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Bregman Divergences

For convex φ : Rd → R

Dφ(p, q) = φ(p)− φ(q)− 〈∇φ(q), p− q〉

q p

D(p,q)



Examples

φ(x) = ‖x‖2 (Squared Euclidean):

Dφ(p, q) = ‖p‖2 − ‖q‖2 − 2〈q, p− q〉 = ‖p− q‖2

φ(x) = ∑i xi ln xi (Kullback-Leibler):

Dφ(p, q) = ∑
i

pi ln
pi
qi
− pi + qi

φ(x) = − ln x (Itakura-Saito):

Dφ(p, q) = ∑
i

pi
qi
− ln

pi
qi
− 1



Where do they come from ?

Exponential family:

p(ψ,θ)(x) = exp(〈x, θ〉 − ψ(θ))p0(x)

can be written [BMDG06] as

p(ψ,θ)(x) = exp(−Dφ(x, µ))bφ(x)

Distribution Distance
Gaussian Squared Euclidean

Multinomial Kullback-Leibler
Exponential Itakura-Saito

Bregman divergences generalize methods like AdaBoost, MAP estimation,
clustering, and mixture model estimation.



Exact Geometry of Bregman Divergences

We can generalize projective duality to Bregman divergences:

φ∗(u) = max
p
〈p, u〉 − φ(p)

p∗ = arg max
p
〈p, u〉 − φ(p) = ∇φ(p)

Bregman hyperplanes are linear (or dually linear) [BNN07]:

q

p

Df(x, p) = Df(x, q)



Exact Geometry of Bregman Divergences

Exact algorithms based on duality and arrangements carry over:

Voronoi diagram
Delaunay

triangulation

p 7! (p, f(p))

Convex hull
Arrangement of 

hyperplanes

p 7! p⇤

We can solve exact nearest neighbor problem (modulo algebraic operations)



Approximate Geometry of Bregman Divergences

But this doesn’t work for approximate algorithms:
No triangle inequality:
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Where does the asymmetry come from?

Reformulating the Bregman divergence:

Dφ(p, q) = φ(p)− φ(q)− 〈∇φ(q), p− q〉
= φ(p)−

(
φ(q) + 〈∇φ(q), p− q〉

)

= φ(p)− φ̃q(p)

= (p− q)>∇2φ(r)(p− q), r ∈ [p, q]

As p→ q,
Dφ(p, q) ' (p− q)>A(p− q)

is called a Mahalanobis distance.



Where does the asymmetry come from?

If A is fixed and positive definite, then A = U>U:

(p− q)>A(p− q) = (p− q)>U>U(p− q)

= ‖p′ − q′‖2

where p′ = Up.
So the problem arises when the Hessian varies across the domain of interest:



Quantifying the asymmetry

Let ∆ be a domain of interest.
µ-asymmetry:

µ = max
p,q∈∆

Dφ(p, q)
Dφ(q, p)

µ-similarity:

µ = max
p,q,r∈∆

Dφ(p, r)
Dφ(p, q) + Dφ(q, r)

µ-defectiveness:

µ = max
p,q,r∈∆

Dφ(p, q)−Dφ(r, q)
Dφ(p, r)

• If maxx λmax/λmin is bounded, then all of above are bounded.
• If µ-asymmetry is unbounded, then all are.



Approximation Algorithms for Bregman Divergences

There are different flavors of results for approximate algorithms for Bregman
divergences

• Assume that µ is bounded and get f (µ, ε)-approximations for clustering:
[Manthey-Röglin, Ackermann-Blömer, Feldman-Schmidt-Sohler]

• Assume that µ is bounded and get (1 + ε)-approximation in time
dependent on µ for approximate near neigbor: [Abdullah-V]

• Assume nothing about µ and get unconditional (but weaker) bounds for
clustering: [McGregor-Chaudhuri]

• Use heuristics inspired by Euclidean algorithms without guarantees
[Nielsen-Nock for MEB, [Cayton,Zhang et al for approximate NN]

Is µ intrinsic to the (approximate) study of Bregman divergences



The Approximate Near Neighbor problem

Process a data set on n points in Rd to answer (1 + ε)-approximate near
neighbor queries in log n time using space near-linear in n, with polynomial
dependence on d, 1/ε.

q

p⇤

p̃

1 + e



The Cell Probe Model

We work within the cell probe model:
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• Data structure takes space mw and processes queries using r probes. Call
it a (m, w, r)-structure.

• We will work in the non-adaptive setting: probes are a function of q



Our Result

Theorem
Any (m, w, r)-nonadaptive data structure for c-approximate near-neighbor search for
n points in Rd under a uniform Bregman divergence with µ-asymmetry (where
µ ≤ d/ log n) must have

mw = Ω(dn1+Ω(µ/cr))

Comparing this to a result for `1 [Panigrahy/Talwar/Wieder]:

Theorem
Any (m, w, r)-nonadaptive data structure for c-approximate near-neighbor search for
n points in Rd under `1 must have

mw = Ω(dn1+Ω(1/cr))



Our Result

Theorem
Any (m, w, r)-nonadaptive data structure for c-approximate near-neighbor search for
n points in Rd under a uniform Bregman divergence with µ-asymmetry (where
µ ≤ d/ log n) must have

mw = Ω(dn1+Ω(µ/cr))

• It applies to uniform Bregman divergences:

Dφ(p, q) = ∑
i

Dφ(pi, qi)

• Works generally for any divergence that has a lower bound on
asymmetry: only need two points in R to generate the instance.

• µ = d/ log n is “best possible” in a sense: requiring linear space with
µ = d/ log n implies that t = Ω(d/ log n) [Barkol-Rabani]



Overview of proof

A hard input 
distribution and a 
"noise" operator

Isoperimetric 
analysis of the noise 

operator

Ball around a query 
gets shattered

Use "cell sampling" 
to conclude lower 

bound

Follows the framework of [Panigrahy-Talwar-Wieder], except when we don’t.



Related Work

• Deterministic lower bounds [CCGL,L, PT]
• Exact lower bounds [BOR, BR]
• Randomized lower bounds (poly space) [CR, AIP]
• Randomized lower bounds (near-linear space) [PTW]
• Lower bounds for LSH [MNP, OWZ, AIP]



A Bregman Cube

Fix points a, b such that

Dφ(a, b) = 1, Dφ(b, a) = µ

µ

µ

1

1

aa ba

ab bb



A directed noise operator

We perturb a vector asymmetrically:

0   1   1 ...   0   1

0 1

p1p2

vp1,p2

x 7! y

The directed noise operator

Rp1,p2 (f ) = Ey∼vp1,p2 (x)
[f (y)]

If we set p1 = p2 = ρ, we get the symmetric noise operator Tρ.

Lemma
If p1 > p2, then Rp1,p2 = Tp2 R p1−p2

1−2p2
,0



Constructing the instance

1 Take a random set S of n points.

2 Let P = {pi = vε,ε/µ(si)}
3 Let Q = {qi = vε/µ,ε(si)}
4 Pick q ∈R Q

Properties: Let q = qi:

1 For all j 6= i, D(q, pj) = Ω(µd)
2 D(q, pi) = Θ(εd)
3 If µ ≤ εd/ log n, these hold w.h.p



Noise and the Bonami-Beckner inequality

Fix the uniform measure over the hypercube: ‖f‖2 =
√

E[f 2(x)]
The symmetric noise operator “expands”:

‖τρ(f )‖2 ≤ ‖f‖1+ρ2

even if the underlying space has a biased measure (Pr[xi = 1] = p 6= 0.5)

‖τρ(f )‖2,p ≤ ‖f‖1+g(ρ,p),p

We would like to show that the asymmetric noise operator “expands” in the
same way:

‖Rp1,p2 (f )‖2 ≤ ‖f‖1+g(p1,p2)

It’s not actually true !

We will assume that f has support over the lower half of the hypercube.
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Proof Sketch

Analyze asymmetric operator over uniform measure by analyzing symmetric
operator over biased measure.

kRp,0 f k2
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Restriction to 
lower half-cube



From hypercontractivity to shattering I

For any small fixed region of the hypercube, only a small portion of the ball
around a point is sent there by the noise operator.

Proof is based on hypercontractivity and Cauchy-Schwarz.



From hypercontractivity to shattering II

If we partition the hypercube into small enough regions (each corresponding
to a hash table entry) then a ball gets shattered among many pieces.



The cell sampling technique

Suppose you have a data structure with space S that can answer NN queries
with t probes.

• Fix a (random) input point that you want to reconstruct.

• Sample a fraction of the cells of the structure
• Determine which queries still “work” (only access cells from the sample)
• Suppose one of these works: then we’ve reconstructed the input point

using a small sample (with some probability)
• By Fano’s inequality, the size of this sample must be reasonably large.
• Therefore, the data structure is large

The hypercontractivity-based shattering property implies that many of the
“working” queries are sent to different cells, so there’s a high chance that one of them
will succeed.
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Conclusions

• The measure of asymmetry µ appears to play an important role in the
design of algorithms for Bregman divergences.

• Can these measures quantify asymmetry ? In particular, what about
Bregman k-center clustering ?

• Are there any other applications for an “on average” asymmetric
hypercontractivity result ?
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