Parameterized Streaming Algorithms for Matching and Covering

Graham Cormode
g.cormode@warwick.ac.uk

Joint work with

Rajesh Chitnis (UMD)
MohammadTaghi Hajiaghayi (UMD)
Morteza Monemizadeh (Frankfurt)
A tale of three graphs

♦ The telephone call-graph
 – Each edge denotes a call between two phones
 – $2-3 \times 10^9$ calls made each day in US, maybe 0.5×10^9 phones
 – Can store this information (for billing etc.)

♦ The social graph
 – Each edge denotes a link from one person to another
 – > 10^9 people, > 10^{11} links
 – Store people (nodes) in memory, but maybe not all links

♦ The IP graph
 – Each edge denotes communication between IP addresses
 – 10^9 packets/hour/router in a large ISP, 2^{32} possible addresses
 – Not feasible to store nodes or edges
Big Graphs

- Increasingly many “big” graphs:
 - Internet/web graph (2\(^{64}\) possible edges)
 - Online social networks (10\(^{11}\) edges)

- Many natural problems on big graphs:
 - Connectivity/reachability/distance between nodes
 - Summarization/sparsification
 - Traditional optimization goals: vertex cover, maximal matching

- Various models for handling big graphs:
 - Parallel (BSP/MapReduce): store and process the whole graph
 - Sampling: try to capture a subset of nodes/edges
 - **Streaming** (this talk): seek a compact summary of the graph
Streaming graph model

♦ The “you get one chance” model:
 – See each edge only once
 – Space used must be sublinear in the size of the input
 – Analyze costs (time to process each edge, accuracy of answer)

♦ Variations within the model:
 – See each exactly once or at least once?
 ■ Assume exactly once, this assumption can be removed
 – Insertions only, or edges added and deleted?
 – How sublinear is the space?
 ■ Semi-streaming: linear in \(n \) (nodes) but sublinear in \(m \) (edges)
 ■ “Strictly streaming”: sublinear in \(n \), polynomial or logarithmic
Streaming is hard!

- With sublinear in n (nodes) space, life is difficult
 - Cannot remember whether or not a given edge was seen
 - Therefore, cannot determine (e.g.) whether graph is connected
 - Standard relaxations, specifically randomization, do not help
 - Formal hardness proved via communication complexity

- Different relaxations are needed to make any progress
 - Relax space: allow linear in n space – semi-streaming model
 - Make assumptions about input – parameterized streaming model
Parameterized Streaming

- For many “reasonable” graphs we can make assumptions
 - About edge density (many real massive graphs are not dense)
 - About cost/size of the solution
- Draw inspiration from fixed parameter-tractability (FPT)
 - For (NP) Hard problems: assume solution has size k
 - Naïve solutions have cost $\exp(n)$
 - Seek solutions with cost $\text{poly}(n) \exp(k)$ – reasonable for small k
 - Report “no” if solution size is greater than k
A key technique is **kernelization**

- Reduce input (graph) G to a smaller (graph) instance G'
- Such that solution on G' corresponds to solution on G
- Size of G' is $\text{poly}(k)$
- So naïve (exponential) algorithm on G' is FPT

Kernelization is a powerful technique

- Any problem that is FPT has a kernelization solution
Kernelization for Vertex Cover

Vertex cover: find a set of vertices S so every edge has at least one vertex in S

- Set $k' = k$, desired size of vertex cover
- Repeat till neither of the following can be applied
 - There is a vertex v in G with degree $> k'$. v must be in any cover. Remove v and all edges incident on v from G, decrease k' by one.
 - There is an isolated vertex v in G. Remove v from G.
- If neither rule can be applied, but $m > k'^2$ then G does not have a vertex cover of size at most k'.
- Else, G' is a kernel with at most $2k'^2$ nodes and k'^2 edges
 - Can run exponential time algorithm on G' to test for vertex cover

Kernelization on Graph Streams

- A simple algorithm for **insertions only**
 - Maintain a matching \(M \) (greedily) on the graph seen so far
 - For any \(v \) in the matching, keep up to \(k \) edges incident on \(v \) as \(G_M \)
 - If \(|M| > k\), quit: any vertex cover must have more than \(k \) nodes
 - At any time, run kernelization algorithm on the stored edges \(G_M \)

- **Key insight**: size of \(M \) is a lower bound on size of vertex cover

- **Proof outline**: argue that kernelization on \(G_M \) mimics that on \(G \)
 - Every step on \(G_M \) can be applied to \(G \) correspondingly
 - We keep “enough” edges on a node to test if it is high-degree

- **Guarantees** \(O(k^2) \) space: at most \(k \) edges on \(2k \) nodes
 - Lower bound of \(\Omega(k^2) \) in the streaming model for Vertex Cover
Kernelization on Dynamic Graph Streams

- More challenging case: dynamic graph streams
 - Edges are inserted and deleted
- Previous algorithm breaks: deleting a matched edge means we no longer have a maximal matching
- Study promise problem that max matching always at most size k
 - Open problem: remove the need for this promise
- Need some additional technology: l_0 sampling
 - Allows us to deal with high degree nodes
 - A sketch algorithm: maintains linear transform of input
 - Allows inserts and deletes to be analyzed easily
L₀ Sampling

♦ Goal: sample (near) uniformly from items with non-zero frequency
♦ General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]
 – Consider input to define a vector of frequencies
 – Sub-sample all items (present or not) with probability p
 – Generate a sub-sampled vector of frequencies \(f_p \)
 – Feed \(f_p \) to a \textit{k-sparse recovery} data structure
 ■ Allows reconstruction of \(f_p \) if number of non-zero entries < k
 – If vector \(f_p \) is k-sparse, sample from reconstructed vector
 – Repeat in parallel for exponentially shrinking values of p
Exponential set of probabilities, $p=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}... \frac{1}{U}$
- Let $N = F_0 = |\{ i : f_i \neq 0\}|$
- Want there to be a level where k-sparse recovery will succeed
- At level p, expected number of items selected S is Np
- Pick level p so that $\frac{k}{3} < Np \leq \frac{2k}{3}$

Chernoff bound: with probability exponential in k, $1 \leq S \leq k$
- Pick $k = O(\log \frac{1}{\delta})$ to get $1-\delta$ probability
k-Sparse Recovery

- Given vector x with at most k non-zeros, recover x via sketching
 - A core problem in compressed sensing/compressive sampling
- Randomized construction: hash elements to $O(k)$ buckets
 - Elements are probably isolated in each bucket
 - Keep count of items and sum of item identifiers in each cell
 - Sum/count will reveal item id
 - Avoid false positives: keep fingerprint of items in each cell
- Can keep a sketch of size $O(k \log U)$ to recover up to k items

<table>
<thead>
<tr>
<th>Sum, $\sum_{i : h(i)=j} i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count, $\sum_{i : h(i)=j} x_i$</td>
</tr>
<tr>
<td>Fingerprint, $\sum_{i : h(i)=j} x_i r^i$</td>
</tr>
</tbody>
</table>
Sampling and recovery of neighbourhoods

- Back to maximal matchings and vertex cover
 - Algorithm outline: maintain a maximal matching under updates
- Can have large neighbourhoods of matched nodes
 - E.g. high degree node (degree n)
- If edge from matching is deleted, we want to replace it
 - There are many possible candidates, can’t store them all
 - Some are incident on other matched nodes, so can’t be used
 - Insight: there are at most $2k$ matched nodes (from promise)
 - So if we can recover more than $2k$, should find some to match
 - Or, there are no edges to add to matching, so it is maximal
- Keep an l_0 sampling sketch for each matched node
Algorithm Outline

- **Goal**: keep information on only $O(k)$ matched nodes at a time
 - Keep $O(k \text{ poly-log})$ size sketch per node to recover $2k$ neighbours
 - Guarantee $O(k^2 \text{ poly-log})$ space, and fast time to update

- **Insertion of edge (u,v)**:
 - If u and v unmatched, add edge to matching and create sketches
 - If u (respectively v) matched, add edge to sketch of u (resp. v)
 - If u and v both matched (to other nodes), add edge to both sketches

- **Deletion of edge (u,v)**:
 - If u and v unmatched – error! Matching was not maximal!
 - If only 1 of u, v matched, delete edge from corresponding sketch*
 - If (u, v) in M, delete from M and sketches. Attempt to rematch!*
 - If (u,v) matched but not to each other, delete (u,v) from sketches
Rematching nodes

- **Setting**: \((u,v)\) was in \(M\) but got deleted
 - Want to see if we can rematch \(u\) (resp. \(v\)) from current edges

- Depends on degree of \(u\):
 - \(u\) is low-degree (\(< k\) poly-log):
 Can recover the full neighbourhood of \(u\), and see if any available
 - \(u\) is high-degree
 Can’t recover the full neighbourhood of \(u\)
 But there can only be \(2k\) matched neighbours
 If we use sketch to sample neighbours, the odds are in our favour
 Even over the course of the stream (assumed fixed in advance)
 Formally: analyze probability of successful rematching (Chernoff)
Challenge: sketches may not contain all edge information

E.g: edge (u,v) arrives, add to matching, and sketch(u), sketch(v)
edge (u,w) arrives: add to sketch(u)
edge (w,z) arrives: add to matching M,
 add to sketch(w) and sketch(z)
delete(u,v): u is unmatched, cannot rematch
delete(w,z): w is unmatched.

Then (u,w) is available but is not stored in sketch(w)
We wouldn’t know to look in sketch(u)!

Solution: keep more information about arrival time of edges and
extract neighbourhood information from low-degree nodes
Data Structure and Timestamps

- Need to keep more information on edges
 - To avoid deleting edges from sketches that don’t contain them

- Keep a structure T containing subset of edges incident on M
 - At most k matched nodes, so T contains $O(k^2)$ edges

- Assign “timestamps” to each event
 - Via a counter, or a clock
 - t_u of vertex u is time when u was most recently matched
Maintain the following set of invariants over the structures. For every “live” edge \((u, v)\) at time \(t\):

1. \((u,v)\) is encoded in at least one of \(\text{sketch}(u)\) and \(\text{sketch}(v)\) [so no missing edges]
2. If \(u\) and \(v\) both in \(M\): \((u,v) \notin \text{sketch}(v)\) iff \(t_u < t_v\) and \((u, v) \notin T\)
3. If \(u\) and \(v\) both in \(M\): \((u,v) \in \text{sketch}(v), \in \text{sketch}(u)\) iff \((u, v) \in T\)

Invariants ensure we know where to look for edges
- Can implement updates that maintain all invariants
- Means that all unmatched neighbours of a matched node are encoded in its sketch
Summary of Matching Algorithm

- Keep $O(k \text{ poly-log})$ space for $O(k)$ nodes in current matching
- Move edges between sketches so only k sketches are kept
- Patch up the matching online to keep it maximal
- Matching also allows vertex cover kernelization at any time
 - Takes time $O(2^{2k^2})$ to look for a vertex cover
Concluding Remarks

♦ Use of \(l_0\) sketches has arisen in several recent graph algorithms
 – Streaming graph connectivity in \(O(n \text{ polylog})\) space
 [Ahn, Guha, McGregor 12]
 – Dynamic graph connectivity in polylogarithmic worst-case time
 [Kapron, King, Mountjoy 13]

♦ Prompts several natural questions:
 – Can other streaming ideas inspire new graph algorithms?
 – Can streaming (bounded space) lead to dynamic (fast updates)?
 – Can the primitives (\(l_0\) sampling) be engineered for practical use?
 – Can assumptions (promise on input) be removed?

Thank you!