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A tale of three graphs 

 The telephone call-graph 

– Each edge denotes a call between two phones 

– 2-3  109 calls made each day in US, maybe 0.5  109 phones 

– Can store this information (for billing etc.) 

 The social graph 

– Each edge denotes a link from one person to another 

– > 109 people, > 1011 links 

– Store people (nodes) in memory, but maybe not all links 

 The IP graph  

– Each edge denotes communication between IP addresses 

– 109 packets/hour/router in a large ISP, 232 possible addresses 

– Not feasible to store nodes or edges 



Big Graphs 

 Increasingly many “big” graphs: 

– Internet/web graph (264 possible edges) 

– Online social networks (1011 edges) 

 Many natural problems on big graphs: 

– Connectivity/reachability/distance between nodes 

– Summarization/sparsification 

– Traditional optimization goals: vertex cover, maximal matching 

 Various models for handling big graphs: 

– Parallel (BSP/MapReduce): store and process the whole graph 

– Sampling: try to capture a subset of nodes/edges 

– Streaming (this talk): seek a compact summary of the graph 

3 



Streaming graph model 

 The “you get one chance” model: 

– See each edge only once 

– Space used must be sublinear in the size of the input 

– Analyze costs (time to process each edge, accuracy of answer) 

 Variations within the model: 

– See each exactly once or at least once? 

 Assume exactly once, this assumption can be removed 

– Insertions only, or edges added and deleted? 

– How sublinear is the space? 

 Semi-streaming: linear in n (nodes) but sublinear in m (edges) 

 “Strictly streaming”: sublinear in n, polynomial or logarithmic 
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Streaming is hard! 

 With sublinear in n (nodes) space, life is difficult 

– Cannot remember whether or not a given edge was seen 

– Therefore, cannot determine (e.g.) whether graph is connected 

– Standard relaxations, specifically randomization, do not help 

– Formal hardness proved via communication complexity 

 Different relaxations are needed to make any progress 

– Relax space: allow linear in n space – semi-streaming model 

– Make assumptions about input – parameterized streaming model 
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Parameterized Streaming 

 For many “reasonable” graphs we can make assumptions 

– About edge density (many real massive graphs are not dense) 

– About cost/size of the solution 

 Draw inspiration from fixed parameter-tractablility (FPT) 

– For (NP) Hard problems: assume solution has size k 

– Naïve solutions have cost exp(n) 

– Seek solutions with cost poly(n)exp(k) – reasonable for small k 

– Report “no” if solution size is greater than k 
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Kernelization 

 A key technique is kernelization 

– Reduce input (graph) G to a smaller (graph) instance G’ 

– Such that solution on G’ corresponds to solution on G 

– Size of G’ is poly(k) 

– So naïve (exponential) algorithm on G’ is FPT 

 Kernelization is a powerful technique 

– Any problem that is FPT has a kernelization solution 
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Kernelization for Vertex Cover 

 Set k'=k, desired size of vertex cover 

 Repeat till neither of the following can be applied   

– There is a vertex v in G with degree > k'. v must be in any cover. 
Remove v and all edges incident on v from G, decrease k' by one. 

– There is an isolated vertex v in G. Remove v from G.  

 If neither rule can be applied, but m>k'2 then G does not have a 
vertex cover of size at most k’.  

 Else, G’ is a kernel with at most 2k’2 nodes and k’2 edges 

– Can run exponential time algorithm on G’ to test for vertex cover 
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J. F. Buss and J. Goldsmith. Nondeterminism within P, 1993 

Vertex cover: find a set of vertices S so 
every edge has at least one vertex in S 

k’=3 k’=2 k’=1 



Kernelization on Graph Streams 

 A simple algorithm for insertions only 

– Maintain a matching M (greedily) on the graph seen so far 

– For any v in the matching, keep up to k edges incident on v as GM 

– If |M|>k, quit: any vertex cover must have more than k nodes 

– At any time, run kernelization algorithm on the stored edges GM 

 

 Key insight: size of M is a lower bound on size of vertex cover 

 Proof outline: argue that kernelization on GM mimics that on G 

– Every step on GM can be applied to G correspondingly 

– We keep “enough” edges on a node to test if it is high-degree 

 Guarantees O(k2) space: at most k edges on 2k nodes 

– Lower bound of W(k2) in the streaming model for Vertex Cover 
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Kernelization on Dynamic Graph Streams 

 More challenging case: dynamic graph streams 

– Edges are inserted and deleted 

 Previous algorithm breaks: deleting a matched edge means we no 
longer have a maximal matching 

 Study promise problem that max matching always at most size k 

– Open problem: remove the need for this promise 

 Need some additional technology: l0 sampling 

– Allows us to deal with high degree nodes 

– A sketch algorithm: maintains linear transform of input 

 Allows inserts and deletes to be analyzed easily 
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L0 Sampling 

 Goal: sample (near) uniformly from items with non-zero frequency 

 General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05] 

– Consider input to define a vector of frequencies 

– Sub-sample all items (present or not) with probability p 

– Generate a sub-sampled vector of frequencies fp 

– Feed fp to a k-sparse recovery data structure 

 Allows reconstruction of fp if number of non-zero entries < k  

– If vector fp is k-sparse, sample from reconstructed vector 

– Repeat in parallel for exponentially shrinking values of p 

11 



Sampling Process 

 Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16… 1/U 

– Let N = F0 = |{ i : fi  0}| 

– Want there to be a level where k-sparse recovery will succeed 

– At level p, expected number of items selected S is Np 

– Pick level p so that k/3 < Np  2k/3 

 Chernoff bound: with probability exponential in k, 1  S  k 

– Pick k = O(log 1/) to get 1- probability 

 

p=1 

p=1/U 

k-sparse recovery  
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k-Sparse Recovery 

 Given vector x with at most k non-zeros, recover x via sketching 

– A core problem in compressed sensing/compressive sampling 

 Randomized construction: hash elements to O(k) buckets 

– Elements are probably isolated in each bucket 

– Keep count of items and sum of item identifiers in each cell 

– Sum/count will reveal item id 

– Avoid false positives: keep fingerprint of items in each cell 

 Can keep a sketch of size O(k log U) to recover up to k items 

Sum, i : h(i)=j i 

Count, i : h(i)=j xi 

Fingerprint, i : h(i)=j xi r
i 
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Sampling and recovery of neighbourhoods 

 Back to maximal matchings and vertex cover 

– Algorithm outline: maintain a maximal matching under updates 

 Can have large neighbourhoods of matched nodes 

– E.g. high degree node (degree n) 

 If edge from matching is deleted, we want to replace it 

– There are many possible candidates, can’t store them all 

– Some are incident on other matched nodes, so can’t be used 

– Insight: there are at most 2k matched nodes (from promise) 

– So if we can recover more than 2k, should find some to match 

– Or, there are no edges to add to matching, so it is maximal 

 Keep an l0 sampling  sketch for each matched node 
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Algorithm Outline 

 Goal: keep information on only O(k) matched nodes at a time 

– Keep O(k poly-log) size sketch per node to recover 2k neighbours 

– Guarantee O(k2 poly-log) space, and fast time to update 

 Insertion of edge (u,v): 

– If u and v unmatched, add edge to matching and create sketches 

– If u (repectively v) matched, add edge to sketch of u (resp. v) 

– If u and v both matched (to other nodes), add edge to both sketches 

 Deletion of edge (u,v):  

– If u and v unmatched – error! Matching was not maximal! 

– If only 1 of u, v matched, delete edge from corresponding sketch* 

– If (u, v) in M, delete from M and sketches.  Attempt to rematch!* 

– If (u,v) matched but not to each other, delete (u,v) from sketches 
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Rematching nodes 

 Setting: (u,v) was in M but got deleted 

– Want to see if we can rematch u (resp. v) from current edges 

 

 Depends on degree of u:  

– u is low-degree ( < k poly-log):  
Can recover the full neighbourhood of u, and see if any available 

– u is high-degree 
Can’t recover the full neighbourhood of u 
But there can only be 2k matched neighbours 
If we use sketch to sample neighbours, the odds are in our favour 
Even over the course of the stream (assumed fixed in advance) 
Formally: analyze probability of successful rematching (Chernoff) 
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*Bookkeeping 

 Challenge: sketches may not contain all edge information 

 E.g:  edge (u,v) arrives, add to matching, and sketch(u), sketch(v) 
 edge (u,w) arrives: add to sketch(u)  
 edge (w,z) arrives: add to matching M,  
   add to sketch(w) and sketch(z) 
 delete(u,v): u is unmatched, cannot rematch 
 delete(w,z): w is unmatched.   
  Then (u,w) is available but is not stored in sketch(w) 
  We wouldn’t know to look in sketch(u)! 

 

 Solution: keep more information about arrival time of edges and 
extract neighbourhood information from low-degree nodes 
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Data Structure and Timestamps 

 Need to keep more information on edges 

– To avoid deleting edges from sketches that don’t contain them 

 

 Keep a structure T containing  subset of edges incident on M 

– At most k matched nodes, so T contains O(k2) edges 

 

 Assign “timestamps” to each event  

– Via a counter, or a clock 

– tu of vertex u is time when u was most recently matched 
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Invariants 

 Maintain the following set of invariants over the structures. 
 For every “live” edge (u, v) at time t: 

1. (u,v) is encoded in at least one of sketch(u) and sketch(v)  
[so no missing edges] 

2. If u and v both in M: (u,v)  sketch(v) iff tu < tv and (u, v)  T 

3. If u and v both in M: (u,v)  sketch(v),  sketch(u) iff (u, v)  T 

 

 Invariants ensure we know where to look for edges 

– Can implement updates that maintain all invariants 

– Means that all unmatched neighbours of a matched node are 
encoded in its sketch 
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Summary of Matching Algorithm 

 Keep O(k poly-log) space for O(k) nodes in current matching 

 Move edges between sketches so only k sketches are kept 

 Patch up the matching online to keep it maximal 

 Matching also allows vertex cover kernelization at any time 

– Takes time O(22k²) to look for a vertex cover 
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Concluding Remarks 

 Use of l0 sketches has arisen in several recent graph algorithms 

– Streaming graph connectivity in O(n polylog) space  
 [Ahn, Guha, McGregor 12]  

– Dynamic graph connectivity in polylogarithmic worst-case time 
[Kapron, King, Mountjoy 13] 

 Prompts several natural questions: 

– Can other streaming ideas inspire new graph algorithms? 

– Can streaming (bounded space) lead to dynamic (fast updates)? 

– Can the primitives (l0 sampling) be engineered for practical use? 

– Can assumptions (promise on input) be removed? 
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Thank you! 


