current solution" M, update if new edge improves it

———unpicked edge
——— picked edge

Some Previous Work on MWM

Greedy maximal matching: 2-approx for MCM, useless for MWM Maintain "current solution" M, update if new edge improves it

__ unpicked edge
——— picked edge

Some Previous Work on MWM

Greedy maximal matching: 2-approx for MCM, useless for MWM Maintain "current solution" M, update if new edge improves it

__ unpicked edge
——— picked edge

Compliant Algorithms for MWM

Greedy maximal matching: 2-approx for MCM, useless for MWM
Maintain "current solution" M, update if new edge improves it

__ unpicked edge
——_ picked edge

What if input is path with edge weights $1+\varepsilon, 1+2 \varepsilon, 1+3 \varepsilon, \ldots$?

Compliant Algorithms for MWM

Greedy maximal matching: 2-approx for MCM, useless for MWM
Maintain "current solution" M, update if new edge improves it

__ unpicked edge
—_ picked edge

What if input is path with edge weights $1+\varepsilon, 1+2 \varepsilon, 1+3 \varepsilon, \ldots$?
Update M only upon sufficient improvement

Examples of Compliant Algorithms for MWM

Update of "current solution" M

- Given new edge e, pick "augmenting pair" (A, J)
$-A \leftarrow\{e\}$
$-J \leftarrow M \cap A \ldots$ edges in M that conflict with A
- Ensure $w(A) \geq(1+\gamma) w(J)$
- Update $M \leftarrow(M \backslash J) \cup A$

Examples of Compliant Algorithms for MWM

Update of "current solution" M

- Given new edge e, pick "augmenting pair" (A, J)
$-A \leftarrow\{e\}$
- $J \leftarrow M \cap A \ldots$ edges in M that conflict with A
- Ensure $w(A) \geq(1+\gamma) w(J)$
- Update $M \leftarrow(M \backslash J) \cup A$

Choice of gain parameter

- $\gamma=1$, approx factor 6
[Feigenbaum-K-M-S-Z'05]
- $\gamma=1 / \sqrt{2}$, approx factor 5.828
[McGregor'05]

Examples of Compliant Algorithms for MWM

Update of "current solution" M

- Given new edge e, pick "augmenting pair" (A, J)
$-A \leftarrow\{e\} \quad A \leftarrow$ "best" subset of 3 -neighbourhood of e
$-J \leftarrow M \cap A \ldots$ edges in M that conflict with A
- Ensure $w(A) \geq(1+\gamma) w(J)$
- Update $M \leftarrow(M \backslash J) \cup A$

Choice of gain parameter

- $\gamma=1$, approx factor 6
[Feigenbaum-K-M-S-Z'05]
- $\gamma=1 / \sqrt{2}$, approx factor 5.828
[McGregor'05]
- $\gamma=1.717$, approx factor 5.585
[Zelke'08]

Examples of Compliant Algorithms for MWM

Update of "current solution" $M+$ pool of "shadow edges" S

- Given new edge e, pick "augmenting pair" (A, J)
$-A \leftarrow\{e\} \quad A \leftarrow$ "best" subset of 3-neighbourhood of e
- $J \leftarrow M \cap A \ldots$ edges in M that conflict with A
- Ensure $w(A) \geq(1+\gamma) w(J)$
- Update $M \leftarrow(M \backslash J) \cup A$
- Update $S \leftarrow$ appropriate subset of $(S \backslash A) \cup J$

Choice of gain parameter

- $\gamma=1$, approx factor 6
[Feigenbaum-K-M-S-Z'05]
- $\gamma=1 / \sqrt{2}$, approx factor 5.828
- $\gamma=1.717$, approx factor 5.585
[Zelke'08]

Generic Compliant Algorithm and f-Extension for MSM

6: procedure Process-Edge (e, M, S, γ)
7:
8: $\quad(A, J) \leftarrow$ a well-chosen augmenting pair for M
with $A \subseteq M \cup S+e, \quad w(A) \geq(1+\gamma) w(J)$
9: $\quad M \leftarrow(M \backslash J) \cup A$
10: $S \leftarrow$ a well-chosen subset of $(S \backslash A) \cup J$

Generic Compliant Algorithm and f-Extension for MSM

6: procedure Process-Edge (e, M, S, γ)
7:

8: $\quad(A, J) \leftarrow$ a well-chosen augmenting pair for M with $A \subseteq M \cup S+e, \quad w(A) \geq(1+\gamma) w(J)$
9: $\quad M \leftarrow(M \backslash J) \cup A$
10: $\quad S \leftarrow$ a well-chosen subset of $(S \backslash A) \cup J$

MWM alg $\mathcal{A}+$ submodular $f \rightarrow$ MSM alg \mathcal{A}^{f} (the f-extension of \mathcal{A})

Generic Compliant Algorithm and f-Extension for MSM

6: procedure Process-Edge (e, M, S, γ)
7: $\quad w(e) \leftarrow f(M \cup S+e)-f(M \cup S)$
8: $\quad(A, J) \leftarrow$ a well-chosen augmenting pair for M with $A \subseteq M \cup S+e, \quad w(A) \geq(1+\gamma) w(J)$
9: $\quad M \leftarrow(M \backslash J) \cup A$
10: $\quad S \leftarrow$ a well-chosen subset of $(S \backslash A) \cup J$

MWM alg $\mathcal{A}+$ submodular $f \rightarrow$ MSM alg \mathcal{A}^{f} (the f-extension of \mathcal{A})

Generic Compliant Algorithm and f-Extension for MSM

1: function Improve-Solution $\left(\sigma, M^{0}, \gamma\right)$
2: $\quad M \leftarrow \varnothing, S \leftarrow \varnothing$
3: \quad foreach $e \in M^{0}$ in arbit order do $w(e) \leftarrow f(M+e)-f(M), M \leftarrow M+e$
4: foreach $e \in \sigma \backslash M^{0}$ in the σ order do $\operatorname{Process}-\operatorname{Edge}(e, M, S, \gamma)$
5: return M

6: procedure Process-Edge (e, M, S, γ)
7: $\quad w(e) \leftarrow f(M \cup S+e)-f(M \cup S)$
8: $\quad(A, J) \leftarrow$ a well-chosen augmenting pair for M with $A \subseteq M \cup S+e, \quad w(A) \geq(1+\gamma) w(J)$
9: $\quad M \leftarrow(M \backslash J) \cup A$
10: $\quad S \leftarrow$ a well-chosen subset of $(S \backslash A) \cup J$

MWM alg $\mathcal{A}+$ submodular $f \rightarrow \mathrm{MSM}$ alg \mathcal{A}^{f} (the f-extension of \mathcal{A})

Generic Compliant Algorithm and f-Extension for MSM

1: function Improve-Solution $\left(\sigma, M^{0}, \gamma\right)$
2: $\quad M \leftarrow \varnothing, S \leftarrow \varnothing$
3: \quad foreach $e \in M^{0}$ in arbit order do $w(e) \leftarrow f(M+e)-f(M), M \leftarrow M+e$
4: foreach $e \in \sigma \backslash M^{0}$ in the σ order do $\operatorname{Process}-\operatorname{Edge}(e, M, S, \gamma)$
5: return M

6: procedure Process-Edge (e, M, S, γ)
7: $\quad w(e) \leftarrow f(M \cup S+e)-f(M \cup S)$
8: $\quad(A, J) \leftarrow$ a well-chosen augmenting pair for M with $A \subseteq M \cup S+e, \quad w(A) \geq(1+\gamma) w(J)$
9: $\quad M \leftarrow(M \backslash J) \cup A$
10: $\quad S \leftarrow$ a well-chosen subset of $(S \backslash A) \cup J$

MWM alg $\mathcal{A}+\operatorname{submodular} f \rightarrow$ MSM alg \mathcal{A}^{f} (the f-extension of \mathcal{A})
MWIS (arbitrary ground set E, independent sets $\mathcal{I} \subseteq 2^{E}$) $+f \rightarrow$ MSIS

Generalize: Submodular Maximization (MWIS, MSIS)

1: function Improve-Solution $\left(\sigma, I^{0}, \gamma\right)$
2: $\quad I \leftarrow \varnothing, S \leftarrow \varnothing$
3: \quad foreach $e \in I^{0}$ in arbit order do $w(e) \leftarrow f(I+e)-f(I), I \leftarrow I+e$
4: foreach $e \in \sigma \backslash I^{0}$ in the σ order do $\operatorname{Process-Element}(e, I, S, \gamma)$
5: return I

6: procedure Process-Element(e, I, S, γ)
7: $\quad w(e) \leftarrow f(I \cup S+e)-f(I \cup S)$
8: $\quad(A, J) \leftarrow$ a well-chosen augmenting pair for I with $A \subseteq I \cup S+e, w(A) \geq(1+\gamma) w(J)$
9: $\quad I \leftarrow(I \backslash J) \cup A$
10: $\quad S \leftarrow$ a well-chosen subset of $(S \backslash A) \cup J$

MWIS (arbitrary ground set E, independent sets $\mathcal{I} \subseteq 2^{E}$) $+f \rightarrow$ MSIS

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 \quad w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Proof of Lemma 1: Let $I_{e}, S_{e}=$ values of I, S just before e arrives
Then $I_{e} \cup S_{e} \supseteq\left\{x \in I^{1}: x \prec e\right\}=: I_{\prec e}^{1} \quad$ (" \prec ": precedes in stream)

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Proof of Lemma 1: Let $I_{e}, S_{e}=$ values of I, S just before e arrives
Then $I_{e} \cup S_{e} \supseteq\left\{x \in I^{1}: x \prec e\right\}=: I_{\prec e}^{1} \quad$ (" \prec ": precedes in stream)
So, $f\left(I_{\preceq e}^{1}\right)-f\left(I_{\prec e}^{1}\right) \geq f\left(I_{e} \cup S_{e}+e\right)-f\left(I_{e} \cup S_{e}\right) \quad$ (submodularity)

$$
=w(e)
$$

(definition of w)

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Proof of Lemma 1: Let $I_{e}, S_{e}=$ values of I, S just before e arrives
Then $I_{e} \cup S_{e} \supseteq\left\{x \in I^{1}: x \prec e\right\}=: I_{\prec e}^{1} \quad$ (" \prec ": precedes in stream)
So, $f\left(I_{\preceq e}^{1}\right)-f\left(I_{\prec e}^{1}\right) \geq f\left(I_{e} \cup S_{e}+e\right)-f\left(I_{e} \cup S_{e}\right) \quad$ (submodularity)

$$
=w(e)
$$

(definition of w)
Sum this over $x \in I^{1}$ in stream order, telescope

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 \quad w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 \quad w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Proof of Lemma 2: Let $\left(A_{e}, J_{e}\right)=$ augmenting pair chosen on reading e Then $w\left(A_{e}\right) \geq(1+\gamma) w\left(J_{e}\right)$

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 \quad w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Proof of Lemma 2: Let $\left(A_{e}, J_{e}\right)=$ augmenting pair chosen on reading e
Then $w\left(A_{e}\right) \geq(1+\gamma) w\left(J_{e}\right) \Longrightarrow\left(w\left(A_{e}\right)-w\left(J_{e}\right)\right) / \gamma \geq w\left(J_{e}\right)$

$$
\Longrightarrow w\left(I^{1}\right) / \gamma \geq \sum_{e} w\left(J_{e}\right)
$$

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 \quad w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Proof of Lemma 2: Let $\left(A_{e}, J_{e}\right)=$ augmenting pair chosen on reading e
Then $w\left(A_{e}\right) \geq(1+\gamma) w\left(J_{e}\right) \Longrightarrow\left(w\left(A_{e}\right)-w\left(J_{e}\right)\right) / \gamma \geq w\left(J_{e}\right)$

$$
\begin{equation*}
\Longrightarrow w\left(I^{1}\right) / \gamma \geq \sum_{e} w\left(J_{e}\right) \tag{sumup}
\end{equation*}
$$

Each element in K was removed at some point
So, $K \subseteq \bigcup_{e} J_{e} \Longrightarrow w(K) \leq \sum_{e} w\left(J_{e}\right) \leq w\left(I^{1}\right) / \gamma$

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 \quad w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Proof of Lemma 3: Similar in spirit: submodularity, telescoping sums...
But a more involved argument
Uses Lemma 1 and Lemma 2

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Proof of Lemma 3: Similar in spirit: submodularity, telescoping sums...
But a more involved argument
Uses Lemma 1 and Lemma 2

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 \quad w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 \quad w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Proof of Conclusion: \mathcal{A} gives C_{γ}-approx for MWIS, so $w\left(I^{*}\right) \leq C_{\gamma} w\left(I^{1}\right)$

Analysis of MWIS Algorithm (One Pass)

Let $I^{*}=\operatorname{argmax}_{I \in \mathcal{I}} f(I), I^{1}=$ output at end of pass
Let $K=\{e \in E: e$ was added to $I\} \backslash I^{1}$
Lemma $1 \quad w\left(I^{1}\right) \leq f\left(I^{1}\right)$
Lemma $2 \quad w(K) \leq w\left(I^{1}\right) / \gamma$
Lemma $3 f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+w\left(I^{*}\right)$
Conclusion \mathcal{A} is C_{γ}-approx $\Longrightarrow \mathcal{A}^{f}$ is $\left(C_{\gamma}+1+1 / \gamma\right)$-approx

Proof of Conclusion: \mathcal{A} gives C_{γ}-approx for MWIS, so $w\left(I^{*}\right) \leq C_{\gamma} w\left(I^{1}\right)$
So, $f\left(I^{*}\right) \leq(1 / \gamma+1) f\left(I^{1}\right)+C_{\gamma} w\left(I^{1}\right)$
(by Lemma 3)

$$
\leq\left(1 / \gamma+1+C_{\gamma}\right) f\left(I^{1}\right)
$$

(by Lemma 1)

Applications of the Paradigm

1. Zelke's compliant algorithm for MWM has $C_{\gamma}=3+2 \gamma+\frac{1}{\gamma}-\frac{\gamma}{(1+\gamma)^{2}}$ Take f-extension, set $\gamma=1$ (optimal), get 7.75 -approx to MSM

Applications of the Paradigm

1. Zelke's compliant algorithm for MWM has $C_{\gamma}=3+2 \gamma+\frac{1}{\gamma}-\frac{\gamma}{(1+\gamma)^{2}}$ Take f-extension, set $\gamma=1$ (optimal), get 7.75 -approx to MSM
2. McGregor gives multi-pass compliant MWM algorithm

Take f-extension, set $\gamma=1$ for first pass, $\gamma=\varepsilon / 3$ for other passes Make passes until solution doesn't improve much
Extend MWM analysis to MSM, get $(3+\varepsilon)$-approx, $O\left(\varepsilon^{-3}\right)$ passes

Applications of the Paradigm

1. Zelke's compliant algorithm for MWM has $C_{\gamma}=3+2 \gamma+\frac{1}{\gamma}-\frac{\gamma}{(1+\gamma)^{2}}$ Take f-extension, set $\gamma=1$ (optimal), get 7.75-approx to MSM
2. McGregor gives multi-pass compliant MWM algorithm

Take f-extension, set $\gamma=1$ for first pass, $\gamma=\varepsilon / 3$ for other passes
Make passes until solution doesn't improve much
Extend MWM analysis to MSM, get $(3+\varepsilon)$-approx, $O\left(\varepsilon^{-3}\right)$ passes

How good is a $(3+\varepsilon)$-approx for MSM?

- Offline greedy: grow $I \leftarrow I+e$, maximizing $f(I+e)$

This gives 3-approx for MSM
[Nemhauser-Wolsey'78]

Applications of the Paradigm

1. Zelke's compliant algorithm for MWM has $C_{\gamma}=3+2 \gamma+\frac{1}{\gamma}-\frac{\gamma}{(1+\gamma)^{2}}$ Take f-extension, set $\gamma=1$ (optimal), get 7.75-approx to MSM
2. McGregor gives multi-pass compliant MWM algorithm

Take f-extension, set $\gamma=1$ for first pass, $\gamma=\varepsilon / 3$ for other passes
Make passes until solution doesn't improve much
Extend MWM analysis to MSM, get $(3+\varepsilon)$-approx, $O\left(\varepsilon^{-3}\right)$ passes

How good is a $(3+\varepsilon)$-approx for MSM?

- Offline greedy: grow $I \leftarrow I+e$, maximizing $f(I+e)$

This gives 3-approx for MSM
[Nemhauser-Wolsey'78]

- Recently: more sophisticated local search

Gives $(2+\varepsilon)$-approx for MSM
[Feldman-Naor-Schwartz-Ward'11]

Further Applications: Hypermatchings

Stream of hyperedges $e_{1}, e_{2}, \ldots, e_{m} \subseteq[n]$, each $\left|e_{i}\right| \leq p$
Hypermatching $=$ subset of pairwise disjoint edges

Further Applications: Hypermatchings

Stream of hyperedges $e_{1}, e_{2}, \ldots, e_{m} \subseteq[n]$, each $\left|e_{i}\right| \leq p$
Hypermatching $=$ subset of pairwise disjoint edges

Multi-pass MSM algorithm (compliant)

- Augment using only current edge e
- Use $\gamma=1$ for first pass, $\gamma=\varepsilon /(p+1)$ subsequently
- Make passes until solution doesn't improve much

Results

- $4 p$-approx in one pass
- $(p+1+\varepsilon)$-approx in $O\left(\varepsilon^{-3}\right)$ passes

Further Applications: Maximization Over Matroids

Stream of elements $e_{1}, e_{2}, \ldots, e_{m}$ from ground set E
Matroids $\left(E, \mathcal{I}_{1}\right), \ldots,\left(E, \mathcal{I}_{p}\right)$, given by circuit oracles:
Given $A \subseteq E$, returns $\begin{cases}\odot, & \text { if } A \in \mathcal{I}_{i} \\ \text { a circuit in } A, & \text { otherwise }\end{cases}$

Independent sets, $\mathcal{I}=\bigcap_{i} \mathcal{I}_{i}$; size parameter $n=\max _{I \in \mathcal{I}}|I|$

Further Applications: Maximization Over Matroids

Stream of elements $e_{1}, e_{2}, \ldots, e_{m}$ from ground set E
Matroids $\left(E, \mathcal{I}_{1}\right), \ldots,\left(E, \mathcal{I}_{p}\right)$, given by circuit oracles:

$$
\text { Given } A \subseteq E, \text { returns } \begin{cases}\odot, & \text { if } A \in \mathcal{I}_{i} \\ \text { a circuit in } A, & \text { otherwise }\end{cases}
$$

Independent sets, $\mathcal{I}=\bigcap_{i} \mathcal{I}_{i}$; size parameter $n=\max _{I \in \mathcal{I}}|I|$
Recent MWIS algorithm (compliant)

- Augment using only current element e
- Remove $J=\left\{x_{1}, \ldots, x_{p}\right\}$, where $x_{i}:=$ lightest element in circuit formed in i th matroid

Further Applications: Maximization Over Matroids

Stream of elements $e_{1}, e_{2}, \ldots, e_{m}$ from ground set E
Independent sets, $\mathcal{I}=\bigcap_{i} \mathcal{I}_{i}$; size parameter $n=\max _{I \in \mathcal{I}}|I|$
Recent MWIS algorithm (compliant)

- Augment using only current element e
- Remove $J=\left\{x_{1}, \ldots, x_{p}\right\}$, where $x_{i}:=$ lightest element in circuit formed in i th matroid

Further Applications: Maximization Over Matroids

Stream of elements $e_{1}, e_{2}, \ldots, e_{m}$ from ground set E
Independent sets, $\mathcal{I}=\bigcap_{i} \mathcal{I}_{i}$; size parameter $n=\max _{I \in \mathcal{I}}|I|$
Recent MWIS algorithm (compliant)

- Augment using only current element e
- Remove $J=\left\{x_{1}, \ldots, x_{p}\right\}$, where $x_{i}:=$ lightest element in circuit formed in i th matroid

Follow paradigm: use f-extension of above algorithm
Results, using $O(n)$ storage

- $4 p$-approx in one pass
- $(p+1+\varepsilon)$-approx in $O\left(\varepsilon^{-3}\right)$ passes *

[^0]
Conclusions

- Identified framework (compliant algorithms) capturing several semistreaming algorithms for constrained maximization
- Using framework, extended algs from linear to submodular maximization
- Applied to (hyper)matchings, (intersection of) matroids
- Can smoothly interpolate approx factor between linear f and general submodular f via curvature of f

Conclusions

- Identified framework (compliant algorithms) capturing several semistreaming algorithms for constrained maximization
- Using framework, extended algs from linear to submodular maximization
- Applied to (hyper)matchings, (intersection of) matroids
- Can smoothly interpolate approx factor between linear f and general submodular f via curvature of f

Open Problems

- Extend matroid multi-pass result beyond partition matroids
- Capture recent MWM algorithms that beat Zelke [Crouch-Stubbs'14]
- Lower bounds??? Is MSM harder to approximate than MWM?

[^0]: * Multi-pass analysis only works for partition matroids

