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Graph Isomorphism

#» Problem: Are two graphs identical?
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Graph Isomorphism

#» Problem: Are two graphs identical?

{5 3, -

Status:
#» Not known to be in P or NP-hard

o Best known algorithm: 20(V1) time (early 1980’s)
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Property Testing Version
o This Talk: Dense graph model

11 0 1 1 O
1 O 0 1 0 O
1 0 0O 0 1 O
0O 0 O 1 1 1
11 0 0 1
10 1 1
0O 0 O 1 1
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# Requirements:
s accept with probability 9/10 if graphs isomorphic

» reject with probability 9/10 if for any matching of
vertices at least en? edges disagree
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Property Testing Version
o This Talk: Dense graph model

11 0 1 1 O
1 O 0 1 0 O
10 0O 0 1 O
0O 0 O 1 1 1
1 1 0 0 1
1 0 1 1
0O 0 O 1 1

# Requirements:
s accept with probability 9/10 if graphs isomorphic

» reject with probability 9/10 if for any matching of
vertices at least en? edges disagree

# This talk: focus on the complexity as a function of n,
assume that ¢ is a small constant (say, e = 1077)
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Query Complexity

# Fischer, Matsliah (2006):

Upper bound | Lower bound
One sided error, one graph known O(n) Q(n)
One sided error, both graphs unknown | O(n?/?) Q(n3/?)
Two sided error, one graph known O(n'/?) Q(n'/?)
Two sided error, both graphs unknown | O(n%/4) Q(n)

(one sided error = never reject if isomorphic)
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Query Complexity

# Fischer, Matsliah (2006):

Upper bound | Lower bound
One sided error, one graph known O(n) Q(n)
One sided error, both graphs unknown | O(n?/?) Q(n3/?)
Two sided error, one graph known O(n'/?) Q(n'/?)
Two sided error, both graphs unknown | O(n%/4) Q(n)

(one sided error = never reject if isomorphic)
# Remaining open case:
neither graph known, two-sided testing

o QOur result:
Algorithm that makes n - 29(V1een) queries
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Review of Fischer-Matsliah
Techniques
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Core sets

® Core set = list of polylogn vertices (vy,vo, ..., v;)
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Core sets

® Core set = list of polylogn vertices (vy,vo, ..., v;)

» Every vertex v has a label I € {0, 1}* with respect to
core set:

R if v, and u connected
" |0 otherwise

11010

10011
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Core sets

® Core set = list of polylogn vertices (vy,vo, ..., v;)

» Every vertex v has a label I € {0, 1}* with respect to
core set:

R if v, and u connected
" |0 otherwise

11010

10011

# Intuition: a large random core set partitions vertices
into sets of similar vertices
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Important Theorem

If G and H have core sets (vy,...,v;) and (wy, ..., wk),
respectively, such that:

Krzysztof Onak — A Near-Optimal Algorithm for Testing Graph Isomorphism — p. 7/22



Important Theorem

If G and H have core sets (vy,...,v;) and (wy, ..., wk),
respectively, such that:

o the distributions on labels are ¢;-close

Krzysztof Onak — A Near-Optimal Algorithm for Testing Graph Isomorphism — p. 7/22



Important Theorem

If G and H have core sets (vy,...,v;) and (wy, ..., wk),
respectively, such that:

o the distributions on labels are ¢;-close

# if you take two random vertices in G and two random
vertices in H with the same labels, then w.p. 1 — ¢, the
connectivity is the same
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Important Theorem

If G and H have core sets (vy,...,v;) and (wy, ..., wk),
respectively, such that:

o the distributions on labels are ¢;-close

# if you take two random vertices in G and two random
vertices in H with the same labels, then w.p. 1 — ¢, the
connectivity is the same

then G and H are e3-close to being isomorphic

Generic tester:
Search for such a pair of core sets and accept if found
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The Fischer-Matsliah Algorithm

» Select O(n**) random vertices V2 from G
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The Fischer-Matsliah Algorithm

» Select O(n**) random vertices V2 from G
and query their connections to O(n'/?) random vertices

» Select O(n'/*) random vertices V}; from H

@¥E

Krzysztof Onak — A Near-Optimal Algorithm for Testing Graph Isomorphism — p. 8/22




The Fischer-Matsliah Algorithm

» Select O(n**) random vertices V2 from G
and query their connections to O(n'/?) random vertices

» Select O(n'/*) random vertices V}; from H
and query their connections to all other vertices
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The Fischer-Matsliah Algorithm

» Select O(n**) random vertices V2 from G
and query their connections to O(n'/?) random vertices

» Select O(n'/*) random vertices V}; from H
and query their connections to all other vertices

# Enumerate over all possible core sets from V5 and V7
(quasipoly(n) options)
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The Fischer-Matsliah Algorithm

Select O(n**) random vertices V2 from G

and query their connections to O(n'/?) random vertices
Select O(n'/*) random vertices V5 from H

and query their connections to all other vertices
Enumerate over all possible core sets from V7 and V;
(quasipoly(n) options)

For each pair of candidates:

s Step 1: See if distributions of labels similar
(Use the O(1/n)-sample tester of Batu et al. (2001))
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The Fischer-Matsliah Algorithm

Select O(n**) random vertices V2 from G
and query their connections to O(n'/?) random vertices

Select O(n'/*) random vertices V5 from H
and query their connections to all other vertices

Enumerate over all possible core sets from V7 and V;
(quasipoly(n) options)
For each pair of candidates:

s Step 1: See if distributions of labels similar
(Use the O(1/n)-sample tester of Batu et al. (2001))

s Step 2: Select polylog n pairs of random vertices in G
and see if the connectivity of their labels almost the
same in H
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First Attempts
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Better Label Distribution Testing?

® I|dea: Use a different distribution tester
s Select O(y/n) vertices from G and H

s Query connections to random subset of size O(n?/3)
» Use the distribution tester of Batu et al. (2000)

s Query Complexity: O(n"/9)
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Better Label Distribution Testing?

® I|dea: Use a different distribution tester
s Select O(y/n) vertices from G and H

s Query connections to random subset of size O(n?/3)
» Use the distribution tester of Batu et al. (2000)
s Query Complexity: O(n"/5)

#® Problem: Unclear how to do Step 2

s Only a subset of labels known

s Sampling subsets and comparing discovered
identical labels introduces a bias
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Better Label Distribution Testing?

® I|dea: Use a different distribution tester
s Select O(y/n) vertices from G and H

s Query connections to random subset of size O(n?/3)
» Use the distribution tester of Batu et al. (2000)
s Query Complexity: O(n"/5)

#® Problem: Unclear how to do Step 2

s Only a subset of labels known

s Sampling subsets and comparing discovered
identical labels introduces a bias

# Ignore this issue for now
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Exponent Less than 7/6?

» Could the Q(n?/3) distribution testing lower bound
[Valiant 2008] imply a Q(n"/%) lower bound?

II N e s Y e P VS. II ..... o Y s W

Krzysztof Onak — A Near-Optimal Algorithm for Testing Graph Isomorphism—p. 11/22



Exponent Less than 7/6?

» Could the Q(n?/3) distribution testing lower bound
[Valiant 2008] imply a Q(n"/%) lower bound?

II N e s Y e P VS. II RN v s s o

» We have additional information

Krzysztof Onak — A Near-Optimal Algorithm for Testing Graph Isomorphism—p. 11/22



Exponent Less than 7/6?

» Could the Q(n?/3) distribution testing lower bound
[Valiant 2008] imply a (n"/%) lower bound?

II N e s Y e P VS. II RN v s s o

® We have additional information:

s Estimate in advance distances between adjacency
vectors in both graphs

» We care about random core sets, where labels
preserve distances between adjacency vectors

s We should be able to distinguish heavy and light
elements
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Exponent Less than 7/6?

» Could the Q(n?/3) distribution testing lower bound
[Valiant 2008] imply a Q(n"/%) lower bound?

II N e s Y e P VS. II RN v s s o

® We have additional information:

s Estimate in advance distances between adjacency
vectors in both graphs

» We care about random core sets, where labels
preserve distances between adjacency vectors

s We should be able to distinguish heavy and light
elements

# Nice consistent clustering of slightly different adjacency
vectors still difficult
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Our Algorithm
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Overview

(O*(f(n)) = O(f(n)) - 20Wlogn))
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#» Compute good approximations of distances between
adjacency vectors with O*(n) queries

o Sample O*(y/n) vertices from both graphs

# Consider all pairs of corsets of size O*(1)

s Step 0: sample O*(4/n) vertices to see if the core
sets preserve distances well

s Step 1: relaxed test required to reject only sets of
labels that are far in Earth-Mover Distance
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Overview

(0*(f(n)) = O(f(n)) - 20(VIcam)

#» Compute good approximations of distances between
adjacency vectors with O*(n) queries

#® Sample O*(y/n) vertices from both graphs

# Consider all pairs of corsets of size O*(1)

s Step 0: sample O*(4/n) vertices to see if the core
sets preserve distances well

s Step 1: relaxed test required to reject only sets of
labels that are far in Earth-Mover Distance

s Step 2: approximate matching of labels, rejection
sampling to avoid biases
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Overview

(O*(f(n)) = O(f(n)) - 20(VIcam)

#» Compute good approximations of distances between
adjacency vectors with O*(n) queries

#® Sample O*(y/n) vertices from both graphs

# Consider all pairs of corsets of size O*(1)

s Step 0: sample O*(4/n) vertices to see if the core
sets preserve distances well

s Step 1: relaxed test required to reject only sets of
labels that are far in Earth-Mover Distance

s Step 2: approximate matching of labels, rejection
sampling to avoid biases

Will show simplified versions
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Overview

(O*(f(n)) = O(f(n)) - 20(VIcam)

#» Compute good approximations of distances between
adjacency vectors with O*(n) queries

o Sample O*(y/n) vertices from both graphs

# Consider all pairs of corsets of size O*(1)

s Step 0: sample O*(4/n) vertices to see if the core
sets preserve distances well

s Step 1: relaxed test required to reject only sets of
labels that are far in Earth-Mover Distance

s Step 2: approximate matching of labels, rejection
sampling to avoid biases

Will show simplified versions
Assume labels preserve all distances
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Collisions

# Standard distribution testing collisions: identical labels
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Collisions

# Standard distribution testing collisions: identical labels

® Here:
s pick small threshold r
» labels at distance r collide

# Can apply the standard distribution testing?
s Not in a trivial way
s Colliding vertices can have very different degrees
s Hard to partition them into classes of similar degrees
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Collisions

Standard distribution testing collisions: identical labels

Here:
s pick small threshold r
» labels at distance r collide

Can apply the standard distribution testing?

s Not in a trivial way

s Colliding vertices can have very different degrees

s Hard to partition them into classes of similar degrees

Our solution:

>

>

K

Randomize the threshold r
Design a tool for estimating the number of collisions

Reject only if Earth-Mover Distance large
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Estimating Number of Collisions
# Found colliding labels for vertices v € V|G] and w € V[H]

/ \

/ .r/\
\ |
\ @
AN /
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Estimating Number of Collisions
# Found colliding labels for vertices v € V|G] and w € V[H]

® (Question: How many vertices in H have labels colliding with v?

# Solution: Sample similar vertices in H up to distance
2r 4+ (error-term) and see their labels
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Estimating Number of Collisions
Found colliding labels for vertices v € V[G] and w € V[H]

Question: How many vertices in H have labels colliding with v?

Solution: Sample similar vertices in H up to distance
2r 4+ (error-term) and see their labels

Requirement: good multiplicative approximation
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Estimating Number of Collisions
Found colliding labels for vertices v € V[G] and w € V[H]

Question: How many vertices in H have labels colliding with v?

Solution: Sample similar vertices in [ up to distance
2r 4+ (error-term) and see their labels

Requirement: good multiplicative approximation
Problem: What if few of them do?
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Estimating Number of Collisions
Found colliding labels for vertices v € V[G] and w € V[H]

Question: How many vertices in H have labels colliding with v?

Solution: Sample similar vertices in H up to distance
2r 4+ (error-term) and see their labels

Requirement: good multiplicative approximation
Problem: What if few of them do?
Pick a threshold r = 27/ polylog n, where t € [0, O(y/logn)]
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Estimating Number of Collisions
Found colliding labels for vertices v € V[G] and w € V[H]
Question: How many vertices in H have labels colliding with v?

Solution: Sample similar vertices in [ up to distance
2r 4+ (error-term) and see their labels

Requirement: good multiplicative approximation
Problem: What if few of them do?
Pick a threshold r = 27/ polylog n, where t € [0, O(y/logn)]

-

For most thresholds most points
will require O*(1) samples
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Estimating Number of Collisions
Found colliding labels for vertices v € V[G] and w € V[H]

Question: How many vertices in H have labels colliding with v?

Solution: Sample similar vertices in [ up to distance
2r 4+ (error-term) and see their labels

Requirement: good multiplicative approximation
Problem: What if few of them do?

Pick a threshold r = 27/ polylog n, where t € [0, O(y/logn)]

—_ -
~

For most thresholds most points ' ' @ | /¢ ' | | !
will require O*(1) samples AN A A
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Step 1: Earth-Mover Distance Testing

#® Three metric spaces: Mg, Mg, M
(diameter bounded by 1, | Mg| = IMpg| = n)

w(ogee) ()
w(ogee) L
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Step 1: Earth-Mover Distance Testing

#® Three metric spaces: Mg, Mg, M
(diameter bounded by 1, | Mg| = IMpg| = n)

® fo: Mg—> Mand fg: Mg — M preserve distances
up to a small additive term

@
Mel @ @ @ f /‘ \
(- >\ s

O e ® O
MHQ‘DfH\‘ )

Krzysztof Onak — A Near-Optimal Algorithm for Testing Graph Isomorphism — p. 16/22




Step 1: Earth-Mover Distance Testing

#® Three metric spaces: Mg, Mg, M
(diameter bounded by 1, | Mg| = IMpg| = n)

® fo: Mg—> Mand fg: Mg — M preserve distances
up to a small additive term

# Tester required to
s Acceptif fo(Mg) = fa(Mpg)
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Step 1: Earth-Mover Distance Testing

#® Three metric spaces: Mg, Mg, M
(diameter bounded by 1, | Mg| = IMpg| = n)

® fo: Mg—> Mand fg: Mg — M preserve distances
up to a small additive term

# Tester required to
s Acceptif fo(Mg) = fu(Mpg)
s Reject if EMD(fg(Mg), fr(Mpg)) > en
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Step 1: Earth-Mover Distance Testing

#® Three metric spaces: Mg, Mg, M
(diameter bounded by 1, | Mg| = IMpg| = n)

® fo: Mg—> Mand fg: Mg — M preserve distances
up to a small additive term

# Tester required to

s Acceptif fa(Mag) = fa(Mpg)

s Reject it EMD(f¢(Ma), fa(Mmu)) = en
o QOur solution:

s Step 1a: make sure almost all points in fg(Mg)
collide with fz (M), and vice versa
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Step 1: Earth-Mover Distance Testing

#® Three metric spaces: Mg, Mg, M
(diameter bounded by 1, | Mg| = IMpg| = n)

® fo: Mg—> Mand fg: Mg — M preserve distances
up to a small additive term

# Tester required to

s Acceptif fa(Mag) = fa(Mpg)

s Reject it EMD(f¢(Ma), fa(Mmu)) = en
o QOur solution:

s Step 1a: make sure almost all points in fg(Mg)
collide with fz (M), and vice versa

s Step 1b: if two points collide make sure their metrics
can be matched
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More Details

Step 1a: make sure almost all points in fo(Mg) collide with fi(Mpg)
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More Details

Step 1a: make sure almost all points in fo( M) collide with fi(Mg)
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# Estimate weighted number of collisions
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# Divide each collision by the estimated number of collisions
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More Details
Step 1a: make sure almost all points in fo(Mg) collide with fi(Mpg)
# Take O*(y/n) samples
# Estimate weighted number of collisions
# Divide each collision by the estimated number of collisions
o

o %
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More Details

Step 1a: make sure almost all points in fo(Mg) collide with fi(Mpg)
# Take O*(y/n) samples

# Estimate weighted number of collisions

# Divide each collision by the estimated number of collisions

o

o %

o Randomized threshold makes it unlikely to happen
for a large fraction of vertices
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# Take O*(y/n) samples

# Estimate weighted number of collisions

# Divide each collision by the estimated number of collisions

o

o %

o Randomized threshold makes it unlikely to happen
for a large fraction of vertices

Step 1b: if two points ps and py collide make sure their
metrics can be matched
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More Details

Step 1a: make sure almost all points in fo(Mg) collide with fi(Mpg)
# Take O*(y/n) samples

# Estimate weighted number of collisions

# Divide each collision by the estimated number of collisions

o

o %

o Randomized threshold makes it unlikely to happen
for a large fraction of vertices

Step 1b: if two points ps and py collide make sure their
metrics can be matched

® |s there a mapping F : Mg — My, where F(pg) = pr
and all distances preserved up to a small additive term?
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Why This Works

» Need to show that EMD(fa(Mg), fu(Mp)) < en if
passes the test
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Why This Works

» Need to show that EMD(fa(Mg), fu(Mp)) < en if
passes the test

#® We show a large fractional matching using short edges

# Two step process:
s Each pointin fo (M) sends flow to hubs in fo(Mg)
s Eachpointin fy(Mpg) receives flow from hubs in fq(Mg)

=
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°

Why This Works

Need to show that EMD(fo(Mg), fu(Mg)) < en if
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Why This Works

Need to show that EMD(fo(Mg), fu(Mg)) < en if
passes the test

We show a large fractional matching using short edges

Two step process:
s Each pointin fo (M) sends flow to hubs in fo(Mg)
s Eachpointin fy(Mpg) receives flow from hubs in fq(Mg)

Each point sends/receives one unit, but hubs handle
arbitrary amount of flow

Amount sent to/received from point x proportional to
exp(—d(z,y) - polylogn)

For almost matching metrics: each hub receives and
sends almost the same amount

There is a close point: edges longer than some small
threshold carry almost no flow
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Step 2

® Question: Do labels describe connectivity?
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Step 2

Question: Do labels describe connectivity?
Problem: Sampling pairs of similar labels more likely
(Reason why Fischer & Matsliah didn’t get O(n"/6)?)

Use rejection sampling to uniformly sample a label for
V[G] with a colliding label for V[H]

Keep a sample with probability
1/(estimated-number-of-collisions)

For independent endpoints, slight difference in labels
shouldn’t introduce too much error

Accept if similar labels imply same connectivity
most of the time
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Final Remarks

Krzysztof Onak — A Near-Optimal Algorithm for Testing Graph Isomorphism — p. 20/22



Open Questions

® |s the 29Wlogn) factor necessary?
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® Sparse graphs?
s hyperfinite bounded-degree [Newman Sohler 2011]
O(1) queries
s arbitrary degree forests [Kusumoto Yoshida 2014]
polylog(n) queries
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Open Questions

s the 20(Vlogn) factor necessary?

Can approximate the distance efficiently?
Improve the running time?

Sparse graphs?

s hyperfinite bounded-degree [Newman Sohler 2011]
O(1) queries

s arbitrary degree forests [Kusumoto Yoshida 2014]
polylog(n) queries

Unified framework for various kinds of isomorphisms?
(graphs, functions, etc.)
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Questions?
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