Principal Component Analysis with Structured Factors

Yash Deshpande and Andrea Montanari

Stanford University

May 28, 2014

Andrea Montanari (Stanford)

Sparse PCA

Principal Component Analysis

Data matrix $\mathbf{X} \in \mathbb{R}^{n imes p}$

Find U, V such that

$\mathbf{X} pprox \mathbf{U}\mathbf{V}^{\mathsf{T}},$ $\mathbf{U} \in \mathbb{R}^{n imes r},$ $\mathbf{V} \in \mathbb{R}^{p imes r}$

Dimensionality reduction: $r \ll n,p$ What happens if ${f U},{f V}$ have special structure? Principal Component Analysis

Data matrix $\mathbf{X} \in \mathbb{R}^{n imes p}$

Find U, V such that

$\mathbf{X} pprox \mathbf{U}\mathbf{V}^{\mathsf{T}}, \ \mathbf{U} \in \mathbb{R}^{n imes r}, \ \mathbf{V} \in \mathbb{R}^{p imes r}$

Dimensionality reduction: $r \ll n, p$ What happens if U, V have special structure?

Sparse PCA

Principal Component Analysis

Data matrix $\mathbf{X} \in \mathbb{R}^{n imes p}$

Find U, V such that

 $\mathbf{X} pprox \mathbf{U}\mathbf{V}^{\mathsf{T}}, \ \mathbf{U} \in \mathbb{R}^{n imes r}, \ \mathbf{V} \in \mathbb{R}^{p imes r}$

Dimensionality reduction: $r \ll n, p$ What happens if U, V have special structure? I will talk only about one type of structure...

Sparse Principal Component Analysis

Data matrix $\mathbf{X} \in \mathbb{R}^{n imes p}$

Find U, V such that

 $\mathbf{X} pprox \mathbf{UV}^{\mathsf{T}}$, $\mathbf{U} \in \mathbb{R}^{n imes r}$, $\mathbf{V} \in \mathbb{R}^{p imes r}$ sparse

Dimensionality reduction: $r \ll n, p$ What happens if U, V have special structure?

Equivalently: Superposition of sparse vectors

▶ Rows of X: x₁, x₂,....x_n ∈ ℝ^p.
▶ Rows of V^T: v₁,...v_r ∈ ℝ^p.

$$\mathbf{x}_i pprox \sum_{\ell=1}^r u_{i\ell} \, \mathbf{v}_\ell \qquad \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r \; \; ext{sparse}$$

Example: Topic models

$$\mathbf{x}_i pprox \sum_{\ell=1}^r u_{\ell,i} \, \mathbf{v}_\ell$$

 \mathbf{x}_i :Document i \mathbf{v}_{ℓ} :Topic ℓ

Document = Superposition of topics. Topic = Sparse distribution over words

Example: Topic models

$$\mathbf{x}_i pprox \sum_{\ell=1}^r u_{\ell,i} \, \mathbf{v}_\ell$$

 \mathbf{x}_i :Document i \mathbf{v}_{ℓ} :Topic ℓ

Document = Superposition of topics. Topic = Sparse distribution over words

Example: Topic models

Table 1: Words associated with the top 5 sparse principal components in NYTimes				
1st PC (6 words)	2nd PC (5 words)	3rd PC (5 words)	4th PC (4 words)	5th PC (4 words)
million	point	official	president	school
percent	play	government	campaign	program
business	team	united_states	bush	children
company	season	u_s	administration	student
market	game	attack		
companies				

Table 1:	Words associated	with the top	5 sparse	principal of	components in NYTimes

Table 2: Words associated	1 with the top 5 spar	se principal comp	onents in PubMed

1st PC (5 words)	2nd PC (5 words)	3rd PC (5 words)	4th PC (4 words)	5th PC (4 words)
patient	effect	human	tumor	year
cell	level	expression	mice	infection
treatment	activity	receptor	cancer	age
protein	concentration	binding	maligant	children
disease	rat		carcinoma	child

[Zhang, El Ghaoui, 2011]

Other applications

- Dictionary learning
- Computer vision
- Dimensionality reduction

▶ ...

Outline

- 2 State of the art
- 3 Algorithm and motivation
- Analysis and simulations

[arXiv:1311.5179]

Model

1

Spiked covariance model

$$\mathbf{X} = \sum_{\ell=1}^r \sqrt{eta_\ell} \, \mathbf{u}_\ell \mathbf{v}_\ell^\mathsf{T} + \mathbf{Z}$$

$$\blacktriangleright \mathbf{Z}_{ij} \sim_{i.i.d.} \mathsf{N}(0,1), \quad \mathbf{u}_{\ell} \sim \mathsf{N}(0, \mathbf{I}_{n \times n})$$

- ▶ $p = \Theta(n)$.
- $\blacktriangleright \|\mathbf{v}_{\boldsymbol{\ell}}\|_{0} \leq k, \, \min_{i \in \operatorname{supp}(\mathbf{v}_{\boldsymbol{\ell}})} |v_{\boldsymbol{\ell},i}| \geq v_{\min}/\sqrt{k}$
- ► r, β_{ℓ} bounded
- Separation $\beta_1 > \beta_2 > \cdots > \beta_r > 0$

Spiked covariance model

$$\mathbf{X} = \sum_{\ell=1}^r \sqrt{eta_\ell} \, \mathbf{u}_\ell \mathbf{v}_\ell^\mathsf{T} + \mathbf{Z}$$

$$\blacktriangleright \mathbf{Z}_{ij} \sim_{i.i.d.} \mathsf{N}(0,1), \quad \mathbf{u}_{\ell} \sim \mathsf{N}(0,\mathsf{I}_{n\times n})$$

- ▶ $p = \Theta(n)$.
- $\blacktriangleright \|\mathbf{v}_{\boldsymbol{\ell}}\|_0 \leq k, \, \min_{i \in \mathrm{supp}(\mathbf{v}_{\boldsymbol{\ell}})} |v_{\boldsymbol{\ell},i}| \geq v_{\min}/\sqrt{k}$
- ► r, β_{ℓ} bounded
- Separation $\beta_1 > \beta_2 > \cdots > \beta_r > 0$

Equivalently

$\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \sim_{i.i.d.} \mathsf{N}(\mathsf{0}, \Sigma)$

$\Sigma = \sum_{\ell=1}^{r} \beta_{\ell} \mathbf{v}_{\ell} \mathbf{v}_{\ell}^{\mathsf{T}} + \mathsf{I}.$

Equivalently

$\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \sim_{i.i.d.} \mathsf{N}(\mathsf{0}, \Sigma)$

$$\Sigma = \sum_{\ell=1}^{r} \beta_{\ell} \mathbf{v}_{\ell} \mathbf{v}_{\ell}^{\mathsf{T}} + \mathsf{I}.$$

Andrea Montanari (Stanford)

For ease of exposition: r = 1

$$\mathbf{X} = \sqrt{\beta} \, \mathbf{u} \mathbf{v}^{\mathsf{T}} + \mathbf{Z}$$

A definition: Sample covariance

$$egin{aligned} \widehat{\Sigma} &\equiv rac{1}{n} \mathbf{X}^\mathsf{T} \mathbf{X} \ &= rac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\mathsf{T} \end{aligned}$$

State of the art

Objective: Support recovery

Want to reconstruct supp(v)

Simple PCA

Principal vector of \mathbf{X} :

 $\mathbf{v}_1(\mathbf{X})$

Principal component is orthogonal to the signal unless $n > C(\beta)p$ [Baik, Ben Arous, Peche, 2005; Baik Silverstein, 2006; Paul, 2007]

Information theory lower bound

For $i \in \{1, \ldots, n\}$

$$\mathbf{x}_i = \sqrt{\beta} u_i \mathbf{v} + \mathbf{z}_i$$

- Each sample yields $\Theta(1)$ bits
- ▶ Need $(k \log p)$ bits
- ▶ Doable if $n \ge C(\beta)k\log p$

(exhaustive search)

Amini, Wainwright, 2009

Information theory lower bound

For $i \in \{1, \ldots, n\}$

$$\mathbf{x}_i = \sqrt{\beta} u_i \mathbf{v} + \mathbf{z}_i$$

- Each sample yields $\Theta(1)$ bits
- ▶ Need $(k \log p)$ bits
- ▶ Doable if $n \ge C(\beta)k\log p$

(exhaustive search)

[Amini, Wainwright, 2009]

Can we achieve this in polytime?

What about linear time?

Diagonal thresholding [Johnstone, Lu, 2004]

Idea

$$egin{aligned} \Sigma_{ii} &= 1 + eta \; v_i^2 \ \widehat{\Sigma}_{ii} &= 1 + eta \; v_i^2 + rac{1}{\sqrt{n}} \, W_i \ W_i &pprox \mathsf{N}(0,1) \end{aligned}$$

Support estimate

$$\widehat{\mathsf{Q}} = \left\{ egin{array}{cc} i \in [p] : & \widehat{\Sigma}_{ii} \geq \lambda \end{array}
ight\}.$$

Diagonal thresholding [Johnstone, Lu, 2004]

Idea

$$egin{aligned} \Sigma_{ii} &= 1 + eta \; v_i^2 \ \widehat{\Sigma}_{ii} &= 1 + eta \; v_i^2 + rac{1}{\sqrt{n}} \, W_i \ W_i &pprox \mathsf{N}(0,1) \end{aligned}$$

Support estimate

$$\widehat{\mathsf{Q}} = \left\{ egin{array}{cc} i \in [p] : & \widehat{\Sigma}_{ii} \geq \lambda \end{array}
ight\}.$$

Diagonal thresholding

$$ext{noise level} pprox \sqrt{rac{2\log p}{n}}, \qquad ext{signal} pprox rac{eta}{k}$$

Works if

$$rac{eta}{k} \geq 10 \sqrt{rac{\log p}{n}}$$

$$k \leq C(oldsymbol{eta}) \sqrt{rac{n}{\log p}}$$

Diagonal thresholding

$$ext{noise level} pprox \sqrt{rac{2\log p}{n}}, \qquad ext{signal} pprox rac{eta}{k}$$

Works if

$$egin{aligned} & rac{eta}{k} \geq 10 \sqrt{rac{\log p}{n}} \ & k \leq C(eta) \sqrt{rac{n}{\log p}} \end{aligned}$$

Andrea Montanari (Stanford)

Diagonal thresholding

$$ext{noise level} pprox \sqrt{rac{2\log p}{n}}, \qquad ext{signal} pprox rac{eta}{k}$$

Works if

$$egin{aligned} & rac{eta}{k} \geq 10 \sqrt{rac{\log p}{n}} \ & k \leq C(eta) \sqrt{rac{n}{\log p}} \end{aligned}$$

Executive summary

 $r = 1, \ \mathbf{k} = \|\mathbf{v}\|_0$ (smaller $k \Rightarrow$ easier)

Complaints about diagonal thresholding

- Sup-optimal sample size
- Sensitive to the i.i.d. noise assumption

Anything better?

SDP relaxation (d'Aspremont, El Ghaoui, Jordan, Lanckriet, 2004)

Amini, Wainwright 2009: Conditionally positive results
 Krauthgamer, Nadler, Vilechnik, 2013: Fails for $k \gtrsim \sqrt{n}$

SDP relaxation (d'Aspremont, El Ghaoui, Jordan, Lanckriet, 2004)

Amini, Wainwright 2009: Conditionally positive results
 Krauthgamer, Nadler, Vilechnik, 2013: Fails for $k \gtrsim \sqrt{n}$

Executive summary

 $r = 1, \ k = \|\mathbf{v}\|_0 \ (\text{smaller } k \Rightarrow \text{easier})$

A computational barrier?

Theorem (Berthet, Rigollet, 2013)

Assume that PLANTEDCLIQUE cannot be solved in polynomial time for clique size $n^{0.001} \leq |\text{Clique}| \leq n^{0.499}$. Then^a supp(v) cannot be found in polynomial time for $k \leq n^{0.499}$.

^aSlightly different model

[See also Ma, Wu 2013]

Executive summary

 $r = 1, \ k = \|\mathbf{v}\|_0$ (smaller $k \Rightarrow$ easier)

Executive summary: This paper

 $r = 1, \ k = \|\mathbf{v}\|_0$ (smaller $k \Rightarrow$ easier)

Algorithm and motivation

Sample covariance

Population covariance

$$\Sigma = \beta \mathbf{v} \mathbf{v}^{\mathsf{T}} + \mathbf{I}$$

Sample covariance

$$\widehat{\Sigma} \equiv \frac{1}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathsf{T}}$$
 $\widehat{\Sigma} = \beta \mathbf{v} \mathbf{v}^{\mathsf{T}} + \mathbf{I} + \text{noise}$

Sample covariance

Population covariance

$$\Sigma = \beta \mathbf{v} \mathbf{v}^{\mathsf{T}} + \mathbf{I}$$

Sample covariance

$$\widehat{\boldsymbol{\Sigma}} \equiv \frac{1}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathsf{T}}$$
$$\widehat{\boldsymbol{\Sigma}} = \boldsymbol{\beta} \mathbf{v} \mathbf{v}^{\mathsf{T}} + \mathbf{I} + \text{noise}$$

Bickel, Levina 2009

▶ Proposed for SPCA by Krauthgamer, Nadler, Vilechnik 2013

$$\widehat{\Sigma} - I = \beta \mathbf{v} \mathbf{v}^{\mathsf{T}}$$
 Sparse, Norm $= \beta$
+ noise Dense, Norm $= c \sqrt{p/n}$

Threshold entries at level $\lambda= au/\sqrt{n}$

$$egin{aligned} & \operatorname{ST}_\lambda(\widehat{\Sigma}) - c\operatorname{I} \, pprox \operatorname{ST}_\lambda(eta \, \mathbf{v} \, \mathbf{v}^{\mathsf{T}}) & \operatorname{Norm} & pprox eta \ & + \operatorname{noise} & \operatorname{Norm} & pprox arepsilon(au) \sqrt{p/n} \end{aligned}$$

 $\mathsf{ST}_\lambda \equiv \mathsf{soft} \ \mathsf{thresholding} \ \mathsf{at} \ \mathsf{level} \ \lambda$

$\begin{array}{ll} \textbf{Threshold entries at level } \lambda = \tau/\sqrt{n} \\ & \quad \mathsf{ST}_{\lambda}(\widehat{\Sigma}) - c\mathsf{I} \,\approx \mathsf{ST}_{\lambda}(\beta \, \mathbf{v} \, \mathbf{v}^{\mathsf{T}}) \\ & \quad + \mathsf{noise} \end{array} \quad \begin{array}{ll} \mathsf{Norm} \approx \beta \\ & \quad \mathsf{Norm} \approx \varepsilon(\tau)\sqrt{p/n} \end{array}$

 $\mathsf{ST}_{\lambda} \equiv \mathsf{soft} \ \mathsf{thresholding} \ \mathsf{at} \ \mathsf{level} \ \lambda$

$$\begin{split} \widehat{\Sigma} - \mathrm{I} \; = & \boldsymbol{\beta} \; \mathbf{v} \, \mathbf{v}^{\mathsf{T}} & \qquad & \text{Sparse, Norm} = \boldsymbol{\beta} \\ & + \; \text{noise} & \qquad & \text{Dense, Norm} = c \sqrt{p/n} \end{split}$$

$\begin{array}{ll} \textbf{Threshold entries at level } \lambda = \tau/\sqrt{n} \\ & \quad \text{ST}_{\lambda}(\widehat{\Sigma}) - c\text{I} \approx \text{ST}_{\lambda}(\beta \ \mathbf{v} \ \mathbf{v}^{\mathsf{T}}) \\ & \quad + \text{noise} \end{array} \quad \begin{array}{ll} \text{Norm} \approx \beta \\ & \quad \text{Norm} \approx \varepsilon(\tau)\sqrt{p/n} \end{array}$

 $\mathsf{ST}_\lambda \equiv \mathsf{soft} \; \mathsf{thresholding} \; \mathsf{at} \; \mathsf{level} \; \lambda$

ST

- 1: Input: Data $(\mathbf{x}_i)_{1 \leq i \leq 2n}$, parameter $au \in \mathbb{R}_{\geq 0}$;
- 2: Compute $\widehat{\Sigma}$;
- 3: Set $\mathsf{ST}_{\tau/\sqrt{n}}(\widehat{\Sigma})_{ii} = 0$ and (for $i \neq j$):

$$\mathsf{ST}_{ au/\sqrt{n}}(\widehat{\Sigma})_{ij} = egin{cases} \widehat{\Sigma}_{ij} - rac{ au}{\sqrt{n}} & ext{if } \widehat{\Sigma}_{ij} \geq au/\sqrt{n}, \ 0 & ext{if } - au/\sqrt{n} < \widehat{\Sigma}_{ij} < au/\sqrt{n}, \ \widehat{\Sigma}_{ij} + rac{ au}{\sqrt{n}} & ext{if } \widehat{\Sigma}_{ij} \leq - au/\sqrt{n}, \end{cases}$$

4: v_{*} = Principal eigenvector of ST_{τ/√n}(Σ̂);
5: 'Clean' v_{*} to estimate support Q̂.

$\mathsf{ST}_{1.5/\sqrt{n}}(\widehat{\Sigma})$

Analysis and simulations

A theorem

Theorem (Deshpande, Montanari, 2013)

For any $\alpha, \beta, \varepsilon > 0$, there exists $C = C(\alpha, \beta, \varepsilon) > 0$ such that the following happens for signal to noise ratio β , and $p/n = \alpha$.

If $k \leq C\sqrt{n}$, then, with high probability, $||\mathbf{v}^* - \mathbf{v}||_2 \leq \varepsilon$ $\widehat{Q} = \operatorname{supp}(\mathbf{v})$

A theorem

Theorem (Deshpande, Montanari, 2013)

For any $\alpha, \beta, \varepsilon > 0$, there exists $C = C(\alpha, \beta, \varepsilon) > 0$ such that the following happens for signal to noise ratio β , and $p/n = \alpha$.

```
 \begin{array}{l} \text{If } k \leq C\sqrt{n}, \text{ then, with high probability,} \\ \blacktriangleright \|\mathbf{v}^* - \mathbf{v}\|_2 \leq \varepsilon \\ \blacktriangleright \ \widehat{\mathsf{Q}} = \operatorname{supp}(\mathbf{v}) \end{array}
```

A theorem

Theorem (Deshpande, Montanari, 2013)

For any $\alpha, \beta, \varepsilon > 0$, there exists $C = C(\alpha, \beta, \varepsilon) > 0$ such that the following happens for signal to noise ratio β , and $p/n = \alpha$.

$$\begin{array}{l} \mbox{If } k \leq C \sqrt{n}, \mbox{ then, with high probability,} \\ \blacktriangleright \| \mathbf{v}^* - \mathbf{v} \|_2 \leq \varepsilon \\ \blacktriangleright \ \widehat{\mathsf{Q}} = \mathrm{supp}(\mathbf{v}) \end{array}$$

Crucial lemma: Kernel random matrices

Lemma (Deshpande, Montanari, 2013)

Assume $\mathbf{Z} = (Z_{ij})_{i \leq n, j \leq p}$ with $Z_{ij} \sim_{i.i.d.} \mathsf{N}(0, 1/n)$, $p/n \to \alpha$. Then, with high probability

$$\left\| \mathsf{ST}_{ au/\sqrt{n}} \Big(\mathbf{Z} \mathbf{Z}^\mathsf{T} - \operatorname{diag}(\mathbf{Z} \mathbf{Z}^\mathsf{T}) \Big) \right\|_2 \leq C(lpha) \, au^{-0.49}$$

 $\leq C(lpha, au)$ is easy

Crucial lemma: Kernel random matrices

Lemma (Deshpande, Montanari, 2013)

Assume $\mathbf{Z} = (Z_{ij})_{i \leq n,j \leq p}$ with $Z_{ij} \sim_{i.i.d.} \mathsf{N}(0,1/n)$, $p/n \to \alpha$. Then, with high probability

$$\left\| \mathsf{ST}_{ au/\sqrt{n}} \Big(\mathbf{Z} \mathbf{Z}^\mathsf{T} - \operatorname{diag}(\mathbf{Z} \mathbf{Z}^\mathsf{T}) \Big)
ight\|_2 \leq C(lpha) \, au^{-0.49}$$

 $\leq C(lpha, au)$ is easy

Proof

$$\blacktriangleright \mathsf{S}(\,\cdot\,) \equiv \mathsf{ST}_{\tau/\sqrt{n}}(\,\cdot\,)$$

- $\blacktriangleright \mathbf{N} = S(\mathbf{Z}\mathbf{Z}^{\mathsf{T}} \text{diag}(\mathbf{Z}\mathbf{Z}^{\mathsf{T}}))$
- $\blacktriangleright \ T_{\varepsilon} \subseteq S_{p-1} \subseteq \mathbb{R}^p \text{ an } \varepsilon \text{-net, } |T_{\varepsilon}| \leq (10/\varepsilon)^p.$

$$\mathbb{P}\Big\{\sup_{\mathbf{y}\in S_{p-1}}\langle\mathbf{y},\mathbf{Ny}
angle\geq \Delta\Big\}\leq |T_arepsilon|\sup_{\mathbf{y}\in T_arepsilon}\mathbb{P}\Big\{\langle\mathbf{y},\mathbf{Ny}
angle\geq (1-2arepsilon)\Delta\Big\}$$

Sufficient to prove that

$$\sup_{\mathbf{y}\in T_{m{arepsilon}}} \mathbb{P}ig\{ \langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle \geq C au^{-0.49} ig\} \leq 2 \; e^{-cn}$$

Andrea Montanari (Stanford)

\mathbf{Proof}

 $\blacktriangleright \ T_{\varepsilon} \subseteq S_{p-1} \subseteq \mathbb{R}^p \text{ an } \varepsilon \text{-net, } |T_{\varepsilon}| \leq (10/\varepsilon)^p.$

$$\mathbb{P}\Big\{\sup_{\mathbf{y}\in S_{p-1}}\langle\mathbf{y},\mathbf{Ny}
angle\geq\Delta\Big\}\leq |\,T_arepsilon|\sup_{\mathbf{y}\in T_arepsilon}\mathbb{P}\Big\{\langle\mathbf{y},\mathbf{Ny}
angle\geq(1-2arepsilon)\Delta\Big\}$$

Sufficient to prove that

$$\sup_{\mathbf{y}\in \, T_arepsilon} \mathbb{P}\!\left\{ \langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle \geq C au^{-0.49}
ight\} \leq 2 \; e^{-cn}$$

In simple random matrix ensembles: $\langle {f y}, {f N} {f y}
angle$ is Lipschitz in ${f Z} \Rightarrow$ Gaussian isoperimetry

Andrea Montanari (Stanford)

\mathbf{Proof}

 $\blacktriangleright \ T_{\varepsilon} \subseteq S_{p-1} \subseteq \mathbb{R}^p \text{ an } \varepsilon \text{-net, } |T_{\varepsilon}| \leq (10/\varepsilon)^p.$

$$\mathbb{P}\Big\{\sup_{\mathbf{y}\in S_{p-1}}\langle\mathbf{y},\mathbf{Ny}
angle\geq\Delta\Big\}\leq |\,T_arepsilon|\sup_{\mathbf{y}\in T_arepsilon}\mathbb{P}\Big\{\langle\mathbf{y},\mathbf{Ny}
angle\geq(1-2arepsilon)\Delta\Big\}$$

Sufficient to prove that

$$\sup_{\mathbf{y}\in \, T_{\varepsilon}} \mathbb{P}\!\left\{ \langle \mathbf{y}, \mathbf{N}\mathbf{y} \rangle \geq \, C \, \tau^{-0.49} \right\} \leq 2 \; e^{-cn}$$

In simple random matrix ensembles: $\langle y, Ny \rangle$ is Lipschitz in $Z \Rightarrow$ Gaussian isoperimetry

Andrea Montanari (Stanford)

Columns of Z: $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_p \sim \mathsf{N}(\mathbf{0}, \mathsf{I}_{n \times n})$

$$\langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle = \sum_{i
eq j} y_i \mathsf{S}ig(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n}ig) y_j$$

$$abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle = 2 rac{y_i}{n} \sum_{j \in [p] \setminus i} \mathsf{S}' \Big(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} \Big) \mathbf{g}_j y_j$$

Problems:

$$lacksim ext{Need} \|
abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle \|_2 \leq C au^{-0.49}$$

 \triangleright g_j unbounded

- ▶ y_i can be \sqrt{p} times its typical value
- If we use $|S'(\cdot)| \leq 1$, we loose the dependence in τ

Looks hopeless!

Andrea Montanari (Stanford)

Columns of Z: $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_p \sim \mathsf{N}(\mathbf{0}, \mathsf{I}_{n \times n})$

$$\langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle = \sum_{i
eq j} y_i \mathsf{S}igg(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n}igg) y_j$$

$$abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle = 2 rac{y_i}{n} \sum_{j \in [p] \setminus i} \mathsf{S}' igg(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} igg) \mathbf{g}_j y_j$$

Problems:

$$lacksim ext{Need} \|
abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle \|_2 \leq C au^{-0.45}$$

 \triangleright g_j unbounded

- ▶ y_i can be \sqrt{p} times its typical value
- If we use $|S'(\cdot)| \leq 1$, we loose the dependence in τ

Looks hopeless!

Andrea Montanari (Stanford)

Columns of Z: $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_p \sim \mathsf{N}(\mathbf{0}, \mathsf{I}_{n \times n})$

$$\langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle = \sum_{i
eq j} y_i \mathsf{S} \Big(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} \Big) y_j$$

$$abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle = 2 rac{y_i}{n} \sum_{j \in [p] \setminus i} \mathsf{S}' igg(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} igg) \mathbf{g}_j y_j$$

Problems:

- Need
$$\|
abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle \|_2 \leq C au^{-0.49}$$

 \triangleright g_i unbounded

▶ y_i can be \sqrt{p} times its typical value

• If we use $|S'(\cdot)| \leq 1$, we loose the dependence in τ

Looks hopeless!

Andrea Montanari (Stanford)

Columns of Z: $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_p \sim \mathsf{N}(\mathbf{0}, \mathsf{I}_{n \times n})$

$$\langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle = \sum_{i
eq j} y_i \mathsf{S}ig(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n}ig) y_j$$

$$abla_{\mathbf{g}_i}\langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle = 2rac{y_i}{n}\sum_{j \in [p] \setminus i} \mathsf{S}'\Big(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n}\Big) \mathbf{g}_j y_j$$

Problems:

$$lacksim$$
Need $\|
abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle \|_2 \leq C au^{-0.49}$

 \triangleright g_j unbounded

▶ y_i can be \sqrt{p} times its typical value

• If we use $|S'(\cdot)| \leq 1$, we loose the dependence in τ

Looks hopeless!

Andrea Montanari (Stanford)

Columns of Z: $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_p \sim \mathsf{N}(\mathbf{0}, \mathsf{I}_{n \times n})$

$$\langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle = \sum_{i
eq j} y_i \mathsf{S} \Big(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} \Big) y_j$$

$$abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle = 2 rac{y_i}{n} \sum_{j \in [p] \setminus i} \mathsf{S}' igg(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} igg) \mathbf{g}_j y_j$$

Problems:

- Need
$$\|
abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle \|_2 \leq C au^{-0.49}$$

 \triangleright g_j unbounded

• y_i can be \sqrt{p} times its typical value

• If we use $|S'(\cdot)| \leq 1$, we loose the dependence in τ

Looks hopeless!

Andrea Montanari (Stanford)

Columns of Z: $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_p \sim \mathsf{N}(\mathbf{0}, \mathsf{I}_{n \times n})$

$$\langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle = \sum_{i
eq j} y_i \mathsf{S} \Big(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} \Big) y_j$$

$$abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle = 2 rac{y_i}{n} \sum_{j \in [p] \setminus i} \mathsf{S}' igg(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} igg) \mathbf{g}_j y_j$$

Problems:

$$lacksim ext{Need} \|
abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle \|_2 \leq C au^{-0.49}$$

- \triangleright g_j unbounded
- y_i can be \sqrt{p} times its typical value
- If we use $|S'(\cdot)| \leq 1$, we loose the dependence in τ

Looks hopeless!

Andrea Montanari (Stanford)

Columns of Z: $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_p \sim \mathsf{N}(\mathbf{0}, \mathsf{I}_{n \times n})$

$$\langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle = \sum_{i
eq j} y_i \mathsf{S} \Big(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} \Big) y_j$$

$$abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle = 2 rac{y_i}{n} \sum_{j \in [p] \setminus i} \mathsf{S}' igg(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} igg) \mathbf{g}_j y_j$$

Problems:

$$lacksim ext{Need} \|
abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle \|_2 \leq C au^{-0.49}$$

- \triangleright g_j unbounded
- y_i can be \sqrt{p} times its typical value
- If we use $|S'(\cdot)| \leq 1$, we loose the dependence in τ

Looks hopeless!

Andrea Montanari (Stanford)

Columns of Z: $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_p \sim \mathsf{N}(\mathbf{0}, \mathsf{I}_{n \times n})$

$$\langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle = \sum_{i
eq j} y_i \mathsf{S} \Big(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} \Big) y_j$$

$$abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle = 2 rac{y_i}{n} \sum_{j \in [p] \setminus i} \mathsf{S}' \Big(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} \Big) \mathbf{g}_j y_j$$

Problems:

$$lacksim ext{Need} \|
abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N} \mathbf{y}
angle \|_2 \leq C au^{-0.49}$$

- \triangleright g_j unbounded
- y_i can be \sqrt{p} times its typical value
- If we use $|S'(\cdot)| \leq 1$, we loose the dependence in τ

Looks hopeless!

Andrea Montanari (Stanford)

Ideas (1)

y_i can be \sqrt{n} times its typical value

- Separate big entries of y (above C/\sqrt{p})
- There are at most p/C big entries
- Control norm of all $(p/C) \times (p/C)$ submatrices

 y_i can be \sqrt{n} times its typical value

- Separate big entries of y (above C/\sqrt{p})
- There are at most p/C big entries
- Control norm of all $(p/C) \times (p/C)$ submatrices

Ideas (2)

$$egin{aligned}
abla_{\mathbf{g}_i} \langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle &= rac{2y_i}{n} \sum_{j \in [p] ackslash i} \mathsf{S}'\Big(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n}\Big) \mathbf{g}_j y_j \ &= \mathbf{Z}^\mathsf{T} oldsymbol{\sigma}^i(\mathbf{y}) \end{aligned}$$

where

$$[oldsymbol{\sigma}^i(\mathbf{y})]_j = rac{2y_i}{n} \mathsf{S}' \Big(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n} \Big) y_j$$

Prove that, with overwhelming probability

$$||\mathbf{Z}||_2 \leq \text{const.}$$

$$lacksquare$$
 $\|oldsymbol{\sigma}^i(\mathbf{y})\|_2 \leq a au^{-0.49}$

(work)

Ideas (2)

$$egin{aligned}
abla_{\mathbf{g}_i} &\langle \mathbf{y}, \mathbf{N}\mathbf{y}
angle = rac{2y_i}{n} \sum_{j \in [p] ackslash i} \mathsf{S}'\Big(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n}\Big) \mathbf{g}_j y_j \ &= \mathbf{Z}^\mathsf{T} oldsymbol{\sigma}^i(\mathbf{y}) \end{aligned}$$

where

$$[oldsymbol{\sigma}^i(\mathbf{y})]_j = rac{2y_i}{n} \mathsf{S}' igg(rac{\langle \mathbf{g}_i, \mathbf{g}_j
angle}{n}igg) y_j$$

Prove that, with overwhelming probability

 $\begin{aligned} & \|\mathbf{Z}\|_2 \leq \text{const.} \\ & \|\boldsymbol{\sigma}^i(\mathbf{y})\|_2 \leq a \tau^{-0.49} \end{aligned} \tag{known} \end{aligned}$

Threshold behavior

Sparsity in wavelet domain

Andrea Montanari (Stanford)

Sparse PCA

May 28, 2014 50 / 51

▶ It would be nice to understand better kernel random matrices.

- $k = \Theta(\sqrt{n})$: Stronger lower bounds?
- **•** Use sparsification to accelerate this
- Other algorithms for sparse PCA: ask me...

▶ It would be nice to understand better kernel random matrices.

• $k = \Theta(\sqrt{n})$: Stronger lower bounds?

▶ Use sparsification to accelerate this

• Other algorithms for sparse PCA: ask me...

▶ It would be nice to understand better kernel random matrices.

- $k = \Theta(\sqrt{n})$: Stronger lower bounds?
- Use sparsification to accelerate this
- Other algorithms for sparse PCA: ask me...

▶ It would be nice to understand better kernel random matrices.

- $k = \Theta(\sqrt{n})$: Stronger lower bounds?
- Use sparsification to accelerate this

• Other algorithms for sparse PCA: ask me...

Thanks!

Andrea Montanari (Stanford)

Sparse PCA

May 28, 2014 51 / 51

▶ It would be nice to understand better kernel random matrices.

- $k = \Theta(\sqrt{n})$: Stronger lower bounds?
- ▶ Use sparsification to accelerate this
- Other algorithms for sparse PCA: ask me...

▶ It would be nice to understand better kernel random matrices.

- $k = \Theta(\sqrt{n})$: Stronger lower bounds?
- Use sparsification to accelerate this
- Other algorithms for sparse PCA: ask me...