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Property Testing Models

Property Tester [Rubinfeld Sudan 96,

/\Goldreich Goldwasser Ron 98]

YES Accept with
probability > 2/3

E |:> Don’t care

Far from |:> Reject with
YES probability >2/3

Tolerant Property Tester

/\[Parnas Ron Rubinfeld 06]

YES Accept with
probability > 2/3
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S |:> Don’t care

Far from |:> Reject with
YES probability >2/3

Equivalent to tolerant testing: estimating distance to the property.
Two objects are at distance ¢ = they differ in an ¢ fraction of places




Why Hamming Distance?

e Nice probabilistic interpretation

— probability that two functions differ on a random point
in the domain

e Natural measure for
— algebraic properties (linearity, low degree)
— properties of graphs and other combinatorial objects

e Motivated by applications to probabilistically checkable
proofs (PCPs)

e [tis equivalent to other natural distances for

— properties of Boolean functions



Which stocks grew steadily?
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L,-Testing

for properties of real-valued data



Use Lp-metrics to Measure Distances

e Functions f,g: D — |0,1] over (finite) domain D
e Forp=1

1/p
L,(f.g) = |If —gl\p = (Zlf(x) —g(x)lp)
X€ED
L(f,9) = |If —gl|, = HxeD:f(x) = g}

I1f =all,
i,

° dp(f'g) —



L,-Testing and Tolerant L,,-Testing

Property Tester
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Accept with
probability > 2/3

Don’t care

Reject with
probability >2/3

Tolerant Property Tester
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Accept with
probability > 2/3

|:> Don’t care

|:> Reject with
probability >2/3

Functions f, g: D — [0,1] are at distance ¢ If d,, =

If-gly
I,




New L,-Testing Model for Real-Valued Data

e Generalizes standard L,-testing

e Forp > 0 still have a nice probabilistic interpretation:
distance d,,(f, g) = (E[|f — g|P])'/?

e Compatible with existing PAC-style learning models
(preprocessing for model selection)

 For Boolean functions, do(f, g) = d,(f, g)P.



Our Contributions

1. Relationships between L, -testing models

2. Algorithms
- L,-testersforp = 1

e monotonicity, Lipschitz, convexity
— Tolerant L,-testerforp = 1
e monotonicity in 1D (aka sortedness)
“*Our L,-testers beat lower bounds for Ly-testers
**Simple algorithms backed up by involved analysis
s Uniformly sampled (or easy to sample) data suffices

3. Nearly tight lower bounds



Implications for Ly-Testing

Some techniques/observations/results carry over to
Ly-testing
— Improvement on Levin’s work investment strategy

Gives improvements in run time of testers for
e Connectivity of bounded-degree graphs [Goldreich Ron 02]
e Properties of images [R 03]
e Multiple-input problems [Goldreich 13]

— First example of monotonicity testing problem where

adaptivity helps
— Improvements to L,-testers for Boolean functions
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Relationships between
L,-Testing Models



Relationships Between L,,-Testing Models

C,(P,€) = complexity of L,,-testing property P
with distance parameter &
* e.g., query or time complexity
e for general or restricted (e.g., nonadaptive) tests

/For all properties P I

e [4-testing is no harder than Hamming testing
Cl(Prg) < CO(PI‘E)
e L,-testing for p > 1is close in complexity to Lq-testing
K Cl(P,E) < Cp(P,E) < Cl(P,Sp) /
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Relationships Between L,,-Testing Models

C,(P,€) = complexity of L,,-testing property P
with distance parameter &
* e.g., query or time complexity
e for general or restricted (e.g., nonadaptive) tests

/" For properties of Boolean functions f: D — {0,1} I

e [4-testing is equivalent to Hamming testing
CI(PIS) — CO(PIE)

e L,-testing for p > 1is equivalent to Lq-testing
with appropriate distance parameter

\_ Cy(P,g) = C1(P,£P) Y.

13



Relationships: Tolerant L,,-Testing Models

C,(P,€1, €2) = complexity of tolerant L,-testing property
P with distance parameters &4, &,
e E.g.,queryortime complexity
e for general or restricted (e.g., nonadaptive) tests

/For all properties P I

e No obvious relationship between tolerant L4-testing
and tolerant Hamming testing

e L,-testing for p > 1is close in complexity to Lq-testing
K CI(PISI;_; 82) < Cp(P,Sl, 82) = Cl(Pigl) 812)) /
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Relationships: Tolerant L,,-Testing Models

C,(P,€1, €2) = complexity of tolerant L,-testing property
P with distance parameters &4, &,
e E.g.,queryortime complexity
e for general or restricted (e.g., nonadaptive) tests

ﬂor properties of Boolean functions f: D — {0,1} \
e [4-testing is equivalent to Hamming testing
C1(P,&1,&2) = Co(P,&1, &2)

e L,-testing for p > 1is equivalent to Lq-testing
with appropriate dlstance parameters

K Cp(P,€1,&2) = C1(P, 81, 82) /
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Our Results

Property. Monotonicity



Monotonicity

e Domain D=[n]? (vertices of d-dim hypercube) (4,4, 4)

e Afunction f: D — R is monotone

if increasing a coordinate of x does
not decrease f(x). 1 71
—1—1 /
e Specialcased =1 | S
(1,1,1)

f:[n] = Ris monotone & f(1), ... f(n) is sorted.

One of the most studied properties in property testing

[Erglin Kannan Kumar Rubinfeld Viswanathan , Goldreich Goldwasser Lehman Ron, Dodis Goldreich
Lehman R Ron Samorodnitsky, Batu Rubinfeld White, Fischer Lehman Newman R Rubinfeld
Samorodnitsky, Fischer, Halevy Kushilevitz, Bhattacharyya Grigorescu Jung R Woodruff, ...,
Chakrabarty Seshadhri, Blais R Yaroslavtsev, Chakrabarty Dixit Jha Seshadhri]
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Monotonicity Testers: Running Time

-_—
- [0,1] G(Oin) @()

[Erglin Kannan Kumar Rubinfeld
Viswanathan 00, Fischer 04]

[n]d o (d . log n) 0 (ilogi)

&

[Chakrabarty Seshadhri 13] Q( log ) ford = 2

nonadaptlve 1-sided error
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Monotonicity Testers: Running Time

e °(3) )

d .d LRV
O(—-log3= 0( log )
[Tl]d € £
N {O 1} [Dodis Goldreich Lehman R Q( log ) ford =2
' SAMOOLIS 37 k] nonadaptlve 1-sided error

¢] (gp) for constant d
adaptive 1-sided error
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L,-Testing of Monotonicity
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Monotonicity: Reduction to Boolean Functions

(Given f:D — [0,1], a Boolean threshold function f : D — {0,1}\

1 iff(x)>t
fiot) = {O otl}rl(erzxvise
\_ J
X f(t) (x)
e Decomposition: f(x) = fo foo(x)dt ﬁ
. o 1
e M = class of monotone functions 0 F(x)

Gharacterization Theorem h

Li(f, M) = [y Ly(f 0, M)dt
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Characterization Theorem: One Direction

[L1(f» M) < f01L1(f(t)»M)dt]

o Vt € [0,1], let g.=closest monotone (Boolean) function to f .

1
e let g = fogtdt. Then g is monotone, since g; are monotone.

Li(f,M) <|lf —gll

fofwdt = Jqgedt |,

fo (Fo=godt ||,

< Jo If o = gell ae

= [ Li(f o, M)dt

Because g is monotone

Decomposition & definition of g

Triangle inequality

Definition of g,
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Monotonicity: Using Characterization Theorem
R

Characterization Theorem

d,(f,M) = [, dy(f e, M)dt

.

We use Characterization Theorem
to get monotonicity L-testers
and tolerant testers from
standard property testers for Boolean functions.
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L,-Testers from Testers for Boolean Ranges

A nonadaptive, 1-sided error L,-test for monotonicity of
f:D — {0,1}is also an L;-test for monotonicity of f: D — [0,1].
Proof:

f(x) > )

0 -0 -0 -0
e A nonadaptive, 1-sided error test queries a randomset Q € D
and rejects iff Q contains a violation.

e Aviolation (x,y):

e If f:D — [0,1]is monotone, Q will not contain a violation.
o Ifd(f,M) = & then 3t": do(f(t*),M) > &

* W.p. = 2/3, set Q contains a violation (x,y) for f

faey@®) =1fu () =0
U

fx)>f(y)
=) 24



Monotonicity Testers: Running Time

-_—
- [0,1] G(Oin) @()

[Erglin Kannan Kumar Rubinfeld
Viswanathan 00, Fischer 04]

[n]d o (d . log n) 0 (ilogi)

&

[Chakrabarty Seshadhri 13] Q( log ) ford = 2

nonadaptlve 1-sided error
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Distance Approximation and Tolerant Testing

[n] 1) 24/ 1
Sloa)  poviosn-(5) ()

[Saks Seshadhri 10]

e Time complexity of tolerant L;-testing for monotonicity is

€2
0 ((82 — 81)2) |
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L,-Testers for Other Properties

Via combinatorial characterization of L;-distance to the property

e Lipschitz property f: [n]¢ — [0,1]:
d\ ,..
0 () (tight)

Via (implicit) proper learning: approximate in L up to error €,
test approximation on a random 0 (1/€)-sample

e Convexity f:[n]¢ - [0,1]:
d
O (6_5 + %) (tight for d < 2)
e Submodularity f:{0,1}¢ — [0,1]

26(%) + poly (1) log d [Feldman Vondrak 13]
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Open Problems

e Qur L,-tester for monotonicity is nonadaptive, but we
show that adaptivity helps for Boolean range.

Is there a better adaptive tester?

* All our algorithms for L,,-testing forp = 1 were
obtained directly from L,-testers.

Can one design better algorithms by working directly
with L,-distances?

e We designed tolerant tester only for monotonicity
(d=1,2).

Tolerant testers for higher dimensions?

Other properties?
28



