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Bregman Divergences

For convex ¢ : R — R

Dy(p,q) = ¢(p) —¢(q) — (Vo(q),p—q)




Examples

¢(x) = ||x||? (Squared Euclidean):

Dy (p,q) = llpl* = llqll* = 2{a.p —q) = llp — qlI?
¢(x) = Y x; Inx; (Kullback-Leibler):

szln*_pz"'%

¢(x) = — Inx (Itakura-Saito):

sz_ Pz_l



Where do they come from ?

Exponential family:

P(p,6)(x) = exp({x,0) — (0))po(x)
can be written [BMDGO06] as

P(yp) (x) = exp(—=Dy(x, 1)) by (x)

Distribution ‘ Distance
Gaussian Squared Euclidean

Multinomial Kullback-Leibler

Exponential Itakura-Saito

Bregman divergences generalize methods like AdaBoost, MAP estimation,
clustering, and mixture model estimation.



Exact Geometry of Bregman Divergences

We can generalize projective duality to Bregman divergences:
¢ (u) = max(p,u) — ¢(p)

p'= argm§X<p,u> —¢(p) = Vo(p)

Bregman hyperplanes are linear (or dually linear) [BNNO7]:



Exact Geometry of Bregman Divergences

Exact algorithms based on duality and arrangements carry over:

Arrangement of p—p

» Convex hull
hyperplanes

p— (p,¢(p))

Delaunay

Voronoi diagram = > triangulation

We can solve exact nearest neighbor problem (modulo algebraic operations)



Approximate Geometry of Bregman Divergences

But this doesn’t work for approximate algorithms:
No triangle inequality:
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Where does the asymmetry come from?

Reformulating the Bregman divergence:

Dy(p,q) = ¢(p) —¢(a) — (Vo(q),p—q)
9(p) — (¢(a) + (Vo(a)p— )
¢(p) — ¢q(p)

=(p-9q V() (p-q)repq

Asp—gq,
Dy(p,q) =~ (p—9q) ' Alp—q)
is called a Mahalanobis distance.

( ,,,,,,,,,,,,,,,, :



Where does the asymmetry come from?

If A is fixed and positive definite, then A = uru:

(p-q)'Ap—q)=(p—q U U(p—q)
=lp' -4

where p’ = Up.
So the problem arises when the Hessian varies across the domain of interest:

¢

C
« <€




Quantifying the asymmetry

Let A be a domain of interest.
p-asymmetry:
4 = max Dy (p,q)
p.acA Dy(q,p)
p-similarity:
} = max Dy(p.1)
pares Dy(p, q) + Dy(q, 1)

p-defectiveness:
[ Dy(p.q) — Dy(r,q)
p.9reA D(p (p, r)

o If maxy Amax/ Amin is bounded, then all of above are bounded.

e If y-asymmetry is unbounded, then all are.



Approximation Algorithms for Bregman Divergences

There are different flavors of results for approximate algorithms for Bregman
divergences

e Assume that y is bounded and get f (y, €)-approximations for clustering:
[Manthey-Roglin, Ackermann-Blomer, Feldman-Schmidt-Sohler]

o Assume that y is bounded and get (1 + €)-approximation in time
dependent on y for approximate near neigbor: [Abdullah-V]

¢ Assume nothing about y and get unconditional (but weaker) bounds for
clustering: [McGregor-Chaudhuri]

o Use heuristics inspired by Euclidean algorithms without guarantees
[Nielsen-Nock for MEB, [Cayton,Zhang et al for approximate NNJ]

Is y intrinsic to the (approximate) study of Bregman divergences



The Approximate Near Neighbor problem

Process a data set on 1 points in IR to answer (1 + €)-approximate near
neighbor queries in log n time using space near-linear in n, with polynomial

dependenceond,1/e.



The Cell Probe Model

We work within the cell probe model:

e T
" — /

e Data structure takes space mw and processes queries using r probes. Call
ita (m,w, r)-structure.

o We will work in the non-adaptive setting: probes are a function of g



Our Result

Theorem

Any (m, w, r)-nonadaptive data structure for c-approximate near-neighbor search for
n points in R? under a uniform Bregman divergence with p-asymmetry (where
i < d/logn) must have

mw = Q(dn1+0(”/cr))

Comparing this to a result for ¢; [Panigrahy/Talwar/Wieder]:

Theorem

Any (m,w, r)-nonadaptive data structure for c-approximate near-neighbor search for
n points in RY under £ must have

mw = Q(dnlJrO(l/cr))



Our Result

Theorem

Any (m, w, r)-nonadaptive data structure for c-approximate near-neighbor search for
n points in R? under a uniform Bregman divergence with p-asymmetry (where
i < d/logn) must have

i = Q(dnl+0(;4/cr))

e It applies to uniform Bregman divergences:
Dy (p,q) = }_Dy(pi,qi)
1

e Works generally for any divergence that has a lower bound on
asymmetry: only need two points in R to generate the instance.

e 1 =d/lognis “best possible” in a sense: requiring linear space with
i = d/logn implies that t = )(d/ log n) [Barkol-Rabani]



Overview of proof

»
»

analysis of the noise
operator

distribution and a

A hard input W
"noise" operator J

( Isoperimetric

A

( Ball around a query
{ gets shattered

Use "cell sampling" ]
to conclude lower J:

bound

Follows the framework of [Panigrahy-Talwar-Wieder], except when we don’t.



Related Work

Deterministic lower bounds [CCGL,L, PT]
Exact lower bounds [BOR, BR]
Randomized lower bounds (poly space) [CR, AIP]

Randomized lower bounds (near-linear space) [PTW]
Lower bounds for LSH [MNP, OWZ, AIP]



A Bregman Cube

Fix points a, b such that
Dg(a,b) =1,Dg(b,a) = p

ab

aa




A directed noise operator

We perturb a vector asymmetrically:

(0]

Up1,p2
J]m X =y
1

The directed noise operator
Ry, (f) = Eyw,m,z (x) [f(w)]
If we set p; = pp = p, we get the symmetric noise operator Tj.

Lemma
Ifp1 > po, then Ry, p, = Tp,R o
—4P2



Constructing the instance

@ Take a random set S of n points.
® LetP = {pi = Ue,e/y(si)}
© Let Q= {g; = ve/ue(si)}
0 Pick q €r Q
Properties: Let g = g;:
@ Forallj #i,D(q,p;) = Q(ud)
® D(q,p;) = O(ed)
® If u < ed/logn, these hold w.h.p



Noise and the Bonami-Beckner inequality

Fix the uniform measure over the hypercube: ||f||, = /E[f?(x)]
The symmetric noise operator “expands”:

%) ll2 < [lfll14p2
even if the underlying space has a biased measure (Pr[x; = 1] = p # 0.5)

70 (f)

We would like to show that the asymmetric noise operator “expands” in the
same way:

2p < fllitgopp

IRprps (F)ll2 < [ ll1-4g(p o)



Noise and the Bonami-Beckner inequality

Fix the uniform measure over the hypercube: ||f||, = /E[f?(x)]
The symmetric noise operator “expands”:

%) ll2 < [lfll14p2
even if the underlying space has a biased measure (Pr[x; = 1] = p # 0.5)

70 (f)

We would like to show that the asymmetric noise operator “expands” in the
same way:

2p < fllitgopp

[Rprpz ()12 < W ll1tg(ppa)
It’s not actually true !

We will assume that f has support over the lower half of the hypercube.



Proof Sketch

Analyze asymmetric operator over uniform measure by analyzing symmetric
operator over biased measure.

HRp,OfHZ



Proof Sketch

Analyze asymmetric operator over uniform measure by analyzing symmetric
operator over biased measure.

[Ahlberg et al]
IRpofl ———— I g1



Proof Sketch

Analyze asymmetric operator over uniform measure by analyzing symmetric
operator over biased measure.

[Ahlberg et al]
IRpof s ———— 1T Sl 150

Biased Bonami-Beckner

||f||1+ 1710g1(17p) ’pZFJ



Proof Sketch

Analyze asymmetric operator over uniform measure by analyzing symmetric
operator over biased measure.

[Ahlberg et al]
IRpof s ———— 1T Sl 150

Biased Bonami-Beckner

—log(1-p) L
Restriction to
lower half-cube



From hypercontractivity to shattering I

For any small fixed region of the hypercube, only a small portion of the ball
around a point is sent there by the noise operator.

Proof is based on hypercontractivity and Cauchy-Schwarz.



From hypercontractivity to shattering II

If we partition the hypercube into small enough regions (each corresponding
to a hash table entry) then a ball gets shattered among many pieces.




The cell sampling technique

Suppose you have a data structure with space S that can answer NN queries
with ¢ probes.

¢ Fix a (random) input point that you want to reconstruct.
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The cell sampling technique

Suppose you have a data structure with space S that can answer NN queries
with t probes.

¢ Fix a (random) input point that you want to reconstruct.
e Sample a fraction of the cells of the structure
e Determine which queries still “work” (only access cells from the sample)

e Suppose one of these works: then we’ve reconstructed the input point
using a small sample (with some probability)

¢ By Fano’s inequality, the size of this sample must be reasonably large.
e Therefore, the data structure is large

The hypercontractivity-based shattering property implies that many of the
“working” queries are sent to different cells, so there’s a high chance that one of them
will succeed.



Conclusions

¢ The measure of asymmetry y appears to play an important role in the
design of algorithms for Bregman divergences.

¢ Can these measures quantify asymmetry ? In particular, what about
Bregman k-center clustering ?

e Are there any other applications for an “on average” asymmetric
hypercontractivity result ?
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