A Near-Optimal Algorithm for Testing Isomorphism of Two Unknown Graphs

Krzysztof Onak IBM T.J. Watson Research Center

Joint work with Xiaorui Sun (Columbia)

Problem: Are two graphs identical?

Status:

- Not known to be in P or NP-hard
- **D** Best known algorithm: $2^{\tilde{O}(\sqrt{n})}$ time (early 1980's)

Property Testing Version

This Talk: Dense graph model

	1	1	0	1	1	0
1		0	0	1	0	0
1	0		0	0	1	0
0	0	0		1	1	1
1	1	0	1		0	1
1	0	1	1	0		1
0	0	0	1	1	1	

Property Testing Version

This Talk: Dense graph model

	1	1	0	1	1	0
1		0	0	1	0	0
1	0		0	0	1	0
0	0	0		1	1	1
1	1	0	1		0	1
1	0	1	1	0		1
0	0	0	1	1	1	

Requirements:

- accept with probability 9/10 if graphs isomorphic
- reject with probability 9/10 if for any matching of vertices at least ϵn^2 edges disagree

Property Testing Version

This Talk: Dense graph model

	1	1	0	1	1	0
1		0	0	1	0	0
1	0		0	0	1	0
0	0	0		1	1	1
1	1	0	1		0	1
1	0	1	1	0		1
0	0	0	1	1	1	

Requirements:

- accept with probability 9/10 if graphs isomorphic
- reject with probability 9/10 if for any matching of vertices at least ϵn^2 edges disagree
- This talk: focus on the complexity as a function of n, assume that ϵ is a small constant (say, $\epsilon = 10^{-9}$)

Query Complexity

Fischer, Matsliah (2006):

	Upper bound	Lower bound
One sided error, one graph known	$\widetilde{O}(n)$	$\Omega(n)$
One sided error, both graphs unknown	$\widetilde{O}(n^{3/2})$	$\Omega(n^{3/2})$
Two sided error, one graph known	$\widetilde{O}(n^{1/2})$	$\Omega(n^{1/2})$
Two sided error, both graphs unknown	$\widetilde{O}(n^{5/4})$	$\Omega(n)$

(one sided error = never reject if isomorphic)

Query Complexity

Fischer, Matsliah (2006):

	Upper bound	Lower bound
One sided error, one graph known	$\widetilde{O}(n)$	$\Omega(n)$
One sided error, both graphs unknown	$\widetilde{O}(n^{3/2})$	$\Omega(n^{3/2})$
Two sided error, one graph known	$\widetilde{O}(n^{1/2})$	$\Omega(n^{1/2})$
Two sided error, both graphs unknown	$\widetilde{O}(n^{5/4})$	$\Omega(n)$

(one sided error = never reject if isomorphic)

Remaining open case:

neither graph known, two-sided testing

Query Complexity

Fischer, Matsliah (2006):

	Upper bound	Lower bound
One sided error, one graph known	$\widetilde{O}(n)$	$\Omega(n)$
One sided error, both graphs unknown	$\widetilde{O}(n^{3/2})$	$\Omega(n^{3/2})$
Two sided error, one graph known	$\widetilde{O}(n^{1/2})$	$\Omega(n^{1/2})$
Two sided error, both graphs unknown	$\widetilde{O}(n^{5/4})$	$\Omega(n)$

(one sided error = never reject if isomorphic)

Remaining open case:

neither graph known, two-sided testing

Our result:

Algorithm that makes $n \cdot 2^{O(\sqrt{\log n})}$ queries

Review of Fischer-Matsliah Techniques

Core sets

• Core set = list of polylog *n* vertices (v_1, v_2, \ldots, v_k)

Core sets

- Core set = list of polylog *n* vertices (v_1, v_2, \ldots, v_k)
- Every vertex u has a label $l \in \{0, 1\}^k$ with respect to core set:

Core sets

- Core set = list of polylog *n* vertices (v_1, v_2, \ldots, v_k)
- Every vertex u has a label $l \in \{0, 1\}^k$ with respect to core set:

Intuition: a large random core set partitions vertices into sets of similar vertices

If G and H have core sets (v_1, \ldots, v_k) and (w_1, \ldots, w_k) , respectively, such that:

If G and H have core sets (v_1, \ldots, v_k) and (w_1, \ldots, w_k) , respectively, such that:

• the distributions on labels are ϵ_1 -close

If G and H have core sets (v_1, \ldots, v_k) and (w_1, \ldots, w_k) , respectively, such that:

- the distributions on labels are ϵ_1 -close
- if you take two random vertices in *G* and two random vertices in *H* with the same labels, then w.p. $1 \epsilon_2$, the connectivity is the same

If G and H have core sets (v_1, \ldots, v_k) and (w_1, \ldots, w_k) , respectively, such that:

- the distributions on labels are ϵ_1 -close
- if you take two random vertices in G and two random vertices in H with the same labels, then w.p. $1 \epsilon_2$, the connectivity is the same

then G and H are ϵ_3 -close to being isomorphic

If G and H have core sets (v_1, \ldots, v_k) and (w_1, \ldots, w_k) , respectively, such that:

- the distributions on labels are ϵ_1 -close
- if you take two random vertices in G and two random vertices in H with the same labels, then w.p. $1 \epsilon_2$, the connectivity is the same

then G and H are ϵ_3 -close to being isomorphic

Generic tester:

Search for such a pair of core sets and accept if found

• Select $\tilde{O}(n^{3/4})$ random vertices V_G^{\star} from G

• Select $\tilde{O}(n^{3/4})$ random vertices V_G^{\star} from Gand query their connections to $\tilde{O}(n^{1/2})$ random vertices

- Select $\tilde{O}(n^{3/4})$ random vertices V_G^{\star} from Gand query their connections to $\tilde{O}(n^{1/2})$ random vertices
- Select $\tilde{O}(n^{1/4})$ random vertices V_H^{\star} from H

- Select $\tilde{O}(n^{3/4})$ random vertices V_G^{\star} from Gand query their connections to $\tilde{O}(n^{1/2})$ random vertices
- Select $\tilde{O}(n^{1/4})$ random vertices V_H^{\star} from Hand query their connections to all other vertices

- Select $\tilde{O}(n^{3/4})$ random vertices V_G^{\star} from Gand query their connections to $\tilde{O}(n^{1/2})$ random vertices
- Select $\tilde{O}(n^{1/4})$ random vertices V_H^{\star} from Hand query their connections to all other vertices
- Enumerate over all possible core sets from V_G^{\star} and V_H^{\star} (quasipoly(*n*) options)

- Select $\tilde{O}(n^{3/4})$ random vertices V_G^{\star} from Gand query their connections to $\tilde{O}(n^{1/2})$ random vertices
- Select $\tilde{O}(n^{1/4})$ random vertices V_H^{\star} from *H* and query their connections to all other vertices
- Enumerate over all possible core sets from V_G^{\star} and V_H^{\star} (quasipoly(*n*) options)
- For each pair of candidates:
 - Step 1: See if distributions of labels similar (Use the $\tilde{O}(\sqrt{n})$ -sample tester of Batu et al. (2001))

- Select $\tilde{O}(n^{3/4})$ random vertices V_G^{\star} from Gand query their connections to $\tilde{O}(n^{1/2})$ random vertices
- Select $\tilde{O}(n^{1/4})$ random vertices V_H^{\star} from Hand query their connections to all other vertices
- Enumerate over all possible core sets from V_G^{\star} and V_H^{\star} (quasipoly(*n*) options)
- For each pair of candidates:
 - Step 1: See if distributions of labels similar (Use the $\tilde{O}(\sqrt{n})$ -sample tester of Batu et al. (2001))
 - Step 2: Select polylog n pairs of random vertices in G and see if the connectivity of their labels almost the same in H

First Attempts

Better Label Distribution Testing?

- Idea: Use a different distribution tester
 - Select $\tilde{O}(\sqrt{n})$ vertices from G and H
 - Query connections to random subset of size $\tilde{O}(n^{2/3})$
 - Use the distribution tester of Batu et al. (2000)
 - Query Complexity: $\tilde{O}(n^{7/6})$

Better Label Distribution Testing?

- Idea: Use a different distribution tester
 - Select $\tilde{O}(\sqrt{n})$ vertices from G and H
 - Query connections to random subset of size $\tilde{O}(n^{2/3})$
 - Use the distribution tester of Batu et al. (2000)
 - Query Complexity: $\tilde{O}(n^{7/6})$
- Problem: Unclear how to do Step 2
 - Only a subset of labels known
 - Sampling subsets and comparing discovered identical labels introduces a bias

Better Label Distribution Testing?

- Idea: Use a different distribution tester
 - Select $\tilde{O}(\sqrt{n})$ vertices from G and H
 - Query connections to random subset of size $\tilde{O}(n^{2/3})$
 - Use the distribution tester of Batu et al. (2000)
 - Query Complexity: $\tilde{O}(n^{7/6})$
- Problem: Unclear how to do Step 2
 - Only a subset of labels known
 - Sampling subsets and comparing discovered identical labels introduces a bias

Ignore this issue for now

• Could the $\Omega(n^{2/3})$ distribution testing lower bound [Valiant 2008] imply a $\Omega(n^{7/6})$ lower bound?

• Could the $\Omega(n^{2/3})$ distribution testing lower bound [Valiant 2008] imply a $\Omega(n^{7/6})$ lower bound?

We have additional information

• Could the $\Omega(n^{2/3})$ distribution testing lower bound [Valiant 2008] imply a $\Omega(n^{7/6})$ lower bound?

- We have additional information:
 - Estimate in advance distances between adjacency vectors in both graphs
 - We care about random core sets, where labels preserve distances between adjacency vectors
 - We should be able to distinguish heavy and light elements

• Could the $\Omega(n^{2/3})$ distribution testing lower bound [Valiant 2008] imply a $\Omega(n^{7/6})$ lower bound?

- We have additional information:
 - Estimate in advance distances between adjacency vectors in both graphs
 - We care about random core sets, where labels preserve distances between adjacency vectors
 - We should be able to distinguish heavy and light elements
- Nice consistent clustering of slightly different adjacency vectors still difficult

Our Algorithm
$(O^{\star}(f(n)) \equiv O(f(n)) \cdot 2^{O(\sqrt{\log n})})$

$(O^{\star}(f(n)) \equiv O(f(n)) \cdot 2^{O(\sqrt{\log n})})$

• Compute good approximations of distances between adjacency vectors with $O^*(n)$ queries

- Compute good approximations of distances between adjacency vectors with $O^*(n)$ queries
- Sample $O^{\star}(\sqrt{n})$ vertices from both graphs

- Compute good approximations of distances between adjacency vectors with $O^*(n)$ queries
- Sample $O^{\star}(\sqrt{n})$ vertices from both graphs
- Consider all pairs of corsets of size $O^{\star}(1)$

- Compute good approximations of distances between adjacency vectors with $O^*(n)$ queries
- Sample $O^{\star}(\sqrt{n})$ vertices from both graphs
- Consider all pairs of corsets of size $O^{\star}(1)$
 - Step 0: sample $O^*(\sqrt{n})$ vertices to see if the core sets preserve distances well

- Compute good approximations of distances between adjacency vectors with $O^*(n)$ queries
- Sample $O^{\star}(\sqrt{n})$ vertices from both graphs
- Consider all pairs of corsets of size $O^{\star}(1)$
 - Step 0: sample $O^*(\sqrt{n})$ vertices to see if the core sets preserve distances well
 - Step 1: relaxed test required to reject only sets of labels that are far in Earth-Mover Distance

- Compute good approximations of distances between adjacency vectors with $O^*(n)$ queries
- Sample $O^{\star}(\sqrt{n})$ vertices from both graphs
- Consider all pairs of corsets of size $O^{\star}(1)$
 - Step 0: sample $O^*(\sqrt{n})$ vertices to see if the core sets preserve distances well
 - Step 1: relaxed test required to reject only sets of labels that are far in Earth-Mover Distance
 - Step 2: approximate matching of labels, rejection sampling to avoid biases

$(O^{\star}(f(n)) \equiv O(f(n)) \cdot 2^{O(\sqrt{\log n})})$

- Compute good approximations of distances between adjacency vectors with $O^*(n)$ queries
- Sample $O^{\star}(\sqrt{n})$ vertices from both graphs
- Consider all pairs of corsets of size $O^{\star}(1)$
 - Step 0: sample $O^*(\sqrt{n})$ vertices to see if the core sets preserve distances well
 - Step 1: relaxed test required to reject only sets of labels that are far in Earth-Mover Distance
 - Step 2: approximate matching of labels, rejection sampling to avoid biases

Will show simplified versions

$(O^{\star}(f(n)) \equiv O(f(n)) \cdot 2^{O(\sqrt{\log n})})$

- Compute good approximations of distances between adjacency vectors with $O^*(n)$ queries
- Sample $O^{\star}(\sqrt{n})$ vertices from both graphs
- Consider all pairs of corsets of size $O^{\star}(1)$
 - Step 0: sample $O^*(\sqrt{n})$ vertices to see if the core sets preserve distances well
 - Step 1: relaxed test required to reject only sets of labels that are far in Earth-Mover Distance
 - Step 2: approximate matching of labels, rejection sampling to avoid biases

Will show simplified versions Assume labels preserve all distances

Standard distribution testing collisions: identical labels

- Standard distribution testing collisions: identical labels
- Here:
 - pick small threshold r
 - labels at distance r collide

- Standard distribution testing collisions: identical labels
- Here:
 - pick small threshold r
 - labels at distance r collide
- Can apply the standard distribution testing?
 - Not in a trivial way
 - Colliding vertices can have very different degrees
 - Hard to partition them into classes of similar degrees

- Standard distribution testing collisions: identical labels
- Here:
 - pick small threshold r
 - Jabels at distance r collide
- Can apply the standard distribution testing?
 - Not in a trivial way
 - Colliding vertices can have very different degrees
 - Hard to partition them into classes of similar degrees
- Our solution:
 - $\hfill \hfill \hfill$
 - Design a tool for estimating the number of collisions
 - Reject only if Earth-Mover Distance large

• Found colliding labels for vertices $v \in V[G]$ and $w \in V[H]$

- Found colliding labels for vertices $v \in V[G]$ and $w \in V[H]$
- **Question:** How many vertices in H have labels colliding with v?

- Found colliding labels for vertices $v \in V[G]$ and $w \in V[H]$
- **Question:** How many vertices in H have labels colliding with v?
- Solution: Sample similar vertices in H up to distance 2r + (error-term) and see their labels

Krzysztof Onak – A Near-Optimal Algorithm for Testing Graph Isomorphism – p. 15/22

- Found colliding labels for vertices $v \in V[G]$ and $w \in V[H]$
- **Question:** How many vertices in H have labels colliding with v?
- Solution: Sample similar vertices in H up to distance 2r + (error-term) and see their labels
- Requirement: good multiplicative approximation

Krzysztof Onak – A Near-Optimal Algorithm for Testing Graph Isomorphism – p. 15/22

- Found colliding labels for vertices $v \in V[G]$ and $w \in V[H]$
- **Question:** How many vertices in H have labels colliding with v?
- Solution: Sample similar vertices in H up to distance 2r + (error-term) and see their labels
- Requirement: good multiplicative approximation
- Problem: What if few of them do?

Krzysztof Onak – A Near-Optimal Algorithm for Testing Graph Isomorphism – p. 15/22

- Found colliding labels for vertices $v \in V[G]$ and $w \in V[H]$
- **Question:** How many vertices in H have labels colliding with v?
- Solution: Sample similar vertices in H up to distance 2r + (error-term) and see their labels
- Requirement: good multiplicative approximation
- Problem: What if few of them do?
- ▶ Pick a threshold $r = 2^{-t} / \operatorname{polylog} n$, where $t \in [0, O(\sqrt{\log n})]$

Krzysztof Onak – A Near-Optimal Algorithm for Testing Graph Isomorphism – p. 15/22

- Found colliding labels for vertices $v \in V[G]$ and $w \in V[H]$
- **Question:** How many vertices in H have labels colliding with v?
- Solution: Sample similar vertices in H up to distance 2r + (error-term) and see their labels
- Requirement: good multiplicative approximation
- Problem: What if few of them do?
- Pick a threshold $r = 2^{-t} / \operatorname{polylog} n$, where $t \in [0, O(\sqrt{\log n})]$

• For most thresholds most points will require $O^*(1)$ samples

- Found colliding labels for vertices $v \in V[G]$ and $w \in V[H]$
- **Question:** How many vertices in H have labels colliding with v?
- Solution: Sample similar vertices in H up to distance 2r + (error-term) and see their labels
- Requirement: good multiplicative approximation
- Problem: What if few of them do?
- Pick a threshold $r = 2^{-t} / \operatorname{polylog} n$, where $t \in [0, O(\sqrt{\log n})]$

• For most thresholds most points will require $O^*(1)$ samples

• Three metric spaces: \mathcal{M}_G , \mathcal{M}_H , \mathcal{M} (diameter bounded by 1, $|\mathcal{M}_G| = |\mathcal{M}_H| = n$)

- Three metric spaces: \mathcal{M}_G , \mathcal{M}_H , \mathcal{M} (diameter bounded by 1, $|\mathcal{M}_G| = |\mathcal{M}_H| = n$)
- $f_G : \mathcal{M}_G \to \mathcal{M}$ and $f_H : \mathcal{M}_H \to \mathcal{M}$ preserve distances up to a small additive term

- Three metric spaces: \mathcal{M}_G , \mathcal{M}_H , \mathcal{M} (diameter bounded by 1, $|\mathcal{M}_G| = |\mathcal{M}_H| = n$)
- $f_G : \mathcal{M}_G \to \mathcal{M}$ and $f_H : \mathcal{M}_H \to \mathcal{M}$ preserve distances up to a small additive term
- Tester required to
 - Accept if $f_G(\mathcal{M}_G) = f_H(\mathcal{M}_H)$

- Three metric spaces: \mathcal{M}_G , \mathcal{M}_H , \mathcal{M} (diameter bounded by 1, $|\mathcal{M}_G| = |\mathcal{M}_H| = n$)
- $f_G : \mathcal{M}_G \to \mathcal{M}$ and $f_H : \mathcal{M}_H \to \mathcal{M}$ preserve distances up to a small additive term
- Tester required to
 - Accept if $f_G(\mathcal{M}_G) = f_H(\mathcal{M}_H)$
 - Reject if $\operatorname{EMD}(f_G(\mathcal{M}_G), f_H(\mathcal{M}_H)) \geq \epsilon n$

- Three metric spaces: \mathcal{M}_G , \mathcal{M}_H , \mathcal{M} (diameter bounded by 1, $|\mathcal{M}_G| = |\mathcal{M}_H| = n$)
- $f_G : \mathcal{M}_G \to \mathcal{M}$ and $f_H : \mathcal{M}_H \to \mathcal{M}$ preserve distances up to a small additive term
- Tester required to
 - Accept if $f_G(\mathcal{M}_G) = f_H(\mathcal{M}_H)$
 - Reject if $\operatorname{EMD}(f_G(\mathcal{M}_G), f_H(\mathcal{M}_H)) \geq \epsilon n$
- Our solution:
 - Step 1a: make sure almost all points in $f_G(\mathcal{M}_G)$ collide with $f_H(\mathcal{M}_H)$, and vice versa

- Three metric spaces: \mathcal{M}_G , \mathcal{M}_H , \mathcal{M} (diameter bounded by 1, $|\mathcal{M}_G| = |\mathcal{M}_H| = n$)
- $f_G : \mathcal{M}_G \to \mathcal{M}$ and $f_H : \mathcal{M}_H \to \mathcal{M}$ preserve distances up to a small additive term
- Tester required to
 - Accept if $f_G(\mathcal{M}_G) = f_H(\mathcal{M}_H)$
 - Reject if $\operatorname{EMD}(f_G(\mathcal{M}_G), f_H(\mathcal{M}_H)) \geq \epsilon n$
- Our solution:
 - Step 1a: make sure almost all points in $f_G(\mathcal{M}_G)$ collide with $f_H(\mathcal{M}_H)$, and vice versa
 - Step 1b: if two points collide make sure their metrics can be matched

Step 1a: make sure almost all points in $f_G(\mathcal{M}_G)$ collide with $f_H(\mathcal{M}_H)$

Step 1a: make sure almost all points in $f_G(\mathcal{M}_G)$ collide with $f_H(\mathcal{M}_H)$

• Take $O^*(\sqrt{n})$ samples

Step 1a: make sure almost all points in $f_G(\mathcal{M}_G)$ collide with $f_H(\mathcal{M}_H)$

- **•** Take $O^*(\sqrt{n})$ samples
- Estimate weighted number of collisions

Step 1a: make sure almost all points in $f_G(\mathcal{M}_G)$ collide with $f_H(\mathcal{M}_H)$

- **•** Take $O^*(\sqrt{n})$ samples
- Estimate weighted number of collisions
- Divide each collision by the estimated number of collisions

Step 1a: make sure almost all points in $f_G(\mathcal{M}_G)$ collide with $f_H(\mathcal{M}_H)$

- Take $O^*(\sqrt{n})$ samples
- Estimate weighted number of collisions
- Divide each collision by the estimated number of collisions
- Bad case:

Step 1a: make sure almost all points in $f_G(\mathcal{M}_G)$ collide with $f_H(\mathcal{M}_H)$

- Take $O^*(\sqrt{n})$ samples
- Estimate weighted number of collisions
- Divide each collision by the estimated number of collisions
- Bad case:

Randomized threshold makes it unlikely to happen for a large fraction of vertices

Step 1a: make sure almost all points in $f_G(\mathcal{M}_G)$ collide with $f_H(\mathcal{M}_H)$

- Take $O^{\star}(\sqrt{n})$ samples
- Estimate weighted number of collisions
- Divide each collision by the estimated number of collisions
- Bad case:

Randomized threshold makes it unlikely to happen for a large fraction of vertices

Step 1b: if two points p_G and p_H collide make sure their metrics can be matched

Step 1a: make sure almost all points in $f_G(\mathcal{M}_G)$ collide with $f_H(\mathcal{M}_H)$

- **J** Take $O^*(\sqrt{n})$ samples
- Estimate weighted number of collisions
- Divide each collision by the estimated number of collisions
- Bad case:

- Randomized threshold makes it unlikely to happen for a large fraction of vertices
- Step 1b: if two points p_G and p_H collide make sure their metrics can be matched
 - Is there a mapping $\mathcal{F} : \mathcal{M}_G \to \mathcal{M}_H$, where $\mathcal{F}(p_G) = p_H$ and all distances preserved up to a small additive term?

Why This Works

• Need to show that $\text{EMD}(f_G(\mathcal{M}_G), f_H(\mathcal{M}_H)) \leq \epsilon n$ if passes the test
- Need to show that $\text{EMD}(f_G(\mathcal{M}_G), f_H(\mathcal{M}_H)) \leq \epsilon n$ if passes the test
- We show a large fractional matching using short edges

- Need to show that $\text{EMD}(f_G(\mathcal{M}_G), f_H(\mathcal{M}_H)) \leq \epsilon n$ if passes the test
- We show a large fractional matching using short edges
- Two step process:
 - Each point in $f_G(\mathcal{M}_G)$ sends flow to hubs in $f_G(\mathcal{M}_G)$
 - Each point in $f_H(\mathcal{M}_H)$ receives flow from hubs in $f_G(\mathcal{M}_G)$

Krzysztof Onak – A Near-Optimal Algorithm for Testing Graph Isomorphism – p. 18/22

- Need to show that $\text{EMD}(f_G(\mathcal{M}_G), f_H(\mathcal{M}_H)) \leq \epsilon n$ if passes the test
- We show a large fractional matching using short edges
- Two step process:
 - Each point in $f_G(\mathcal{M}_G)$ sends flow to hubs in $f_G(\mathcal{M}_G)$
 - Each point in $f_H(\mathcal{M}_H)$ receives flow from hubs in $f_G(\mathcal{M}_G)$
- Each point sends/receives one unit, but hubs handle arbitrary amount of flow

Krzysztof Onak – A Near-Optimal Algorithm for Testing Graph Isomorphism – p. 18/22

- Need to show that EMD($f_G(\mathcal{M}_G), f_H(\mathcal{M}_H)$) ≤ ϵn if passes the test
- We show a large fractional matching using short edges
- Two step process:
 - Each point in $f_G(\mathcal{M}_G)$ sends flow to hubs in $f_G(\mathcal{M}_G)$
 - Each point in $f_H(\mathcal{M}_H)$ receives flow from hubs in $f_G(\mathcal{M}_G)$
- Each point sends/receives one unit, but hubs handle arbitrary amount of flow
- Amount sent to/received from point x proportional to $\exp(-\delta(x,y) \cdot \operatorname{polylog} n)$

- Need to show that EMD($f_G(\mathcal{M}_G), f_H(\mathcal{M}_H)$) ≤ ϵn if passes the test
- We show a large fractional matching using short edges
- Two step process:
 - Each point in $f_G(\mathcal{M}_G)$ sends flow to hubs in $f_G(\mathcal{M}_G)$
 - Each point in $f_H(\mathcal{M}_H)$ receives flow from hubs in $f_G(\mathcal{M}_G)$
- Each point sends/receives one unit, but hubs handle arbitrary amount of flow
- Amount sent to/received from point x proportional to $\exp(-\delta(x,y) \cdot \operatorname{polylog} n)$
- For almost matching metrics: each hub receives and sends almost the same amount

- Need to show that EMD($f_G(\mathcal{M}_G), f_H(\mathcal{M}_H)$) ≤ ϵn if passes the test
- We show a large fractional matching using short edges
- Two step process:
 - Each point in $f_G(\mathcal{M}_G)$ sends flow to hubs in $f_G(\mathcal{M}_G)$
 - Each point in $f_H(\mathcal{M}_H)$ receives flow from hubs in $f_G(\mathcal{M}_G)$
- Each point sends/receives one unit, but hubs handle arbitrary amount of flow
- Amount sent to/received from point x proportional to $\exp(-\delta(x,y) \cdot \operatorname{polylog} n)$
- For almost matching metrics: each hub receives and sends almost the same amount
- There is a close point: edges longer than some small threshold carry almost no flow

Krzysztof Onak – A Near-Optimal Algorithm for Testing Graph Isomorphism – p. 18/22

Question: Do labels describe connectivity?

- Question: Do labels describe connectivity?
- Problem: Sampling pairs of similar labels more likely (Reason why Fischer & Matsliah didn't get $\tilde{O}(n^{7/6})$?)

- Question: Do labels describe connectivity?
- Problem: Sampling pairs of similar labels more likely (Reason why Fischer & Matsliah didn't get $\tilde{O}(n^{7/6})$?)
- Use rejection sampling to uniformly sample a label for V[G] with a colliding label for V[H]

- Question: Do labels describe connectivity?
- Problem: Sampling pairs of similar labels more likely (Reason why Fischer & Matsliah didn't get $\tilde{O}(n^{7/6})$?)
- Use rejection sampling to uniformly sample a label for V[G] with a colliding label for V[H]
- Keep a sample with probability 1/(estimated-number-of-collisions)

- Question: Do labels describe connectivity?
- Problem: Sampling pairs of similar labels more likely (Reason why Fischer & Matsliah didn't get $\tilde{O}(n^{7/6})$?)
- Use rejection sampling to uniformly sample a label for V[G] with a colliding label for V[H]
- Keep a sample with probability 1/(estimated-number-of-collisions)
- For independent endpoints, slight difference in labels shouldn't introduce too much error

- Question: Do labels describe connectivity?
- Problem: Sampling pairs of similar labels more likely (Reason why Fischer & Matsliah didn't get $\tilde{O}(n^{7/6})$?)
- Use rejection sampling to uniformly sample a label for V[G] with a colliding label for V[H]
- Keep a sample with probability 1/(estimated-number-of-collisions)
- For independent endpoints, slight difference in labels shouldn't introduce too much error
- Accept if similar labels imply same connectivity most of the time

Final Remarks

Krzysztof Onak – A Near-Optimal Algorithm for Testing Graph Isomorphism – p. 20/22

• Is the $2^{O(\sqrt{\log n})}$ factor necessary?

- Is the $2^{O(\sqrt{\log n})}$ factor necessary?
- Can approximate the distance efficiently? Improve the running time?

- Is the $2^{O(\sqrt{\log n})}$ factor necessary?
- Can approximate the distance efficiently? Improve the running time?
- Sparse graphs?
 - hyperfinite bounded-degree [Newman Sohler 2011] O(1) queries
 - arbitrary degree forests [Kusumoto Yoshida 2014] polylog(n) queries

- Is the $2^{O(\sqrt{\log n})}$ factor necessary?
- Can approximate the distance efficiently? Improve the running time?
- Sparse graphs?
 - hyperfinite bounded-degree [Newman Sohler 2011] O(1) queries
 - arbitrary degree forests [Kusumoto Yoshida 2014] polylog(n) queries
- Unified framework for various kinds of isomorphisms? (graphs, functions, etc.)

Krzysztof Onak – A Near-Optimal Algorithm for Testing Graph Isomorphism – p. 21/22

Questions?

Krzysztof Onak – A Near-Optimal Algorithm for Testing Graph Isomorphism – p. 22/22