# L<sub>p</sub>-Testing

## Sofya Raskhodnikova

## Penn State University, visiting Boston University and Harvard

Joint work with Piotr Berman (Penn State), Grigory Yaroslavtsev (Penn State → Brown)



# **Property Testing Models**



*Equivalent to tolerant testing:* estimating distance to the property. Two objects are at distance  $\varepsilon$  = they differ in an  $\varepsilon$  fraction of places

# Why Hamming Distance?

- Nice probabilistic interpretation
  - probability that two functions differ on a random point in the domain
- Natural measure for
  - algebraic properties (linearity, low degree)
  - properties of graphs and other combinatorial objects
- Motivated by applications to probabilistically checkable proofs (PCPs)
- It is equivalent to other natural distances for
  - properties of Boolean functions

## Which stocks grew steadily?



Data from *http://finance.google.com* 

$$L_p$$
-Testing

# for properties of real-valued data

## Use L<sub>p</sub>-metrics to Measure Distances

- Functions  $f, g: D \rightarrow [0,1]$  over (finite) domain D
- For  $p \ge 1$

$$L_p(f,g) = \left| |f - g| \right|_p = \left( \sum_{x \in D} |f(x) - g(x)|^p \right)^{1/p}$$

$$L_{0}(f,g) = \left| |f - g| \right|_{0} = \left| \{x \in D : f(x) \neq g(x) \} \right|$$
$$d_{p}(f,g) = \frac{\left| |f - g| \right|_{p}}{\left| |1| \right|_{p}}$$

## L<sub>p</sub>-Testing and Tolerant L<sub>p</sub>-Testing



Functions  $f, g: D \to [0,1]$  are at distance  $\varepsilon$  if  $d_p = \frac{\|f-g\|_p}{\|\mathbf{1}\|_p} = \varepsilon$ .

## *New L<sub>p</sub>-Testing Model for Real-Valued Data*

- Generalizes standard L<sub>0</sub>-testing
- For p > 0 still have a nice probabilistic interpretation: distance  $d_p(f,g) = (\mathbf{E}[|f - g|^p])^{1/p}$
- Compatible with existing PAC-style learning models (preprocessing for model selection)
- For Boolean functions,  $d_0(f,g) = d_p(f,g)^p$ .

## **Our Contributions**

- 1. Relationships between  $L_p$ -testing models
- 2. Algorithms
  - $L_p$  -testers for  $p\geq 1$ 
    - monotonicity, Lipschitz, convexity
  - Tolerant  $L_p$ -tester for  $p \ge 1$ 
    - monotonicity in 1D (aka sortedness)

Our L<sub>p</sub>-testers beat lower bounds for L<sub>0</sub>-testers
Simple algorithms backed up by involved analysis
Uniformly sampled (or easy to sample) data suffices

3. Nearly tight lower bounds

# Implications for L<sub>0</sub>-Testing

Some techniques/observations/results carry over to  $L_0$ -testing

- Improvement on Levin's work investment strategy
   Gives improvements in run time of testers for
  - Connectivity of bounded-degree graphs [Goldreich Ron 02]
  - Properties of images [R 03]
  - Multiple-input problems [Goldreich 13]
- First example of monotonicity testing problem where adaptivity helps
- Improvements to  $L_0$ -testers for Boolean functions

# Relationships between $L_p$ -Testing Models

## **Relationships Between** L<sub>p</sub>-**Testing Models**

 $C_p(P,\varepsilon)$  = complexity of  $L_p$ -testing property Pwith distance parameter  $\varepsilon$ 

- e.g., query or time complexity
- for general or restricted (e.g., nonadaptive) tests

For all properties **P** 

- $L_1$ -testing is no harder than Hamming testing  $C_1(P,\varepsilon) \leq C_0(P,\varepsilon)$
- $L_p$ -testing for p > 1 is close in complexity to  $L_1$ -testing  $C_1(P,\varepsilon) \le C_p(P,\varepsilon) \le C_1(P,\varepsilon^p)$

## **Relationships Between** L<sub>p</sub>-**Testing Models**

 $C_p(P,\varepsilon)$  = complexity of  $L_p$ -testing property Pwith distance parameter  $\varepsilon$ 

- e.g., query or time complexity
- for general or restricted (e.g., nonadaptive) tests

For properties of Boolean functions  $f: D \rightarrow \{0,1\}$ 

- $L_1$ -testing is equivalent to Hamming testing  $C_1(P,\varepsilon) = C_0(P,\varepsilon)$
- $L_p$ -testing for p > 1 is equivalent to  $L_1$ -testing with appropriate distance parameter  $C_p(P, \varepsilon) = C_1(P, \varepsilon^p)$

## **Relationships:** Tolerant L<sub>p</sub>-Testing Models

 $C_p(P, \varepsilon_1, \varepsilon_2)$  = complexity of tolerant  $L_p$ -testing property P with distance parameters  $\varepsilon_1, \varepsilon_2$ 

- E.g., query or time complexity
- for general or restricted (e.g., nonadaptive) tests

#### For all properties **P**

- No obvious relationship between tolerant  $L_1$ -testing and tolerant Hamming testing
- $L_p$ -testing for p > 1 is close in complexity to  $L_1$ -testing  $C_1(P, \varepsilon_1^p, \varepsilon_2) \le C_p(P, \varepsilon_1, \varepsilon_2) \le C_1(P, \varepsilon_1, \varepsilon_2^p)$

## **Relationships:** Tolerant L<sub>p</sub>-Testing Models

 $C_p(P, \varepsilon_1, \varepsilon_2)$  = complexity of tolerant  $L_p$ -testing property P with distance parameters  $\varepsilon_1, \varepsilon_2$ 

- E.g., query or time complexity
- for general or restricted (e.g., nonadaptive) tests

For properties of Boolean functions  $f: D \rightarrow \{0,1\}$ 

- $L_1$ -testing is equivalent to Hamming testing  $C_1(P, \varepsilon_1, \varepsilon_2) = C_0(P, \varepsilon_1, \varepsilon_2)$
- $L_p$ -testing for p > 1 is equivalent to  $L_1$ -testing with appropriate distance parameters  $C_p(P, \varepsilon_1, \varepsilon_2) = C_1(P, \varepsilon_1^p, \varepsilon_2^p)$

# Our Results

## Property: Monotonicity

## Monotonicity

- Domain  $D=[n]^d$  (vertices of d-dim hypercube) (d, d, d)
- A function  $f: D \to \mathbb{R}$  is monotone if increasing a coordinate of x does not decrease f(x).
- Special case d = 1



 $f:[n] \to \mathbb{R}$  is monotone  $\Leftrightarrow f(1), \dots f(n)$  is sorted.

### One of the most studied properties in property testing

[Ergün Kannan Kumar Rubinfeld Viswanathan , Goldreich Goldwasser Lehman Ron, Dodis Goldreich Lehman R Ron Samorodnitsky, Batu Rubinfeld White, Fischer Lehman Newman R Rubinfeld Samorodnitsky, Fischer, Halevy Kushilevitz, Bhattacharyya Grigorescu Jung R Woodruff, ..., Chakrabarty Seshadhri, Blais R Yaroslavtsev, Chakrabarty Dixit Jha Seshadhri]

## Monotonicity Testers: Running Time



## Monotonicity Testers: Running Time

| f                                           | L <sub>0</sub>                                                                                                               | $L_p$                                                                                                                                                                                                                                                                                            |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[n] \rightarrow \{0,1\}$                   | $\Theta\left(\frac{1}{\epsilon}\right)$                                                                                      | $\Theta\left(\frac{1}{\boldsymbol{\varepsilon}^p}\right)$                                                                                                                                                                                                                                        |
| [ <i>n</i> ] <sup><i>d</i></sup><br>→ {0,1} | $\Theta\left(\frac{d}{\varepsilon} \cdot \log^3 \frac{d}{\varepsilon}\right)$ [Dodis Goldreich Lehman R<br>Samorodnitsky 99] | $O\left(\frac{d}{\varepsilon^{p}}\log\frac{d}{\varepsilon^{p}}\right)$ $\Omega\left(\frac{1}{\varepsilon^{p}}\log\frac{1}{\varepsilon^{p}}\right) \text{ for } d = 2$ nonadaptive 1-sided error<br>$\Theta\left(\frac{1}{\varepsilon^{p}}\right) \text{ for constant } d$ adaptive 1-sided error |

# $L_1$ -Testing of Monotonicity

## Monotonicity: Reduction to Boolean Functions



## **Characterization Theorem: One Direction**

$$L_1(\boldsymbol{f}, \boldsymbol{M}) \leq \int_0^1 L_1(\boldsymbol{f}_{(\boldsymbol{t})}, \boldsymbol{M}) d\boldsymbol{t}$$

- $\forall t \in [0,1]$ , let  $g_t$ =closest monotone (Boolean) function to  $f_{(t)}$ .
- Let  $\boldsymbol{g} = \int_0^1 g_t d\boldsymbol{t}$ . Then  $\boldsymbol{g}$  is monotone, since  $g_t$  are monotone.

$$L_{1}(f, M) \leq \|f - g\|_{1}$$
  

$$= \left\| \int_{0}^{1} f_{(t)} dt - \int_{0}^{1} g_{t} dt \right\|_{1}$$
  

$$= \left\| \int_{0}^{1} (f_{(t)} - g_{t}) dt \right\|_{1}$$
  

$$\leq \int_{0}^{1} \|f_{(t)} - g_{t}\|_{1} dt$$
  

$$= \int_{0}^{1} L_{1}(f_{(t)}, M) dt$$
  
Decomposition & definition of  $g$   
Triangle inequality  
Definition of  $g_{t}$ 

## Monotonicity: Using Characterization Theorem

**Characterization Theorem** 

$$d_1(f, M) = \int_0^1 d_1(f_{(t)}, M) dt$$

We use Characterization Theorem to get monotonicity  $L_1$ -testers and tolerant testers from standard property testers for Boolean functions.

## L<sub>1</sub>-Testers from Testers for Boolean Ranges

A nonadaptive, 1-sided error  $L_0$ -test for monotonicity of  $f: D \rightarrow \{0,1\}$  is also an  $L_1$ -test for monotonicity of  $f: D \rightarrow [0,1]$ .

Proof:

• A violation (*x*, *y*):



- A nonadaptive, 1-sided error test queries a random set Q ⊆ D and rejects iff Q contains a violation.
- If  $f: D \rightarrow [0,1]$  is monotone, Q will not contain a violation.
- If  $d_1(f, M) \ge \varepsilon$  then  $\exists t^* : d_0(f_{(t^*)}, M) \ge \varepsilon$
- W.p.  $\geq 2/3$ , set Q contains a violation (x, y) for  $f_{(t^*)}$   $f_{(t^*)}(x) = 1, f_{(t^*)}(y) = 0$   $\downarrow$ f(x) > f(y)

## Monotonicity Testers: Running Time



## **Distance Approximation and Tolerant Testing**

#### Approximating $L_1$ -distance to monotonicity $\pm \delta w. p. \geq 2/3$



• Time complexity of tolerant  $L_1$ -testing for monotonicity is

$$0\left(\frac{\boldsymbol{\varepsilon}_2}{(\boldsymbol{\varepsilon}_2-\boldsymbol{\varepsilon}_1)^2}\right)$$

## L<sub>1</sub>-Testers for Other Properties

Via combinatorial characterization of L<sub>1</sub>-distance to the property

• Lipschitz property  $f: [n]^d \rightarrow [0,1]$ :

 $\Theta\left(\frac{d}{\epsilon}\right)$  (tight)

Via (implicit) proper learning: approximate in  $L_1$  up to error  $\epsilon$ , test approximation on a random  $O(1/\epsilon)$ -sample

• Convexity 
$$f: [n]^d \rightarrow [0,1]$$
:

$$O\left(\epsilon^{-\frac{d}{2}}+\frac{1}{\epsilon}\right)$$
 (tight for  $d \leq 2$ )

• Submodularity  $f: \{0,1\}^d \rightarrow [0,1]$ 

$$2^{\tilde{O}\left(\frac{1}{\epsilon}\right)} + poly\left(\frac{1}{\epsilon}\right)\log d$$
 [Feldman Vondrak 13]

## **Open Problems**

- Our L<sub>1</sub>-tester for monotonicity is nonadaptive, but we show that adaptivity helps for Boolean range.
   Is there a better adaptive tester?
- All our algorithms for L<sub>p</sub>-testing for p ≥ 1 were obtained directly from L<sub>1</sub>-testers.
   Can one design better algorithms by working directly with L<sub>p</sub>-distances?
- We designed tolerant tester only for monotonicity (d=1,2).

Tolerant testers for higher dimensions? Other properties?