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Linear codes and testing

@ Binary linear code C is a subspace of [}
@ Dual space Ct ={y € F5 | (y,c) =0Vc € C}.
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Linear codes and testing

@ Binary linear code C is a subspace of [}
@ Dual space Ct ={y € F5 | (y,c) =0Vc € C}.

Property test for code “x € C"

e Pick y randomly from a subset T C C* and check (x,y) = 0.

o T = Ct rejects x ¢ C with prob. 1/2.
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e Pick y randomly from a subset T C C* and check (x,y) = 0.
o T = Ct rejects x ¢ C with prob. 1/2.
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Venkatesan Guruswami (CMU) RM testing and approximability May 2014 2/22



Linear codes and testing

@ Binary linear code C is a subspace of [}
@ Dual space Ct ={y € F5 | (y,c) =0Vc € C}.

Property test for code “x € C"

e Pick y randomly from a subset T C C* and check (x,y) = 0.
o T = Ct rejects x ¢ C with prob. 1/2.

e Soundness error of test on input x := |Eyer[(—1)<x’y>] |

@ Focus on restricted/structured set of dual codewords for test:

e g query tests: T C Cgiq (low-weight dual codewords)
e Hope to have low soundness error when x is far from C.
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Locally testable codes (LTC)

Goal: Construct codes C of good rate with a low-query test

@ Always accept codewords, and reject strings far from the code
with good prob.

Most work has focused on g = O(1) case.
Best known constant-query LTC has dimension o(n) (n/poly(log n))

Venkatesan Guruswami (CMU) RM testing and approximability May 2014 3/22



Locally testable codes (LTC)

Goal: Construct codes C of good rate with a low-query test

@ Always accept codewords, and reject strings far from the code
with good prob.

Most work has focused on g = O(1) case.
Best known constant-query LTC has dimension o(n) (n/poly(log n))

Recently, due to connections to approximability, there has been
interest in the regime:

@ g =~ en ("small linear locality”), and

@ codes of large (n — o(n)) dimension.
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Binary Reed-Muller codes

Let P(m, u) be the F,-linear space of all multilinear polynomials in
X1, X, ..., X of degree u (coefficients in TFy)

Reed-Muller code
RM(m, u) = {(f(a))acer | f € P(m, u)}.
e Code length =27,

@ Dimension = »7 ; (7) (number of monomials of degree < u)
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Binary Reed-Muller codes

Let P(m, u) be the F,-linear space of all multilinear polynomials in
X1, X, ..., X of degree u (coefficients in TFy)

Reed-Muller code

RM(m, u) = {{(F(a))acsr | f € P(m, u)}.
e Code length =27,

@ Dimension = »7 ; (7) (number of monomials of degree < u)

@ Distance = 2% (A min. wt. codeword: f(X) = X; X5 X,)

v
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Large rate Reed-Muller codes

Our focus: Large degree u = m — r — 1 (think r fixed, m — o)

e Code distance = 2"™1. (Poly f(X) = X; X -+ - Xin_r_1)
@ Dual space is RM(m, r)
o feP(mm—r—1)and g€ P(m,r) =
f-geP(mm-1)= > f(x)g(x)=0
o Dual codewords of minimum weight (=2"""):
LiLy...L,, product of r degree 1 polys (affine forms).
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Reed-Muller testing

Canonical test for proximity of f : FJ' — F, to deg. m — r — 1 polys:

© Pick linear independent affine forms Ly, L,,...,L, u.a.r, and set
h=T[;_; L; (random min. wt. dual codeword)

@ Check (f, h)y =" f(x)h(x) =0 (= deg(f - h) < m)

# queries = 2™ " =¢en fore = 27",
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Reed-Muller testing

Canonical test for proximity of f : FJ' — F, to deg. m — r — 1 polys:

© Pick linear independent affine forms Ly, L,,...,L, u.a.r, and set
h=T[;_; L; (random min. wt. dual codeword)

@ Check (f, h)y =" f(x)h(x) =0 (= deg(f - h) < m)

# queries = 2™ " =¢en fore = 27",

Theorem ([Bhattacharyya, Kopparty, Schoenebeck, Sudan, Zuckerman'10])

If f is 2"-far from P(m,m — r — 1), then error of above test is
bounded away from 1; i.e., for some absolute constant p < 1

oo <
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A beautiful connection: LTCs and SSEs

[Barak, Gopalan, Hastad, Meka, Raghavendra, Steurer'12] made a beautiful
connection between locally testable codes (LTCs) and small set
expanders (SSEs).

Instantiating with Reed-Muller codes, they constructed SSEs with
currently largest known count of bad eigenvalues.
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Small set expansion problem

SSE( i, €) problem
Given graph G = (V, E) on n vertices, distinguish between:

@ YES instance: 3 small non-expanding set,
i.e., 35S C V, |S| = un, EdgeExp(S) < ¢

@ NoO instance: All small sets expand,
VS, |S| = pn, EdgeExp(S) > 1/2.

Venkatesan Guruswami (CMU) RM testing and approximability May 2014 8 /22



Small set expansion problem

SSE(u, ) problem
Given graph G = (V, E) on n vertices, distinguish between:

@ YES instance: 3 small non-expanding set,
i.e., 35S C V, |S| = un, EdgeExp(S) < ¢

@ NoO instance: All small sets expand,
VS, |S| = pn, EdgeExp(S) > 1/2.

SSE intractability hypothesis [Raghavendra, Steurer'10]
Ve > 0, du such that SSE(yu, €) is hard.

(Implies many other intractability results, including Unique Games conjecture.)
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A spectral necessity

A subset S with EdgeExp(S) < € can be “found” in the eigenspace
of eigenvalues > 1 — ¢ (of graph's random walk matrix).

@ [Arora, Barak, Steurer'10]: this eigenspace has dimension < n® for
No instances (when the graph is a small set expander)

= exp(n®) time algo for SSE problem
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A spectral necessity

A subset S with EdgeExp(S) < € can be “found” in the eigenspace
of eigenvalues > 1 — ¢ (of graph's random walk matrix).

@ [Arora, Barak, Steurer'10]: this eigenspace has dimension < n® for
No instances (when the graph is a small set expander)

= exp(n®) time algo for SSE problem

Necessary requirement for SSE intractability hypothesis

Existence of small set expanders (SSEs) with

n=(1) “bad” eigenvalues > 1 —¢.
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SSEs with many bad eigenvalues [BGHMRS'12]

Noisy hypercube

Vertex set V = {0,1}*. Edge x ~ y if HamDist(x, y) = et.
Has > t = log|V/| eigenvalues ~ 1 — ¢.
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SSEs with many bad eigenvalues [BGHMRS'12]

Noisy hypercube

Vertex set V = {0,1}*. Edge x ~ y if HamDist(x, y) = et.
Has > t = log|V/| eigenvalues ~ 1 — ¢.

Derandomization via Reed-Muller code

Take subgraph induced by V/ = RM(m,r) (t =2, =2"").
@ Vertices P(m, r), degree r polynomials
@ Edges f ~gif f —g=LL,---L,.

Easy: Graph retains Q(t) eigenvalues ~ 1 — «.
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SSEs with many bad eigenvalues [BGHMRS'12]

Noisy hypercube

Vertex set V = {0,1}*. Edge x ~ y if HamDist(x, y) = et.
Has > t = log|V/| eigenvalues ~ 1 — ¢.

Derandomization via Reed-Muller code

Take subgraph induced by V/ = RM(m,r) (t =2, =2"").
@ Vertices P(m, r), degree r polynomials
@ Edges f ~gif f —g=LL,---L,.

Easy: Graph retains Q(t) eigenvalues ~ 1 — «.

@ But now |V/| ~ 2™ = 2(°¢1)" 5o we have o(log |V/)2%=) 4

eignevalues.
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SSE property of Reed-Muller graph

Fourier analysis over P(m, r)

Express function A: P(m,r) — R as A(f) =3, A(B)(=1)B0.
e “frequencies” /3 range over cosets of P(m,m — r — 1) (dual
group of P(m,r)).
e Weight of frequency § = Hamming dist. of 5 to P(m,m—r—1)
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SSE property of Reed-Muller graph

Fourier analysis over P(m, r)

Express function A: P(m,r) — R as A(f) =3, A(B)(=1)B0.

e “frequencies” /3 range over cosets of P(m,m — r — 1) (dual
group of P(m,r)).
e Weight of frequency § = Hamming dist. of 5 to P(m,m—r—1)

SSE proof has two ingredients

Take A = indicator of a small set

@ A has very little Fourier mass on low frequencies
(Hypercontractivity of low-degree polynomials)

@ Contribution of high frequency Z(B) killed by edges of graph
(testing of RM(m, m — r — 1)), leading to expansion.

v
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LT Cs of constant absolute distance

Consider C C F] of minimum distance d.
Think d fixed, and n — oo.

Largest possible dimension (sphere packing bound): ~ n — % log n.
@ Achieved by BCH codes!
@ However, BCH code is not testable even with 0.49n queries.
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LT Cs of constant absolute distance

Consider C C F] of minimum distance d.
Think d fixed, and n — oo.

Largest possible dimension (sphere packing bound): ~ n — % log n.
@ Achieved by BCH codes!

@ However, BCH code is not testable even with 0.49n queries.

Reed-Muller code RM(m, u) of length n =2™ and u~ m — log d
@ Dimension ~ n — (log n)°& ¢,

@ Testable with 2n/d queries (rejecting d/3-far strings with Q(1) prob.)
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Price of local testability?

Where in the spectrum between Reed-Muller and BCH does the best
dimension of distance d code testable with O(n/d) queries lie?

e Dimension n — O(d log n) vs. n— (log n)'&?
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Price of local testability?

Where in the spectrum between Reed-Muller and BCH does the best
dimension of distance d code testable with O(n/d) queries lie?

e Dimension n — O(d log n) vs. n— (log n)'&?

log d
[Guo, Kopparty,Sudan'13] Lifted codes, with dimension 2 n — (Ioﬁ)
slightly improving Reed-Muller codes.

[G.,Sudan, Velingker,Wang'14] For a class of affine-invariant codes

log d
containing Reed-Muller, dimension < n — <|L°gg2’;) _
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RM testing application Il: Hypergraph Coloring

Q(1)

Best known algorithms to color 3-colorable graphs use n colors

Dream result: Matching hardness?
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RM testing application Il: Hypergraph Coloring

Q(1)

Best known algorithms to color 3-colorable graphs use n colors

Dream result: Matching hardness?

Less dreamy: Hardness of n®Y-coloring 2-colorable hypergraphs?

Recent result based a “structured” Reed-Muller testing result:

Theorem ([Dinur, G.'13], [G., Harsha, Hastad, Srinivasan, Varma'14])

Coloring a 2-colorable 8-uniform hypergraph with exp(2V'°8'og ")
colors is quasi NP-hard.
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RM testing application Il: Hypergraph Coloring

Best known algorithms to color 3-colorable graphs use n*®) colors

Dream result: Matching hardness?
Less dreamy: Hardness of n®*M-coloring 2-colorable hypergraphs?

Recent result based a “structured” Reed-Muller testing result:

Theorem ([Dinur, G.'13], [G., Harsha, Hastad, Srinivasan, Varma'14])

Coloring a 2-colorable 8-uniform hypergraph with exp(2V'°8'og ")
colors is quasi NP-hard.

Previous hardness only ruled out (log n)°®) coloring.

Very recently, [Khot, Saket'14] improved bound to exp((log n)?*™) via different
use of the [Dinur, G."13] RM testing result.
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Won't be able to describe the underlying PCP in any detail,
but will try to give a glimpse of where Reed-Muller tesing fits in.
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The Long Code

PCPs encode assignments {0, 1} to enable efficient testing.

The most influential code underlying almost all strong PCP results:
Long Code [Bellare, Goldreich, Sudan’95]

Venkatesan Guruswami (CMU) RM testing and approximability May 2014 16 / 22



The Long Code

PCPs encode assignments {0, 1} to enable efficient testing.

The most influential code underlying almost all strong PCP results:
Long Code [Bellare, Goldreich, Sudan’95]

Definition (Long Code encoding a € {0,1}™)

LONG(a) = (f(a)>f;{071}m_>{071} .

Gives value of every Boolean function on a: the most redundant encoding.
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The Long Code

PCPs encode assignments {0, 1} to enable efficient testing.

The most influential code underlying almost all strong PCP results:
Long Code [Bellare, Goldreich, Sudan’95]

Definition (Long Code encoding a € {0,1}™)

LONG(a) = (f(a)>f;{071}m_>{071} .

Gives value of every Boolean function on a: the most redundant encoding.

The improvements in hypergraph coloring
(and also earlier integrality gaps in [BGHMRS'12], [Kane-Meka'13])
due to a “shorter” Reed-Muller based substitute of the long code.
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The low-degree long code

Definition (Degree-r long code)
The degree-r long code encoding of a € {0,1}™ is

<f(a)>f€P(m,r) :

Puncturing of long code to locations indexed by degree < r fns.
<= derandomization of hypercube to Reed-Muller codewords.

Encoding length =~ 2™ instead of 22" for the long code.

@ For r ~ log m, almost exponential savings.
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Hypergraph gadget on low-degree long code

Underlying hypergh coloring hardness is a “low-degree long code test”

Query patterns give hypergraph on vertex set P(m, r)! such that:
yp g ypergrap ;

© (Completeness) If A: P(m,r) — {0,1} is a codeword of the
degree-r long code, i.e., Ja € FY such that Vf, A(f) = f(a),
then A is a 2-coloring without any monochromatic hyperedge.

ldegree r polynomials over F, in m variables
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Hypergraph gadget on low-degree long code

Underlying hypergh coloring hardness is a “low-degree long code test”

Query patterns give hypergraph on vertex set P(m, r)! such that:
yp g ypergrap ;

© (Completeness) If A: P(m,r) — {0,1} is a codeword of the
degree-r long code, i.e., Ja € FY such that Vf, A(f) = f(a),
then A is a 2-coloring without any monochromatic hyperedge.

@ (Soundness) If I : P(m, r) — {0, 1} is the indicator function of
an independent set of measure 4, then 3 a “sizeable” Fourier

coefficient |/(3)| for some 3 of "low” weight (= distance to
P(m,m—r—1))

ldegree r polynomials over F, in m variables
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8-uniform hypergraph gadget

o Vertex set = P(m, r).
@ Hyperedges on 8-tuples:

e e+ h
& eth+g-h+l
e3s e+ h

e e+h+g-h+1.
Ve, f; € P(m,r), g, h,h € P(m,r/2).

Completeness: Ensured by (g - h)(a) =0 or (g - h')(a) = 0 for
every a € 7.
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8-uniform hypergraph gadget

o Vertex set = P(m, r).

@ Hyperedges on 8-tuples:

e e+ h
& eth+g-h+l
e3s e+ h

e e+h+g-h+1.
Ve, f; € P(m,r), g, h,h € P(m,r/2).

Completeness: Ensured by (g - h)(a) =0 or (g - h')(a) = 0 for
every a € 7.

Soundness: Orthogonality to g - h is a good Reed-Muller test that
kills high frequencies.
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Structured Reed-Muller testing

Recap: To test proximity to P(m, m — r — 1), check orthogonality to
some degree r polys (the dual space).

Theorem (Dinur, G.'13)
If 5 : B — ¥y is 2"-far from P(m,m — r — 1), then

E, [(_1)(6,g~h>] <2

where g, h €g P(m, r/2).
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Structured Reed-Muller testing

Recap: To test proximity to P(m, m — r — 1), check orthogonality to
some degree r polys (the dual space).

Theorem (Dinur, G.'13)
If 5 : B — ¥y is 2"-far from P(m,m — r — 1), then

E, [(_1)(ﬁ,g~h>] <2

where g, h €g P(m, r/2).

@ Compare with [BKSSZ]: Test function L;L,---L,, constant
soundness error (and 2™ /2" queries)

@ Here, test function g - h, soundness error doubly exponentially
small in r (and typically 2™ /4 queries)
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Proof idea of RM testing result

Need to understand when (3, gh) = 0 <= (g, h) =0,
given 3 is far from P(m,m — r — 1).

1 ifdeg(Bg)<m—r/2—-1
0 otherwise

Eal(-1)%e"] = {
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Proof idea of RM testing result

Need to understand when (3, gh) = 0 <= (g, h) =0,
given 3 is far from P(m,m — r — 1).

1 ifdeg(Bg)<m—r/2—-1
0 otherwise

Eal(-1)%e"] = {

© For fixed g, {g € P(m,r/2) | deg(fg) < m—r/2—1}is a
subspace of P(m, r/2)
— Must prove co-dimension > 2" (for 3 far from P(m, m—r —1))
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Proof idea of RM testing result

Need to understand when (3, gh) = 0 <= (g, h) =0,
given 3 is far from P(m,m — r — 1).

1 ifdeg(Bg)<m—r/2—-1
0 otherwise

Eal(-1)%e"] = {

© For fixed g, {g € P(m,r/2) | deg(fg) < m—r/2—1}is a
subspace of P(m, r/2)
— Must prove co-dimension > 2" (for 3 far from P(m, m—r —1))
@ [BKSSZ] = If 5 is D-far from P(m, m — r — 1), then 3 a linear
form L s.t. Bji—o & =1 are both %-far from P(m—1,m—r—1).
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Proof idea of RM testing result

Need to understand when (3, gh) = 0 <= (g, h) =0,
given 3 is far from P(m,m — r — 1).

1 ifdeg(Bg)<m—r/2—-1
0 otherwise

Eal(-1)%e"] = {

© For fixed g, {g € P(m,r/2) | deg(fg) < m—r/2—1}is a
subspace of P(m, r/2)
— Must prove co-dimension > 2" (for 3 far from P(m, m—r —1))
@ [BKSSZ] = If 5 is D-far from P(m, m — r — 1), then 3 a linear
form L s.t. Bji—o & =1 are both %-far from P(m—1,m—r—1).

© Use 2. to lower bound co-dimension by sum of two similar
co-dimensions (recursively for Q(r) inductive steps)
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Ability to test high rate Reed-Muller codes is the basis for:
e Quantitative improvements via the low-degree long code

@ Applications to approximability: SSE with many eigenvalues, improved
integrality gaps for sparsest cut, hardness of hypergraph coloring,
size-efficient PCPs.

@ More applications?
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Ability to test high rate Reed-Muller codes is the basis for:
e Quantitative improvements via the low-degree long code

@ Applications to approximability: SSE with many eigenvalues, improved
integrality gaps for sparsest cut, hardness of hypergraph coloring,
size-efficient PCPs.

@ More applications?

Even better testable codes than Reed-Muller codes?

Limits of testability in the “small linear locality” (en queries) regime?

@ Is BCH or RM closer to the largest possible dimension?
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