# Principal Component Analysis with Structured Factors 

Yash Deshpande and Andrea Montanari

Stanford University
May 28, 2014

## Principal Component Analysis

Data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$

Find U, V such that
$\mathbf{X} \approx \mathbf{U V}^{\top}$,
$\mathbf{U} \in \mathbb{R}^{n \times r}$
$\mathbf{V} \in \mathbb{R}^{p \times r}$

## Principal Component Analysis

Data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$

Find U, V such that
$\mathbf{X} \approx \mathbf{U V}^{\top}$
$\mathbf{U} \in \mathbb{R}^{n \times r}$
$\mathbf{V} \in \mathbb{R}^{p \times r}$

Dimensionality reduction: $r \ll n, p$

## Principal Component Analysis

Data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$

Find U, V such that
$\mathbf{X} \approx \mathbf{U V}^{\top}$
$\mathbf{U} \in \mathbb{R}^{n \times r}$
$\mathbf{V} \in \mathbb{R}^{p \times r}$

Dimensionality reduction: $r \ll n, p$ What happens if $\mathbf{U}, \mathbf{V}$ have special structure?

I will talk only about one type of structure...

## Sparse Principal Component Analysis

Data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$

Find U, V such that
$\mathbf{X} \approx \mathbf{U V}^{\top}$,
$\mathbf{U} \in \mathbb{R}^{n \times r}$,
$\mathbf{V} \in \mathbb{R}^{p \times r} \quad$ sparse

Dimensionality reduction: $r \ll n, p$ What happens if $\mathbf{U}, \mathbf{V}$ have special structure?

## Equivalently: Superposition of sparse vectors

- Rows of $\mathbf{X}: \quad \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \ldots \mathbf{x}_{n} \in \mathbb{R}^{p}$.
- Rows of $\mathbf{V}^{\boldsymbol{T}}: \mathbf{v}_{1}, \ldots \mathbf{v}_{r} \in \mathbb{R}^{p}$.

$$
\mathbf{x}_{i} \approx \sum_{\ell=1}^{r} u_{i \ell} \mathbf{v}_{\ell} \quad \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r} \text { sparse }
$$

## Example: Topic models

$$
\mathbf{x}_{i} \approx \sum_{\ell=1}^{r} u_{\ell, i} \mathbf{v}_{\ell}
$$

$$
\begin{array}{ll}
\mathbf{x}_{i}: & \text { Document } i \\
\mathbf{v}_{\ell}: & \text { Topic } \ell
\end{array}
$$

## Document $=$ Superposition of topics. Topic $=$ Sparse distribution over words

## Example: Topic models

$$
\mathbf{x}_{i} \approx \sum_{\ell=1}^{r} u_{\ell, i} \mathbf{v}_{\ell}
$$

$$
\begin{array}{ll}
\mathbf{x}_{i}: & \text { Document } i \\
\mathbf{v}_{\ell}: & \text { Topic } \ell
\end{array}
$$

Document $=$ Superposition of topics.

Topic $=$ Sparse distribution over words

## Example: Topic models

Table 1: Words associated with the top 5 sparse principal components in NYTimes

| 1st PC (6 words) | 2nd PC (5 words) | 3 rd PC (5 words) | 4th PC (4 words) | 5th PC (4 words) |
| :---: | :---: | :---: | :---: | :---: |
| million | point | official | president | school |
| percent | play | government | campaign | program |
| business | team | unitedstates | bush | children |
| company | season | u_s | administration | student |
| market companies | game | attack |  |  |

Table 2: Words associated with the top 5 sparse principal components in PubMed

| 1st PC (5 words) | 2nd PC (5 words) | 3rd PC (5 words) | 4th PC (4 words) | 5th PC (4 words) |
| :--- | :--- | :--- | :--- | :--- |
| patient | effect | human | tumor | year |
| cell | level | expression | mice | infection |
| treatment | activity | receptor | cancer | age |
| protein | concentration | binding | maligant | children |
| disease | rat |  | carcinoma | child |

[Zhang, El Ghaoui, 2011]

## Other applications

- Dictionary learning
- Computer vision
- Dimensionality reduction


## Outline

(1) Model

(2) State of the art
(3) Algorithm and motivation
(4) Analysis and simulations
[arXiv:1311.5179]

## Model

## Spiked covariance model

$$
\mathbf{X}=\sum_{\ell=1}^{r} \sqrt{\beta_{\ell}} \mathbf{u}_{\ell} \mathbf{v}_{\ell}^{\top}+\mathbf{Z}
$$

- $\mathbf{Z}_{i j} \sim_{i . i . d .} \mathrm{N}(0,1), \quad \mathbf{u}_{\ell} \sim \mathrm{N}\left(0, \mathrm{I}_{n \times n}\right)$
- $p=\Theta(n)$.
- $\left\|\mathbf{v}_{\ell}\right\|_{0} \leq k, \min _{i \in \operatorname{supp}\left(\mathbf{v}_{\ell}\right)}\left|v_{\ell, i}\right| \geq v_{\min } / \sqrt{k}$
- $r, \beta_{\ell}$ bounded
- Separation $\beta_{1}>\beta_{2}>\cdots>\beta_{r}>0$


## Spiked covariance model

$$
\mathbf{X}=\sum_{\ell=1}^{r} \sqrt{\beta_{\ell}} \mathbf{u}_{\ell} \mathbf{v}_{\ell}^{\top}+\mathbf{Z}
$$

- $\mathbf{Z}_{i j} \sim_{i . i . d .} \mathrm{N}(0,1), \quad \mathbf{u}_{\ell} \sim \mathrm{N}\left(0, \mathrm{I}_{n \times n}\right)$
- $p=\Theta(n)$.
- $\left\|\mathbf{v}_{\ell}\right\|_{0} \leq k, \min _{i \in \operatorname{supp}\left(\mathrm{v}_{\ell}\right)}\left|v_{\ell, i}\right| \geq v_{\min } / \sqrt{k}$
- $r, \beta_{\ell}$ bounded
- Separation $\beta_{1}>\beta_{2}>\cdots>\beta_{r}>0$


## Equivalently

$$
\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \sim_{i . i . d .} \mathrm{N}(0, \Sigma)
$$

## Equivalently

$$
\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \sim_{i . i . d .} \mathrm{N}(0, \Sigma)
$$

$$
\Sigma=\sum_{\ell=1}^{r} \beta_{\ell} \mathbf{v}_{\ell} \mathbf{v}_{\ell}^{\top}+\mathrm{I}
$$

For ease of exposition: $r=1$

$$
\mathbf{X}=\sqrt{\beta} \mathbf{u v}^{\top}+\mathbf{Z}
$$

## A definition: Sample covariance

$$
\begin{aligned}
\hat{\Sigma} & =\frac{1}{n} \mathbf{X}^{\top} \mathbf{X} \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{X}_{i}^{\top}
\end{aligned}
$$

## State of the art

## Objective: Support recovery

Want to reconstruct supp(v)

## Simple PCA

Principal vector of $\mathbf{X}$ :

$$
\mathbf{v}_{1}(\mathbf{X})
$$

## Simple PCA: Spectral phase transition

Limiting Spectral Density

$n<C(\beta) p$

Limiting Spectral Density


Principal component is orthogonal to the signal unless $n>C(\beta) p$
[Baik, Ben Arous, Peche, 2005; Baik Silverstein, 2006; Paul, 2007]

## Information theory lower bound

For $i \in\{1, \ldots, n\}$

$$
\mathbf{x}_{i}=\sqrt{\beta} u_{i} \mathbf{v}+\mathbf{z}_{i}
$$

- Each sample yields $\Theta$ (1) bits
- Need $(k \log p)$ bits


## [Amini, Wainwright, 2009]

## Information theory lower bound

For $i \in\{1, \ldots, n\}$

$$
\mathbf{x}_{i}=\sqrt{\beta} u_{i} \mathbf{v}+\mathbf{z}_{i}
$$

- Each sample yields $\Theta$ (1) bits
- Need $(k \log p)$ bits
- Doable if $n \geq C(\beta) k \log p$
[Amini, Wainwright, 2009]


# Can we achieve this in polytime? 

What about linear time?

## Diagonal thresholding [Johnstone, Lu, 2004]

Idea

$$
\begin{aligned}
& \Sigma_{i i}=1+\beta v_{i}^{2} \\
& \widehat{\Sigma}_{i i}=1+\beta v_{i}^{2}+\frac{1}{\sqrt{n}} W_{i} \\
& W_{i} \approx \mathrm{~N}(0,1)
\end{aligned}
$$

## Support estimate



## Diagonal thresholding [Johnstone, Lu, 2004]

Idea

$$
\begin{aligned}
& \Sigma_{i i}=1+\beta v_{i}^{2} \\
& \widehat{\Sigma}_{i i}=1+\beta v_{i}^{2}+\frac{1}{\sqrt{n}} W_{i} \\
& W_{i} \approx \mathrm{~N}(0,1)
\end{aligned}
$$

Support estimate

$$
\widehat{\mathbb{Q}}=\left\{i \in[p]: \quad \widehat{\Sigma}_{i i} \geq \lambda\right\} .
$$

Example: $\beta=1, p=400, n=300$



noise level $\approx \sqrt{(2 \log p) / n}, \quad$ signal $\approx \beta / k$

Example: $\beta=1, p=400, n=300$



noise level $\approx \sqrt{(2 \log p) / n}, \quad$ signal $\approx \beta / k$

## Diagonal thresholding

$$
\text { noise level } \approx \sqrt{\frac{2 \log p}{n}}, \quad \text { signal } \approx \frac{\beta}{k}
$$

## Works if



## Diagonal thresholding

$$
\text { noise level } \approx \sqrt{\frac{2 \log p}{n}}, \quad \text { signal } \approx \frac{\beta}{k}
$$

Works if

$$
\frac{\beta}{k} \geq 10 \sqrt{\frac{\log p}{n}}
$$

## Diagonal thresholding

$$
\text { noise level } \approx \sqrt{\frac{2 \log p}{n}}, \quad \text { signal } \approx \frac{\beta}{k}
$$

Works if

$$
\begin{aligned}
& \frac{\beta}{k} \geq 10 \sqrt{\frac{\log p}{n}} \\
& k \leq C(\beta) \sqrt{\frac{n}{\log p}}
\end{aligned}
$$

## Executive summary

$$
\left.r=1, k=\|\mathrm{v}\|_{0} \text { (smaller } k \Rightarrow \text { easier }\right)
$$



## Complaints about diagonal thresholding

- Sup-optimal sample size
- Sensitive to the i.i.d. noise assumption


## Anything better?

## SDP relaxation (d'Aspremont, El Ghaoui, Jordan, Lanckriet, 2004)

$$
\begin{array}{ll}
\operatorname{maximize} & \operatorname{Tr}(\widehat{\Sigma} \mathbf{W}), \\
\text { subjectto } & \mathbf{W} \succeq 0, \\
& \operatorname{Tr}(\mathbf{W})=1, \\
& \sum_{i, j=1}^{p}\left|\mathbf{W}_{i j}\right| \leq \xi
\end{array}
$$

- Amini, Wainwright 2009:


## SDP relaxation (d'Aspremont, El Ghaoui, Jordan, Lanckriet, 2004)

$$
\begin{array}{ll}
\operatorname{maximize} & \operatorname{Tr}(\hat{\Sigma} \mathbf{W}), \\
\text { subjectto } & \mathbf{W} \succeq 0, \\
& \operatorname{Tr}(\mathbf{W})=1, \\
& \sum_{i, j=1}^{p}\left|\mathbf{W}_{i j}\right| \leq \xi .
\end{array}
$$

- Amini, Wainwright 2009:

Conditionally positive results

- Krauthgamer, Nadler, Vilechnik, 2013: Fails for $k \gtrsim \sqrt{n}$


## Executive summary

$$
\left.r=1, k=\|\mathrm{v}\|_{0} \text { (smaller } k \Rightarrow \text { easier }\right)
$$



## A computational barrier?

## Theorem (Berthet, Rigollet, 2013)

Assume that PlantedClique cannot be solved in polynomial time for clique size $n^{0.001} \leq \mid$ Clique $\mid \leq n^{0.499}$. Then ${ }^{a} \operatorname{supp}(\mathrm{v})$ cannot be found in polynomial time for $k \leq n^{0.499}$.

## ${ }^{a}$ Slightly different model

[See also Ma, Wu 2013]

## Executive summary

$$
\left.r=1, k=\|\mathbf{v}\|_{0} \text { (smaller } k \Rightarrow \text { easier }\right)
$$

 [Johnstone, Lu, 2004]

Comput. unfeasible?
[Krauthgamer et al. 2013]
[Berthet, Rigollet 2013; Ma, Wu 2013]

## Executive summary: This paper

$$
r=1, k=\|\mathrm{v}\|_{0} \text { (smaller } k \Rightarrow \text { easier) }
$$

Diagonal thresholding Covariance thresh.

$$
\frac{n}{\log p}
$$ [Johnstone, Lu, 2004]

Comput. unfeasible?
[Krauthgamer et al. 2013]
[Berthet, Rigollet 2013; Ma, Wu 2013]

## Algorithm and motivation

## Sample covariance

## Population covariance

$$
\Sigma=\beta v v^{\top}+\mathrm{I}
$$

## Sample covariance



## Sample covariance

Population covariance

$$
\Sigma=\beta v v^{\top}+\mathrm{I}
$$

Sample covariance

$$
\begin{aligned}
& \widehat{\Sigma} \equiv \frac{1}{n} \mathbf{X}^{\top} \mathbf{X}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \\
& \widehat{\Sigma}=\beta \mathbf{v v}^{\top}+\mathrm{I}+\text { noise }
\end{aligned}
$$

## Covariance thresholding

- Bickel, Levina 2009
- Proposed for SPCA by Krauthgamer, Nadler, Vilechnik 2013


## Covariance thresholding

$$
\begin{aligned}
\widehat{\Sigma}-\mathrm{I}= & \beta \mathrm{v} \mathrm{v}^{\top} \\
& + \text { noise }
\end{aligned}
$$

Sparse, Norm $=\beta$
Dense, Norm $=c \sqrt{p / n}$

## Covariance thresholding

$$
\begin{aligned}
\widehat{\Sigma}-\mathrm{I}= & \beta \mathbf{v}^{\top} \\
& + \text { noise }
\end{aligned}
$$

Sparse, Norm $=\beta$
Dense, Norm $=c \sqrt{p / n}$

Threshold entries at level $\lambda=\tau / \sqrt{n}$

$$
\begin{aligned}
\mathrm{ST}_{\lambda}(\widehat{\Sigma})-c \mathrm{I} \approx & \mathrm{ST}_{\lambda}\left(\beta \mathrm{vv}^{\top}\right) \\
& + \text { noise }
\end{aligned}
$$

Norm $\approx \beta$
Norm $\approx \varepsilon(\tau) \sqrt{p / n}$

## Covariance thresholding

$$
\begin{aligned}
\widehat{\Sigma}-\mathrm{I}= & \beta \mathbf{v} \mathbf{v}^{\top} \\
& + \text { noise }
\end{aligned}
$$

$$
\text { Sparse, Norm }=\beta
$$

Dense, Norm $=c \sqrt{p / n}$

Threshold entries at level $\lambda=\tau / \sqrt{n}$

$$
\begin{aligned}
\mathrm{ST}_{\lambda}(\widehat{\Sigma})-c \mathrm{I} \approx & \mathrm{ST}_{\lambda}\left(\beta \mathrm{vv}^{\top}\right) \\
& + \text { noise }
\end{aligned}
$$

Norm $\approx \beta$
Norm $\approx \varepsilon(\tau) \sqrt{p / n}$
$\mathrm{S} \mathrm{T}_{\lambda} \equiv$ soft thresholding at level $\lambda$

## ST



## Covariance thresholding

1: Input: Data $\left(\mathbf{x}_{i}\right)_{1 \leq i \leq 2 n}$, parameter $\tau \in \mathbb{R}_{\geq 0}$;
2: Compute $\widehat{\Sigma}$;


$$
\mathrm{ST}_{\tau / \sqrt{n}}(\widehat{\Sigma})_{i j}= \begin{cases}\widehat{\Sigma}_{i j}-\frac{\tau}{\sqrt{n}} & \text { if } \widehat{\Sigma}_{i j} \geq \tau / \sqrt{n} \\ 0 & \text { if }-\tau / \sqrt{n}<\widehat{\Sigma}_{i j}<\tau / \sqrt{n} \\ \widehat{\Sigma}_{i j}+\frac{\tau}{\sqrt{n}} & \text { if } \widehat{\Sigma}_{i j} \leq-\tau / \sqrt{n}\end{cases}
$$

4: $\mathbf{v}_{*}=$ Principal eigenvector of $\mathrm{ST}_{\tau / \sqrt{n}}(\widehat{\Sigma})$;
5: 'Clean' $\mathbf{V}_{*}$ to estimate support $\widehat{Q}$.
$\widehat{\Sigma}$


## $\mathrm{ST}_{1.5 / \sqrt{n}}(\widehat{\Sigma})$



## Analysis and simulations

## A theorem

## Theorem (Deshpande, Montanari, 2013)

For any $\alpha, \beta, \varepsilon>0$, there exists $C=C(\alpha, \beta, \varepsilon)>0$ such that the following happens for signal to noise ratio $\beta$, and $p / n=\alpha$.

If $k \leq C \sqrt{n}$, then, with high probability,

- $\left\|\mathrm{v}^{*}-\mathrm{v}\right\|_{2} \leq \varepsilon$
- $\widehat{Q}=\operatorname{supp}(\mathrm{v})$


## A theorem

## Theorem (Deshpande, Montanari, 2013)

For any $\alpha, \beta, \varepsilon>0$, there exists $C=C(\alpha, \beta, \varepsilon)>0$ such that the following happens for signal to noise ratio $\beta$, and $p / n=\alpha$.
$\square$

## A theorem

## Theorem (Deshpande, Montanari, 2013)

For any $\alpha, \beta, \varepsilon>0$, there exists $C=C(\alpha, \beta, \varepsilon)>0$ such that the following happens for signal to noise ratio $\beta$, and $p / n=\alpha$.

If $k \leq C \sqrt{n}$, then, with high probability,

- $\left\|\mathbf{v}^{*}-\mathbf{v}\right\|_{2} \leq \varepsilon$
- $\widehat{\mathrm{Q}}=\operatorname{supp}(\mathrm{v})$


## Crucial lemma: Kernel random matrices

Lemma (Deshpande, Montanari, 2013)
Assume $\mathbf{Z}=\left(Z_{i j}\right)_{i \leq n, j \leq p}$ with $Z_{i j} \sim_{i . i . d} \mathrm{~N}(0,1 / n), p / n \rightarrow \alpha$. Then, with high probability

$$
\left\|\mathrm{ST}_{\tau / \sqrt{n}}\left(\mathbf{Z Z}^{\top}-\operatorname{diag}\left(\mathbf{Z Z}^{\top}\right)\right)\right\|_{2} \leq C(\alpha) \tau^{-0.49}
$$

## Crucial lemma: Kernel random matrices

Lemma (Deshpande, Montanari, 2013)
Assume $\mathbf{Z}=\left(Z_{i j}\right)_{i \leq n, j \leq p}$ with $Z_{i j} \sim_{i . i . d} \mathrm{~N}(0,1 / n), p / n \rightarrow \alpha$. Then, with high probability

$$
\left\|\mathrm{ST}_{\tau / \sqrt{n}}\left(\mathbf{Z Z}^{\top}-\operatorname{diag}\left(\mathbf{Z Z}^{\top}\right)\right)\right\|_{2} \leq C(\alpha) \tau^{-0.49}
$$

$$
\leq C(\alpha, \tau) \text { is easy }
$$

## Proof

- $\mathrm{S}(\cdot) \equiv \mathrm{ST}_{\tau / \sqrt{n}}(\cdot)$
- $\mathbf{N}=\mathrm{S}\left(\mathbf{Z Z}^{\boldsymbol{\top}}-\operatorname{diag}\left(\mathbf{Z Z}^{\boldsymbol{\top}}\right)\right)$
- $T_{\varepsilon} \subseteq S_{p-1} \subseteq \mathbb{R}^{p}$ an $\varepsilon$-net, $\left|T_{\varepsilon}\right| \leq(10 / \varepsilon)^{p}$.


## Sufficient to prove that



## In simple random matrix ensembles:

## Proof

- $\mathrm{S}(\cdot) \equiv S \mathrm{~T}_{\tau / \sqrt{n}}(\cdot)$
- $\mathbf{N}=\mathrm{S}\left(\mathbf{Z Z}^{\boldsymbol{\top}}-\operatorname{diag}\left(\mathbf{Z Z}^{\boldsymbol{\top}}\right)\right)$
- $T_{\varepsilon} \subseteq S_{p-1} \subseteq \mathbb{R}^{p}$ an $\varepsilon$-net, $\left|T_{\varepsilon}\right| \leq(10 / \varepsilon)^{p}$.

$$
\mathbb{P}\left\{\sup _{\mathbf{y} \in S_{p-1}}\langle\mathbf{y}, \mathbf{N y}\rangle \geq \Delta\right\} \leq\left|T_{\varepsilon}\right| \sup _{\mathbf{y} \in T_{\varepsilon}} \mathbb{P}\{\langle\mathbf{y}, \mathbf{N y}\rangle \geq(1-2 \varepsilon) \Delta\}
$$

Sufficient to prove that

$$
\sup _{\mathbf{y} \in T_{\varepsilon}} \mathbb{P}\left\{\langle\mathbf{y}, \mathbf{N y}\rangle \geq C \tau^{-0.49}\right\} \leq 2 e^{-c n}
$$

## Proof

- $\mathrm{S}(\cdot) \equiv \mathrm{ST}_{\tau / \sqrt{n}}(\cdot)$
- $\mathbf{N}=\mathrm{S}\left(\mathbf{Z} \mathbf{Z}^{\boldsymbol{\top}}-\operatorname{diag}\left(\mathbf{Z} \mathbf{Z}^{\boldsymbol{\top}}\right)\right)$
- $T_{\varepsilon} \subseteq S_{p-1} \subseteq \mathbb{R}^{p}$ an $\varepsilon$-net, $\left|T_{\varepsilon}\right| \leq(10 / \varepsilon)^{p}$.

$$
\mathbb{P}\left\{\sup _{\mathbf{y} \in S_{p-1}}\langle\mathbf{y}, \mathbf{N y}\rangle \geq \Delta\right\} \leq\left|T_{\varepsilon}\right| \sup _{\mathbf{y} \in T_{\varepsilon}} \mathbb{P}\{\langle\mathbf{y}, \mathbf{N} \mathbf{y}\rangle \geq(1-2 \varepsilon) \Delta\}
$$

Sufficient to prove that

$$
\sup _{\mathbf{y} \in T_{\varepsilon}} \mathbb{P}\left\{\langle\mathbf{y}, \mathbf{N y}\rangle \geq C \tau^{-0.49}\right\} \leq 2 e^{-c n}
$$

In simple random matrix ensembles: $\langle\mathbf{y}, \mathbf{N y}\rangle$ is Lipschitz in $\mathbf{Z} \Rightarrow$ Gaussian isoperimetry

Let's try the same approach
Columns of Z: $\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{p} \sim \mathrm{~N}\left(0, \mathrm{I}_{n \times n}\right)$

$$
\langle\mathbf{y}, \mathbf{N} \mathbf{y}\rangle=\sum_{i \neq j} y_{i} S\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) y_{j}
$$



Problems:

- Need $\left\|\nabla_{g_{1}}(\mathrm{y}, \mathrm{Ny})\right\|_{2} \leq C \tau^{-0.49}$
- $\mathrm{g}_{j}$ unbounded
- $y_{i}$ can be $\sqrt{p}$ times its typical value
- If we use $\left|S^{\prime}(\cdot)\right| \leq 1$, we loose the depen dence in $\tau$

Looks hopeless!

Let's try the same approach
Columns of $\mathbf{Z}: \mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{p} \sim \mathrm{~N}\left(0, \mathrm{I}_{n \times n}\right)$

$$
\begin{aligned}
& \langle\mathbf{y}, \mathbf{N} \mathbf{y}\rangle=\sum_{i \neq j} y_{i}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) y_{j} \\
& \nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle=2 \frac{y_{i}}{n} \sum_{j \in[p] \backslash i} \mathrm{~S}^{\prime}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) \mathbf{g}_{j} y_{j}
\end{aligned}
$$

Problems:

- Need $\left\|\nabla_{g}(\mathrm{y}, \mathrm{Ny})\right\|_{2} \leq C \tau^{-0.49}$
- $\mathrm{g}_{j}$ unbounded
- $y_{i}$ can be $\sqrt{p}$ times its typical value
- If we use $\left|S^{\prime}(\cdot)\right| \leq 1$, we loose the dependence in $\tau$

Looks hopeless!

Let's try the same approach
Columns of $\mathbf{Z}: \mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{p} \sim \mathrm{~N}\left(0, \mathrm{I}_{n \times n}\right)$

$$
\begin{aligned}
& \langle\mathbf{y}, \mathbf{N} \mathbf{y}\rangle=\sum_{i \neq j} y_{i}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) y_{j} \\
& \nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle=2 \frac{y_{i}}{n} \sum_{j \in[p] \backslash i} \mathrm{~S}^{\prime}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) \mathbf{g}_{j} y_{j}
\end{aligned}
$$

Problems:

- Need $\left\|\nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathrm{Ny}\rangle\right\|_{2} \leq C \tau^{-0.49}$
$\mathrm{g}_{j}$ unbounded
- $y_{i}$ can be $\sqrt{p}$ times its typical value
- If we use $\left|S^{\prime}(\cdot)\right| \leq 1$, we loose the dependence in $\tau$

Looks hopeless!

Let's try the same approach
Columns of Z: $\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{p} \sim \mathrm{~N}\left(0, \mathrm{I}_{n \times n}\right)$

$$
\begin{aligned}
& \langle\mathbf{y}, \mathbf{N} \mathbf{y}\rangle=\sum_{i \neq j} y_{i}\left(\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) y_{j}\right. \\
& \nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle=2 \frac{y_{i}}{n} \sum_{j \in[p] \backslash i} \mathrm{~S}^{\prime}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) \mathbf{g}_{j} y_{j}
\end{aligned}
$$

Problems:

- Need $\left\|\nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle\right\|_{2} \leq C \tau^{-0.49}$
- $\mathrm{g}_{j}$ unbounded
- $y_{i}$ can be $\sqrt{p}$ times its typical value
- If we use $\left|S^{\prime}(\cdot)\right| \leq 1$, we loose the dependence in $\tau$

> Looks hopeless!

Let's try the same approach
Columns of $\mathbf{Z}: \mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{p} \sim \mathrm{~N}\left(0, \mathrm{I}_{n \times n}\right)$

$$
\begin{aligned}
& \langle\mathbf{y}, \mathbf{N} \mathbf{y}\rangle=\sum_{i \neq j} y_{i} S\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) y_{j} \\
& \nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle=2 \frac{y_{i}}{n} \sum_{j \in[p] \backslash i} \mathrm{~S}^{\prime}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) \mathbf{g}_{j} y_{j}
\end{aligned}
$$

Problems:

- Need $\left\|\nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle\right\|_{2} \leq C \tau^{-0.49}$
- $\mathrm{g}_{j}$ unbounded
- $y_{i}$ can be $\sqrt{p}$ times its typical value
- If we use $\left|S^{\prime}(\cdot)\right| \leq 1$, we loose the dependence in $\tau$


## Let's try the same approach

Columns of Z: $\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{p} \sim \mathrm{~N}\left(0, \mathrm{I}_{n \times n}\right)$

$$
\begin{aligned}
& \langle\mathbf{y}, \mathbf{N y}\rangle=\sum_{i \neq j} y_{i} \mathrm{~S}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) y_{j} \\
& \nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle=2 \frac{y_{i}}{n} \sum_{j \in[p] \backslash i} \mathrm{~S}^{\prime}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) \mathbf{g}_{j} y_{j}
\end{aligned}
$$

Problems:

- Need $\left\|\nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle\right\|_{2} \leq C \tau^{-0.49}$
- $\mathbf{g}_{j}$ unbounded
- $y_{i}$ can be $\sqrt{p}$ times its typical value
- If we use $\left|S^{\prime}(\cdot)\right| \leq 1$, we loose the dependence in $\tau$


## Let's try the same approach

Columns of Z: $\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{p} \sim \mathrm{~N}\left(0, \mathrm{I}_{n \times n}\right)$

$$
\begin{aligned}
& \langle\mathbf{y}, \mathbf{N y}\rangle=\sum_{i \neq j} y_{i} \mathrm{~S}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) y_{j} \\
& \nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle=2 \frac{y_{i}}{n} \sum_{j \in[p] \backslash i} \mathrm{~S}^{\prime}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) \mathbf{g}_{j} y_{j}
\end{aligned}
$$

Problems:

- Need $\left\|\nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle\right\|_{2} \leq C \tau^{-0.49}$
- $\mathbf{g}_{j}$ unbounded
- $y_{i}$ can be $\sqrt{p}$ times its typical value
- If we use $\left|S^{\prime}(\cdot)\right| \leq 1$, we loose the dependence in $\tau$


## Let's try the same approach

Columns of Z: $\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{p} \sim \mathrm{~N}\left(0, \mathrm{I}_{n \times n}\right)$

$$
\begin{aligned}
& \langle\mathbf{y}, \mathbf{N y}\rangle=\sum_{i \neq j} y_{i} S\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) y_{j} \\
& \nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle=2 \frac{y_{i}}{n} \sum_{j \in[p] \backslash i} \mathrm{~S}^{\prime}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) \mathbf{g}_{j} y_{j}
\end{aligned}
$$

Problems:

- Need $\left\|\nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle\right\|_{2} \leq C \tau^{-0.49}$
- $\mathbf{g}_{j}$ unbounded
- $y_{i}$ can be $\sqrt{p}$ times its typical value
- If we use $\left|S^{\prime}(\cdot)\right| \leq 1$, we loose the dependence in $\tau$

Looks hopeless!

## Ideas (1)

$y_{i}$ can be $\sqrt{n}$ times its typical value

- Separate big entries of y (above $C / \sqrt{p}$ )
- There are at most $p / C$ big entries
- Control norm of all $(p / C) \times(p / C)$ submatrices


## Ideas (1)

$y_{i}$ can be $\sqrt{n}$ times its typical value

- Separate big entries of $\mathbf{y}$ (above $C / \sqrt{p}$ )
- There are at most $p / C$ big entries
- Control norm of all $(p / C) \times(p / C)$ submatrices


## Ideas (2)

$$
\begin{aligned}
\nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N y}\rangle & =\frac{2 y_{i}}{n} \sum_{j \in[p] \backslash i} \mathrm{~S}^{\prime}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) \mathbf{g}_{j} y_{j} \\
& =\mathbf{Z}^{\top} \boldsymbol{\sigma}^{i}(\mathbf{y})
\end{aligned}
$$

where

$$
\left[\boldsymbol{\sigma}^{i}(\mathbf{y})\right]_{j}=\frac{2 y_{i}}{n} S^{\prime}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) y_{j}
$$

## Prove that, with overwhelming probability

- $\|\mathbf{Z}\|_{2}<$ const.
(work)


## Ideas (2)

$$
\begin{aligned}
\nabla_{\mathbf{g}_{i}}\langle\mathbf{y}, \mathbf{N} \mathbf{y}\rangle & =\frac{2 y_{i}}{n} \sum_{j \in[p] \backslash i} \mathrm{~S}^{\prime}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) \mathbf{g}_{j} y_{j} \\
& =\mathbf{Z}^{\top} \boldsymbol{\sigma}^{i}(\mathbf{y})
\end{aligned}
$$

where

$$
\left[\boldsymbol{\sigma}^{i}(\mathbf{y})\right]_{j}=\frac{2 y_{i}}{n} S^{\prime}\left(\frac{\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle}{n}\right) y_{j}
$$

Prove that, with overwhelming probability

- $\|\mathbf{Z}\|_{2} \leq$ const.
- $\left\|\boldsymbol{\sigma}^{i}(\mathbf{y})\right\|_{2} \leq a \tau^{-0.49}$ (work)


## Threshold behavior



Diagonal thresholding
Covariance thresholding

## Sparsity in wavelet domain



## Conclusion/Open problems

- It would be nice to understand better kernel random matrices.
- $k=\Theta(\sqrt{n})$ : Stronger lower bounds?
- Use sparsification to accelerate this
- Other algorithms for sparse PCA: ask me...


## Conclusion/Open problems

- It would be nice to understand better kernel random matrices.
- $k=\Theta(\sqrt{n})$ : Stronger lower bounds?
- Use sparsification to accelerate this
- Other algorithms for sparse PCA: ask me.

Thanks!

## Conclusion/Open problems

- It would be nice to understand better kernel random matrices.
- $k=\Theta(\sqrt{n})$ : Stronger lower bounds?
- Use sparsification to accelerate this
- Other algorithms for sparse PCA: ask me


## Conclusion/Open problems

- It would be nice to understand better kernel random matrices.
- $k=\Theta(\sqrt{n})$ : Stronger lower bounds?
- Use sparsification to accelerate this
- Other algorithms for sparse PCA: ask me


## Conclusion/Open problems

- It would be nice to understand better kernel random matrices.
- $k=\Theta(\sqrt{n})$ : Stronger lower bounds?
- Use sparsification to accelerate this
- Other algorithms for sparse PCA: ask me...


## Conclusion/Open problems

- It would be nice to understand better kernel random matrices.
- $k=\Theta(\sqrt{n})$ : Stronger lower bounds?
- Use sparsification to accelerate this
- Other algorithms for sparse PCA: ask me...


## Thanks!

