Submodular Maximization in a Data Streaming Setting

Amit Chakrabarti

DARTMOUTH COLLEGE HANOVER, NH, USA

Based on joint work with Sagar Kale

Sublinear Algorithms Workshop Bertinoro, May 2014

The cardinality version

The weighted version

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in [n] \times [n]$
- Describes graph G = (V, E): *n* vertices, *m* edges, undirected, simple
- Each edge appears exactly once in stream
- Goal

- Output a matching $M \subseteq E$, with |M| maximal

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in [n] \times [n]$
- Describes graph G = (V, E): *n* vertices, *m* edges, undirected, simple
- Each edge appears exactly once in stream
- Goal
 - Output a matching $M \subseteq E$, with |M| maximal
 - Use sublinear (in m) working memory
 - Ideally $O(n \operatorname{polylog} n) \dots$ "semi-streaming"
 - Need $\Omega(n\log n)$ to store M

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in [n] \times [n]$
- Describes graph G = (V, E): *n* vertices, *m* edges, undirected, simple
- Goal: output a matching $M \subseteq E$, with |M| maximal

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in [n] \times [n]$
- Describes graph G = (V, E): *n* vertices, *m* edges, undirected, simple
- Goal: output a matching $M \subseteq E$, with |M| maximal

Maximum weight matching (MWM)

- Input: stream of weighted edges $(u, v, w_{uv}) \in [n] \times [n] \times \mathbb{R}^+$
- Goal: output matching $M \subseteq E$, with $w(M) = \sum_{e \in M} w(e)$ maximal

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in [n] \times [n]$
- Describes graph G = (V, E): *n* vertices, *m* edges, undirected, simple
- Goal: output a matching $M \subseteq E$, with |M| maximal

Maximum weight matching (MWM)

- Input: stream of weighted edges $(u, v, w_{uv}) \in [n] \times [n] \times \mathbb{R}^+$
- Goal: output matching $M \subseteq E$, with $w(M) = \sum_{e \in M} w(e)$ maximal

Maximum submodular-function matching (MSM) \leftarrow this talk

- Input: unweighted edges (u, v), plus submodular $f : 2^E \to \mathbb{R}^+$
- Goal: output matching $M \subseteq E$, with f(M) maximal

Maximum Submodular Matching

Input

- Stream of edges $\sigma = \langle e_1, e_2, \dots, e_m \rangle$
- Valuation function $f: 2^E \to \mathbb{R}^+$
 - Submodular, i.e., $\forall X \subseteq Y \subseteq E \ \forall e \in E$

 $f(X+e) - f(X) \ge f(Y+e) - f(Y)$

- Monotone, i.e., $X \subseteq Y \implies f(X) \leq f(Y)$
- Normalized, i.e., $f(\emptyset) = 0$
- Oracle access to f: query at $X \subseteq E$, get f(X)
 - May only query at $X \subseteq ($ stream so far)

Goal

- Output matching $M \subseteq E$, with f(M) maximal "large"
- Store O(n) edges and f-values

- MCM, approx $< e/(e-1) \implies$ space $\omega(n \operatorname{polylog} n)$ [Kapralov'13]
- Offline MSM, approx $< e/(e-1) \implies n^{\omega(1)}$ oracle calls [this work]
 - Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

- MCM, approx $< e/(e-1) \implies$ space $\omega(n \operatorname{polylog} n)$ [Kapralov'13]
- Offline MSM, approx $< e/(e-1) \implies n^{\omega(1)}$ oracle calls [this work]

- Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Our results, using O(n) storage:

Theorem 1 MSM, one pass: 7.75-approx

Theorem 2 MSM, $(3 + \varepsilon)$ -approx in $O(e^{-3})$ passes

- MCM, approx $< e/(e-1) \implies$ space $\omega(n \operatorname{polylog} n)$ [Kapralov'13]
- Offline MSM, approx $< e/(e-1) \implies n^{\omega(1)}$ oracle calls [this work]

- Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

```
Our results, using O(n) storage:
```

Theorem 1 MSM, one pass: 7.75-approx

Theorem 2 MSM, $(3 + \varepsilon)$ -approx in $O(e^{-3})$ passes

More importantly:

- MCM, approx $< e/(e-1) \implies$ space $\omega(n \operatorname{polylog} n)$ [Kapralov'13]
- Offline MSM, approx $< e/(e-1) \implies n^{\omega(1)}$ oracle calls [this work]

- Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

```
Our results, using O(n) storage:

Theorem 1 MSM, one pass: 7.75-approx

Theorem 2 MSM, (3 + \varepsilon)-approx in O(e^{-3}) passes
```

More importantly:

Some Previous Work on MWM

Greedy maximal matching: 2-approx for MCM, useless for MWM Maintain "current solution" M, update if new edge improves it

Some Previous Work on MWM

Greedy maximal matching: 2-approx for MCM, useless for MWM Maintain "current solution" M, update if new edge improves it

Some Previous Work on MWM

Greedy maximal matching: 2-approx for MCM, useless for MWM Maintain "current solution" M, update if new edge improves it

Compliant Algorithms for MWM

Greedy maximal matching: 2-approx for MCM, useless for MWM Maintain "current solution" M, update if new edge improves it

What if input is path with edge weights $1 + \varepsilon$, $1 + 2\varepsilon$, $1 + 3\varepsilon$, ...?

Compliant Algorithms for MWM

Greedy maximal matching: 2-approx for MCM, useless for MWM Maintain "current solution" M, update if new edge improves it

What if input is path with edge weights $1 + \varepsilon$, $1 + 2\varepsilon$, $1 + 3\varepsilon$, ...? Update M only upon sufficient improvement

Update of "current solution" M

- Given new edge e, pick "augmenting pair" (A, J)
 - $\ A \leftarrow \{e\}$
 - $J \leftarrow M \cap A \dots$ edges in M that conflict with A
 - Ensure $w(A) \ge (1 + \gamma)w(J)$
- Update $M \leftarrow (M \setminus J) \cup A$

Update of "current solution" M

- Given new edge e, pick "augmenting pair" (A, J)
 - $\ A \leftarrow \{e\}$
 - $J \leftarrow M \cap A \dots$ edges in M that conflict with A
 - Ensure $w(A) \ge (1 + \gamma)w(J)$
- Update $M \leftarrow (M \setminus J) \cup A$

Choice of gain parameter

- $\gamma = 1$, approx factor 6
- $\gamma = 1/\sqrt{2}$, approx factor 5.828

[Feigenbaum-K-M-S-Z'05]

[McGregor'05]

Update of "current solution" M

- Given new edge e, pick "augmenting pair" (A, J)
 - $-A \leftarrow \{e\}$ $A \leftarrow$ "best" subset of 3-neighbourhood of e
 - $J \leftarrow M \cap A \dots$ edges in M that conflict with A
 - Ensure $w(A) \ge (1 + \gamma)w(J)$
- Update $M \leftarrow (M \setminus J) \cup A$

Choice of gain parameter

- $\gamma = 1$, approx factor 6
- $\gamma = 1/\sqrt{2}$, approx factor 5.828
- $\gamma = 1.717$, approx factor 5.585

[Feigenbaum-K-M-S-Z'05]

[McGregor'05]

[Zelke'08]

Update of "current solution" M + pool of "shadow edges" S

- Given new edge e, pick "augmenting pair" (A, J)
 - $-A \leftarrow \{e\}$ $A \leftarrow$ "best" subset of 3-neighbourhood of e
 - $J \leftarrow M \cap A \dots$ edges in M that conflict with A
 - Ensure $w(A) \ge (1 + \gamma)w(J)$
- Update $M \leftarrow (M \setminus J) \cup A$
- Update $S \leftarrow$ appropriate subset of $(S \setminus A) \cup J$

Choice of gain parameter

- $\gamma = 1$, approx factor 6 [Feigenbaum-K-M-S-Z'05]
- $\gamma = 1/\sqrt{2}$, approx factor 5.828
- $\gamma = 1.717$, approx factor 5.585

[McGregor'05]

[Zelke'08]

- 6: procedure PROCESS-EDGE (e, M, S, γ)
- 7:
- 8: $(A, J) \leftarrow$ a well-chosen augmenting pair for M

with $A \subseteq M \cup S + e$, $w(A) \ge (1 + \gamma)w(J)$

- 9: $M \leftarrow (M \setminus J) \cup A$
- 10: $S \leftarrow$ a well-chosen subset of $(S \setminus A) \cup J$

- 6: procedure PROCESS-EDGE(e, M, S, γ)
 7:
 8: (A, J) ← a well-chosen augmenting pair for M with A ⊆ M ∪ S + e, w(A) ≥ (1 + γ)w(J)
 9: M ← (M \ J) ∪ A
- 10: $S \leftarrow \text{a well-chosen subset of } (S \setminus A) \cup J$

MWM alg \mathcal{A} + submodular $f \rightarrow MSM$ alg \mathcal{A}^{f} (the f-extension of \mathcal{A})

- 6: procedure PROCESS-EDGE (e, M, S, γ)
- 7: $w(e) \leftarrow f(M \cup S + e) f(M \cup S)$
- 8: $(A, J) \leftarrow$ a well-chosen augmenting pair for Mwith $A \subseteq M \cup S + e$, $w(A) \ge (1 + \gamma)w(J)$
- 9: $M \leftarrow (M \setminus J) \cup A$
- 10: $S \leftarrow \text{a well-chosen subset of } (S \setminus A) \cup J$

MWM alg \mathcal{A} + submodular $f \rightarrow MSM$ alg \mathcal{A}^{f} (the f-extension of \mathcal{A})

- 1: function IMPROVE-SOLUTION (σ, M^0, γ)
- **2**: $M \leftarrow \varnothing, S \leftarrow \varnothing$
- 3: foreach $e \in M^0$ in arbit order do $w(e) \leftarrow f(M+e) f(M)$, $M \leftarrow M + e$
- 4: foreach $e \in \sigma \setminus M^0$ in the σ order do PROCESS-EDGE (e, M, S, γ)
- 5: **return** *M*
- 6: procedure PROCESS-EDGE (e, M, S, γ)
- 7: $w(e) \leftarrow f(M \cup S + e) f(M \cup S)$
- 8: $(A, J) \leftarrow$ a well-chosen augmenting pair for Mwith $A \subseteq M \cup S + e$, $w(A) \ge (1 + \gamma)w(J)$
- 9: $M \leftarrow (M \setminus J) \cup A$
- 10: $S \leftarrow \text{a well-chosen subset of } (S \setminus A) \cup J$

MWM alg \mathcal{A} + submodular $f \rightarrow MSM$ alg \mathcal{A}^{f} (the f-extension of \mathcal{A})

- 1: function IMPROVE-SOLUTION (σ, M^0, γ)
- 2: $M \leftarrow \varnothing, S \leftarrow \varnothing$
- 3: **foreach** $e \in M^0$ in arbit order **do** $w(e) \leftarrow f(M+e) f(M)$, $M \leftarrow M + e$
- 4: foreach $e \in \sigma \setminus M^0$ in the σ order do PROCESS-EDGE (e, M, S, γ)
- 5: **return** *M*
- 6: procedure PROCESS-EDGE (e, M, S, γ)
- 7: $w(e) \leftarrow f(M \cup S + e) f(M \cup S)$
- 8: $(A, J) \leftarrow$ a well-chosen augmenting pair for Mwith $A \subseteq M \cup S + e$, $w(A) \ge (1 + \gamma)w(J)$
- 9: $M \leftarrow (M \setminus J) \cup A$
- 10: $S \leftarrow \text{a well-chosen subset of } (S \setminus A) \cup J$

MWM alg \mathcal{A} + submodular $f \to MSM$ alg \mathcal{A}^{f} (the f-extension of \mathcal{A}) MWIS (arbitrary ground set E, independent sets $\mathcal{I} \subseteq 2^{E}$) + $f \to MSIS$

Generalize: Submodular Maximization (MWIS, MSIS)

- 1: function IMPROVE-SOLUTION (σ, I^0, γ)
- 2: $I \leftarrow \varnothing, S \leftarrow \varnothing$
- 3: **foreach** $e \in I^0$ in arbit order **do** $w(e) \leftarrow f(I+e) f(I)$, $I \leftarrow I + e$
- 4: **foreach** $e \in \sigma \setminus I^0$ in the σ order **do** PROCESS-ELEMENT (e, I, S, γ)
- 5: return *I*
- 6: procedure PROCESS-ELEMENT (e, I, S, γ)
- 7: $w(e) \leftarrow f(I \cup S + e) f(I \cup S)$
- 8: $(A, J) \leftarrow$ a well-chosen augmenting pair for Iwith $A \subseteq I \cup S + e$, $w(A) \ge (1 + \gamma)w(J)$
- 9: $I \leftarrow (I \setminus J) \cup A$
- 10: $S \leftarrow \text{a well-chosen subset of } (S \setminus A) \cup J$

MWIS (arbitrary ground set E, independent sets $\mathcal{I} \subseteq 2^E$) + $f \to MSIS$

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let $K = \{e \in E : e \text{ was added to } I\} \setminus I^1$

Lemma 1 $w(I^1) \leq f(I^1)$

- **Lemma 2** $w(K) \le w(I^1)/\gamma$
- **Lemma 3** $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let $K = \{e \in E : e \text{ was added to } I\} \setminus I^1$

Lemma 1 $w(I^1) \leq f(I^1)$

Lemma 2 $w(K) \le w(I^1)/\gamma$

Lemma 3 $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Proof of Lemma 1: Let $I_e, S_e =$ values of I, S just before e arrives Then $I_e \cup S_e \supseteq \{x \in I^1 : x \prec e\} =: I^1_{\prec e}$ (" \prec ": precedes in stream)

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let
$$K = \{e \in E : e \text{ was added to } I\} \setminus I^1$$

Lemma 1 $w(I^1) \leq f(I^1)$

- **Lemma 2** $w(K) \le w(I^1)/\gamma$
- **Lemma 3** $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Proof of Lemma 1: Let $I_e, S_e =$ values of I, S just before e arrives Then $I_e \cup S_e \supseteq \{x \in I^1 : x \prec e\} =: I^1_{\prec e}$ (" \prec ": precedes in stream) So, $f(I^1_{\preceq e}) - f(I^1_{\prec e}) \ge f(I_e \cup S_e + e) - f(I_e \cup S_e)$ (submodularity) = w(e) (definition of w)

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let
$$K = \{e \in E : e \text{ was added to } I\} \setminus I^1$$

Lemma 1 $w(I^1) \leq f(I^1)$

- **Lemma 2** $w(K) \le w(I^1)/\gamma$
- Lemma 3 $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Proof of Lemma 1: Let I_e, S_e = values of I, S just before e arrives Then $I_e \cup S_e \supseteq \{x \in I^1 : x \prec e\} =: I^1_{\prec e}$ (" \prec ": precedes in stream) So, $f(I^1_{\preceq e}) - f(I^1_{\prec e}) \ge f(I_e \cup S_e + e) - f(I_e \cup S_e)$ (submodularity) = w(e) (definition of w)

QED

Sum this over $x \in I^1$ in stream order, telescope

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let $K = \{e \in E : e \text{ was added to } I\} \setminus I^1$

- **Lemma 1** $w(I^1) \le f(I^1)$
- **Lemma 2** $w(K) \le w(I^1)/\gamma$
- **Lemma 3** $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let $K = \{e \in E : e \text{ was added to } I\} \setminus I^1$

Lemma 1 $w(I^1) \leq f(I^1)$

Lemma 2 $w(K) \le w(I^1)/\gamma$

Lemma 3 $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Proof of Lemma 2: Let (A_e, J_e) = augmenting pair chosen on reading eThen $w(A_e) \ge (1 + \gamma)w(J_e)$

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let $K = \{e \in E : e \text{ was added to } I\} \setminus I^1$

Lemma 1 $w(I^1) \leq f(I^1)$

Lemma 2 $w(K) \le w(I^1)/\gamma$

Lemma 3 $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Proof of Lemma 2: Let (A_e, J_e) = augmenting pair chosen on reading eThen $w(A_e) \ge (1 + \gamma)w(J_e) \implies (w(A_e) - w(J_e))/\gamma \ge w(J_e)$ $\implies w(I^1)/\gamma \ge \sum_e w(J_e)$ (sum up)

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let
$$K = \{e \in E : e \text{ was added to } I\} \setminus I^1$$

- **Lemma 1** $w(I^1) \leq f(I^1)$
- **Lemma 2** $w(K) \le w(I^1)/\gamma$
- **Lemma 3** $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Proof of Lemma 2: Let (A_e, J_e) = augmenting pair chosen on reading e

Then
$$w(A_e) \ge (1+\gamma)w(J_e) \implies (w(A_e) - w(J_e))/\gamma \ge w(J_e)$$

 $\implies w(I^1)/\gamma \ge \sum_e w(J_e)$ (sum up)

Each element in K was removed at some point

So, $K \subseteq \bigcup_e J_e \implies w(K) \le \sum_e w(J_e) \le w(I^1)/\gamma$ QED

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let
$$K = \{e \in E : e \text{ was added to } I\} \setminus I^1$$

Lemma 1 $w(I^1) \leq f(I^1)$

Lemma 2 $w(K) \le w(I^1)/\gamma$

Lemma 3 $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let
$$K = \{e \in E : e \text{ was added to } I\} \setminus I^1$$

Lemma 1 $w(I^1) \le f(I^1)$

Lemma 2 $w(K) \le w(I^1)/\gamma$

Lemma 3 $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Proof of Lemma 3: Similar in spirit: submodularity, telescoping sums...
But a more involved argument
Uses Lemma 1 and Lemma 2

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let
$$K = \{e \in E : e \text{ was added to } I\} \setminus I^1$$

Lemma 1 $w(I^1) \le f(I^1)$

Lemma 2 $w(K) \le w(I^1)/\gamma$

Lemma 3 $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Proof of Lemma 3: Similar in spirit: submodularity, telescoping sums...
But a more involved argument
Uses Lemma 1 and Lemma 2
... uh, QED?

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let
$$K = \{e \in E : e \text{ was added to } I\} \setminus I^1$$

Lemma 1 $w(I^1) \leq f(I^1)$

Lemma 2 $w(K) \le w(I^1)/\gamma$

Lemma 3 $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \operatorname{output} at end of pass$

Let
$$K = \{e \in E : e \text{ was added to } I\} \setminus I^1$$

Lemma 1 $w(I^1) \le f(I^1)$

Lemma 2 $w(K) \le w(I^1)/\gamma$

Lemma 3 $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Proof of Conclusion: \mathcal{A} gives C_{γ} -approx for MWIS, so $w(I^*) \leq C_{\gamma} w(I^1)$

Let $I^* = \operatorname{argmax}_{I \in \mathcal{I}} f(I)$, $I^1 = \text{output}$ at end of pass

Let
$$K = \{e \in E : e \text{ was added to } I\} \setminus I^1$$

Lemma 1 $w(I^1) \le f(I^1)$

Lemma 2 $w(K) \le w(I^1)/\gamma$

Lemma 3 $f(I^*) \le (1/\gamma + 1)f(I^1) + w(I^*)$

Conclusion \mathcal{A} is C_{γ} -approx $\implies \mathcal{A}^{f}$ is $(C_{\gamma} + 1 + 1/\gamma)$ -approx

Proof of Conclusion: \mathcal{A} gives C_{γ} -approx for MWIS, so $w(I^*) \leq C_{\gamma}w(I^1)$ So, $f(I^*) \leq (1/\gamma + 1)f(I^1) + C_{\gamma}w(I^1)$ (by Lemma 3) $\leq (1/\gamma + 1 + C_{\gamma})f(I^1)$ (by Lemma 1)

QED

1. Zelke's compliant algorithm for MWM has $C_{\gamma} = 3 + 2\gamma + \frac{1}{\gamma} - \frac{\gamma}{(1+\gamma)^2}$ Take *f*-extension, set $\gamma = 1$ (optimal), get 7.75-approx to MSM

- 1. Zelke's compliant algorithm for MWM has $C_{\gamma} = 3 + 2\gamma + \frac{1}{\gamma} \frac{\gamma}{(1+\gamma)^2}$ Take *f*-extension, set $\gamma = 1$ (optimal), get 7.75-approx to MSM
- 2. McGregor gives multi-pass compliant MWM algorithm Take *f*-extension, set $\gamma = 1$ for first pass, $\gamma = \varepsilon/3$ for other passes Make passes until solution doesn't improve much Extend MWM analysis to MSM, get $(3 + \varepsilon)$ -approx, $O(\varepsilon^{-3})$ passes

- 1. Zelke's compliant algorithm for MWM has $C_{\gamma} = 3 + 2\gamma + \frac{1}{\gamma} \frac{\gamma}{(1+\gamma)^2}$ Take *f*-extension, set $\gamma = 1$ (optimal), get 7.75-approx to MSM
- 2. McGregor gives multi-pass compliant MWM algorithm Take *f*-extension, set $\gamma = 1$ for first pass, $\gamma = \varepsilon/3$ for other passes Make passes until solution doesn't improve much Extend MWM analysis to MSM, get $(3 + \varepsilon)$ -approx, $O(\varepsilon^{-3})$ passes

How good is a $(3 + \varepsilon)$ -approx for MSM?

• Offline greedy: grow $I \leftarrow I + e$, maximizing f(I + e)This gives 3-approx for MSM [Nemhauser-Wolsey'78]

- 1. Zelke's compliant algorithm for MWM has $C_{\gamma} = 3 + 2\gamma + \frac{1}{\gamma} \frac{\gamma}{(1+\gamma)^2}$ Take *f*-extension, set $\gamma = 1$ (optimal), get 7.75-approx to MSM
- 2. McGregor gives multi-pass compliant MWM algorithm Take *f*-extension, set $\gamma = 1$ for first pass, $\gamma = \varepsilon/3$ for other passes Make passes until solution doesn't improve much Extend MWM analysis to MSM, get $(3 + \varepsilon)$ -approx, $O(\varepsilon^{-3})$ passes

How good is a $(3 + \varepsilon)$ -approx for MSM?

- Offline greedy: grow $I \leftarrow I + e$, maximizing f(I + e)This gives 3-approx for MSM [Nemhauser-Wolsey'78]
- Recently: more sophisticated local search Gives $(2 + \varepsilon)$ -approx for MSM [Feldman-Naor-Schwartz-Ward'11]

Further Applications: Hypermatchings

Stream of hyperedges $e_1, e_2, \ldots, e_m \subseteq [n]$, each $|e_i| \leq p$

Hypermatching = subset of pairwise disjoint edges

Further Applications: Hypermatchings

Stream of hyperedges $e_1, e_2, \ldots, e_m \subseteq [n]$, each $|e_i| \leq p$

Hypermatching = subset of pairwise disjoint edges

Multi-pass MSM algorithm (compliant)

- Augment using only current edge e
- Use $\gamma = 1$ for first pass, $\gamma = \varepsilon/(p+1)$ subsequently
- Make passes until solution doesn't improve much

Results

- 4*p*-approx in one pass
- $(p+1+\varepsilon)$ -approx in $O(\varepsilon^{-3})$ passes

Stream of elements e_1, e_2, \ldots, e_m from ground set EMatroids $(E, \mathcal{I}_1), \ldots, (E, \mathcal{I}_p)$, given by <u>circuit oracles</u>:

Given
$$A \subseteq E$$
, returns
$$\begin{cases} \textcircled{O}{\ }, & \text{if } A \in \mathcal{I}_i \\ \text{a circuit in } A, & \text{otherwise} \end{cases}$$

Independent sets, $\mathcal{I} = \bigcap_i \mathcal{I}_i$; size parameter $n = \max_{I \in \mathcal{I}} |I|$

Stream of elements e_1, e_2, \ldots, e_m from ground set EMatroids $(E, \mathcal{I}_1), \ldots, (E, \mathcal{I}_p)$, given by circuit oracles:

Given
$$A \subseteq E$$
, returns
$$\begin{cases} ©, & \text{if } A \in \mathcal{I}_i \\ \text{a circuit in } A, & \text{otherwise} \end{cases}$$

Independent sets, $\mathcal{I} = \bigcap_i \mathcal{I}_i$; size parameter $n = \max_{I \in \mathcal{I}} |I|$

Recent MWIS algorithm (compliant) [Varadaraja'11]

- Augment using only current element e
- Remove $J = \{x_1, \dots, x_p\}$, where $x_i :=$ lightest element in circuit formed in *i*th matroid

Stream of elements e_1, e_2, \ldots, e_m from ground set *E*

Independent sets, $\mathcal{I} = \bigcap_i \mathcal{I}_i$; size parameter $n = \max_{I \in \mathcal{I}} |I|$

Recent MWIS algorithm (compliant)

[Varadaraja'11]

- Augment using only current element e
- Remove $J = \{x_1, \dots, x_p\}$, where $x_1 := \text{lightest element in circuit formed}$

where $x_i :=$ lightest element in circuit formed in *i*th matroid

Stream of elements e_1, e_2, \ldots, e_m from ground set *E*

Independent sets, $\mathcal{I} = \bigcap_i \mathcal{I}_i$; size parameter $n = \max_{I \in \mathcal{I}} |I|$

Recent MWIS algorithm (compliant)

[Varadaraja'11]

- Augment using only current element e
- Remove $J = \{x_1, \dots, x_p\}$, where $x_i :=$ lightest element in circuit formed in *i*th matroid

Follow paradigm: use f-extension of above algorithm

Results, using O(n) storage

- 4*p*-approx in one pass
- $(p+1+\varepsilon)$ -approx in $O(\varepsilon^{-3})$ passes *

* Multi-pass analysis only works for partition matroids

Conclusions

- Identified framework (compliant algorithms) capturing several semistreaming algorithms for constrained maximization
- Using framework, extended algs from linear to submodular maximization
- Applied to (hyper)matchings, (intersection of) matroids
- Can smoothly interpolate approx factor between linear f and general submodular f via curvature of f

Conclusions

- Identified framework (compliant algorithms) capturing several semistreaming algorithms for constrained maximization
- Using framework, extended algs from linear to submodular maximization
- Applied to (hyper)matchings, (intersection of) matroids
- Can smoothly interpolate approx factor between linear f and general submodular f via curvature of f

Open Problems

- Extend matroid multi-pass result beyond partition matroids
- Capture recent MWM algorithms that beat Zelke [Crouch-Stubbs'14]
- Lower bounds??? Is MSM harder to approximate than MWM?