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Principal Component Analysis

Data matrix X 2 Rn�p

Find U;V such that

X � UVT ;

U 2 Rn�r ;

V 2 Rp�r

Dimensionality reduction: r � n ; p
What happens if U;V have special structure?
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I will talk only about one type of structure. . .
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Sparse Principal Component Analysis

Data matrix X 2 Rn�p

Find U;V such that

X � UVT ;

U 2 Rn�r ;

V 2 Rp�r sparse

Dimensionality reduction: r � n ; p
What happens if U;V have special structure?
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Equivalently: Superposition of sparse vectors

I Rows of X: x1, x2,. . . . . .xn 2 Rp .

I Rows of VT: v1,. . .vr 2 Rp .

xi �
rX

`=1

ui` v` v1;v2; : : : ;vr sparse
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Example: Topic models

xi �
rX

`=1

u`;i v`

xi : Document i

v`: Topic `

Document = Superposition of topics.

Topic = Sparse distribution over words
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Example: Topic models

[Zhang, El Ghaoui, 2011]
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Other applications

I Dictionary learning

I Computer vision

I Dimensionality reduction

I . . .
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Outline

1 Model

2 State of the art

3 Algorithm and motivation

4 Analysis and simulations

[arXiv:1311.5179]
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Model
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Spiked covariance model

X =
rX

`=1

p
�` u`v

T

` + Z

I Zij �i :i :d : N(0; 1), u` � N(0; In�n)

I p = �(n).

I kv`k0 � k , mini2supp(v`) jv`;i j � vmin=
p
k

I r , �` bounded

I Separation �1 > �2 > � � � > �r > 0
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Equivalently

x1;x2; : : : ;xn �i :i :d : N(0;�)

� =
rX

`=1

�`v`v
T

` + I :
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Equivalently

x1;x2; : : : ;xn �i :i :d : N(0;�)

� =
rX

`=1

�`v`v
T

` + I :
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For ease of exposition: r = 1

X =
p
� uvT + Z
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A de�nition: Sample covariance

b� � 1

n
XTX

=
1

n

nX
i=1

xix
T

i
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State of the art
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Objective: Support recovery

Want to reconstruct supp(v)
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Simple PCA

Principal vector of X:

v1(X)
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Simple PCA: Spectral phase transition

0 4

Limiting Spectral Density

0 4

Limiting Spectral Density

n < C (�)p n > C (�)p

� + 2+ ��1

hv1(X);vi � 0 hv1(X);vi bdd away from 0

Principal component is orthogonal to the signal unless n > C (�)p
[Baik, Ben Arous, Peche, 2005; Baik Silverstein, 2006; Paul, 2007]
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Information theory lower bound

For i 2 f1; : : : ;ng

xi =
p
�uiv + zi

I Each sample yields �(1) bits

I Need (k log p) bits

I Doable if n � C (�)k log p (exhaustive search)

[Amini, Wainwright, 2009]
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Can we achieve this in polytime?

What about linear time?

Andrea Montanari (Stanford) Sparse PCA May 28, 2014 21 / 51



Diagonal thresholding [Johnstone, Lu, 2004]

Idea

�ii = 1+ � v2ib�ii = 1+ � v2i +
1p
n
Wi

Wi � N(0; 1)

Support estimate

bQ =
n
i 2 [p] : b�ii � �

o
:
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Example: � = 1, p = 400, n = 300
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Example: � = 1, p = 400, n = 300
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k = 15

noise level �
q
(2 log p)=n ; signal � �=k
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Diagonal thresholding

noise level �
s
2 log p

n
; signal � �

k

Works if

�

k
� 10

s
log p

n

k � C (�)

s
n

log p
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Executive summary

r = 1, k = kvk0 (smaller k ) easier)

k

n
log p

q
n

log p

Inform.-theor. unfeasible
[Amini, Wainwright, 2009]Diagonal thresholding

[Johnstone, Lu, 2004]
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Complaints about diagonal thresholding

I Sup-optimal sample size

I Sensitive to the i.i.d. noise assumption
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Anything better?
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SDP relaxation (d'Aspremont, El Ghaoui, Jordan, Lanckriet, 2004)

maximize Tr(b�W) ;

subjectto W � 0 ;

Tr(W) = 1 ;
pX

i ;j=1

jWij j � � :

I Amini, Wainwright 2009: Conditionally positive results

I Krauthgamer, Nadler, Vilechnik, 2013: Fails for k &
p
n
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Executive summary

r = 1, k = kvk0 (smaller k ) easier)

k

n
log p

p
n

q
n

log p

Inform.-theor. unfeasible
[Amini, Wainwright, 2009]

Comput. feasible?
[Krauthgamer et al. 2013]

Diagonal thresholding
[Johnstone, Lu, 2004]
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A computational barrier?

Theorem (Berthet, Rigollet, 2013)

Assume that PlantedClique cannot be solved in polynomial time

for clique size n0:001 � jCliquej � n0:499.

Thena supp(v) cannot be found in polynomial time for k � n0:499.

aSlightly di�erent model

[See also Ma, Wu 2013]
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Executive summary

r = 1, k = kvk0 (smaller k ) easier)

k

n
log p

p
n

q
n

log p

Inform.-theor. unfeasible
[Amini, Wainwright, 2009]

Comput. unfeasible?
[Krauthgamer et al. 2013]
[Berthet, Rigollet 2013; Ma, Wu 2013]

Diagonal thresholding
[Johnstone, Lu, 2004]

Andrea Montanari (Stanford) Sparse PCA May 28, 2014 32 / 51



Executive summary: This paper

r = 1, k = kvk0 (smaller k ) easier)

k

n
log p

p
n

q
n

log p

Inform.-theor. unfeasible
[Amini, Wainwright, 2009]

Comput. unfeasible?
[Krauthgamer et al. 2013]
[Berthet, Rigollet 2013; Ma, Wu 2013]

Covariance thresh.Diagonal thresholding
[Johnstone, Lu, 2004]
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Algorithm and motivation
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Sample covariance

Population covariance

� = �vvT + I

Sample covariance

b� � 1

n
XTX =

1

n

nX
i=1

xix
T

i

b� = � vvT + I+ noise
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Covariance thresholding

I Bickel, Levina 2009

I Proposed for SPCA by Krauthgamer, Nadler, Vilechnik 2013
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Covariance thresholding

b�� I =� v vT Sparse, Norm = �

+ noise Dense, Norm = c
p
p=n

Threshold entries at level � = �=
p
n

ST�(b�)� cI � ST�(� v v
T) Norm � �

+ noise Norm � "(� )
p
p=n

ST� � soft thresholding at level �
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ST

y

ST�=
p
n(y)

+�=
p
n��=pn
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Covariance thresholding

1: Input: Data (xi )1�i�2n , parameter � 2 R�0;
2: Compute b�;
3: Set ST�=

p
n(
b�)ii = 0 and (for i 6= j ):

ST�=
p
n(
b�)ij =

8>><>>:
b�ij � �p

n
if b�ij � �=

p
n ,

0 if ��=pn < b�ij < �=
p
n ,b�ij +

�p
n

if b�ij � ��=pn ,

4: v� = Principal eigenvector of ST�=
p
n(
b�);

5: `Clean' v� to estimate support bQ.
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c�
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ST1:5=
p
n(
c�)
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Analysis and simulations
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A theorem

Theorem (Deshpande, Montanari, 2013)

For any �; �; " > 0, there exists C = C (�; �; ") > 0 such that the

following happens for signal to noise ratio �, and p=n = �.

If k � C
p
n, then, with high probability,

I kv� � vk2 � "

I bQ = supp(v)
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Crucial lemma: Kernel random matrices

Lemma (Deshpande, Montanari, 2013)

Assume Z = (Zij )i�n ;j�p with Zij �i.i.d. N(0; 1=n), p=n ! �. Then,

with high probabilityST�=
p
n

�
ZZT � diag(ZZT)

�
2
� C (�) ��0:49 :

� C (�; � ) is easy
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Proof

I S( � ) � ST�=
p
n( � )

I N = S(ZZT � diag(ZZT))

I T" � Sp�1 � Rp an "-net, jT"j � (10=")p .

P
n

sup
y2Sp�1

hy;Nyi � �
o
� jT"j sup

y2T"

P
n
hy;Nyi � (1� 2")�

o

Su�cient to prove that

sup
y2T"

P
n
hy;Nyi � C ��0:49

o
� 2 e�cn

In simple random matrix ensembles:

hy;Nyi is Lipschitz in Z ) Gaussian isoperimetry
Andrea Montanari (Stanford) Sparse PCA May 28, 2014 45 / 51



Proof

I S( � ) � ST�=
p
n( � )

I N = S(ZZT � diag(ZZT))

I T" � Sp�1 � Rp an "-net, jT"j � (10=")p .

P
n

sup
y2Sp�1

hy;Nyi � �
o
� jT"j sup

y2T"

P
n
hy;Nyi � (1� 2")�

o

Su�cient to prove that

sup
y2T"

P
n
hy;Nyi � C ��0:49

o
� 2 e�cn

In simple random matrix ensembles:

hy;Nyi is Lipschitz in Z ) Gaussian isoperimetry
Andrea Montanari (Stanford) Sparse PCA May 28, 2014 45 / 51



Proof

I S( � ) � ST�=
p
n( � )

I N = S(ZZT � diag(ZZT))

I T" � Sp�1 � Rp an "-net, jT"j � (10=")p .

P
n

sup
y2Sp�1

hy;Nyi � �
o
� jT"j sup

y2T"

P
n
hy;Nyi � (1� 2")�

o

Su�cient to prove that

sup
y2T"

P
n
hy;Nyi � C ��0:49

o
� 2 e�cn

In simple random matrix ensembles:

hy;Nyi is Lipschitz in Z ) Gaussian isoperimetry
Andrea Montanari (Stanford) Sparse PCA May 28, 2014 45 / 51



Let's try the same approach

Columns of Z: g1;g2; : : : ;gp � N(0; In�n)

hy;Nyi =
X
i 6=j

yiS
�hgi ;gj i

n

�
yj

rgi
hy;Nyi = 2

yi

n

X
j2[p]ni

S0
�hgi ;gj i

n

�
gjyj

Problems:

I Need krgi
hy;Nyik2 � C ��0:49

I gj unbounded

I yi can be
p
p times its typical value

I If we use jS0( � )j � 1, we loose the dependence in �

Looks hopeless!
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Ideas (1)

yi can be
p
n times its typical value

I Separate big entries of y (above C=
p
p)

I There are at most p=C big entries

I Control norm of all (p=C )� (p=C ) submatrices
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Ideas (2)

rgi
hy;Nyi = 2yi

n

X
j2[p]ni

S0
�hgi ;gj i

n

�
gjyj

= ZTσi (y)

where

[σi (y)]j =
2yi
n

S0
�hgi ;gj i

n

�
yj

Prove that, with overwhelming probability

I kZk2 �const. (known)

I kσi (y)k2 � a��0:49 (work)
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Threshold behavior
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Sparsity in wavelet domain
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Conclusion/Open problems

I It would be nice to understand better kernel random matrices.

I k = �(
p
n): Stronger lower bounds?

I Use sparsi�cation to accelerate this

I Other algorithms for sparse PCA: ask me. . .

Thanks!
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