Reed-Muller testing and approximating small set expansion & hypergraph coloring

Venkatesan Guruswami

CARNEGIE MELLON UNIVERSITY

(Spring'14 @ Microsoft Research New England)

2014 Bertinoro Workshop on Sublinear Algorithms May 27, 2014

- Binary linear code C is a subspace of \mathbb{F}_2^n
- Dual space $C^{\perp} = \{ y \in \mathbb{F}_2^n \mid \langle y, c \rangle = 0 \ \forall c \in C \}.$

- Binary linear code C is a subspace of \mathbb{F}_2^n
- Dual space $C^{\perp} = \{ y \in \mathbb{F}_2^n \mid \langle y, c \rangle = 0 \ \forall c \in C \}.$

Property test for code " $x \in C$ "

- Pick y randomly from a subset $T \subseteq C^{\perp}$ and check $\langle x, y \rangle = 0$.
- $T = C^{\perp}$ rejects $x \notin C$ with prob. 1/2.

- Binary linear code C is a subspace of \mathbb{F}_2^n
- Dual space $C^{\perp} = \{ y \in \mathbb{F}_2^n \mid \langle y, c \rangle = 0 \ \forall c \in C \}.$

Property test for code " $x \in C$ "

- Pick y randomly from a subset $T \subseteq C^{\perp}$ and check $\langle x, y \rangle = 0$.
- $T = C^{\perp}$ rejects $x \notin C$ with prob. 1/2.
- Soundness error of test on input $x := \left| \mathbb{E}_{y \in \mathcal{T}} \left[(-1)^{\langle x, y \rangle} \right] \right|$

- Binary linear code C is a subspace of \mathbb{F}_2^n
- Dual space $C^{\perp} = \{ y \in \mathbb{F}_2^n \mid \langle y, c \rangle = 0 \ \forall c \in C \}.$

Property test for code " $x \in C$ "

- Pick y randomly from a subset $T \subseteq C^{\perp}$ and check $\langle x, y \rangle = 0$.
- $T = C^{\perp}$ rejects $x \notin C$ with prob. 1/2.
- Soundness error of test on input $x := \left| \mathbb{E}_{y \in \mathcal{T}} \left[(-1)^{\langle x, y \rangle} \right] \right|$
- Focus on restricted/structured set of dual codewords for test:
 - q query tests: $T \subseteq C_{\leqslant q}^{\perp}$ (low-weight dual codewords)
 - Hope to have low soundness error when x is far from C.

イロト イヨト イヨト イヨト 三日

<u>Goal</u>: Construct codes C of good rate with a *low-query* test

• Always accept codewords, and reject strings far from the code with good prob.

Most work has focused on q = O(1) case. Best known constant-query LTC has dimension $o(n) (n/\text{poly}(\log n))$ Goal: Construct codes C of good rate with a *low-query* test

• Always accept codewords, and reject strings far from the code with good prob.

Most work has focused on q = O(1) case. Best known constant-query LTC has dimension $o(n) (n/\text{poly}(\log n))$

Recently, due to connections to approximability, there has been interest in the regime:

- $q \approx \varepsilon n$ ("small linear locality"), and
- codes of large (n o(n)) dimension.

(日) (同) (三) (三)

Let P(m, u) be the \mathbb{F}_2 -linear space of all multilinear polynomials in X_1, X_2, \ldots, X_m of degree u (coefficients in \mathbb{F}_2)

Reed-Muller code

 $\mathsf{RM}(m, u) = \{ \langle f(\mathbf{a}) \rangle_{\mathbf{a} \in \mathbb{F}_2^m} \mid f \in P(m, u) \}.$

- Code length $= 2^m$.
- Dimension = $\sum_{j=0}^{u} {m \choose j}$ (number of monomials of degree $\leq u$)

・ロト ・四ト ・ヨト ・ヨト - ヨ

Let P(m, u) be the \mathbb{F}_2 -linear space of all multilinear polynomials in X_1, X_2, \ldots, X_m of degree u (coefficients in \mathbb{F}_2)

Reed-Muller code

 $\mathsf{RM}(m, u) = \{ \langle f(\mathbf{a}) \rangle_{\mathbf{a} \in \mathbb{F}_2^m} \mid f \in P(m, u) \}.$

- Code length $= 2^m$.
- Dimension = $\sum_{j=0}^{u} {m \choose j}$ (number of monomials of degree $\leq u$)
- Distance = 2^{m-u} (A min. wt. codeword: $f(\mathbf{X}) = X_1 X_2 \cdots X_u$)

<u>Our focus</u>: Large degree u = m - r - 1 (think r fixed, $m \to \infty$)

- Code distance = 2^{r+1} . (Poly $f(\mathbf{X}) = X_1 X_2 \cdots X_{m-r-1}$)
- Dual space is RM(m, r)
 - $f \in P(m, m-r-1)$ and $g \in P(m, r) \Longrightarrow$ $f \cdot g \in P(m, m-1) \Longrightarrow \sum_{x} f(x)g(x) = 0$
 - Dual codewords of minimum weight (= 2^{m-r}): L₁L₂...L_r, product of r degree 1 polys (affine forms).

・ロト ・四ト ・ヨト ・ヨト - ヨ

Reed-Muller testing

Canonical test for proximity of f : F₂^m → F₂ to deg. m - r - 1 polys: Pick linear independent affine forms L₁, L₂,..., L_r u.a.r, and set h = ∏_{j=1}^r L_j (random min. wt. dual codeword) Check ⟨f, h⟩ = ∑_x f(x)h(x) = 0 (≡ deg(f ⋅ h) < m)

queries = $2^{m-r} = \varepsilon n$ for $\varepsilon = 2^{-r}$.

Venkatesan Guruswami (CMU)

Reed-Muller testing

Canonical test for proximity of $f : \mathbb{F}_2^m \to \mathbb{F}_2$ to deg. m - r - 1 polys:

• Pick linear independent affine forms $L_1, L_2, ..., L_r$ u.a.r, and set $h = \prod_{j=1}^r L_j$ (random min. wt. dual codeword)

Check $\langle f, h \rangle = \sum_{x} f(x)h(x) = 0 \ (≡ \deg(f \cdot h) < m)$

queries =
$$2^{m-r} = \varepsilon n$$
 for $\varepsilon = 2^{-r}$.

Theorem ([Bhattacharyya, Kopparty, Schoenebeck, Sudan, Zuckerman'10])

If f is 2^r-far from P(m, m - r - 1), then error of above test is bounded away from 1; i.e., for some absolute constant $\rho < 1$

$$\left|\mathbb{E}[(-1)^{\langle f, L_1 L_2 \cdots L_r \rangle}]\right| \leqslant
ho$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A beautiful connection: LTCs and SSEs

[Barak, Gopalan, Håstad, Meka, Raghavendra, Steurer'12] made a beautiful connection between locally testable codes (LTCs) and small set expanders (SSEs).

Instantiating with Reed-Muller codes, they constructed SSEs with currently largest known count of bad eigenvalues.

Small set expansion problem

$\mathsf{SSE}(\mu,\varepsilon)$ problem

Given graph G = (V, E) on *n* vertices, distinguish between:

- YES instance: ∃ small non-expanding set,
 i.e., ∃S ⊂ V, |S| = μn, EdgeExp(S) ≤ ε
- No instance: All small sets expand,

 $\forall S, |S| = \mu n, \operatorname{EdgeExp}(S) \ge 1/2.$

Small set expansion problem

$\mathsf{SSE}(\mu,\varepsilon)$ problem

Given graph G = (V, E) on *n* vertices, distinguish between:

YES instance: ∃ small non-expanding set,
 i.e., ∃S ⊂ V, |S| = μn, EdgeExp(S) ≤ ε

• No instance: All small sets expand, $\forall S, |S| = \mu n, \operatorname{EdgeExp}(S) \ge 1/2.$

SSE intractability hypothesis [Raghavendra, Steurer'10]

 $\forall \varepsilon > 0$, $\exists \mu$ such that $SSE(\mu, \varepsilon)$ is hard.

(Implies many other intractability results, including Unique Games conjecture.)

A subset S with $\operatorname{EdgeExp}(S) \leq \varepsilon$ can be "found" in the eigenspace of eigenvalues $\geq 1 - \varepsilon$ (of graph's random walk matrix).

• [Arora, Barak, Steurer'10]: this eigenspace has dimension $\leq n^{\varepsilon}$ for No instances (when the graph is a small set expander)

 $\Rightarrow \exp(n^{\varepsilon})$ time algo for SSE problem

(日)

A subset S with $\operatorname{EdgeExp}(S) \leq \varepsilon$ can be "found" in the eigenspace of eigenvalues $\geq 1 - \varepsilon$ (of graph's random walk matrix).

 [Arora, Barak, Steurer'10]: this eigenspace has dimension ≤ n^ε for No instances (when the graph is a small set expander)
 ⇒ exp(n^ε) time algo for SSE problem

Necessary requirement for SSE intractability hypothesis

Existence of small set expanders (SSEs) with $n^{\Omega_{\varepsilon}(1)}$ "bad" eigenvalues $\gtrsim 1 - \varepsilon$.

SSEs with many bad eigenvalues [BGHMRS'12]

Noisy hypercube

Vertex set $V = \{0, 1\}^t$. Edge $x \sim y$ if $\operatorname{HamDist}(x, y) = \varepsilon t$. Has $\geq t = \log |V|$ eigenvalues $\approx 1 - \varepsilon$.

SSEs with many bad eigenvalues [BGHMRS'12]

Noisy hypercube

Vertex set $V = \{0, 1\}^t$. Edge $x \sim y$ if $\operatorname{HamDist}(x, y) = \varepsilon t$. Has $\geq t = \log |V|$ eigenvalues $\approx 1 - \varepsilon$.

Derandomization via Reed-Muller code

Take subgraph induced by V' = RM(m, r) $(t = 2^m, \varepsilon = 2^{-r})$.

- Vertices P(m, r), degree r polynomials
- Edges $f \sim g$ if $f g = L_1 L_2 \cdots L_r$.

Easy: Graph retains $\Omega(t)$ eigenvalues $\approx 1 - \varepsilon$.

SSEs with many bad eigenvalues [BGHMRS'12]

Noisy hypercube

Vertex set $V = \{0, 1\}^t$. Edge $x \sim y$ if $\operatorname{HamDist}(x, y) = \varepsilon t$. Has $\geq t = \log |V|$ eigenvalues $\approx 1 - \varepsilon$.

Derandomization via Reed-Muller code

Take subgraph induced by V' = RM(m, r) $(t = 2^m, \varepsilon = 2^{-r})$.

- Vertices P(m, r), degree r polynomials
- Edges $f \sim g$ if $f g = L_1 L_2 \cdots L_r$.

Easy: Graph retains $\Omega(t)$ eigenvalues $\approx 1 - \varepsilon$.

• But now $|V'| \approx 2^{m'} = 2^{(\log t)'}$, so we have $2^{(\log |V'|)^{\Omega_{\varepsilon}(1)}}$ bad eignevalues.

イロト 不得下 イヨト イヨト 二日

SSE property of Reed-Muller graph

Fourier analysis over P(m, r)

Express function $A: P(m, r) \to \mathbb{R}$ as $A(f) = \sum_{\beta} \widehat{A}(\beta)(-1)^{\langle \beta, f \rangle}$.

- "frequencies" β range over cosets of P(m, m − r − 1) (dual group of P(m, r)).
- Weight of frequency $\beta =$ Hamming dist. of β to P(m, m-r-1)

SSE property of Reed-Muller graph

Fourier analysis over P(m, r)

Express function $A: P(m, r) \to \mathbb{R}$ as $A(f) = \sum_{\beta} \widehat{A}(\beta)(-1)^{\langle \beta, f \rangle}$.

- "frequencies" β range over cosets of P(m, m r 1) (dual group of P(m, r)).
- Weight of frequency $\beta =$ Hamming dist. of β to P(m, m-r-1)

SSE proof has two ingredients

Take A = indicator of a *small* set

 A has very little Fourier mass on low frequencies (Hypercontractivity of low-degree polynomials)

Contribution of high frequency $\widehat{A}(\beta)$ killed by edges of graph *(testing of* RM(m, m - r - 1)*)*, leading to expansion.

ヘロト 人間 と 人 ヨ と 一

Consider $C \subseteq \mathbb{F}_2^n$ of minimum distance *d*. Think *d* fixed, and $n \to \infty$.

Largest possible dimension (sphere packing bound): $\approx n - \frac{d}{2} \log n$.

- Achieved by BCH codes!
- However, BCH code is not testable even with 0.49*n* queries.

Consider $C \subseteq \mathbb{F}_2^n$ of minimum distance d. Think d fixed, and $n \to \infty$.

Largest possible dimension (sphere packing bound): $\approx n - \frac{d}{2} \log n$.

- Achieved by BCH codes!
- However, BCH code is not testable even with 0.49n queries.

Reed-Muller code RM(m, u) of length $n = 2^m$ and $u \approx m - \log d$

- Dimension $\approx n (\log n)^{\log d}$,
- Testable with 2n/d queries (rejecting d/3-far strings with $\Omega(1)$ prob.)

Where in the spectrum between Reed-Muller and BCH does the best dimension of distance *d* code testable with O(n/d) queries lie?

• Dimension $n - O(d \log n)$ vs. $n - (\log n)^{\log d}$

Where in the spectrum between Reed-Muller and BCH does the best dimension of distance *d* code testable with O(n/d) queries lie?

• Dimension $n - O(d \log n)$ vs. $n - (\log n)^{\log d}$

[Guo, Kopparty,Sudan'13] Lifted codes, with dimension $\gtrsim n - \left(\frac{\log n}{\log d}\right)^{\log d}$ slightly improving Reed-Muller codes.

[G.,Sudan,Velingker,Wang'14] For a class of affine-invariant codes containing Reed-Muller, dimension $\lesssim n - \left(\frac{\log n}{\log^2 d}\right)^{\log d}$.

Best known algorithms to color 3-colorable graphs use $n^{\Omega(1)}$ colors Dream result: Matching hardness?

Best known algorithms to color 3-colorable graphs use $n^{\Omega(1)}$ colors Dream result: Matching hardness? Less dreamy: Hardness of $n^{\Omega(1)}$ -coloring 2-colorable hypergraphs?

Best known algorithms to color 3-colorable graphs use $n^{\Omega(1)}$ colors *Dream result*: Matching hardness? *Less dreamy*: Hardness of $n^{\Omega(1)}$ -coloring 2-colorable hypergraphs? Recent result based a "structured" Reed-Muller testing result:

Theorem ([Dinur, G.'13], [G., Harsha, Håstad, Srinivasan, Varma'14])

Coloring a 2-colorable 8-uniform hypergraph with $\exp(2^{\sqrt{\log \log n}})$ colors is quasi NP-hard.

Best known algorithms to color 3-colorable graphs use $n^{\Omega(1)}$ colors *Dream result*: Matching hardness? *Less dreamy*: Hardness of $n^{\Omega(1)}$ -coloring 2-colorable hypergraphs? Recent result based a "structured" Reed-Muller testing result:

Theorem ([Dinur, G.'13], [G., Harsha, Håstad, Srinivasan, Varma'14])

Coloring a 2-colorable 8-uniform hypergraph with $\exp(2^{\sqrt{\log \log n}})$ colors is quasi NP-hard.

Previous hardness only ruled out $(\log n)^{O(1)}$ coloring.

Very recently, [Khot, Saket'14] improved bound to $exp((\log n)^{\Omega(1)})$ via different use of the [Dinur, G.'13] RM testing result.

Won't be able to describe the underlying PCP in any detail, but will try to give a glimpse of where Reed-Muller tesing fits in. PCPs encode assignments $\{0,1\}^m$ to enable efficient testing. The most influential code underlying almost all strong PCP results: Long Code [Bellare, Goldreich, Sudan'95] PCPs encode assignments $\{0,1\}^m$ to enable efficient testing.

The most influential code underlying almost all strong PCP results: Long Code [Bellare, Goldreich, Sudan'95]

Definition (Long Code encoding $a \in \{0, 1\}^m$)

 $\mathsf{LONG}(a) := \langle f(a) \rangle_{f:\{0,1\}^m \to \{0,1\}}$.

Gives value of every Boolean function on a: the most redundant encoding.

PCPs encode assignments $\{0,1\}^m$ to enable efficient testing.

The most influential code underlying almost all strong PCP results: Long Code [Bellare, Goldreich, Sudan'95]

Definition (Long Code encoding $a \in \{0, 1\}^m$)

 $\mathsf{LONG}(a) := \langle f(a) \rangle_{f:\{0,1\}^m \to \{0,1\}}$.

Gives value of every Boolean function on a: the most redundant encoding.

The improvements in hypergraph coloring (and also earlier integrality gaps in [BGHMRS'12], [Kane-Meka'13]) due to a *"shorter" Reed-Muller based substitute of the long code.*

イロト 不得下 イヨト イヨト 二日

Definition (Degree-*r* long code)

The degree-*r* long code encoding of $a \in \{0,1\}^m$ is

 $\langle f(a) \rangle_{f \in P(m,r)}$.

Puncturing of long code to locations indexed by degree $\leq r$ fns. \iff derandomization of hypercube to Reed-Muller codewords.

Encoding length $\approx 2^{m^r}$ instead of 2^{2^m} for the long code.

• For $r \approx \log m$, almost exponential savings.

Hypergraph gadget on low-degree long code

Underlying hypergh coloring hardness is a "low-degree long code test" Query patterns give hypergraph on vertex set $P(m, r)^1$ such that:

(Completeness) If A : P(m, r) → {0,1} is a codeword of the degree-r long code, i.e., ∃a ∈ F₂^m such that ∀f, A(f) = f(a), then A is a 2-coloring without any monochromatic hyperedge.

¹degree *r* polynomials over \mathbb{F}_2 in *m* variables

Underlying hypergh coloring hardness is a "low-degree long code test" Query patterns give hypergraph on vertex set $P(m, r)^1$ such that:

- (Completeness) If $A: P(m, r) \to \{0, 1\}$ is a codeword of the degree-*r* long code, i.e., $\exists \mathbf{a} \in \mathbb{F}_2^m$ such that $\forall f, A(f) = f(\mathbf{a})$, then A is a 2-coloring without any monochromatic hyperedge.
- (Soundness) If I : P(m, r) → {0, 1} is the indicator function of an independent set of measure µ, then ∃ a "sizeable" Fourier coefficient |Î(β)| for some β of "low" weight (= distance to P(m, m r 1))

¹degree r polynomials over \mathbb{F}_2 in m variables

8-uniform hypergraph gadget

- Vertex set = P(m, r).
- Hyperedges on 8-tuples:

$$e_{1} \quad e_{1} + f_{1} \\ e_{2} \quad e_{2} + f_{1} + g \cdot h + 1 \\ e_{3} \quad e_{3} + f_{2} \\ e_{4} \quad e_{4} + f_{2} + \overline{g} \cdot h' + 1 .$$

$$\forall e_{i}, f_{i} \in P(m, r), g, h, h' \in P(m, r/2).$$

Completeness: Ensured by $(g \cdot h)(\mathbf{a}) = 0$ or $(\overline{g} \cdot h')(\mathbf{a}) = 0$ for every $\mathbf{a} \in \mathbb{F}_2^m$.

ト イヨト イヨト

8-uniform hypergraph gadget

- Vertex set = P(m, r).
- Hyperedges on 8-tuples:

$$e_{1} \quad e_{1} + f_{1} \\ e_{2} \quad e_{2} + f_{1} + g \cdot h + 1 \\ e_{3} \quad e_{3} + f_{2} \\ e_{4} \quad e_{4} + f_{2} + \overline{g} \cdot h' + 1 .$$

$$\forall e_{i}, f_{i} \in P(m, r), g, h, h' \in P(m, r/2)$$

Completeness: Ensured by $(g \cdot h)(\mathbf{a}) = 0$ or $(\overline{g} \cdot h')(\mathbf{a}) = 0$ for every $\mathbf{a} \in \mathbb{F}_2^m$.

Soundness: Orthogonality to $g \cdot h$ is a good Reed-Muller test that kills high frequencies.

Structured Reed-Muller testing

Recap: To test proximity to P(m, m - r - 1), check orthogonality to some degree r polys (the dual space).

Theorem (Dinur, G.'13)

If $\beta : \mathbb{F}_2^m \to \mathbb{F}_2$ is 2^r -far from P(m, m - r - 1), then

$$\mathbb{E}_{g,h}\Big[(-1)^{\langleeta,m{g}\cdotm{h}
angle}\Big]\leqslant 2^{-2^{\Omega(r)}}$$

where $g, h \in_R P(m, r/2)$.

· 曰 › · (得 › · (글 › · (글 › -) 글

Structured Reed-Muller testing

Recap: To test proximity to P(m, m - r - 1), check orthogonality to some degree r polys (the dual space).

Theorem (Dinur, G.'13)

If $\beta : \mathbb{F}_2^m \to \mathbb{F}_2$ is 2^r -far from P(m, m - r - 1), then

$$\mathbb{E}_{g,h}\Big[(-1)^{\langleeta, g\cdot h
angle}\Big]\leqslant 2^{-2^{\Omega(r)}}$$

where $g, h \in_R P(m, r/2)$.

- Compare with [BKSSZ]: Test function $L_1L_2 \cdots L_r$, constant soundness error (and $2^m/2^r$ queries)
- Here, test function g · h, soundness error doubly exponentially small in r (and typically 2^m/4 queries)

Need to understand when $\langle \beta, gh \rangle = 0 \iff \langle \beta g, h \rangle = 0$, given β is far from P(m, m - r - 1).

$$\mathbb{E}_{h}[(-1)^{\langle \beta g,h\rangle}] = \begin{cases} 1 & \text{if } \deg(\beta g) \leqslant m - r/2 - 1 \\ 0 & \text{otherwise} \end{cases}$$

Need to understand when $\langle \beta, gh \rangle = 0 \iff \langle \beta g, h \rangle = 0$, given β is far from P(m, m - r - 1).

$$\mathbb{E}_{h}[(-1)^{\langle \beta g,h\rangle}] = \begin{cases} 1 & \text{if } \deg(\beta g) \leqslant m - r/2 - 1 \\ 0 & \text{otherwise} \end{cases}$$

• For fixed β , $\{g \in P(m, r/2) \mid \deg(\beta g) \leq m - r/2 - 1\}$ is a subspace of P(m, r/2)

 \Rightarrow Must prove co-dimension $\geq 2^{\Omega(r)}$ (for β far from P(m, m-r-1))

Need to understand when $\langle \beta, gh \rangle = 0 \iff \langle \beta g, h \rangle = 0$, given β is far from P(m, m - r - 1).

$$\mathbb{E}_{h}[(-1)^{\langle \beta g, h \rangle}] = \begin{cases} 1 & \text{if } \deg(\beta g) \leqslant m - r/2 - 1 \\ 0 & \text{otherwise} \end{cases}$$

• For fixed β , $\{g \in P(m, r/2) \mid \deg(\beta g) \leq m - r/2 - 1\}$ is a subspace of P(m, r/2)

 \Rightarrow Must prove co-dimension $\geq 2^{\Omega(r)}$ (for β far from P(m, m-r-1))

② [BKSSZ] ⇒ If β is *D*-far from P(m, m - r - 1), then \exists a linear form *L* s.t. $\beta_{|L=0}$ & $\beta_{|L=1}$ are both $\frac{D}{3}$ -far from P(m-1, m-r-1).

Need to understand when $\langle \beta, gh \rangle = 0 \iff \langle \beta g, h \rangle = 0$, given β is far from P(m, m - r - 1).

$$\mathbb{E}_{h}[(-1)^{\langle \beta g,h\rangle}] = \begin{cases} 1 & \text{if } \deg(\beta g) \leqslant m - r/2 - 1 \\ 0 & \text{otherwise} \end{cases}$$

• For fixed β , $\{g \in P(m, r/2) \mid \deg(\beta g) \leq m - r/2 - 1\}$ is a subspace of P(m, r/2)

 \Rightarrow Must prove co-dimension $\geq 2^{\Omega(r)}$ (for β far from P(m, m-r-1))

- ② [BKSSZ] ⇒ If β is *D*-far from P(m, m r 1), then \exists a linear form *L* s.t. $\beta_{|L=0}$ & $\beta_{|L=1}$ are both $\frac{D}{3}$ -far from P(m-1, m-r-1).
- Use 2. to lower bound co-dimension by sum of two similar co-dimensions (recursively for Ω(r) inductive steps)

Ability to test high rate Reed-Muller codes is the basis for:

- Quantitative improvements via the low-degree long code
- Applications to approximability: SSE with many eigenvalues, improved integrality gaps for sparsest cut, hardness of hypergraph coloring, size-efficient PCPs.
- More applications?

Ability to test high rate Reed-Muller codes is the basis for:

- Quantitative improvements via the low-degree long code
- Applications to approximability: SSE with many eigenvalues, improved integrality gaps for sparsest cut, hardness of hypergraph coloring, size-efficient PCPs.
- More applications?

Even better testable codes than Reed-Muller codes? Limits of testability in the "small linear locality" (εn queries) regime?

Is BCH or RM closer to the largest possible dimension?

> < = > <</p>