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Graph Isomorphism

Problem: Are two graphs identical?
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Graph Isomorphism

Problem: Are two graphs identical?

Status:

Not known to be in P or NP-hard

Best known algorithm: 2Õ(
√

n) time (early 1980’s)
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Property Testing Version

This Talk: Dense graph model
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Requirements:

accept with probability 9/10 if graphs isomorphic

reject with probability 9/10 if for any matching of

vertices at least ǫn2 edges disagree
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Requirements:

accept with probability 9/10 if graphs isomorphic

reject with probability 9/10 if for any matching of

vertices at least ǫn2 edges disagree

This talk: focus on the complexity as a function of n,

assume that ǫ is a small constant (say, ǫ = 10−9)
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Query Complexity

Fischer, Matsliah (2006):

(one sided error = never reject if isomorphic)
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Query Complexity

Fischer, Matsliah (2006):

(one sided error = never reject if isomorphic)

Remaining open case:

neither graph known, two-sided testing

Our result:

Algorithm that makes n · 2O(
√

logn) queries
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Review of Fischer-Matsliah

Techniques
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Core sets
Core set = list of polylog n vertices (v1, v2, . . . , vk)
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Core sets

11010

10011

Core set = list of polylog n vertices (v1, v2, . . . , vk)

Every vertex u has a label l ∈ {0, 1}k with respect to
core set:

li =

{

1 if vu and u connected

0 otherwise
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Core sets

11010

10011

Core set = list of polylog n vertices (v1, v2, . . . , vk)

Every vertex u has a label l ∈ {0, 1}k with respect to
core set:

li =

{

1 if vu and u connected

0 otherwise

Intuition: a large random core set partitions vertices
into sets of similar vertices
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Important Theorem

HG

If G and H have core sets (v1, . . . , vk) and (w1, . . . , wk),
respectively, such that:
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If G and H have core sets (v1, . . . , vk) and (w1, . . . , wk),
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the distributions on labels are ǫ1-close

if you take two random vertices in G and two random
vertices in H with the same labels, then w.p. 1− ǫ2, the
connectivity is the same
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Important Theorem

10011 10011

11010 11010
HG

If G and H have core sets (v1, . . . , vk) and (w1, . . . , wk),
respectively, such that:

the distributions on labels are ǫ1-close

if you take two random vertices in G and two random
vertices in H with the same labels, then w.p. 1− ǫ2, the
connectivity is the same

then G and H are ǫ3-close to being isomorphic

Generic tester:

Search for such a pair of core sets and accept if found
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The Fischer-Matsliah Algorithm

Select Õ(n3/4) random vertices V ⋆
G from G
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Enumerate over all possible core sets from V ⋆
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H

(quasipoly(n) options)
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Enumerate over all possible core sets from V ⋆
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(quasipoly(n) options)

For each pair of candidates:

Step 1: See if distributions of labels similar

(Use the Õ(
√
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The Fischer-Matsliah Algorithm

Select Õ(n3/4) random vertices V ⋆
G from G

and query their connections to Õ(n1/2) random vertices

Select Õ(n1/4) random vertices V ⋆
H from H

and query their connections to all other vertices

Enumerate over all possible core sets from V ⋆
G and V ⋆

H

(quasipoly(n) options)

For each pair of candidates:

Step 1: See if distributions of labels similar

(Use the Õ(
√
n)-sample tester of Batu et al. (2001))

Step 2: Select polylog n pairs of random vertices in G
and see if the connectivity of their labels almost the
same in H

Krzysztof Onak – A Near-Optimal Algorithm for Testing Graph Isomorphism – p. 8/22



First Attempts
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Better Label Distribution Testing?
Idea: Use a different distribution tester

Select Õ(
√
n) vertices from G and H

Query connections to random subset of size Õ(n2/3)

Use the distribution tester of Batu et al. (2000)

Query Complexity: Õ(n7/6)
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Idea: Use a different distribution tester

Select Õ(
√
n) vertices from G and H

Query connections to random subset of size Õ(n2/3)

Use the distribution tester of Batu et al. (2000)

Query Complexity: Õ(n7/6)

Problem: Unclear how to do Step 2

Only a subset of labels known

Sampling subsets and comparing discovered
identical labels introduces a bias
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Better Label Distribution Testing?
Idea: Use a different distribution tester

Select Õ(
√
n) vertices from G and H

Query connections to random subset of size Õ(n2/3)

Use the distribution tester of Batu et al. (2000)

Query Complexity: Õ(n7/6)

Problem: Unclear how to do Step 2

Only a subset of labels known

Sampling subsets and comparing discovered
identical labels introduces a bias

Ignore this issue for now
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Exponent Less than 7/6?

Could the Ω(n2/3) distribution testing lower bound

[Valiant 2008] imply a Ω(n7/6) lower bound?

vs.
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Exponent Less than 7/6?

Could the Ω(n2/3) distribution testing lower bound

[Valiant 2008] imply a Ω(n7/6) lower bound?

vs.

We have additional information:

Estimate in advance distances between adjacency
vectors in both graphs

We care about random core sets, where labels
preserve distances between adjacency vectors

We should be able to distinguish heavy and light
elements
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Exponent Less than 7/6?

Could the Ω(n2/3) distribution testing lower bound

[Valiant 2008] imply a Ω(n7/6) lower bound?

vs.

We have additional information:

Estimate in advance distances between adjacency
vectors in both graphs

We care about random core sets, where labels
preserve distances between adjacency vectors

We should be able to distinguish heavy and light
elements

Nice consistent clustering of slightly different adjacency
vectors still difficult
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Our Algorithm
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Overview

(O⋆(f(n)) ≡ O(f(n)) · 2O(
√

logn))
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Overview

(O⋆(f(n)) ≡ O(f(n)) · 2O(
√

logn))

Compute good approximations of distances between
adjacency vectors with O⋆(n) queries

Sample O⋆(
√
n) vertices from both graphs

Consider all pairs of corsets of size O⋆(1)

Step 0: sample O⋆(
√
n) vertices to see if the core

sets preserve distances well

Step 1: relaxed test required to reject only sets of
labels that are far in Earth-Mover Distance

Step 2: approximate matching of labels, rejection
sampling to avoid biases

Will show simplified versions
Assume labels preserve all distances
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Collisions
Standard distribution testing collisions: identical labels
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Standard distribution testing collisions: identical labels

Here:

pick small threshold r

labels at distance r collide
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Can apply the standard distribution testing?

Not in a trivial way

Colliding vertices can have very different degrees

Hard to partition them into classes of similar degrees
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Collisions
Standard distribution testing collisions: identical labels

Here:

pick small threshold r

labels at distance r collide

Can apply the standard distribution testing?

Not in a trivial way

Colliding vertices can have very different degrees

Hard to partition them into classes of similar degrees

Our solution:

Randomize the threshold r

Design a tool for estimating the number of collisions

Reject only if Earth-Mover Distance large
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Estimating Number of Collisions

r

Found colliding labels for vertices v ∈ V [G] and w ∈ V [H]
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r
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Solution: Sample similar vertices in H up to distance
2r + (error-term) and see their labels
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2r

r

Found colliding labels for vertices v ∈ V [G] and w ∈ V [H]

Question: How many vertices in H have labels colliding with v?

Solution: Sample similar vertices in H up to distance
2r + (error-term) and see their labels

Requirement: good multiplicative approximation

Problem: What if few of them do?

Pick a threshold r = 2−t/ polylog n, where t ∈ [0, O(
√
log n)]
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Estimating Number of Collisions

3r

2r

r

Found colliding labels for vertices v ∈ V [G] and w ∈ V [H]

Question: How many vertices in H have labels colliding with v?

Solution: Sample similar vertices in H up to distance
2r + (error-term) and see their labels

Requirement: good multiplicative approximation

Problem: What if few of them do?

Pick a threshold r = 2−t/ polylog n, where t ∈ [0, O(
√
log n)]

For most thresholds most points
will require O⋆(1) samples
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Step 1: Earth-Mover Distance Testing

MG

MH

M

Three metric spaces: MG, MH , M
(diameter bounded by 1, |MG| = |MH | = n)
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fG

M

Three metric spaces: MG, MH , M
(diameter bounded by 1, |MG| = |MH | = n)

fG : MG → M and fH : MH → M preserve distances
up to a small additive term
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(diameter bounded by 1, |MG| = |MH | = n)

fG : MG → M and fH : MH → M preserve distances
up to a small additive term

Tester required to

Accept if fG(MG) = fH(MH)

Reject if EMD(fG(MG), fH(MH)) ≥ ǫn

Our solution:

Step 1a: make sure almost all points in fG(MG)
collide with fH(MH), and vice versa

Step 1b: if two points collide make sure their metrics
can be matched
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More Details
Step 1a: make sure almost all points in fG(MG) collide with fH(MH)
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More Details
Step 1a: make sure almost all points in fG(MG) collide with fH(MH)

Take O⋆(
√
n) samples

Estimate weighted number of collisions

Divide each collision by the estimated number of collisions

Bad case:

Randomized threshold makes it unlikely to happen
for a large fraction of vertices

Step 1b: if two points pG and pH collide make sure their
metrics can be matched

Is there a mapping F : MG → MH , where F(pG) = pH
and all distances preserved up to a small additive term?
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Why This Works
Need to show that EMD(fG(MG), fH(MH)) ≤ ǫn if
passes the test
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passes the test

We show a large fractional matching using short edges

Two step process:

Each point in fG(MG) sends flow to hubs in fG(MG)

Each point in fH(MH) receives flow from hubs in fG(MG)

Each point sends/receives one unit, but hubs handle
arbitrary amount of flow

Amount sent to/received from point x proportional to

exp(−δ(x, y) · polylog n)
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Two step process:

Each point in fG(MG) sends flow to hubs in fG(MG)

Each point in fH(MH) receives flow from hubs in fG(MG)

Each point sends/receives one unit, but hubs handle
arbitrary amount of flow

Amount sent to/received from point x proportional to

exp(−δ(x, y) · polylog n)
For almost matching metrics: each hub receives and
sends almost the same amount
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Why This Works
Need to show that EMD(fG(MG), fH(MH)) ≤ ǫn if
passes the test

We show a large fractional matching using short edges

Two step process:

Each point in fG(MG) sends flow to hubs in fG(MG)

Each point in fH(MH) receives flow from hubs in fG(MG)

Each point sends/receives one unit, but hubs handle
arbitrary amount of flow

Amount sent to/received from point x proportional to

exp(−δ(x, y) · polylog n)
For almost matching metrics: each hub receives and
sends almost the same amount

There is a close point: edges longer than some small
threshold carry almost no flow
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Step 2

Question: Do labels describe connectivity?
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Problem: Sampling pairs of similar labels more likely

(Reason why Fischer & Matsliah didn’t get Õ(n7/6)?)
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Question: Do labels describe connectivity?

Problem: Sampling pairs of similar labels more likely

(Reason why Fischer & Matsliah didn’t get Õ(n7/6)?)

Use rejection sampling to uniformly sample a label for
V [G] with a colliding label for V [H]
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(Reason why Fischer & Matsliah didn’t get Õ(n7/6)?)

Use rejection sampling to uniformly sample a label for
V [G] with a colliding label for V [H]

Keep a sample with probability
1/(estimated-number-of-collisions)

For independent endpoints, slight difference in labels
shouldn’t introduce too much error
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Step 2

Question: Do labels describe connectivity?

Problem: Sampling pairs of similar labels more likely

(Reason why Fischer & Matsliah didn’t get Õ(n7/6)?)

Use rejection sampling to uniformly sample a label for
V [G] with a colliding label for V [H]

Keep a sample with probability
1/(estimated-number-of-collisions)

For independent endpoints, slight difference in labels
shouldn’t introduce too much error

Accept if similar labels imply same connectivity
most of the time
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Final Remarks
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Open Questions

Is the 2O(
√

log n) factor necessary?
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Can approximate the distance efficiently?
Improve the running time?

Sparse graphs?

hyperfinite bounded-degree [Newman Sohler 2011]
O(1) queries

arbitrary degree forests [Kusumoto Yoshida 2014]
polylog(n) queries
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Open Questions

Is the 2O(
√

log n) factor necessary?

Can approximate the distance efficiently?
Improve the running time?

Sparse graphs?

hyperfinite bounded-degree [Newman Sohler 2011]
O(1) queries

arbitrary degree forests [Kusumoto Yoshida 2014]
polylog(n) queries

Unified framework for various kinds of isomorphisms?
(graphs, functions, etc.)
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Questions?
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