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Linear codes and testing

Binary linear code C is a subspace of Fn
2

Dual space C⊥ = {y ∈ Fn
2 | 〈y , c〉 = 0 ∀c ∈ C}.

Property test for code “x ∈ C”

Pick y randomly from a subset T ⊆ C⊥ and check 〈x , y〉 = 0.

T = C⊥ rejects x /∈ C with prob. 1/2.

Soundness error of test on input x :=
∣∣Ey∈T

[
(−1)〈x ,y〉

]∣∣
Focus on restricted/structured set of dual codewords for test:

q query tests: T ⊆ C⊥6q (low-weight dual codewords)
Hope to have low soundness error when x is far from C .
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Locally testable codes (LTC)

Goal: Construct codes C of good rate with a low-query test

Always accept codewords, and reject strings far from the code
with good prob.

Most work has focused on q = O(1) case.
Best known constant-query LTC has dimension o(n) (n/poly(log n))

Recently, due to connections to approximability, there has been
interest in the regime:

q ≈ εn (“small linear locality”), and

codes of large (n − o(n)) dimension.
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Binary Reed-Muller codes

Let P(m, u) be the F2-linear space of all multilinear polynomials in
X1,X2, . . . ,Xm of degree u (coefficients in F2)

Reed-Muller code
RM(m, u) = {〈f (a)〉a∈Fm

2
| f ∈ P(m, u)}.

Code length = 2m.

Dimension =
∑u

j=0

(
m
j

)
(number of monomials of degree 6 u)

Distance = 2m−u (A min. wt. codeword: f (X) = X1X2 · · ·Xu)
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Large rate Reed-Muller codes

Our focus: Large degree u = m − r − 1 (think r fixed, m→∞)

Code distance = 2r+1. (Poly f (X) = X1X2 · · ·Xm−r−1)

Dual space is RM(m, r)

f ∈ P(m,m − r − 1) and g ∈ P(m, r) =⇒
f · g ∈ P(m,m − 1) =⇒

∑
x f (x)g(x) = 0

Dual codewords of minimum weight (= 2m−r ):
L1L2 . . . Lr , product of r degree 1 polys (affine forms).
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Reed-Muller testing

Canonical test for proximity of f : Fm
2 → F2 to deg. m − r − 1 polys:

1 Pick linear independent affine forms L1, L2, . . . , Lr u.a.r, and set
h =

∏r
j=1 Lj (random min. wt. dual codeword)

2 Check 〈f , h〉 =
∑

x f (x)h(x) = 0 (≡ deg(f · h) < m)

# queries = 2m−r = εn for ε = 2−r .

Theorem ([Bhattacharyya, Kopparty, Schoenebeck, Sudan, Zuckerman’10])

If f is 2r -far from P(m,m − r − 1), then error of above test is
bounded away from 1; i.e., for some absolute constant ρ < 1∣∣∣E[(−1)〈f ,L1L2···Lr 〉]

∣∣∣ 6 ρ
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A beautiful connection: LTCs and SSEs

[Barak, Gopalan, Håstad, Meka, Raghavendra, Steurer’12] made a beautiful
connection between locally testable codes (LTCs) and small set
expanders (SSEs).

Instantiating with Reed-Muller codes, they constructed SSEs with
currently largest known count of bad eigenvalues.
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Small set expansion problem

SSE(µ, ε) problem

Given graph G = (V ,E ) on n vertices, distinguish between:

Yes instance: ∃ small non-expanding set,
i.e., ∃S ⊂ V , |S | = µn, EdgeExp(S) 6 ε

No instance: All small sets expand,
∀S , |S | = µn, EdgeExp(S) > 1/2.

SSE intractability hypothesis [Raghavendra, Steurer’10]

∀ε > 0, ∃µ such that SSE(µ, ε) is hard.
(Implies many other intractability results, including Unique Games conjecture.)
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A spectral necessity

A subset S with EdgeExp(S) 6 ε can be “found” in the eigenspace
of eigenvalues > 1− ε (of graph’s random walk matrix).

[Arora, Barak, Steurer’10]: this eigenspace has dimension . nε for
No instances (when the graph is a small set expander)

⇒ exp(nε) time algo for SSE problem

Necessary requirement for SSE intractability hypothesis

Existence of small set expanders (SSEs) with
nΩε(1) “bad” eigenvalues & 1− ε.
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SSEs with many bad eigenvalues [BGHMRS’12]

Noisy hypercube

Vertex set V = {0, 1}t . Edge x ∼ y if HamDist(x , y) = εt.
Has > t = log |V | eigenvalues ≈ 1− ε.

Derandomization via Reed-Muller code
Take subgraph induced by V ′ = RM(m, r) (t = 2m, ε = 2−r ).

Vertices P(m, r), degree r polynomials

Edges f ∼ g if f − g = L1L2 · · · Lr .

Easy: Graph retains Ω(t) eigenvalues ≈ 1− ε.

But now |V ′| ≈ 2mr
= 2(log t)r , so we have 2(log |V ′|)Ωε(1)

bad
eignevalues.
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SSE property of Reed-Muller graph

Fourier analysis over P(m, r)

Express function A : P(m, r)→ R as A(f ) =
∑

β Â(β)(−1)〈β,f 〉.

“frequencies” β range over cosets of P(m,m − r − 1) (dual
group of P(m, r)).

Weight of frequency β = Hamming dist. of β to P(m,m− r −1)

SSE proof has two ingredients
Take A = indicator of a small set

1 A has very little Fourier mass on low frequencies
(Hypercontractivity of low-degree polynomials)

2 Contribution of high frequency Â(β) killed by edges of graph
(testing of RM(m,m − r − 1)), leading to expansion.
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LTCs of constant absolute distance

Consider C ⊆ Fn
2 of minimum distance d .

Think d fixed, and n→∞.

Largest possible dimension (sphere packing bound): ≈ n − d
2

log n.

Achieved by BCH codes!

However, BCH code is not testable even with 0.49n queries.

Reed-Muller code RM(m, u) of length n = 2m and u ≈ m − log d

Dimension ≈ n − (log n)log d ,

Testable with 2n/d queries (rejecting d/3-far strings with Ω(1) prob.)
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Price of local testability?

Where in the spectrum between Reed-Muller and BCH does the best
dimension of distance d code testable with O(n/d) queries lie?

Dimension n − O(d log n) vs. n − (log n)log d

[Guo, Kopparty,Sudan’13] Lifted codes, with dimension & n −
(

log n
log d

)log d

slightly improving Reed-Muller codes.

[G.,Sudan,Velingker,Wang’14] For a class of affine-invariant codes

containing Reed-Muller, dimension . n −
(

log n
log2 d

)log d

.
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RM testing application II: Hypergraph Coloring

Best known algorithms to color 3-colorable graphs use nΩ(1) colors

Dream result: Matching hardness?

Less dreamy: Hardness of nΩ(1)-coloring 2-colorable hypergraphs?

Recent result based a “structured” Reed-Muller testing result:

Theorem ([Dinur, G.’13], [G., Harsha, Håstad, Srinivasan, Varma’14])

Coloring a 2-colorable 8-uniform hypergraph with exp(2
√

log log n)
colors is quasi NP-hard.

Previous hardness only ruled out (log n)O(1) coloring.

Very recently, [Khot, Saket’14] improved bound to exp((log n)Ω(1)) via different

use of the [Dinur, G.’13] RM testing result.
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Won’t be able to describe the underlying PCP in any detail,

but will try to give a glimpse of where Reed-Muller tesing fits in.
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The Long Code

PCPs encode assignments {0, 1}m to enable efficient testing.

The most influential code underlying almost all strong PCP results:

Long Code [Bellare, Goldreich, Sudan’95]

Definition (Long Code encoding a ∈ {0, 1}m)

LONG(a) := 〈f (a)〉f :{0,1}m→{0,1} .

Gives value of every Boolean function on a: the most redundant encoding.

The improvements in hypergraph coloring
(and also earlier integrality gaps in [BGHMRS’12], [Kane-Meka’13])

due to a “shorter” Reed-Muller based substitute of the long code.
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The low-degree long code

Definition (Degree-r long code)

The degree-r long code encoding of a ∈ {0, 1}m is

〈f (a)〉f ∈P(m,r) .

Puncturing of long code to locations indexed by degree 6 r fns.
⇐⇒ derandomization of hypercube to Reed-Muller codewords.

Encoding length ≈ 2mr
instead of 22m for the long code.

For r ≈ logm, almost exponential savings.
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Hypergraph gadget on low-degree long code

Underlying hypergh coloring hardness is a “low-degree long code test”

Query patterns give hypergraph on vertex set P(m, r)1 such that:

1 (Completeness) If A : P(m, r)→ {0, 1} is a codeword of the
degree-r long code, i.e., ∃a ∈ Fm

2 such that ∀f , A(f ) = f (a),
then A is a 2-coloring without any monochromatic hyperedge.

2 (Soundness) If I : P(m, r)→ {0, 1} is the indicator function of
an independent set of measure µ, then ∃ a “sizeable” Fourier
coefficient |Î (β)| for some β of “low” weight (= distance to

P(m,m − r − 1))

1degree r polynomials over F2 in m variables
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8-uniform hypergraph gadget

Vertex set = P(m, r).

Hyperedges on 8-tuples:

e1 e1 + f1
e2 e2 + f1 + g · h + 1
e3 e3 + f2
e4 e4 + f2 + g · h′ + 1 .

∀ei , fi ∈ P(m, r), g , h, h′ ∈ P(m, r/2).

Completeness: Ensured by (g · h)(a) = 0 or (g · h′)(a) = 0 for
every a ∈ Fm

2 .

Soundness: Orthogonality to g · h is a good Reed-Muller test that
kills high frequencies.
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Structured Reed-Muller testing

Recap: To test proximity to P(m,m− r − 1), check orthogonality to
some degree r polys (the dual space).

Theorem (Dinur, G.’13)

If β : Fm
2 → F2 is 2r -far from P(m,m − r − 1), then

Eg ,h

[
(−1)〈β,g ·h〉

]
6 2−2Ω(r)

,

where g , h ∈R P(m, r/2).

Compare with [BKSSZ]: Test function L1L2 · · · Lr , constant
soundness error (and 2m/2r queries)

Here, test function g · h, soundness error doubly exponentially
small in r (and typically 2m/4 queries)

Venkatesan Guruswami (CMU) RM testing and approximability May 2014 20 / 22



Structured Reed-Muller testing

Recap: To test proximity to P(m,m− r − 1), check orthogonality to
some degree r polys (the dual space).

Theorem (Dinur, G.’13)

If β : Fm
2 → F2 is 2r -far from P(m,m − r − 1), then

Eg ,h

[
(−1)〈β,g ·h〉

]
6 2−2Ω(r)

,

where g , h ∈R P(m, r/2).

Compare with [BKSSZ]: Test function L1L2 · · · Lr , constant
soundness error (and 2m/2r queries)

Here, test function g · h, soundness error doubly exponentially
small in r (and typically 2m/4 queries)

Venkatesan Guruswami (CMU) RM testing and approximability May 2014 20 / 22



Proof idea of RM testing result

Need to understand when 〈β, gh〉 = 0⇐⇒ 〈βg , h〉 = 0,
given β is far from P(m,m − r − 1).

Eh[(−1)〈βg ,h〉] =

{
1 if deg(βg) 6 m − r/2− 1
0 otherwise

1 For fixed β, {g ∈ P(m, r/2) | deg(βg) 6 m − r/2− 1} is a
subspace of P(m, r/2)

⇒ Must prove co-dimension > 2Ω(r) (for β far from P(m,m− r − 1))

2 [BKSSZ] ⇒ If β is D-far from P(m,m − r − 1), then ∃ a linear
form L s.t. β|L=0 & β|L=1 are both D

3
-far from P(m− 1,m− r − 1).

3 Use 2. to lower bound co-dimension by sum of two similar
co-dimensions (recursively for Ω(r) inductive steps)
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Summary

Ability to test high rate Reed-Muller codes is the basis for:

Quantitative improvements via the low-degree long code

Applications to approximability: SSE with many eigenvalues, improved

integrality gaps for sparsest cut, hardness of hypergraph coloring,

size-efficient PCPs.

More applications?

Even better testable codes than Reed-Muller codes?

Limits of testability in the “small linear locality” (εn queries) regime?

Is BCH or RM closer to the largest possible dimension?
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