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‘Maximum Matching in a Graph Stream'

Maximum cardinality matching (MCM)
e Input: stream of edges (u,v) € [n| X [n]
e Describes graph G = (V, E/): n vertices, m edges, undirected, simple
e Each edge appears exactly once in stream

e Goal

— Output a matching M C E, with |M| maximal
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e Describes graph G = (V, E/): n vertices, m edges, undirected, simple
e Each edge appears exactly once in stream

o Goal
— Output a matching M C E, with |M| maximal

— Use sublinear (in m) working memory

— ldeally O(n polylogn) ... “semi-streaming”
— Need Q(nlogn) to store M
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‘Maximum Matching in a Graph Stream'

Maximum cardinality matching (MCM)
e Input: stream of edges (u,v) € [n| X [n]
e Describes graph G = (V, E/): n vertices, m edges, undirected, simple
e Goal: output a matching M C E, with |M| maximal
Maximum weight matching (MWM)
e Input: stream of weighted edges (u, v, w,,) € [n] X [n] x RT

e Goal: output matching M C E, with w(M) = > __,, w(e) maximal

Maximum submodular-function matching (MSM) < this talk

e Input: unweighted edges (u,v), plus submodular f : 2¥ — RT

e Goal: output matching M C FE, with f(M) maximal



‘Maximum Submodular Matching.

e Stream of edges 0 = (ey,€9,...,€m)

Input

e Valuation function f :2¥ — RT
— Submodular, ie., VX CY CEVec FE
f(X+e)—f(X) = f(Y +e)— f(Y)
— Monotone, ie., X CY — f(X) < f(Y)
— Normalized, i.e., f(@) =0

e Oracle access to f: query at X C F, get f(X)
— May only query at X C (stream so far)

Goal
e Output matching M C FE, with f(M) maximal “large”

e Store O(n) edges and f-values



‘Our Results.

Can't solve MSM exactly
e MCM, approx < e/(e —1) = space w(n polylogn) [Kapralov'13]

o Offline MSM, approx < e/(e — 1) = n“) oracle calls  [this work

— Via cardinality-constrained submodular max [Nemhauser-Wolsey'78
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‘Our Results.

Can't solve MSM exactly
e MCM, approx < e/(e —1) = space w(n polylogn) [Kapralov'13]

o Offline MSM, approx < e/(e — 1) = n“) oracle calls  [this work

— Via cardinality-constrained submodular max [Nemhauser-Wolsey'78

Our results, using O(n) storage:
Theorem 1 MSM, one pass: 7.75-approx

Theorem 2 MSM, (3 + ¢)-approx in O(e™3) passes

More importantly:

Meta-Thm 1 Every compliant MWM approx alg — MSM approx alg

Meta-Thm 2 Similarly, max weight independent set (MWIS) — MSIS




‘Some Previous Work on MWM I

Greedy maximal matching: 2-approx for MCM, useless for MWM

Maintain “current solution” M, update if new edge improves it
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Compliant Algorithms for MWM I

Greedy maximal matching: 2-approx for MCM, useless for MWM

Maintain “current solution” M, update if new edge improves it

unpicked edge

picked edge

What if input is path with edge weights 1 +¢,1+ 2,14 3¢,...7

Update M only upon sufficient improvement




Examples of Compliant Algorithms for MWMI

Update of “current solution” M

e Given new edge e, pick “augmenting pair” (A, J)
— A<+ {e}
— J <+ MmA ... edges in M that conflict with A
— Ensure w(A) > (1 4+ ~v)w(J)

e Update M + (M \ J)U A
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Examples of Compliant Algorithms for MWMI

Update of “current solution” M

e Given new edge e, pick “augmenting pair” (A, J)
— A<«—{e} A< "best” subset of 3-neighbourhood of e
— J<+ MmA ... edges in M that conflict with A
— Ensure w(A) > (1 4+ ~)w(J)

e Update M + (M \ J)U A

Choice of gain parameter
e v =1, approx factor 6 [Feigenbaum-K-M-S-Z'05]

o V= 1/\@ approx factor 5.828 [McGregor'05]

o v = 1.717, approx factor 5.585 [Zelke'08]



Examples of Compliant Algorithms for MWMI

Update of “current solution” M + pool of “shadow edges” S

e Given new edge e, pick “augmenting pair” (A, J)
— A<«—{e} A< "best” subset of 3-neighbourhood of e
— J<+ MmA ... edges in M that conflict with A
— Ensure w(A) > (1 4+ ~)w(J)

e Update M + (M \ J)U A

e Update S < appropriate subset of (S\ A) U J

Choice of gain parameter
e v =1, approx factor 6 [Feigenbaum-K-M-S-Z'05]

o V= 1/\@ approx factor 5.828 [McGregor'05]

o v = 1.717, approx factor 5.585 [Zelke'08]
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6: procedure PROCESS-EDGE(e, M, S, )
[
8: (A, J) < a well-chosen augmenting pair for M
with ACMUS+e, w(A) > (1+~)w(J)
0: M+~ (M\J)UA
10: S < a well-chosen subset of (S\ A) U J
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1: function IMPROVE-SOLUTION(o, M°, 7)

2: M<+— o, 5+ 0
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4
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1: function IMPROVE-SOLUTION(o, M°, ¥)

2: M<+— o, 5+ 0

3:  foreach e € M in arbit order do w(e) < f(M +e)— f(M), M < M +e
4 foreach ¢ € o\ M" in the o order do PROCESS-EDGE(e, M, S, 7)

5

return M

6: procedure PROCESS-EDGE(e, M, S, )
w(e) < f(MUS+e)— f(MUS)
(A, J) < a well-chosen augmenting pair for M
with ACMUS+e, w(A) > (1+~)w(J)
0: M+~ (M\J)UA
10: S < a well-chosen subset of (S\ A) U J

MWM alg A + submodular f — MSM alg A’ (the f-extension of A)
MWIS (arbitrary ground set E, independent sets Z C 2¥) + f — MSIS



Generalize: Submodular Maximization (MWIS, MSIS)

1: function IMPROVE-SOLUTION(c, I, ~)

2: I+ 3, 5+ 0

3:  foreach e € I in arbit order do w(e) « f(I +e)— f(I), I <+ I +e
4

5

foreach e € o \ I” in the o order do PROCESS-ELEMENT(e, I, S, )

return /

6: procedure PROCESS-ELEMENT(e, I, .5, )
w(e) < fHUS+e)— f(IUS)
8: (A, J) < a well-chosen augmenting pair for
with ACTUS+e, w(A) > (14+~)w(J)
0: I+~ (I\J)UA
10: S < a well-chosen subset of (S\ A) U J

~

MWIS (arbitrary ground set E, independent sets Z C 2¥) + f — MSIS



‘Analysis of MWIS Algorithm (One Pass)'

Let [* = argmax; .7 f(I), I' = output at end of pass
let K ={ec E: e was added to I} \ I!

Lemma 1 w(I!) < f(I')

Lemma 2 w(K) <w(!')/y

Lemma 3 f(I*) < (1/v+ 1)f(I") + w(I*)

Conclusion A is C,-approx = A/ is (C, + 1 + 1/~)-approx
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Let [* = argmax; .7 f(I), I' = output at end of pass
let K ={ec E: e was added to I} \ I!

Lemma 1 w(I') < f(IY)

Lemma 2 w(K) <w(I')/y

Lemma 3 f(I*) < (1/y+1)f(I") +w(I¥)

Conclusion A is C,-approx = A/ is (C, + 1 + 1/~)-approx

Proof of Lemma 1: Let I.,S. = values of I, S just before e arrives

Then I,US. D {zel': xz<e} =1, (“<": precedes in stream)
So, f(I%,) — f(IL.) > f(I.US. +e) — f(I.US,) (submodularity)
= w(e) (definition of w)

Sum this over z € I'! in stream order, telescope QED
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‘Analysis of MWIS Algorithm (One Pass)'

Let [* = argmax; 7 f(I), I' = output at end of pass
let K ={ec E: e was added to I} \ I!

Lemma 1 w(I!) < f(I')

Lemma 2 w(K) < w(I')/~

Lemma 3 f(I*) < (1/5 + 1) f(I") + w(I")

Conclusion A is C,-approx = A/ is (C, + 1 + 1/~)-approx

Proof of Lemma 2: Let (A.,.J.) = augmenting pair chosen on reading ¢
Then w(Ade) = (1 +y)w(Je) = (w(Ae) —w(Je))/v = w(Je)

— WYy = Y, wll)  (sum up)
Each element in K was removed at some point

So, KC,Je = w(K)<Y  w(J) <w')/y QED
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Proof of Lemma 3: Similar in spirit: submodularity, telescoping sums...

But a more involved argument

Uses Lemma 1 and Lemma 2 ... uh, QED?
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Lemma 2 w(K) <w(!')/y
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‘Analysis of MWIS Algorithm (One Pass)'

Let [* = argmax;.7 f(I), I' = output at end of pass
Llet K ={e € F: ewas added to I} \ I!

Lemma 1 w(I!) < f(I')
Lemma 2 w(K) <w(!')/y
Lemma 3 f(I*) < (1/vy+1)f(I") +w(I*)

Conclusion A is C,-approx = A/ is (C, + 1 + 1/~)-approx

Proof of Conclusion: A gives C.-approx for MWIS, so w(I*) < C w(I')
So, f(I") < (1/y+1)f(I') + Crw(I') (by Lemma 3)
< (17414 C) f(IY) (by Lemma 1)
QED
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Applications of the Paradigm'

1. Zelke's compliant algorithm for MWM has C, = 3 + 2y + % — ﬁ

Take f-extension, set v =1 (optimal), get 7.75-approx to MSM

2. McGregor gives multi-pass compliant MWM algorithm
Take f-extension, set v = 1 for first pass, v = /3 for other passes
Make passes until solution doesn’'t improve much

Extend MWM analysis to MSM, get (3 + )-approx, O(e~>) passes

How good is a (3 + ¢)-approx for MSM?

o Offline greedy: grow I <— I 4 e, maximizing f(I + e)
This gives 3-approx for MSM [Nemhauser-Wolsey'78]

e Recently: more sophisticated local search

Gives (2 + ¢)-approx for MSM [Feldman-Naor-Schwartz-Ward'11]
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Hypermatching = subset of pairwise disjoint edges



Further Applications: Hypermatchings'

Stream of hyperedges e1,¢€s,...,¢e, C [n], each |e;| < p

Hypermatching = subset of pairwise disjoint edges

Multi-pass MSM algorithm (compliant)
e Augment using only current edge e
e Use v =1 for first pass, v = ¢/(p + 1) subsequently
e Make passes until solution doesn’t improve much

Results
e 4p-approx in one pass

o (p+ 1+ ¢e)-approx in O(e~?) passes
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Stream of elements e1,¢9,...,¢,, from ground set F

Matroids (E,Z,),...,(E,Z,), given by circuit oracles:

© . if Ac 1,

a circuit in A, otherwise

Given A C E, returns

Independent sets, Z = (). Z;; size parameter n = maxjc7 |I|



Further Applications: Maximization Over Matroids

Stream of elements e1,¢9,...,¢,, from ground set F

Matroids (E,Z,),...,(E,Z,), given by circuit oracles:
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where z; := lightest element in circuit formed in 2th matroid
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Further Applications: Maximization Over Matroids

Stream of elements ey, e, ..., e,, from ground set

Independent sets, Z = (), Z;; size parameter n = maxjcz |I|

Recent MWIS algorithm (compliant) [Varadaraja'11]
e Augment using only current element e

e Remove J = {z4,.. wxp}'

where x; := lightest element in circuit formed in ith matroid

Follow paradigm: use f-extension of above algorithm

Results, using O(n) storage
e 4p-approx in one pass

o (p+ 1+ ¢e)-approx in O(¢~?) passes *

* Multi-pass analysis only works for partition matroids
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‘ Conclusions I

Identified framework (compliant algorithms) capturing several semi-

streaming algorithms for constrained maximization
Using framework, extended algs from linear to submodular maximization
Applied to (hyper)matchings, (intersection of) matroids

Can smoothly interpolate approx factor between linear f and general
submodular f via curvature of f

Open Problems I

Extend matroid multi-pass result beyond partition matroids

Capture recent MWM algorithms that beat Zelke  [Crouch-Stubbs'14]

Lower bounds??? Is MSM harder to approximate than MWM?



