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Tolerant Property Tester

[Parnas Ron Rubinfeld 06]
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Property Testing Models

Equivalent to tolerant testing: estimating distance to the property.

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]
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Why Hamming Distance?

• Nice probabilistic interpretation

– probability that two functions differ on a random point 
in the domain

• Natural measure for 

– algebraic properties (linearity, low degree)

– properties of graphs and other combinatorial objects

• Motivated by applications to probabilistically checkable 
proofs (PCPs)

• It is equivalent to other natural distances for

– properties of Boolean functions
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Which stocks grew steadily?

Data from 

http://finance.google.com

http://finance.google.com/


𝐿𝑝-Testing

for properties of real-valued data



Use 𝐿𝑝-metrics to Measure Distances

• Functions 𝑓, 𝑔: 𝐷 → 0,1 over (finite) domain 𝐷

• For 𝑝 ≥ 1

𝐿𝑝 𝑓, 𝑔 = 𝑓 − 𝑔
𝑝
=  

𝑥∈𝐷

𝑓 𝑥 − 𝑔 𝑥 𝑝

1/𝑝

𝐿0 𝑓, 𝑔 = 𝑓 − 𝑔
0

= 𝑥 ∈ 𝐷: 𝑓 𝑥 ≠ 𝑔 𝑥

• 𝑑𝑝 𝑓, 𝑔 =
𝒇 −𝑔

𝑝

1
𝒑
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Tolerant Property Tester
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𝑳𝒑-Testing and Tolerant 𝑳𝒑-Testing 

Property Tester
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𝜀 𝜀1
𝜀2

Functions 𝑓, 𝑔: 𝐷 → [0,1] are at distance 𝜀 if  𝑑𝑝 =
𝑓−𝑔 𝑝

𝟏 𝑝
= 𝜀.



New 𝐿𝑝-Testing Model for Real-Valued Data

• Generalizes standard 𝐿0-testing

• For 𝑝 > 0 still have a nice probabilistic interpretation: 

distance 𝑑𝑝 𝑓, 𝑔 = 𝐄 𝒇 − 𝒈 𝒑 1/𝑝

• Compatible with existing PAC-style learning models 
(preprocessing for model selection)

• For Boolean functions, 𝑑0 𝑓, 𝑔 = 𝑑𝑝 𝑓, 𝑔 𝑝.
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Our Contributions

1. Relationships between 𝐿𝑝-testing models

2. Algorithms

– 𝐿𝑝-testers for 𝑝 ≥ 1
• monotonicity, Lipschitz, convexity

– Tolerant 𝐿𝑝-tester for 𝑝 ≥ 1

• monotonicity in 1D (aka sortedness)

Our 𝐿𝑝-testers  beat lower bounds for 𝐿0-testers

Simple algorithms backed up by involved analysis

Uniformly sampled  (or easy to sample) data suffices

3. Nearly tight lower bounds
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Implications for 𝑳𝟎-Testing

Some techniques/observations/results carry over to 

𝐿0-testing
– Improvement on Levin’s work investment strategy

Gives improvements in run time of testers for
• Connectivity of bounded-degree graphs [Goldreich Ron 02]

• Properties of images [R 03]

• Multiple-input problems [Goldreich 13]

– First example of monotonicity testing problem where 
adaptivity helps

– Improvements to 𝐿0-testers for Boolean functions
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Relationships between
𝐿𝑝-Testing Models



Relationships Between 𝐿𝑝-Testing Models

𝐶𝒑(𝑷,𝜺) = complexity of 𝐿𝒑-testing property 𝑷

with distance parameter 𝜺

• e.g., query or time complexity 

• for general or restricted (e.g., nonadaptive) tests 

For all properties 𝑷

• 𝐿𝟏-testing is no harder than Hamming testing
𝐶𝟏(𝑷,𝜺) ≤ 𝐶𝟎(𝑷,𝜺)

• 𝐿𝒑-testing for 𝒑 > 1 is close in complexity to 𝐿𝟏-testing 

𝐶𝟏(𝑷,𝜺) ≤ 𝐶𝒑(𝑷,𝜺) ≤ 𝐶𝟏(𝑷,𝜺𝒑)
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Relationships Between 𝐿𝑝-Testing Models

𝐶𝒑(𝑷,𝜺) = complexity of 𝐿𝒑-testing property 𝑷

with distance parameter 𝜺

• e.g., query or time complexity 

• for general or restricted (e.g., nonadaptive) tests 

For properties of Boolean functions 𝒇:𝐷 → 0,1

• 𝐿𝟏-testing is equivalent to Hamming testing
𝐶𝟏(𝑷,𝜺) = 𝐶𝟎(𝑷,ε)

• 𝐿𝒑-testing for 𝒑 > 1 is equivalent to 𝐿𝟏-testing
with appropriate distance parameter

𝐶𝒑(𝑷,𝜺) = 𝐶𝟏(𝑷,𝜺𝒑)
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Relationships: Tolerant 𝐿𝑝-Testing Models

𝐶𝒑(𝑷,𝜺𝟏, 𝜺𝟐) = complexity of tolerant 𝐿𝒑-testing property 

𝑷 with distance parameters 𝜀1, 𝜀2
• E.g., query or time complexity 

• for general or restricted (e.g., nonadaptive) tests 

For all properties 𝑷

• No obvious relationship between tolerant 𝐿𝟏-testing 
and tolerant Hamming testing

• 𝐿𝒑-testing for 𝒑 > 1 is close in complexity to 𝐿𝟏-testing 

𝐶𝟏(𝑷,𝜺𝟏
𝒑
, ε2) ≤ 𝐶𝒑(𝑷,𝜺𝟏, 𝜺𝟐) ≤ 𝐶𝟏(𝑷,𝜺𝟏, 𝜺𝟐

𝒑
)
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Relationships: Tolerant 𝐿𝑝-Testing Models

𝐶𝒑(𝑷,𝜺𝟏, 𝜺𝟐) = complexity of tolerant 𝐿𝒑-testing property 

𝑷 with distance parameters 𝜀1, 𝜀2
• E.g., query or time complexity 

• for general or restricted (e.g., nonadaptive) tests 

For properties of Boolean functions 𝒇:𝐷 → 0,1

• 𝐿𝟏-testing is equivalent to Hamming testing
𝐶𝟏(𝑷,𝜺𝟏, 𝜺𝟐) = 𝐶𝟎(𝑷,𝜺𝟏, 𝜺𝟐)

• 𝐿𝒑-testing for 𝒑 > 1 is equivalent to 𝐿𝟏-testing
with appropriate distance parameters d

𝐶𝒑(𝑷,𝜺𝟏, 𝜺𝟐) = 𝐶𝟏(𝑷,𝜺𝟏
𝒑
, 𝜺𝟐

𝒑
)
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𝑂𝑢𝑟 𝑅𝑒𝑠𝑢𝑙𝑡𝑠

Property: Monotonicity



Monotonicity

• Domain D=[𝑛]𝑑 (vertices of 𝑑-dim hypercube)

• A function 𝑓: 𝐷 → R is monotone

if increasing a coordinate of 𝑥 does

not decrease 𝑓 𝑥 .

• Special case 𝑑 = 1

𝑓: [𝑛] → R is monotone ⇔𝑓 1 ,…𝑓(𝑛) is sorted.

One of the most studied properties in property testing 
[Ergün Kannan Kumar Rubinfeld Viswanathan , Goldreich Goldwasser Lehman Ron, Dodis Goldreich
Lehman R Ron Samorodnitsky, Batu Rubinfeld White, Fischer Lehman Newman R Rubinfeld
Samorodnitsky, Fischer, Halevy Kushilevitz, Bhattacharyya Grigorescu Jung R Woodruff, ..., 
Chakrabarty Seshadhri, Blais R Yaroslavtsev, Chakrabarty Dixit Jha Seshadhri]
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(1,1,1)

(𝑑, 𝑑, 𝑑)



Monotonicity Testers: Running Time
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𝑓 𝐿0 𝐿𝑝

𝑛
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Θ
log 𝑛

𝜺
[Ergün Kannan Kumar Rubinfeld

Viswanathan 00, Fischer 04]
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Θ
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log
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Monotonicity Testers: Running Time
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𝑓 𝐿0 𝐿𝑝

𝑛
→ {0,1}

Θ
1

𝜺
Θ

1

𝜺𝑝

𝑛 𝑑

→ {0,1}

Θ
𝑑

𝜺
⋅ log3

𝑑

𝜺
[Dodis Goldreich Lehman R

Samorodnitsky 99]

O
𝑑

𝜺𝑝
log

𝑑

𝜺𝑝

Ω
1

𝜺𝑝
log

1

𝜺𝑝
for 𝑑 = 2

nonadaptive 1-sided error

Θ
1

𝜺𝑝
for constant 𝑑

adaptive 1-sided error
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𝐿1-Testing of Monotonicity



Monotonicity: Reduction to Boolean Functions

Given 𝒇:𝐷 → [0,1], a Boolean threshold function 𝒇(𝒕): 𝐷 → {0,1}

𝒇(𝒕) 𝑥 =  
1 if 𝒇 𝑥 ≥ 𝑡
0 otherwise

• Decomposition: 𝑓 𝑥 =  0
1
𝒇(𝒕) 𝑥 𝑑𝒕

• M = class of monotone functions 

Characterization Theorem

𝐿1 𝒇,𝑀 =  0

1
𝐿1 𝒇(𝒕), 𝑀 𝑑𝒕
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0

1
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Characterization Theorem: One Direction

• ∀𝑡 ∈ 0,1 , let 𝑔𝑡=closest monotone (Boolean) function to 𝒇(𝒕).

• Let 𝒈 =  0

1
𝑔𝑡𝑑𝒕. Then 𝒈 is monotone, since 𝑔𝑡 are monotone.
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𝐿1 𝒇,𝑀 ≤ 𝑓 − 𝑔 1

=  0

1
𝒇(𝒕)𝑑𝒕 −  0

1
𝑔𝑡𝑑𝒕

1

=  0

1
(𝒇(𝒕)−𝑔𝑡)𝑑𝒕

1

≤  0

1
𝒇(𝒕) − 𝑔𝑡 1

𝑑𝒕

=  0

1
𝐿1 𝒇(𝒕), 𝑀 𝑑𝒕

Because 𝒈 is monotone 

Decomposition & definition of 𝒈

Triangle inequality

Definition of 𝑔𝑡

𝐿1 𝒇,𝑀 ≤  0

1
𝐿1 𝒇(𝒕), 𝑀 𝑑𝒕



Monotonicity: Using Characterization Theorem

We use Characterization Theorem 

to get monotonicity 𝐿1-testers 

and tolerant testers from

standard property testers for Boolean functions.
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Characterization Theorem

𝑑1 𝒇,𝑀 =  0

1
𝑑1 𝒇(𝒕), 𝑀 𝑑𝒕



𝐿1-Testers from Testers for Boolean Ranges 

A nonadaptive, 1-sided error 𝐿0-test for monotonicity of 

𝑓: 𝐷 → {0,1} is also an 𝐿1-test for monotonicity of 𝑓: 𝐷 → [0,1].

Proof:

• A violation (𝑥, 𝑦):

• A nonadaptive, 1-sided error test queries a random set 𝑄 ⊆ 𝐷
and rejects iff 𝑄 contains a violation.

• If 𝑓: 𝐷 → [0,1] is monotone, 𝑄 will not contain a violation.

• If 𝑑1 𝑓,𝑀 ≥ 𝜀 then ∃𝒕∗: 𝑑0 𝒇(𝒕∗), 𝑀 ≥ 𝜺

• W.p. ≥ 2/3, set 𝑄 contains a violation (𝑥, 𝑦) for 𝒇(𝒕∗)
𝒇(𝒕∗) 𝑥 = 1, 𝒇(𝒕∗) 𝑦 = 0

⇓
𝒇 𝑥 > 𝒇 𝑦
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Monotonicity Testers: Running Time
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Distance Approximation and Tolerant Testing
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𝑓 𝐿0 𝐿1

𝑛
→ [0,1] polylog 𝑛 ⋅

𝟏

𝜹

𝑶 𝟏/𝜹

[Saks Seshadhri 10]

Θ
𝟏

𝜹𝟐

Approximating 𝑳𝟏-distance to monotonicity ±𝜹 𝒘.𝒑.≥ 𝟐/𝟑

• Time complexity of tolerant 𝐿1-testing for monotonicity is

O
𝜺𝟐

(𝜺𝟐 − 𝜺𝟏)
𝟐

.



𝐿1-Testers for Other Properties

Via combinatorial characterization of 𝐿1-distance to the property

• Lipschitz property 𝒇: 𝒏 𝒅 → [0,1]: 

Θ
𝒅

𝜖
(tight)

Via (implicit) proper learning: approximate in 𝐿1 up to error 𝝐, 
test approximation on a random 𝑂(1/𝜖)-sample

• Convexity 𝒇: 𝒏 𝒅 → [0,1]: 

O 𝝐−
𝒅

2 +
1

𝝐
(tight for 𝒅 ≤ 2) 

• Submodularity 𝒇: 0,1 𝒅 → 0,1

2
 𝑂

1

𝝐 + 𝑝𝑜𝑙𝑦
1

𝝐
log 𝒅 [Feldman Vondrak 13]



Open Problems

• Our 𝐿1-tester for monotonicity is nonadaptive, but we 
show that adaptivity helps for Boolean range.

Is there a better adaptive tester?

• All our algorithms for 𝐿𝑝-testing for 𝑝 ≥ 1 were 

obtained directly from 𝐿1-testers.

Can one design better algorithms by working directly 
with 𝐿𝑝-distances?

• We designed tolerant tester only for monotonicity 
(d=1,2).

Tolerant testers for higher dimensions? 

Other properties?
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