BEN-GURION UNIVERSITY OF THE NEGEV

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF “DOCTOR OF PHILOSOPHY”

On Refined Notions of Embeddings

By

ARNOLD FILTSER

SUBMITTED TO THE SENATE OF BEN-GURION UNIVERSITY OF THE NEGEV

March 2019

Beer-Sheva

ii

BEN-GURION UNIVERSITY OF THE NEGEV

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF “DOCTOR OF PHILOSOPHY”

On Refined Notions of Embeddings

AUTHOR:

ARNOLD FILTSER

SUBMITTED TO THE SENATE OF BEN-GURION UNIVERSITY OF THE NEGEV

APPROVED BY:

Professor | Professor
Robert Krauthgamer ! Ofer Neiman
Advisor Advisor

March 2019

Beer-Sheva

iv

This work was carried out under the supervision of

Prof. Robert Krauthgamer and Prof. Ofer Neiman

In the Department of Computer Science
Faculty of Natural Sciences

vi

I Arnold Filtser, whose signature appears below, hereby declare that

e I have written this thesis by myself, except for the help and guidance offered by my thesis advisors.

e The scientific materials included in this thesis are products of my own research, culled from the period
during which I was a research student.

e This thesis incorporates research materials produced in cooperation with others. Specifically:
The results in Part IT were obtained jointly with Michael Elkin and Ofer Neiman.
The results in Part IIT were obtained jointly with Yair Bartal and Ofer Neiman.
The results in Part V were obtained jointly with Robert Krauthgamer.

26-Mar-2019 Arnold Filtser

Date Name V/ﬁggnature

vii

viii

Acknowledgements

First and foremost I would like to thank the Israeli taxpayer who supported my research via vari-
ous funds. Specifically, this research was supported in part by the planning and budgeting committee
Levtzion scholarship, Kreitman School Negev Scholarship, general BGU CS department funds, ISF grant
No. (523/12 and 1817/17) and BSF Grant 2015813. I would like to thank the many individuals and
organizations for their private donations to BGU, the fruits of which I also enjoyed. Further, I would like
to thank the European taxpayer who supported me via the European Union Seventh Framework Program
(FP7/2007-2013) under grant agreement n°303809. In addition I would like to thank for various travel
funds I received during the PhD (in particular from SIAM, ACM, Microsoft, Google).

Next, I would like to express my special appreciation and thanks to my advisers, Professors Robert
Krauthgamer and Ofer Neiman. I learned a lot from you both. Robi, you are an endless source of
knowledge, always full with ideas, possible directions and good advice, thanks a lot! Ofer, thank you for
the patience, continuous support, all the hours of deep discussions, constant availability and great ideas.
I have a lot of gratitude, this PhD was a real pleasure. Additionally, I would like to thank Professor
Michael Elkin. Thank you for suggesting many excellent research problems, and often sharing various
advice with me.

I gratefully acknowledge all my collaborators: Ittai Abraham, Stephen Alstrup, Yair Bartal, Shiri
Chechik, Sgren Dahlgaard, Michael Elkin, Omrit Filtser, Lee-Ad Gottlieb, Anupam Gupta, Robert
Krauthgamer, Ofer Neiman, Shay Solomon, Morten Stockel, Nimrod Talmon, Ohad Trabelsi and Chris-
tian Wulff-Nilsen. It was a delight to work with you, and I hope for future collaborations.

I also thank Ben-Gurion University, for its funding, flexibility and thoughtfulness. Many thanks also
to the the technical and administrative staff who make this research pleasant and possible. Thanks to
all the people who attend and organize the theory seminar, for the excellent atmosphere.

Special thanks to the Weizmann institute for our extra-marital relationship... Thanks for the ex-
treme flexibility, the excellent courses, and the theory lunch. The place is simply buzzing with ideas.
Additionally, thanks to all the members of Robi’s group throughout the years: Chen Attias, Diptarka
Chakraborty, Rajesh Chitnis, Shaofeng Jiang, Lior Kamma, Bundit Laekhanukit, Yevgeny Levanzov,
Yosef Pogrow, David Reitblat, Havana Rika, Roi Sinoff, Nimrod Talmon, Ohad Trabelsi, Otniel van
Handel and Shai Vardi. Thank you for the outstanding atmosphere, the discussions and all the fun hours
spent together.

A special thanks to my family. Words cannot express how grateful I am to my mother and father.
Thank you for accepting that my work will not have any practical value in this world or the next... Thank
you for encouraging and nurturing my love for math and knowledge, for investing time and money in my
education, believing in my abilities and pushing me towards excellence. Thanks a lot also to my siblings,
grandparents and all further family for love and support.

Most of all, I would like to express my gratitude and appreciation to my beloved wife Omrit to whom
I am deeply obligated for her love, care, infinite support, encouragement, and for always being there.
Additionally, for hearing and debating on various ideas, for editing my English, good advice, and for
preventing me from becoming an engineer. I would like to thank my daughters Naama and Hadass, for
their patience to hear research discussions during dinner. You are an endless source of joy and happiness,
a real inspiration.

Finally, I would like to express thanks, respect and admiration to the theoretical computer science
community. Thank you for the good will and the collaborative atmosphere. I am really happy to be part
of this community.

ix

To Omrit, Naama and Hadass.

xi

xii

Contents

I Introduction, Results and Discussion 1
1 Introduction 1
1.1 Refined Notions of Embeddings L L 4
1.2 Related Work o o e 5
2 Results 6
2.1 Results Presented in this Thesis o 6
2.2 Results: Related, Published During the PhD, but do not appear in the Thesis 9
3 Summary, Discussion and Open Problems 12
II Prioritized Metric Structures and Embedding 21

IIT On Notions of Distortion and an Almost Minimum Spanning Tree with
Constant Average Distortion 52

IV Steiner Point Removal with distortion O(log k), using the Relaxed-Voronoi
algorithm 67

V Sparsification of Two-Variable Valued CSPs 98

xiii

Xiv

Abstract

Metric spaces are used to represent various relations such as transportation cost between cities or
dissimilarity between bacterial strains. However, general metrics can be quite difficult to manage. It
would be very convenient if we could represent the points in a more structured form. Such a representation
can provide insight and allow us to execute efficient algorithms. For example, we would like to represent
the metric as points in Euclidean space, where the distance between every pair of metric points is equal
to the Fuclidean distance between their representations. Unfortunately, this is impossible. Nevertheless,
if we allow to somewhat distort the distances, such a representation becomes possible, and has been
found extremely useful.

Embedding is a mapping between metric spaces that approximately preserves the geometry of the
original space. Often the host space has a simple structure or desirable features. This wide framework pro-
vides an algorithmic methodology, which has been successfully applied for approximation/online/distributed
algorithms, etc. However, this methodology appears to have some limitations: the performance inher-
ently depends on the cardinality of the metric. The guarantee is a worst-case type, i.e., the same for
all the point pairs. One could not specify in advance which points should enjoy a better service (i.e.
distortion, dimension, etc.) than that given by the worst-case guarantee.

We alleviate this limitation by devising a suite of prioritized distortion. We show that given a priority
ordering (z1,x2,...,%,) of the metric points, one can devise an embedding, in which the distortion
incurred by any pair containing a vertex z; will depend on the rank j of the vertex. The worst-case
performance of our embeddings is typically asymptotically no worse than that of their non-prioritized
counterparts.

We also study scaling distortion, which requires that for every 0 < e < 1, the distortion of all
but an e-fraction of the pairs is bounded by the appropriate function of e. Such distortion guarantee
implies bounds on the average distortion, as well as on higher moments of the distortion function. We
show an equivalence theorem between prioritized distortion and a strong version of scaling distortion.
This equivalence implies many new embeddings results. Another application is an algorithm that, given
weighted undirected graph, returns a spanning tree whose weight is at most (1 + p) times that of the
MST, and provids constant average distortion O(1/p).

We also study the Steiner Point Removal problem. Here we are given a weighted graph G = (V, F)
and a set of terminals K C V of size k. The objective is to find a minor M of G with only the terminals
as its vertex set, such that distances between the terminals are preserved up to a small multiplicative
distortion. The underlying question would be to consider some restricted graph family. Is it possible to
significantly enrich the various geometries induced by k-vertex graphs in the family by adding additional
Steiner vertices? Our contribution is an upper bound of O(log k) on the distortion, improving a previous
O(log? k) upper bound. We achieve this upper bound using a novel algorithm called the Relaxed-Voronoi
algorithm, which is simpler than previously used algorithms. In particular we provide an almost linear
time implementation.

Finally we turn to study sparsification. A valued constraint satisfaction problem (VCSP) instance
(V,1I,w) is a set of variables V with a set of constraints IT weighted by w. Given a VCSP instance,
we are interested in a re-weighted sub-instance (V,II' C II,w’) that preserves the value of the given
instance (under every assignment to the variables) within factor 1 +e. A well-studied special case is cut
sparsification in graphs, which has found various applications. We show that a VCSP instance consisting
of a single boolean predicate P(z,) (e.g., for cut, P = XOR) can be sparsified into O(|V|/€?) constraints
if and only if the number of inputs that satisfy P is anything but one (i.e., |[P~*(1)| # 1). Furthermore,
this sparsity bound is tight unless P is a relatively trivial predicate. We conclude that systems of 2SAT
(or 2LIN) constraints can also be sparsified.

Part 1
Introduction, Results and Discussion

1 Introduction

Low-distortion metric embeddings are a crucial component in the modern algorithmist toolkit. Given a pair
of (finite) metric spaces (X, dx), (Y,dy), amap ¢ : X — Y, the contraction and expansion of the map ¢ are
the smallest 7, p, respectively, such that for every pair z,y € X,

1 dy(9(2).6(0)
T dx(v,y)
The distortion of the embedding is 7-p. If 7 =1 (resp. p = 1) we say that the embedding is non-contractive
(expansive). If p = O(1), we say that the embedding is Lipschitz. If 7 > 1 we say that the embedding is
dominating. If the distortion 7 - p is 1, we say that X embeds isometrically into Y.

Metric embeddings have applications in approximation algorithms [LLR95], online algorithms [BBMN11],
distributed algorithms [KKM™12], and for solving linear systems and computing graph sparsifiers [ST04a].
The basic approach behind most of the applications is as following: Suppose we have some hard problem
in a metric space X. In many cases this problem might become simpler if we assume that X has certain
properties (e.g., Euclidean space, tree metric). Suppose further that there is an embedding ¢ of X into a
metric space Y that possesses the desired property with distortion t. Instead of solving the problem directly
in X, we start by solving the problem efficiently in the embedded space ¢(X). We would then pull the
solution back to X, while paying some approximation factor f(t) w.r.t. the optimal solution.

Metric embeddings are often very useful for graphs. Consider a weighted graph G = (V, E, w), the metric
dg associated with the graph is the shortest path metric. Here the distance between a pair of vertices v, u
is the weight of the shortest path between them. In the rest of the introduction we describe various results
in metric embeddings theory and related areas. In particular we mentioned some applications of each type

of embedding.

Metric Embeddings into ¢, Spaces. /), spaces possess a natural geometric structure, especially ¢ the
Euclidean space, which has an inner product. This special structure is very helpful for solving various
problems, even more so when the dimension is low. More interestingly, embeddings into ¢; have implica-
tion for graph partitioning problems. Specifically, the ratio between the Sparsest Cut and the maximum
multicommodity flow (called flow cut gap) is bounded by the distortion of the optimal embedding into ¢;
(see [LLR95, GNRS04]). In particular, if one embeds a graph into ¢; with distortion ¢, it will imply a
t-approximation to the sparsest cut problem.

We will be interested in finite subsets of ¢, spaces for p € [1,00]. Every finite subset of ¢5 embeds
isometrically to every ¢, for p € [1,00]. Every finite metric space (even not ¢,) embeds isometrically into
l+. Every finite subset of £, space for p € [1,2] embeds isometrically into ¢;. For any other pair ¢, {,, there
is no embedding with constant distortion for all finite subsets. See [Mat02] for details.

In a celebrated result, Bourgain [Bou85] showed that any metric space on n points embeds with distortion
O(log n) into Euclidean space (and therefore to any ¢,,). Linial, London, and Rabinovich [LLR95] have shown
this to be tight.

If the source space X is n points in /5, a famous dimension reduction lemma by Johnson and Lin-
densstrauss [JL84], asserts that for every parameter ¢ € (0,1) X can be embedded into fzo(logn/EQ) (i.e.,

Euclidean space of dimension O(logn/e?)) with distortion 1 + e. This is an extremely useful lemma with
applications for streaming algorithms, nearest neighbor search, compressed sensing and many more.

Metric Embeddings of Special Graph Families. Since general n-point metrics require §(logn/p)-
distortion to embed into £,-norms, much attention was given to embeddings of restricted graph families that
arise in practice. As the class of graphs embeddable with some distortion into some target normed space is
closed under taking minors, it is natural to focus on minor-closed graph families. A long-standing conjecture
in this area is that all non-trivial minor-closed families of graphs embed into ¢; with distortion depending
only on the graph family and not the size n of the graph.

Stochastic Metric Embeddings. Given a graph family F, a stochastic embedding of G = (V, E, w) into
F is a distribution D over pairs (H, fir) where H € F and fy is embedding of G into H. We say that
D is dominating if for every (H, fg) € supp(D), fg is dominating. We say that a dominating! stochastic
embedding D has expected distortion ¢, if for every pair u,v € V it holds that

Ei, fi)~p [da (fu(u), fu(v))] <t-da(u,v) .

In a highly influential series of works by Bartal and Fakcharoenphol, Rao and Talwar [Bar96b, FRT04], it
was shown that every m-point metric space has a stochastic embedding to the families of ultrametrics (or
trees) with expected distortion O(logn) (which is also tight [Bar96b]). In some applications, it is important
that the sampled tree will be a spanning tree rather than only dominating (e.g. for routing). In this case
Abraham and Neiman [AN12] (following [EEST05]) showed an O(logn) expected distortion. Stochastic
embeddings into trees have become a very basic technique in approximation and online algorithms, as trees
are easy to work with and generally enjoy efficient algorithms.

Metric Data Structures. In some cases we might prefer to represent distances in a data structure rather
than as a metric space / graph. Such a representation is often more computationally efficient, and might
have better distortion. A distance oracle is a data structure that supports distance queries between vertex
pairs. In the study of distance oracles, we look for tradeoffs between space, query time and distortion (the
accuracy of the answers). Given an n-vertex graph and parameter ¢ = 1,2, ..., Thorup and Zwick [TZ01a]
constructed a distance oracle of size O(t-n'+t1/t), O(t) query time and distortion 2¢ — 1. In a recent series of
works [WN13, Chel4, Chel5] the space and query time were improved to O(n'T'/*) and O(1) respectively.

An another example of metric data structure is a distance labeling [Pel99, GPPRO1]. Here we assign
each vertex a label, and identify a global function that, given two labels, can estimate the distance between
the respective vertices. The goal is to optimize the tradeoff between the label size and distortion. The
distance oracle of Thorup and Zwick [TZ01la] can be converted into a distance-labeling scheme with label
size O(n'/*. logl_l/’5 n) and distortion (2¢ —1). An interesting special case is when the input graph is planar.
Here an 1 + € stretch labeling scheme is possible with label size O(logn) [Tho01, Kle02].

A routing scheme in a network is a mechanism that allows packets to be delivered from any node to any
other node. The network is represented as a weighted undirected graph, and each node can forward incoming
data by using local information stored at the node, often called a routing table, and the (short) packet’s
header. The routing scheme has two main phases: in the preprocessing phase, each node is assigned a routing
table and a short label. In the routing phase, each node receiving a packet should make a local decision,
based on its own routing table and the packet’s header (which may contain the label of the destination, or

1Recall that embedding f : G — H is dominating if there are no contractions.

a part of it), where to send the packet. The routing decision time is the time required for a node to make
this local decision. The stretch of a routing scheme is the worst ratio between the length of a path on which
a packet is routed, to the shortest possible path. The classical routing scheme of [TZ01b], for a parameter
k > 1, provides a scheme with routing tables of size O(k-n'/*), labels of size (1+o0(1))klogn, stretch 4k — 5,
and decision time O(1) (but the initial decision time is O(k)). The stretch was improved recently to roughly
3.68k by [Chel3].

Spanners. Given a n-vertex graph G = (V, E,w) and a parameter ¢ > 1, a subgraph H = (V, ', w) of G
(E' C E) is called a t-spanner for G if for all u,v € V, dg(u,v) <t-0g(u,v). The parameter ¢ is called the
stretch of H. While minimizing the stretch we also wish the spanner to have a small number of edges. In
addition, its weight w(H) =) . w(e) should be close to the weight of a minimum spanning tree (MST)
of the graph G. The normalized notion of weight ¥(H) = %, is called lightness. Light and sparse
spanners are particularly useful for broadcast protocols, network synchronization, data gathering, routing,
sensor networks, VLSI circuit design and much more (see [FS16] for references and further applications).

The greedy spanner? by Althofer et al. [ADD 193] is arguably the simplest and most well-studied spanner
construction. Althofer et al. [ADD193], for every parameter k& > 1, showed that the greedy (2k — 1)-spanner
has O(n't1/%) edges. Chandra et al. [CDNS92] proved that the greedy spanner with stretch parameter
t = (2k — 1) - (1 + ¢€) has lightness O.(k - n'/¥) 3. Later, Elkin, Neiman, and Solomon [ENS14] improved the
analysis of [CDNS92] and showed Oe(ﬁ -n'/k) lightness. In a recent breakthrough, Chechik and Wulff-
Nilsen [CW18] used a much more complicated algorithm and constructed an (2k — 1) - (1 4 €) spanner with
Oc(n/*) lightness. Under Erdés’ girth conjecture [Erd64], the lightness is asymptotically tight up to the
dependency on e.

Das, Heffernan, and Narasimhan [DHN93] showed that in d dimensional Euclidean metrics?, the greedy

O(d) | For the case where the shortest path d¢ of the input graph has doubling

(14 ¢)-spanner has lightness e~
dimension® ddim, Gottlieb [Got15] constructed 1+€ spanners with lightness (ddim/e)©(4™) (improving over

[Smi09]).

Steiner Point Removal. In the Steiner point removal (SPR) problem we are given a subset of terminals
K C V of size k (the non-terminal vertices are called Steiner vertices). The goal is to construct a new
graph M = (K, E’) with positive weight function w’, with the terminals as its vertex set, such that: (1)
M is a graph minor of G, and (2) the distance between every pair of terminals ¢,¢’ is distorted by at most
a multiplicative factor of « (that is Vt,t' € K, dg(t,t') < dp(t,t') < a-dg(t,t'). Property (1) expresses
preservation of the topological structure of the original graph. For example if G was planar, so will M
be, whereas property (2) expresses preservation of the geometric structure of the original graph, that is,
distances between terminals. The question is: what is the minimal « (which may depend on k) such that
every graph with a terminal set of size k will admit a solution to the SPR problem with distortion a.

The underlying fundamental question is the following: given some graph family F, is the collection of
geometries obtained by k-vertex graphs from F can be significantly different from the collection of geometries
obtained by restricting the attention to k terminals in a big graphs from F?

2The greedy spanner H with parameter ¢ is constructed by repeatedly adding an edge between the closest pair of neighboring
vertices {u, v} such that dg(u,v) >t - dg(u,v).

3In O, notation we hide polynomial factors in e.

4By d dimensional Euclidean metric here we mean a complete graph on n vertices, where each vertex v is associated with a
point p, € Ry such that the weight of the edge {u,v} equals |[py — pu|2.

5The doubling dimension of a metric space (M, §) is the smallest value ddim such that every ball B in the metric space can
be covered by at most 244i™m balls of half the radius of B.

The minor restriction ensures that the graph on the terminals will remain in the family. However it has
additional advantages. Suppose that the given graph is planar and all the terminals lie on a single face
(Okamura-Seymour instance), then every minor restricted to the terminals will be an outerplanar.

If the given graph G is a tree, Gupta [Gup01] constructed a minor with distortion 8, which is tight by
Chan et al. [CXKRO06]. This lower bound of 8 is the best known lower bound for general graphs as well.
Basu and Gupta [BGO08] showed that on outerplanar graphs, the SPR problem can be solved with distortion
O(1). Kamma, Krauthgamer, and Nguyen [KKN15] provided an O(log® k) upper bound for general graphs,
which was recently improved to O(log® k) by Cheung [Chel§].

Englert et al. [EGK™14] showed that every graph G, admits a distribution D over terminal minors with
expected distortion O(log k). Further, if the graph is 8-decomposable, it admits a distribution with O(8 log)
expected distortion. In particular, planar graphs and graphs excluding a fixed minor are O(1)-decomposable.

Krauthgamer, Nguyen, and Zondiner [KNZ14] showed that if we allow the minor M to contain at most
O(k*) Steiner vertices (in addition to the terminals), then distortion 1 can be achieved. They further showed
that for graphs with constant treewidth, O(k?) Steiner points will suffice for distortion 1. Cheung, Gramoz,
and Henzinger [CGH16] showed that allowing O(k2*7) Steiner vertices, one can achieve distortion 2¢ — 1 (in
particular distortion O(log k) with O(k?) Steiners). For planar graphs, [CGH16] achieved 1 + € distortion
with O((£)2) Steiner points.

Sparsifiers. In metric embeddings, spanners, etc., we look for succinct representation of graphs while
preserving the geometry, i.e., distances between vertices. However, there are other graph properties that
one might wish to preserve while using a succinct representation. The seminal work of Benczir and Karger
[BK96] showed that every edge-weighted undirected graph admits cut-sparsification within factor (1+€) using
O(e~2nlogn) edges. More precisely, let Cutg(S) denote the total weight of edges in G' that have exactly one
endpoint in S. Then for every such G and € € (0,1), there is a re-weighted subgraph G, = (V, E. C E, w,)
with |E.| < O(e ?nlogn) edges, such that

VS cV, Cutg, (S) € (1 £ ¢) - Cutg(9), (1)

and moreover, such G, can be computed efficiently.

This sparsification methodology turned out to be very influential. The original motivation was to speed
up algorithms for cut problems — one can compute a cut sparsifier of the input graph and then solve an
optimization problem on the sparsifier — and indeed this has been a tremendously effective approach, For
example, see [BK96, BK02, K102, She09, Mad10]. Another application of this remarkable notion is to reduce
space requirement, either when storing the graph or in streaming algorithms [AG09]. In fact, followup work
offered several refinements, improvements, and extensions (such as to spectral sparsification), see [ST04b,
ST11, SS11, dCHS11, FHHP11, KP12, NR13, BSS14, KK15]. The current bound for cut sparsification is
O(n/€?) edges, proved by Batson, Spielman and Srivastava [BSS14], and it is known to be tight [ACK™16].

1.1 Refined Notions of Embeddings

Consider a non-contractive embedding ¢ : X — Y. The distortion of the pair z,y is W Thus the
distortion of the embedding ¢ is simply the worst case (maximal) distortion over all the pairs. This is the
definition all previous results coped with. A natural disadvantage of these results is the dependence of all
the relevant parameters on n, the cardinality of the input graph/metric. Nevertheless, most of these results
are either completely tight, or very close to being so. Several approaches to cope with this shortcoming were

proposed.

Terminal Embeddings. Here we are given a set K C X of points of size k, which are designated as
terminals. The objective is to embed the metric into a simpler metric, while approximately preserving
the distances between the terminals to all other points. Formally, the terminal distortion of an embedding
¢ : X — Y is the maximal distortion over all pairs in K x X. Terminal embeddings have implications for
the areas of approximation and online algorithms.

This notion of distortion was studied in the master thesis of the author, and in particular published
in [EFN17] co-authored with Elkin and Neiman. In many cases, the cardinality of the input metric n can
be replaced by that of the terminal set k. Some notable results are as follows: embedding of a general
metric into ¢ with terminal distortion O(logk), spanner construction with terminal distortion 4t — 1 and
O(n+/n-k' 1) edges, construction of a single spanning tree with terminal distortion 2k — 1+ ¢ and lightness
O(%) for any € > 0, stochastic embedding into spanning trees with expected terminal distortion O(log k),
and more.

In a follow up paper, Elkin and Neiman [EN18] study terminal embedding of metric spaces with constant
doubling metrics. In particular they constructed a spanner with 1+ € terminal distortion and n+o(n) edges.
Additionally, they constructed a labeling scheme with =~ log k label size.

Recently, Mahabadi et al. [MMMR18] answered a question from our paper [EFN17], showing a terminal
version of the JL lemma. Specifically, they show that given a set K of k points in R?, it is possible to embed
all of R% into R™**<* with terminal distortion 1 4+ e. Even more recently Narayanan and Nelson [NN18]
were able to reduce the number of dimensions to 105%]“7 which is also tight. These new embeddings are called
Terminal JL.

Scaling Distortion. Another approach to cope with large worst-case distortion bounds is to construct
embeddings where some pairs of vertices/points enjoy better guarantees. Specifically, [KSW04, ABCT05,
ABN11, CDGO6] studied embeddings in which the distortion of at least 1 — e fraction of the pairs is improved
as a function of e, for all € € [0,1] simultaneously. Formally, given a function « : (0,1) — R4 we say that
embedding ¢ : X — Y has scaling distortion « if for every e € (0,1) at most e fraction of the pairs (that is
€- (‘);l)) suffer from distortion a(e) or larger. Some notable results being: an embedding of a general metric
space into £ with scaling distortion O(log %), and stochastic embedding into trees with expected scaling
distortion O(log). Note that while the worst case distortion is O(logn) (fixing € = -3), half of the pairs

are guaranteed constant distortion! A nice property of scaling distortion is that it is also provides constant
dy (¢(z),0(y) _ 0(1) 7

average distortion® } ve(¥) " dx ()
We(s 7

1.2 Related Work

While the minor embedding conjecture of [GNRS04] remains unresolved in general, some progress has been
made on special classes of graphs. The class of outerplanar graphs (which exclude K» 3 and K4 as a minor)
embeds isometrically into ¢1; this follows from results of Okamura and Seymour [OS81] as was proved
by Hurkens, Schrijver, and Tardos [HST86]. Following [GNRS04], Chakrabarti et al. [CJLVO0S8] show that
every graph with treewidth-2 (which excludes K, as a minor) embeds into ¢; with distortion 2 (which is
tight, as shown by [LR10]). Lee and Sidiropoulos [LS13] showed that every graph with pathwidth &k can be
embedded into ¢; with distortion (4k)k3+1. Chekuri et al. [CGNT03] extend the Okamura and Seymour
bound for outerplanar graphs to k-outerplanar graphs, and showed that these embed into ¢; with distortion
200 Rao [Rao99] (see also [KLMNO04]) embed planar graphs into £, with distortion O(log'/?n). For

6As long as the scaling distortion is smaller than 0(5*5) for some § < 1.
"There are alternative definitions of average distortion that could be found in the literature, see related works.

graphs with genus g, [LS10] showed an embedding into Euclidean space with distortion O(log g + v/logn).
Finally, for H-minor-free graphs, combining the results of [AGG'14, KLMNO04] gives ¢,-embeddings with
O(|H|*~1/71og'/? n) distortion.

Some progress has also been made on stochastic embeddings. Gupta et al. [GNRS04] showed that
outerplanar graphs embed into trees with O(1) expected distortion. Lee and Sidiropoulos [L.S13] showed
that pathwidth k graphs embedded into trees with distortion (4k)¥°+1. On the negative side, [LS13] showed
that pathwidth k£ + 1 graphs cannot be stochastically embedded into pathwidth k graphs with constant
distortion. Further, Gupta et al. [GNRS04] showed that already planar graphs (or even treewidth 2 graphs)
cannot be embedded into trees with any constant distortion.

Rabinovich [Rab08] defined the average distortion of a dominating embedding f : X — Y as
S,ex dv (F(@).F(1)
Zz,yeX dx (z’y) !

2 Results

In the introduction section we presented the state of the art in various metric embeddings related topics,
as it was before the contribution in this thesis, as well as other follow-up contributions. In Section 2.1 we
describe the results presented in this thesis. Afterwards, in Section 2.2 we describe our results that were not
fortunate enough to make it into the thesis. We would like to emphasize that the criteria for entering the
thesis was rather technical than qualitative (journal publication).

2.1 Results Presented in this Thesis

The descriptions of the results is organized according to the papers constituting the thesis.

Prioritized Embedding ([EFN15, EFN18]). An inherent shortcoming of scaling distortion is that the
pairs that enjoy better than worst-case distortion cannot be specified in advance. We introduce a novel
definition of distortion called priority distortion. Here, in addition to the metric space (X, d), we are given
an ordering of the metric points X = (x1,...,x,) arbitrarily in advance, and devise an embedding in which
the distortion of the pair {x;,x;} depends on min{i, j}, regardless of the cardinality of the metric space. In
many cases, we are able to construct embeddings such that the guarantee for low priority pairs is similar to
the worst case guarantee in the classic setting, while the guarantee for high priority pairs are considerably
improved. Hence our results are stronger.

Formally, for a function a : N — Ry, we say that embedding ¢ has prioritized distortion « if for all
1<j<i<n,

dx (zj,2;) < dy (¢(x5), ¢(xi)) < a(j) - dx (x5, ;) -

Partial list of results:

e EMBEDDING INTO {,. Every metric space embeds into ¢, space with prioritized distortion O(log 7)-
By [LLR95], an Q(log j) lower bound on prioritized distortion follows. Thus the result is tight up to
second order factors. We close this gap in the paper presented next [BFN19].

e EMBEDDING INTO #, WITH PRIORITIZED DIMENSION. We say that point x has prioritized dimension
B, if for every j € [n], only the first 8(j) coordinates in ¢(z;) may be nonzero. We showed that every
metric space embeds into £, space with prioritized distortion® polylog(j) and prioritized dimension
polylog(j).

8 Actually in this case the distortion guarantee is changed to %J) cdx (), m) < dy (p(xj), d(x;)) < dx(zj, ;) -

e STOCHASTIC EMBEDDING. Every metric space admits a stochastic embedding into trees with expected
prioritized distortion O(log 7). This result is also tight [Bar96a].

e EMBEDDING INTO A SINGLE TREE. Define ® to be the family of non-decreasing functions o : N — R
such that) ;= 1/a(i) < 1. Then for any finite metric space (X,d) and any a € @, there is a (non-
contractive) embedding of X into a single tree with priority distortion 2c(j). This result is tight (up to
a constant). That is, if ;2 1/a(i) > 1 then embedding into a single tree with prioritized distortion
« is impossible. As an example, this result implies that every metric embeds into a single tree with
prioritized distortion O(j).

e DIsTANCE ORACLE & LABELING. For distance oracles we got several tradeoffs between space and
prioritized distortion. For distance labeling, we offer a construction where in addition to prioritized
distortion, we have prioritized label size. This could be useful in a setting where the high ranked points
participate in numerous computations, as representing these points requires very few coordinates. We
can thus store many of them in the cache or other high speed memory. All the tradeoffs are presented
in the table below.

Distance Oracle

Priority Distortion | Space Query time
0 (ﬁ(gm) O(nlogloglogn) | O(1)
DTHRET] — | O(tn™*177) O([5eETT)
2logj —1 O(nlogn) O(log 7)

Labeling Scheme

Priority Distortion | Prioritized label size

ST 1 | O/ log))
2logj —1 O(log j)
1+e O(%logj) (for graphs excluding a fixed minor)

e ROUTING SCHEME. Given a priority ranking and a parameter ¢ > 1, we construct a routing scheme,
such that the label size of z; is at most logj - [%1 - (1 + o(1)), its header of size logj - (1 + o(1)),
1/t

and it stores a routing table of size O(n'/* - log j). Routing from any vertex into z; will have stretch

at most 4[%1 — 3. In particular, for ¢t = logn we roughly have labels of size log? j, header log j,
routing table O(log j) and stretch O(log j).

On Notions of Distortion and an Almost Minimum Spanning Tree with Constant Average
Distortion [BFN16, BFN19]. In scaling distortion [ABN11] we are guaranteed that most of the pairs
will suffer from small distortion only. In particular, scaling distortion implies constant average distortion.
However, there is no way to choose which pairs will enjoy small distortion. On the other hand, in priority
distortion [EFN18] we may choose the priority, and can guarantee small distortion for points of high impor-
tance. However, most of the pairs might suffer from high distortion. In particular, the average distortion
might be almost as large as the worst case.

At first glance, these two notions of distortion seem very different. The most surprising ingredient of this
work is a general reduction relating the notions of prioritized distortion and scaling distortion. In fact, we
show that prioritized distortion is essentially equivalent to a strong version of scaling distortion called coarse
scaling distortion, in which for every point p and every 0 < € < 1, the distances to the 1 — € fraction of the
farthest points from p are preserved with the desired distortion. We prove that there is a particular priority
7 such that any embedding with a prioritized distortion « (w.r.t. 7) has coarse scaling distortion bounded

by O(a(8/¢€)). We further show a reduction in the opposite direction, informally, that given an embedding
with coarse scaling distortion 7, there exists an embedding with prioritized distortion v(u(j)), where p is a
function such that). (i) = 1 (e.g., u(j) = @(%)) We note that this reduction heavily relies on the property
of coarse scaling distortion embeddings and does not apply to non-coarse scaling embeddings. Yet, most
existing scaling embeddings are indeed coarse. This result implies that all existing priority distortion results
have their coarse scaling distortion counterparts, and vice versa. In particular, this equivalence implies many
new results on refined notions of distortion. See the list below.

A less direct application of the equivalence theorem is a construction that, given a weighted graph,
provides a spanning tree whose weight is at most (14 p) times that of the MST, while having O(1/p) average
distortion. We show this tradeoff to be tight. This result may be of interest for network applications. It is
extremely common in the area of distributed computing that an MST is used for communication between the
network nodes. This allows easy centralization of computing processes and an efficient way of broadcasting
through the network, allowing communication to all nodes at a minimum cost. Yet, when communication is
required, the cost of routing through the MST may be extremely high, even between nearby points. However,
in practice it is the average distortion, rather than the worst-case distortion, that is often used as a practical
measure of quality, as has been a major motivation behind the initial work of [KSW04, ABN11, ABN15].
The MST still fails even in this relaxed measure. Our result overcomes this by promising small routing
cost between nodes on average, while still possessing the low cost of broadcasting through the tree, thereby
maintaining the standard advantages of the MST.

A partial list of new results on refined notions of distortion proved in this paper appears below. The
only one proven directly is the spanner with lightness 1+ p and prioritized distortion O (log) /p. All others
follow from the equivalence theorem.

e EMBEDDING INTO /,,: For p € (0,1) every metric space embeds into £, space with prioritized distortion
O(log j) (removing the loglog factors from [EFN18]).

e DECOMPOSABLE METRIC: For p € (0,1) every 7-decomposable metric space embeds into ¢, with
prioritized distortion O(7*~/?(log j)'/7).

e DISTANCE ORACLE: For every metric space there exists a distance oracle with O(n) space, O(1) query
time and O(log j) priority distortion (improving over [EFN18]).

e GRAPH SPANNERS: Given a weighted graph G there is a:

— Spanner with O(n) edges and O (log j) prioritized distortion.

Spanner with lightness 1+ p and prioritized distortion o} (log 7) /p, for arbitrarily small parameter
p€(0,1).

— Spanner with lightness 1 4+ p and coarse scaling distortion O (log1/€) /p, for arbitrarily small
parameter p € (0,1).

— Spanning tree with lightness 1+ p and scaling distortion O(y/1/€)/p, for arbitrarily small param-
eter p € (0,1).

Steiner Point Removal with distortion O(logk), using the Relaxed-Voronoi algorithm ([Fil18,
Fil19]). In this paper we study the SPR problem on general graphs. The previous works [KKN15, Chel§]
constructed minors using the Ball-growing algorithm. In this paper we devise a novel algorithm called the
Relaxed-Voronoi algorithm. The main contribution of this paper is a new upper bound of O(log k) for the

SPR problem. Furthermore, the Relaxed-Voronoi algorithm is simpler and more intuitive compared to the
Ball-growing algorithm. Both algorithms grow clusters around the terminals, the main difference is that
the Ball-growing algorithm has many iterations, growing slowly from all terminals (almost in parallel),
while the Relaxed-Voronoi algorithm has one round only (each terminal construct a cluster by turn and
done).

Additionally, we devise an efficient implementation of the Relaxed-Voronoi algorithm in almost linear
time O (m 4 min{m,nk}-logn) (m = |E|). While the Ball-growing algorithm can be implemented in
polynomial time, it is not clear how to do so efficiently.

Sparsification of Two-Variable Valued CSPs ([FK17]). A valued constraint satisfaction problem
(VCSP) instance (V,II,w), is a set of variables V', with a set of constraints IT weighted by w. The value
of an assignment of values to the variables is the total weight of the satisfied constrains. Following cut
sparsification, we study the analogous problem of sparsifying VCSP, which was raised in [KK15, Section 4].
Given a VCSP instance, we are interested in a re-weighted sub-instance (V,II' C II,w’) that preserves the
value of the given instance (under every assignment to the variables) within factor 1+ e. Such sparsification
of CSPs can be used to reduce storage space and running time of many algorithms.

We restrict our attention to two-variable constraints (i.e., of arity 2) over boolean domain (i.e., alphabet of
size 2). To simplify matters even further, we focus on the case where all the constraints use the same predicate
P :{0,1}?> — {0,1}. This restricted case of VCSP sparsification already generalizes cut-sparsification —
simply representing every vertex v € V by a variable z,,, and every edge (v,u) € E by the constraint z, # .
Observe that such VCSPs capture also other interesting graph problems, such as the uncut edges (using the
predicate x, = x,,), covered edges (using the predicate x, V x,,) or the directed-cut edges (using the predicate
Ty A\ TZy).

For CSPs consisting of a single predicate P : {0,1}2 — {0,1}, we show that a (1 + ¢)-sparsifier of size
O(n/€?) always exists if and only if [P71(1)| # 1 (i.e., P has 0,2,3 or 4 satisfying inputs). Observe that the
latter condition includes the two graphical examples above of uncut edges and covered edges, but excludes
directed-cut edges. We further show that our sparsity bound above is tight, except for some relatively trivial
predicates P. We then build on our sparsification result to obtain (1+ ¢)-sparsifiers for other CSPs, including
2SAT (which uses 4 predicate types) and 2LIN (which uses 2 predicate types).

In a recent follow-up, Butti and Zivny [BZ19] generalize our result for binary predicates to any finite
domain (as oppose to our {0,1}). They show that a predicate P : D? — {0,1} admits a sparsifier if and
only if there are no A, B C D of size 2 such that P restricted to A x B has a single 1 in its truth table.

2.2 Results: Related, Published During the PhD, but do not appear in the
Thesis

The Greedy Spanner is Existentially Optimal ([FS16]). The greedy spanner is arguably the simplest
and most well-studied spanner construction. Experimental results demonstrate that it is at least as good as
any other spanner construction, in terms of both the size and weight parameters. However, a rigorous proof
for this statement has remained elusive.

In this work we fill in the theoretical gap via a surprisingly simple observation: The greedy spanner is
existentially optimal (or existentially near-optimal) for several important graph families, in terms of both the
size and weight. Roughly speaking, the greedy spanner is said to be existentially optimal (or near-optimal)
for a graph family G if the worst performance of the greedy spanner over all graphs in G is just as good (or
nearly as good) as the worst performance of an optimal spanner over all graphs in G.

Focusing on the weight parameter, the state-of-the-art spanner constructions for both general graphs
[CW18] and doubling metrics [Got15] are complex. Plugging our observation into these results, we conclude
that the greedy spanner achieves near-optimal weight guarantees for both general graphs and doubling
metrics, thus resolving two longstanding conjectures in the area.

Further, we observe that approximate-greedy spanners are existentially near-optimal as well. Conse-
quently, we provide an O(nlogn)-time construction of (1 + €)-spanners for doubling metrics with con-
stant lightness and degree. Our construction improves Gottlieb’s [Got15] construction, whose runtime is
O(nlog2 n) and whose number of edges and degree are unbounded, and remarkably, it matches the state-
of-the-art Euclidean result (due to Gudmundsson et al. [GLNO02]) in all the involved parameters (up to
dependencies on € and the dimension).

Light Spanners for High Dimensional Norms via Stochastic Decompositions ([FN18]). Span-
ners for low dimensional spaces (e.g., Euclidean space of constant dimension, or doubling metrics) are well
understood. This lies in contrast to the situation in high dimensional spaces, where except for the work
of Har-Peled, Indyk and Sidiropoulos [HPIS13]|, who showed that any n-point Euclidean metric has an
O(t)-spanner with O(n'*+"**) edges, little is known.

In this paper we study several aspects of spanners in high dimensional normed spaces. First, we build
spanners for finite subsets of £, with 1 < p < 2. Second, our construction yields a spanner which is both
sparse and light. In particular, we show that any n-point subset of ¢, for 1 < p < 2 has an O(t)-spanner
with n!TO0/") edges and lightness nO/*).

Our results can also be applied more generally to any metric space admitting a certain low diameter
stochastic decomposition. It is known that arbitrary metric spaces have an O(t)-spanner with lightness
O(n'/*). We exhibit the following tradeoff: metrics with decomposability parameter v = v(t) admit an
O(t)-spanner with lightness O(v'/*). For example, metrics with doubling constant A, graphs of genus g, and
graphs of treewidth k, all have spanners with stretch O(t) and lightness O(AY*) (resp. O(g/t), O(k'/?)).
While these families do admit a (1 + €)-spanner, its lightness depends exponentially on the dimension (resp.
log g, log k). Our construction alleviates this exponential dependency, at the cost of incurring larger stretch.

Constructing Light Spanners Deterministically in Near-Linear Time ([ADF'19]). In their
recent breakthrough, Chechik and Wulff-Nilsen [CW18] improved the lightness of the state-of-the-art
(2k — 1)(1 + €)-spanner construction to O,(n"/*) lightness. Soon after, the author and Solomon [FS16]
showed that the classic greedy spanner construction achieves the same bounds. The major drawback of the
greedy spanner is its running time of O(mn!'*"*) (which is faster than [CW18]). This makes the construc-
tion impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only
achieve lightness Q. (kn'/*), even when randomization is used.

The contribution of this paper is fast deterministic spanner constructions, and achieve similar bounds
as the state-of-the-art slower constructions. Our first result is an O (n>*"/*+¢') time spanner construction
which achieves the state-of-the-art bounds. Our second result is an O.(m + nlogn) time construction of
a spanner with (2k — 1)(1 + €) stretch, O(logk - n**"/*) edges and O.(logk - n'/*) lightness. For the case
k = logn this is an exponential improvement in the dependence on k compared to the previous result with
such running time. Finally, for the important special case where k = logn, for every constant ¢ > 0, we
provide an O(m + n'T¢) time construction that produces an O(logn)-spanner with O(n) edges and O(1)
lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a
spanner for any k = w(1). We describe our results and compare them to previous ones in the table below.

10

Stretch Size ‘ Lightness ‘ Construction ‘ Ref
(2k —1)(1 +¢) O (n**+1/F) O (n*/*) n®M) [CW18]
(2k —1)(1 +¢) O (n'*1/k) O (n'/*) O (mn!*1/F) [FS16]
(2k — 1) O (kn'+1/F) no bound O (km) [BS07, RTZ05]
(2k —1)(1+¢) O (kn'+1/F) O (knl/k) O (km + nlogn) [ES16]
O(k) O(log k - n'+1/k) no bound O(m +n -logk) [MPVX15]

(2k —1)(14¢) | O(logk - n'*+1/k) O (k- nl/k) O(m +n-logn) [EN17]
(2k—1)(1+¢€) | O (logk-n**/%) | O (logk-n'/*) | O(m+n-logn) [ADF*19]
(2k — 1)(1 +¢) O (n'+1/F) O (n!/%) O(n?+1/k+e") [ADF*19]
O(k) O (ni+1/%) O (n/*) | O (m+nt++1/k) | [ADF*19]
O(logn)/d O (n) 1+46 o) (m + n1+€/) [ADF*19]

To achieve our constructions, we show a novel deterministic incremental approximate distance oracle.
Our new oracle is crucial in our construction, as known randomized dynamic oracles require the assumption
of a non-adaptive adversary. This is a strong assumption, which has seen recent attention in prolific venues.
Our new oracle allows the order of the edge insertions to not be fixed in advance, which is critical as our
spanner algorithm chooses which edges to insert based on the answers to distance queries. We believe our
new oracle is of independent interest.

Ramsey Spanning Trees and their Applications ([ACE'18]).
the largest subset S of a metric space that can be embedded into an ultrametric (more generally into ¢3)

The metric Ramsey problem asks for

with a given distortion. Study of this problem was motivated as a non-linear version of Dvoretzky theorem.
Mendel and Naor [MNO7] devised the so called Ramsey Partitions to address this problem, and showed the
algorithmic applications of their techniques to approximate distance oracles and ranking problems.

In this paper we study the natural extension of the metric Ramsey problem to graphs, and introduce the
notion of Ramsey Spanning Trees. We ask for the largest subset S C V of a given graph G = (V| E), such
that there exists a spanning tree of G that has small stretch for S. Applied iteratively, this provides a small
collection of spanning trees, such that each vertex has a tree providing low stretch paths to all other vertices.
The union of these trees serves as a special type of spanner, a tree-padding spanner. We use this spanner
to devise the first compact stateless routing scheme with O(1) routing decision time, and labels which are
much shorter than in all currently existing schemes.

We first revisit the metric Ramsey problem, and provide a new deterministic construction. We prove that

1=1/k which embeds into an ultrametric

for every k, any n-point metric space has a subset S of size at least n
with distortion 8k. We use this result to obtain the state-of-the-art deterministic construction of a distance
oracle. Building on this result, we prove that for every k, any n-vertex graph G = (V, E) has a subset S of

1-1/k

size at least n , and a spanning tree of GG, that has terminal distortion O(kloglogn) w.r.t. S.

Metric embedding via shortest path decompositions ([AFGN18]).
dings of special graph families into ¢, spaces. We devise embeddings for any graph family which admits
“shortest path decompositions” (SPD) of “low depth”. Every (weighted) path graph has an SPD of depth
1. A graph G has an SPD of depth k if after removing some shortest path P, every connected component

In this paper we study embed-

in G\ P has an SPD of depth k — 1. The main result of this paper is that every weighted graph with an
SPD of depth k, is embeddable into ¢, with distortion O(k™{*/»."/2}) " This result is tight for every p > 1.

11

We summarize the implications for various graph families in the table below.

Graph Family ‘ Our results ‘ Previous results ‘
Pathwidth k O(k'/7) (4k)*+1 into £ [LS13]
Treewidth & O((klogn)"/?) O(K'=1/7 . 1og'/P n) [KLMNO04]
O((log(klogn))*=1/7(log'/? n)) [KK16]
Planar O(log”’" n) O(log" n) [Rao99]
H-minor-free O((g(H)logn)"?) | O(|H|*~"71og"”" n) [AGGH14]+[KLMNO04]

For bounded pathwidth graphs we provide super-exponential improvement for the case p = 1, while
having completely new results for every p > 1. For bounded treewidth graphs we improve the state of the
art for the case where p > 2. For minor free graphs we provide improvement for large enough values of p.
Finally, for planar graphs we just re-proved the celebrated result of Rao, while using completely different
techniques.

Relaxed Voronoi: A Simple Framework for Terminal-Clustering Problems ([FKT19]). This is
a follow-up paper to [Fil19]. We used the Relaxed-Voronoi framework presented there to reprove three
known algorithmic bounds for terminal-clustering problems. In this genre of problems, the input is a metric
space (X, d) (possibly arising from a graph) and a subset of terminals K C X, and the goal is to partition
the points X such that each part, called a cluster, contains exactly one terminal (possibly with connectivity
requirements) so as to minimize some objective. The three bounds we reprove are for Steiner Point Removal
on trees [Gup01], for Metric 0-Extension in bounded doubling dimension [LNO03], and for Connected Metric
0-Extension [EGK™T14].

The Relaxed-Voronoi framework was already employed successfully to provide state-of-the-art results
for terminal-clustering problems on general metrics [CKRO1, Fil19]. However, for restricted families of
metrics, e.g., trees and doubling metrics, only more complicated, ad-hoc algorithms are known. Our main
contribution is to demonstrate that the Relaxed-Voronoi algorithm is applicable to restricted metrics, and
actually leads to relatively simple algorithms and analyses.

3 Summary, Discussion and Open Problems

Classically, most of the results in metric embedding theory, and more generally in theoretical computer
science, are concerned with analyzing the worst case scenario. One reason is that it is usually easier to
rigorously analyze worst case, while it is much harder to give a more precise description of richer behaviors.
This approach often gives overwhelming importance to outliers that essentially could be neglected. On the
other hand, industry and more practically oriented fields of study, are interested in “better descriptions” of
performance, and are not willing to be satisfied with worst case only. However, their analysis is typically
based on experiments, while the algorithms are just heuristics. In other words, they sometimes lack a stable
theoretical foundation. Understanding this phenomena and giving rigorous explanations is a fascinating
theoretical question. Even more importantly, once a phenomenon is fully understood, we gain a much
stronger advantage using it.

The most famous example is the Simplex algorithm for Linear programming. The Simplex algorithm has
been used very successfully in the industry since the late 1940s. However, it was shown that in the worst
case its running time is exponential. It took some time, an only in the early 1980s was a polynomial time
algorithm for linear programming discovered. Nevertheless, the industry kept using the Simplex algorithm,
as apparently in practice it is much more efficient. The Simplex algorithm lacked any theoretical explanation
for its excellent performance. Finally, Spielman and Teng came up with a smooth analysis for the Simplex

12

algorithm. They proved that the cases where the runtime of the Simplex algorithm is exponential are isolated
and essentially negligible. More formally, they show that given a linear programming instance, if we add
random small perturbations to the constraints, then w.h.p. the Simplex will run in only polynomial time.

The main theme of this thesis is the construction of metric embedding with refined guarantees. That
is, our goal is to give rigorous theorems explaining a more subtle behavior than simply worst case. Indeed,
we proved some theorems that cannot be described using the crude notion of worst case. We started by
defining prioritized distortion. We constructed various embeddings with prioritized distortion, emphasizing
the phenomenon that generally, the distortion could be a function of the relative ranking, rather than the
same worst case for all points. Further, we study the previously introduced scaling distortion. Even though
intuitively priority and (coarse) scaling distortion significantly differ, we prove that they are essentially
equivalent. This equivalence theorem implies many new results on refined embeddings. Another interesting
application is the construction of a tree with 1+ p lightness and O(1/p) average distortion for every p € (0,1).

Next we turn to study the fundamental question of Steiner point removal. Consider k£ terminals in some
huge planar graph. Is there a planar graph supported only on these terminals that (approximately) preserves
the distances between terminals? What is the best possible distortion? While we were not able to answer
this question, we provide an O(log k) upper bound for general graphs (for SPR), which is also the best known
for planar graphs and for the question above.

The best known lower bound for the SPR problem is 8 [CXKRO06]. This bound is achieved using the
unweighted full binary tree with the leaves being the terminals and depth tending to infinity. Once we
analyze more complicated graph families the possible geometries increase considerably. On the other hand,
we also add edges and therefore increase the possibilities for minor construction. We believe that the increase
in minors overwhelms the increase in geometries. In particular, that trees are indeed the hardest instances,
or not far from it.

Conjecture 1. There is a universal constant o > 1 such that for every weighted graph G = (V, E,w) and
a terminal set K C V, there is a weighted minor of G supported on K only such that for every x,y € K,

dG(l‘vy) < d]\/[(.’l?,y) <a- dG(Ivy) .

Both our framework (Relaxed-Voronoi) and the previously used one (Ball-growing) proceed by creating
random terminal partitions. These partitions are determined using random parameters, which are chosen
with no consideration whatsoever of the input graph G. In contrast, the optimal tree algorithm of [Gup01]
is a deterministic recursive algorithm which makes decisions after considering the tree structure at hand.
It seems that the input-oblivious approach of the Relaxed-Voronoi and the Ball-growing algorithms will
fail to push beyond the log k upper bound. As a conclusion, input-sensitive approaches seem to be more
promising for future attempts to resolve the SPR problem.

In the Relaxed-Voronoi algorithm there are two degrees of freedom: choosing the order of terminals,
and the magnitude of each terminal. In [Fil19] we choose the order arbitrarily, and the magnitudes randomly
with exponential-like distribution. In a follow-up paper with Krauthgamer and Trabelsi [FKT19], we used
the Relaxed-Voronoi algorithm in order to re-prove Gupta’s [Gup01] optimal upper bound of 8. This was
done by deterministically choosing order and magnitudes, where the order depends on the graph’s geometry.
This example demonstrates that one can use the Relaxed-Voronoi algorithm also in an input-sensitive
manner in order to achieve optimal results.

In the final paper presented in this thesis [FK17], we studied sparsification of binary CSPs with domain
of size 2. Our results have been generalized to any finite domain D [BZ19]. As CSPs are broadly used, we
believe that these sparsification results will soon find applications. Moreover, it will be very interesting to

13

generalize these results beyond binary. One special case that has been studied is the sparsification of cut
edges in hypergraphs [KK15, SY19]. Further, Soma and Yoshida used this hypergraph sparsifier in order to
learn and provide succinct representation of sub-modular functions.

We finish with a list of open questions:

e PRIORITIZED JL: Recently, in [MMMR18, NN18] a terminal version of the JL lemma was constructed.
Specifically, given a set K C R% of k terminals, an embedding ¢ : R? — ROC***<*) with terminal
distortion 1 + ¢ was constructed. We would like to get a similar result with prioritized dimension.
Specifically, given a set X C R¢ with priority ordering x1,xs,...,2, , we would like to create an
embedding ¢ : X — ¢y with distortion 1 + e such that +(z;) can be non zero only in the first a(j)
coordinates. For which functions o : N — N is this possible? Clearly for a(j) = j — 1 we can even get
isometry (using rotations). Ideally, we would like to get a(j) = O(logi/e?).

e PRIORITZED SPANNER: In [BFN19] we constructed a spanner with prioritized distortion O(log Jj) and
constant lightness. Could we reduce the prioritized distortion to a clean O(logj)?

e STOCHASTIC EMBEDDING INTO SPANNING TREES: It is known how to embed every n-point metric
space via stochastic embedding into tree metrics with expected distortion O(logn). When the input
is a weighted graph, it might be beneficial to embed it into distribution of spanning trees, instead of
just arbitrary ones. However, here it is only known how to embed with expected distortion O(log n)
[AN12]. Could we embed into a distribution of trees with expected distortion O(logn)?

e SPR: Prove/disprove Conjecture 1. As making progress on the conjecture might be hard, we present
several simpler problems.

— EXPECTED DISTORTION: What distortion parameters could we achieve by stochastic embedding
into a distribution of minors, instead of a single embedding? Currently, for general graphs the
state of the art for usual (worst-case) distortion, and expected distortion for the SPR problem are
the same, O(log k) upper bound and Q(1) lower bound. What are the right bounds for expected
distortion for the SPR problem? For planar graphs for example an O(1) distortion is known.
Could we achieve similar bound for general graphs?

— Special graph families: [BGO08] showed a constant distortion for the SPR problem on outer-planar
graphs. It will be very interesting to achieve better upper bounds for planar graphs, and more
generally for minor-free graphs, bounded treewidth graphs etc. In the expected distortion regime,
an O(1) upper bound is already known [EGK™'14] for these families. Possibly one can use the
Relaxed-Voronoi algorithm with a clever choice of order and magnitudes in order to achieve such
results.

e BEYOND BINARY CSP’s: In our paper on CSP sparsification [FK17], we characterized which binary
predicates with domain of size 2 are sparsifiable. In a recent follow-up [BZ19], this result was generalized
to arbitrary finite domains. However, the case of arity 3 and beyond is open. Could we generalize the
results to higher arities?

References

ttal raham, Yair Bartal, Hubert T.-H. an, Kedar amdhere, Anupam Gupta, Jon M. Kleinberg,

ABCT05] Ittai Abrah Yair B 1, Hubert T.-H. Chan, Kedar Dhamdh A G Jon M. Kleinb
Ofer Neiman, and Aleksandrs Slivkins. Metric embeddings with relaxed guarantees. In FOCS, pages
83—-100. IEEE Computer Society, 2005. 5

14

[ABN11]
[ABN15]

[ACET18]

[ACK™16]

[ADD"93]

[ADF*19]

[AFGN18]

[AG09]

[AGGT14]

[AN12]

[Bar96a]

[Bar96b]

[BBMNT11]

[BFN16]

[BFN19]

[BGOS]

Ittai Abraham, Yair Bartal, and Ofer Neiman. Advances in metric embedding theory. Advances in
Mathematics, 228(6):3026 — 3126, 2011. 5, 7, 8

Ittai Abraham, Yair Bartal, and Ofer Neiman. Embedding metrics into ultrametrics and graphs into
spanning trees with constant average distortion. SIAM J. Comput., 44(1):160-192, 2015. 8

Ittai Abraham, Shiri Chechik, Michael Elkin, Arnold Filtser, and Ofer Neiman. Ramsey spanning trees
and their applications. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1650-1664, 2018. 11

Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff, and Qin Zhang. On
sketching quadratic forms. In Innovations in Theoretical Computer Science, ITCS’16, pages 311-319.
ACM, 2016. 4

I. Althofer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs.
Discrete & Computational Geometry, 9:81-100, 1993. 3

Stephen Alstrup, Sgren Dahlgaard, Arnold Filtser, Morten Stockel, and Christian Wulff-Nilsen. Con-
structing light spanners deterministically in near-linear time. In 27th Annual European Symposium on
Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany., pages 4:1-4:15, 2019. 10,
11

Tttai Abraham, Arnold Filtser, Anupam Gupta, and Ofer Neiman. Metric embedding via shortest path
decompositions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 952-963, 2018. 11

Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model. In 36th International
Colloguium on Automata, Languages and Programming, ICALP ’09, pages 328-338. Springer-Verlag,
2009. 4

Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. Cops, robbers, and
threatening skeletons: padded decomposition for minor-free graphs. In Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31 - June 03, 201/, pages 79-88, 2014. 6, 12

Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch spanning tree. In
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,
USA, May 19 - 22, 2012, pages 395406, 2012. 2, 14

Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In 37th
Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), pages 184-193. IEEE
Comput. Soc. Press, Los Alamitos, CA, 1996. 7

Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In FOCS,
pages 184-193, 1996. 2

Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-competitive
algorithm for the k-server problem. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd
Annual Symposium on, pages 267 —276, oct. 2011. 1

Yair Bartal, Arnold Filtser, and Ofer Neiman. On notions of distortion and an almost minimum
spanning tree with constant average distortion. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016,
pages 873-882, 2016. The embedding of S-decomposable metrics appears in the full version http:
//arxiv.org/abs/1609.08801. 7

Yair Bartal, Arnold Filtser, and Ofer Neiman. On notions of distortion and an almost minimum spanning
tree with constant average distortion. J. Comput. Syst. Sci., 105:116-129, 2019. 6, 7, 14

A. Basu and A. Gupta. Steiner point removal in graph metrics. Unpublished Manuscript, available from
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf, 2008. 4, 14

15

http://arxiv.org/abs/1609.08801
http://arxiv.org/abs/1609.08801
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf

[BK96]
[BK02]
[Bou85]

[BS07]

[BSS14]

[BZ19]

[CDGO6]

[CDNS92]

[CGH16]

[CGN*03]

[Chel3]

[Chel4]

[Chel5]

[Chel§]

[CILVOS]

[CKRO1]

[CW18]

A. A. Benczur and D. R. Karger. Approximating s-t minimum cuts in O(nz) time. In 28th Annual ACM
Symposium on Theory of Computing, pages 47-55. ACM, 1996. 4

Andrés A. Benczir and David R. Karger. Randomized approximation schemes for cuts and flows in
capacitated graphs. CoRR, ¢s.DS/0207078, 2002. 4

J. Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal of Mathe-
matics, 52(1-2):46-52, 1985. 1

Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for computing
sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532-563, 2007. See also
ICALP’03. 11

Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers. SIAM
Review, 56(2):315-334, 2014. 4

Silvia Butti and Stanislav Zivny. Sparsification of binary csps. In 36th International Symposium on
Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, pages
17:1-17:8, 2019. 9, 13, 14

Hubert T.-H. Chan, Michael Dinitz, and Anupam Gupta. Spanners with slack. In Algorithms - ESA
2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings, pages
196-207, 2006. 5

B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on graph spanners. In Proc.
of 8th SOCG, pages 192-201, 1992. 3

Yun Kuen Cheung, Gramoz Goranci, and Monika Henzinger. Graph minors for preserving terminal
distances approximately - lower and upper bounds. In 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 131:1-131:14, 2016. 4

Chandra Chekuri, Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. Embedding
k-outerplanar graphs into ¢1. In SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 527-536. Society for Industrial and Applied Mathematics, 2003. 5

Shiri Chechik. Compact routing schemes with improved stretch. In ACM Symposium on Principles of
Distributed Computing, PODC ’18, Montreal, QC, Canada, July 22-24, 2013, pages 33-41, 2013. 3

Shiri Chechik. Approximate distance oracles with constant query time. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, STOC ’14, pages 654—663, New York, NY, USA, 2014. ACM.
2

Shiri Chechik. Approximate distance oracles with improved bounds. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 1-10, 2015. 2

Yun Kuen Cheung. Steiner point removal - distant terminals don’t (really) bother. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1353-1360, 2018. 4, 8

Amit Chakrabarti, Alexander Jaffe, James R. Lee, and Justin Vincent. Embeddings of topological
graphs: Lossy invariants, linearization, and 2-sums. In 49th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 761-770, 2008. 5

Gruia Calinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for the 0-extension
problem. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, SODA
'01, pages 8-16, Philadelphia, PA, USA, 2001. Society for Industrial and Applied Mathematics. 12

Shiri Chechik and Christian Wulff-Nilsen. Near-optimal light spanners. ACM Trans. Algorithms,
14(3):33:1-33:15, 2018. 3, 10, 11

16

[CXKRO6]

[dCHS11]

[DHN93]

[EESTO5]

[EFN15]

[EFN17]
[EFN18]

[EGK™14]

[EN17]

[EN18]

[ENS14]

[Erd64]
[ES16]

[FHHP11]

[Fil18]

[Fil19]

[FK17]

T.-H. Chan, Donglin Xia, Goran Konjevod, and Andrea Richa. A tight lower bound for the steiner point
removal problem on trees. In Proceedings of the 9th International Conference on Approzimation Algo-
rithms for Combinatorial Optimization Problems, and 10th International Conference on Randomization
and Computation, APPROX’06/RANDOM’06, pages 70-81, Berlin, Heidelberg, 2006. Springer-Verlag.
4,13

Marcel K. de Carli Silva, Nicholas J. A. Harvey, and Cristiane M. Sato. Sparse sums of positive semidef-
inite matrices. CoRR, abs/1107.0088, 2011. 4

Gautam Das, Paul J. Heffernan, and Giri Narasimhan. Optimally sparse spanners in 3-dimensional
euclidean space. In Proceedings of the Ninth Annual Symposium on Computational GeometrySan Diego,
CA, USA, May 19-21, 1993, pages 53—62, 1993. 3

Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-stretch spanning trees.
In STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
494-503, New York, NY, USA, 2005. ACM Press. 2

Michael Elkin, Arnold Filtser, and Ofer Neiman. Prioritized metric structures and embedding. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 489-498, 2015. 6

Michael Elkin, Arnold Filtser, and Ofer Neiman. Terminal embeddings. Theor. Comput. Sci., 697:1-36,
2017. 5

Michael Elkin, Arnold Filtser, and Ofer Neiman. Prioritized metric structures and embedding. SIAM
J. Comput., 47(3):829-858, 2018. 6, 7, 8

Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Récke, Inbal Talgam-Cohen, and Kunal
Talwar. Vertex sparsifiers: New results from old techniques. STAM J. Comput., 43(4):1239-1262, 2014.
4,12, 14

Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners and emulators.

CoRR, abs/1607.08337, Version 2, 2017. 11

Michael Elkin and Ofer Neiman. Near isometric terminal embeddings for doubling metrics. In 84th In-
ternational Symposium on Computational Geometry, SoCG 2018, June 11-14, 2018, Budapest, Hungary,
pages 36:1-36:15, 2018. 5

Michael Elkin, Ofer Neiman, and Shay Solomon. Light spanners. In Proc. of 41th ICALP, pages 442-452,
2014. 3

Paul Erdés. Extremal problems in graph theory. In Proc. of Sympos. Smolenice, pages 29-36, 1964. 3

Michael Elkin and Shay Solomon. Fast constructions of lightweight spanners for general graphs.
12(3):29:1-29:21, 2016. See also SODA’13. 11

Wai Shing Fung, Ramesh Hariharan, Nicholas J.A. Harvey, and Debmalya Panigrahi. A general frame-
work for graph sparsification. In 43rd Annual ACM Symposium on Theory of Computing, pages 71-80.
ACM, 2011. 4

Arnold Filtser. Steiner point removal with distortion O(log k). In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 1361-1373, 2018. 8

Arnold Filtser. Steiner point removal with distortion o(log k) using the relaxed-voronoi algorithm. SIAM
J. Comput., 48(2):249-278, 2019. 8, 12, 13

Arnold Filtser and Robert Krauthgamer. Sparsification of two-variable valued constraint satisfaction
problems. SIAM J. Discrete Math., 31(2):1263-1276, 2017. 9, 13, 14

17

[FKT19]

[FN18]

[FRT04]

[FS16]

[GLNO02]

[GNRS04]

[Got15]

[GPPRO]

[Gup01]

[HPIS13]

[HSTS6]
[JL84]

[KK15]

[KK16]

[KKM*12]

[KKN15]
[KLO2]

[K1e02]

Arnold Filtser, Robert Krauthgamer, and Ohad Trabelsi. Relaxed voronoi: A simple framework for
terminal-clustering problems. In 2nd Symposium on Simplicity in Algorithms, SOSA@QSODA 2019,
January 8-9, 2019 - San Diego, CA, USA, pages 10:1-10:14, 2019. 12, 13

Arnold Filtser and Ofer Neiman. Light spanners for high dimensional norms via stochastic decomposi-
tions. In 26th Annual FEuropean Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinksi,
Finland, pages 29:1-29:15, 2018. 10

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. J. Comput. Syst. Sci., 69(3):485-497, November 2004. 2

Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. In Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July
25-28, 2016, pages 9-17, 2016. 3, 9, 10, 11

Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan. Fast greedy algorithms for con-
structing sparse geometric spanners. SIAM J. Comput., 31(5):1479-1500, 2002. 10

Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. Cuts, trees and ¢;s-embeddings
of graphs. Combinatorica, 24(2):233-269, 2004. 1, 5, 6

Lee-Ad Gottlieb. A light metric spanner. In Proc. of 56th FOCS, pages 759-772, 2015. 3, 10

Cyril Gavoille, David Peleg, Stephane Perennes, and Ran Raz. Distance labeling in graphs. In Proceedings
of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA.,
pages 210-219, 2001. 2

Anupam Gupta. Steiner points in tree metrics don’t (really) help. In Proceedings of the Twelfth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, pages 220227, Philadelphia, PA, USA,
2001. Society for Industrial and Applied Mathematics. 4, 12, 13

Sariel Har-Peled, Piotr Indyk, and Anastasios Sidiropoulos. Euclidean spanners in high dimensions. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13,
pages 804-809. SIAM, 2013. 10

Cor A. J. Hurkens, Alexander Schrijver, and Eva Tardos. On fractional multicommodity flows and
distance functions. Discrete Mathematics, 73:99-109, 1986. 5

William Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
Contemporary Mathematics, 26:189-206, 1984. 1

Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In Proceedings
of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel,
January 11-13, 2015, pages 367-376, 2015. 4, 9, 14

Lior Kamma and Robert Krauthgamer. Metric decompositions of path-separable graphs. Algorithmica,
pages 1-9, 2016. 12

Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Talwar. Efficient distributed
approximation algorithms via probabilistic tree embeddings. Distributed Computing, 25(3):189-205,
2012. 1

Lior Kamma, Robert Krauthgamer, and Huy L. Nguyen. Cutting corners cheaply, or how to remove
steiner points. STAM J. Comput., 44(4):975-995, 2015. 4, 8

David R. Karger and Matthew S. Levine. Random sampling in residual graphs. In Proceedings of the
Symposium on Theory of Computing (STOC), pages 63-66, 2002. 4

Philip N. Klein. Preprocessing an undirected planar network to enable fast approximate distance queries.
In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8,
2002, San Francisco, CA, USA., pages 820-827, 2002. 2

18

[KLMNO4]

[KNZ14]

[KP12]

[KSW04]

[LLR95]

[LNO3]

[LR10]

[LS10]

[LS13]

[Mad10]

[Mat02]
[MMMR18]

[MNO7]

[MPVX15]

[NN18]

[NR13]

[0S81]

[Pel99]

[Rab08]

Robert Krauthgamer, James R. Lee, Manor Mendel, and Assaf Naor. Measured descent: A new embed-
ding method for finite metrics. In 45th Annual IEEE Symposium on Foundations of Computer Science,
pages 434-443. IEEE, October 2004. 5, 6, 12

Robert Krauthgamer, Huy L. Nguyen, and Tamar Zondiner. Preserving terminal distances using minors.
SIAM J. Discrete Math., 28(1):127-141, 2014. 4

Michael Kapralov and Rina Panigrahy. Spectral sparsification via random spanners. In 3rd Innovations
in Theoretical Computer Science Conference, pages 393-398. ACM, 2012. 4

Jon M. Kleinberg, Aleksandrs Slivkins, and Tom Wexler. Triangulation and embedding using small sets
of beacons. In FOCS, pages 444-453, 2004. 5, 8

Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215-245, 1995. 1, 6

James R. Lee and Assaf Naor. Metric decomposition, smooth measures, and clustering. Unpublished
Manuscript, available from https://www.math.nyu.edu/~naor/homepage’,20files/cluster.pdf, 2003.
12

James R. Lee and Prasad Raghavendra. Coarse differentiation and multi-flows in planar graphs. Discrete
& Computational Geometry, 43(2):346-362, 2010. 5

James R. Lee and Anastasios Sidiropoulos. Genus and the geometry of the cut graph. In Proceedings of
the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas,
USA, January 17-19, 2010, pages 193-201, 2010. 6

James R. Lee and Anastasios Sidiropoulos. Pathwidth, trees, and random embeddings. Combinatorica,
33(3):349-374, 2013. 5, 6, 12

Aleksander Madry. Fast approximation algorithms for cut-based problems in undirected graphs. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 245-254. IEEE,
2010. 4

Jiri Matousek. Lectures on discrete geometry. Springer-Verlag, New York, 2002. 1

Sepideh Mahabadi, Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Nonlinear
dimension reduction via outer bi-lipschitz extensions. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages
1088-1101, 2018. 5, 14

Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. Journal of the
European Mathematical Society, 9(2):253-275, 2007. 11

Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms for
spanners and hopsets. In Proc. 27th, pages 192-201, 2015. 11

Shyam Narayanan and Jelani Nelson. Optimal terminal dimensionality reduction in euclidean space.
CoRR, abs/1810.09250, 2018. 5, 14

I. Newman and Y. Rabinovich. On multiplicative A-approximations and some geometric applications.
SIAM Journal on Computing, 42(3):855-883, 2013. 4

Haruko Okamura and P.D. Seymour. Multicommodity flows in planar graphs. Journal of Combinatorial
Theory, Series B, 31(1):75 — 81, 1981. 5

David Peleg. Proximity-preserving labeling schemes and their applications. In Graph-Theoretic Concepts
in Computer Science, 25th International Workshop, WG 99, Ascona, Switzerland, June 17-19, 1999,
Proceedings, pages 30-41, 1999. 2

Yuri Rabinovich. On average distortion of embedding metrics into the line. Discrete & Computational
Geometry, 39(4):720-733, 2008. 6

19

https://www.math.nyu.edu/~naor/homepage%20files/cluster.pdf

[Rao99]

[RTZ05]

[She09]

[Smi09]

[SS11]

[ST04a]

[STO4b]

[ST11]

[SY19]

[ThoO1]

[TZ01a]

[TZO1b]
[WN13]

Satish Rao. Small distortion and volume preserving embeddings for planar and Euclidean metrics. In
Proceedings of the Fifteenth Annual Symposium on Computational Geometry, Miami Beach, Florida,
USA, June 13-16, 1999, pages 300-306, 1999. 5, 12

Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate distance
oracles and spanners. In Proceedings of the 32Nd International Conference on Automata, Languages and
Programming, ICALP’05, pages 261-272, Berlin, Heidelberg, 2005. Springer-Verlag. 11

Jonah Sherman. Breaking the multicommodity flow barrier for O(y/logn)-approximations to sparsest
cut. In Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 363-372,
2009. 4

Michiel H. M. Smid. The weak gap property in metric spaces of bounded doubling dimension. In Efficient
Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pages 275289,
2009. 3

Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM J. Com-
put., 40(6):1913-1926, dec 2011. 4

Yuval Shavitt and Tomer Tankel. Big-bang simulation for embedding network distances in Euclidean
space. IEEE/ACM Trans. Netw., 12(6):993-1006, 2004. 1

D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,
and solving linear systems. In 36th Annual ACM Symposium on Theory of Computing, pages 81-90.
ACM, 2004. 4

Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput., 40(4):981—
1025, jul 2011. 4

Tasuku Soma and Yuichi Yoshida. Spectral sparsification of hypergraphs. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 2570-2581, 2019. 14

Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs. In /2nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas,
Nevada, USA, pages 242-251, 2001. 2

M. Thorup and U. Zwick. Approximate distance oracles. In 33"% Annual ACM Symposium on Theory
of Computing (STOC), pages 183-192, Hersonissos, Crete, Greece, July 2001. 2

Mikkel Thorup and Uri Zwick. Compact routing schemes. In SPAA, pages 1-10, 2001. 3

Christian Wulff-Nilsen. Approximate distance oracles with improved query time. In Proceedings of the
Twenty-Forth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13. SIAM, 2013. 2

20

Part 11
Prioritized Metric Structures and Embedding

21

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. COMPUT. (© 2018 Society for Industrial and Applied Mathematics
Vol. 47, No. 3, pp. 829-858

PRIORITIZED METRIC STRUCTURES AND EMBEDDING*

MICHAEL ELKINT, ARNOLD FILTSER', AND OFER NEIMANT

Abstract. Metric data structures (distance oracles, distance labeling schemes, routing schemes)
and low-distortion embeddings provide a powerful algorithmic methodology, which has been success-
fully applied for approximation algorithms [N. Linial, E. London, and Y. Rabinovich, Combinatorica,
15 (1995), pp. 215-245], online algorithms [N. Bansal et al., Proceedings of the 52th Annual IEEE
Symposium on Foundations of Computer Science, FOCS ’08, IEEE Computer Society, Washing-
ton, DC, 2011, pp. 267-276], distributed algorithms [M. Khan et al., Distrib. Comput., 25 (2012),
pp. 189-205], and for computing sparsifiers [Y. Shavitt and T. Tankel, IEEE/ACM Trans. Netw., 12
(2004), pp. 993-1006]. However, this methodology appears to have a limitation: the worst-case per-
formance inherently depends on the cardinality of the metric, and one could not specify in advance
which vertices/points should enjoy a better service (i.e., stretch/distortion, label size/dimension)
than that given by the worst-case guarantee. In this paper we alleviate this limitation by devising a
suite of prioritized metric data structures and embeddings. We show that given a priority ranking
(z1,x2,...,2n) of the graph vertices (resp., metric points) one can devise a metric data structure
(resp., embedding) in which the stretch (resp., distortion) incurred by any pair containing a vertex
x; will depend on the rank j of the vertex. We also show that other important parameters, such as
the label size and (in some sense) the dimension, may depend only on j. In some of our metric data
structures (resp., embeddings) we achieve both prioritized stretch (resp., distortion) and label size
(resp., dimension) simultaneously. The worst-case performance of our metric data structures and
embeddings is typically asymptotically no worse than of their nonprioritized counterparts.

Key words. metric embedding, distance oracles, routing, priorities
AMS subject classifications. 68W01, 68P05

DOI. 10.1137/17M1118749

1. Introduction. The celebrated distance oracle of Thorup and Zwick [TZ05]
enables one to preprocess an undirected weighted n-vertex graph G = (V, E) so as to
produce a data structure (also known as distance oracle) of size O(t - n'+1/%) (for a
parameter t = 1,2,...) that supports distance queries between pairs u,v € V in time
O(t) per query. (The query time was recently improved to O(1) by [Chel4, Wull3],
and the size to O(n'T1/*) by [Chel5].) The distance estimates provided by the oracle
are within a factor of 2¢t — 1 from the actual distance dg(u, v) between v and v in G.
The approximation factor (2¢ — 1 in this case) is called the stretch. Distance oracles
can serve as an example of a metric data structure; other very well-studied examples
include distance labeling [Pel99, GPPRO1] and routing [TZ01, AP92]. Thorup—Zwick’s
oracle can also be converted into a distance-labeling scheme: each vertex is assigned
a label of size O(n'/t . loglfl/t n) so that given labels of u and v the query algorithm
can provide a (2t — 1)-approximation of d¢g(u,v). Moreover, the oracle also gives rise
to a routing scheme [TZ01] that exhibits a similar trade-off.

A different but closely related thread of research concerns low-distortion embed-
dings. A celebrated theorem of Bourgain [Bou86] asserts that any n-point metric
(X,d) can be embedded into an O(logn)-dimensional Euclidean space with distortion

*Received by the editors February 27, 2017; accepted for publication (in revised form) February
9, 2018; published electronically June 14, 2018. A preliminary version of this paper was published
in STOC’15, ACM, New York, 2015, pp. 489-498 [EFN15].
http://www.siam.org/journals/sicomp/47-3/M111874.html
Funding: The first author’s research was supported by the ISF grant (724/15). The third
author’s research was supported in part by ISF grant (523/12) and by BSF grant 2015813.
fDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
(elkinm@cs.bgu.ac.il, arnoldf@cs.bgu.ac.il, neimano@cs.bgu.ac.il).

829

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

830 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

O(logn). (Roughly speaking, distortion and stretch are the same thing. See section 2
for formal definitions.) Fakcharoenphol, Rao, and Talwar [FRT04] (following Bartal
[Bar96, Bar98]) showed that any metric (X, d) embeds into a distribution over trees
(in fact, ultrametrics) with expected distortion O(logn).

These (and many other) important results are not only appealing from a mathe-
matical perspective, but they also were found extremely useful for numerous applica-
tions in theoretical computer science and beyond [LLR95, BBMN11, KKM+12, ST04].
A natural disadvantage is the dependence of all the relevant parameters on n, the car-
dinality of the input graph/metric. However, all these results are either completely
tight, or very close to being completely tight. In order to address this issue, metric
data structures and embeddings in which some pairs of vertices/points enjoy better
stretch/distortion or with improved label size/dimension were developed. Specifi-
cally, [KSW09, ABC+05, ABN11, CDGO06] studied embeddings and distance oracles
in which the distortion/stretch of at least 1 — e fraction of the pairs is improved
as a function of e, either for a fixed € or for all ¢ € [0, 1] simultaneously (e.g., for
a fixed €, embeddings into Euclidean space of dimension O(log1/e) with distortion

O(log(1/e€)), or a distance oracle with stretch 2[¢ - %] + 1 for 1 — € fraction
of the pairs). Also, [ABNO7, SS09, AC14] devised embeddings and distance oracles
that provide distortion/stretch O(logk) for all pairs (z,y) of points such that y is
among the k closest points to z, and distance labeling schemes that support queries
only between k-nearest neighbors, in which the label size depends only on k rather
than n.

An inherent shortcoming of these results is, however, that the pairs that enjoy
better than worst-case distortion cannot be specified in advance. In this paper we
alleviate this shortcoming and devise a suite of prioritized metric data structures
and low-distortion embeddings. Specifically, we show that one can order the graph

vertices V. = (z1,...,2y,) arbitrarily in advance, and devise metric data structures
(i.e., oracles/labelings/routing schemes) that, for a parameter ¢ = 1,2,..., provide
stretch 2[¢ - llggm — 1 (instead of 2t — 1) for all pairs involving z;,' while using the

same space as corresponding nonprioritized data structures! In some cases the label
size can be simultaneously improved for the high priority points, as described in the
following.

The same phenomenon occurs for low-distortion embeddings. We devise an em-
bedding of general metrics into an O(log n)-dimensional Euclidean space that provides
prioritized distortion O(log j - (loglog j)*/?€), for any constant ¢ > 0 (i.e., the distor-
tion for all pairs containing z; is O(log j - (log log 7)/2+€)). Similarly, our embedding
into a distribution of trees provides prioritized expected distortion O(log j).

We introduce a novel notion of improved dimension for high priority points. In
general we cannot expect that the dimension of a Euclidean embedding with low
distortion (even prioritized) will be small (as Euclidean embedding into dimension
D has worst-case distortion of Q(n'/P -logn) for some metrics [ABN11]). What we
can offer is an embedding in which the high ranked points have only a few “active”
coordinates. That is, only the first O(poly(log j)) coordinates in the image of =; will be
nonzero, while the distortion is also bounded by O(poly(log j)). This could be useful
in a setting where the high ranked points participate in numerous computations, then
since representing these points requires very few coordinates, we can store many of

1In the case j = 1, the stretch is 1. For ease of presentation, we ignore this special case in the
statement of the results—the stretch/distortion for z1 will always be at most the value guaranteed
for zz. (In the technical sections we do provide a separate analysis for 1 when needed.)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 831

them in the cache or other high speed memory. We remark that our framework is the
first which allows simultaneously improved distortion and dimension (or improved
stretch and label size) for the high priority points, while providing a meaningful
guarantee for all pairs.

We have a construction of prioritized distance oracles that exhibits a qualita-
tively different behavior than our aforementioned oracles. Specifically, we devise a
distance oracle with space O(nloglogn) (resp., O(nlog* n)) and prioritized stretch

logn
(log(n/j)
e > 0, the prioritized stretch of both these oracles is O(1). The query time is

O(1). These oracles are, however, not path reporting (a path-reporting oracle can
return an actual approximate shortest path in the graph, in time proportional to
its length). We also devise a path-reporting prioritized oracle, which was men-
tioned above: it has space O(t - n**/t), stretch 2[t - 1641 — 1, and query time

logn
log j
Ot 1ogw)- L . o

This second oracle can be distributed as a labeling scheme, in which not only the

stretch 2t - 1185 7]1 1 —1 is prioritized, but also the label size is smaller for high priority

logn
) (resp., 20(10g(i/7>)). Observe that as long as j < n'~¢ for any fixed

points: it is O(n'/t -log j) rather than the nonprioritized O(n'/* -logn). Our routing

scheme has prioritized stretch 4[¢- llgg 27 —1 (instead of 4¢—5), the routing tables have

size O(n'/* -logj) (instead of O(n'/t -logn)), and labels have size O(logj - ftllg%ﬂ)
(instead of O(¢ - logn)).

We also consider the dual setting in which the stretch is fixed, and label size A(j)
of x; is smaller when j <« n. The function A(j) will be called prioritized label size.
Specifically, with prioritized label size O(j'/* - log j) we can have stretch 2¢t — 1. For
certain points on the trade-off curve we can even have both stretch and label size
prioritized simultaneously! In particular, a variant of our distance labeling scheme
provides a prioritized stretch 2[log j]—1 and prioritized label size O(log j). For routing
we have similar guarantees independent of n. We also devise a distance labeling
scheme for graphs that exclude a fixed minor with stretch 1+ € and prioritized label
size O(1/e -log j) (extending [AG06, ThoO1]).

Another notable result in this context is our prioritized embedding into a sin-
gle tree. It is well known that any metric can be embedded into a single domi-
nating tree with linear distortion, and that it is tight [RR98]. We show that any
n-point metric (X,d) enjoys an embedding into a single dominating tree with pri-
oritized distortion a(j) if and only if the sum of reciprocals 3772, 1/a(j) converges.
yLo1

In particular, prioritized distortion a(j) = j - logj - (loglog j is admissible, while
a(j) = j-logj - loglogj is not, i.e., both our upper and lower bounds are tight.
This lower bounds stands out as it shows that it is not always possible to replace
nonprioritized distortion of a(n) by a prioritized distortion «(j). For single-tree em-
bedding the nonprioritized distortion is linear, while the prioritized one is provably
superlinear.

1.1. Overview of techniques. We elaborate briefly on the methods used to
obtain our results.

Distance oracles, distance labeling, and routing. We have two basic techniques
for obtaining distance oracles with prioritized stretch. The first one is manifested in
Theorem 5, and the idea is as follows: partition the vertices into sets according to
their priority, and for each set K C V, apply as a black box a known distance oracle
on K, while for the other vertices store the distance to their nearest neighbor in K.
We show that the stretch of pairs in K x V is only a factor of 2 worse than the one

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

832 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

guaranteed for K x K. Furthermore, we exploit the fact that for sets K of small
size, we can afford a very small stretch and still maintain a small space. The exact
choice of the partitions enables a range of trade-offs between space and prioritized
stretch.

Our second technique for an oracle with prioritized stretch, used in Theorem 6,
is based on a non-black-box variation of the [TZ05] oracle. In their construction for
stretch 2t —1, a (nonincreasing) sequence of ¢t —1 sets is generated by repeated random
sampling. We show that if a vertex is chosen i times, then the query algorithm can be
changed to improve the stretch from 2¢—1 to 2(t—i)—1, for any pair containing such a
vertex. This observation only shows that there exists a priority ranking for which the
oracle has the required prioritized stretch. In order to handle any given ranking, we
alter the construction by forcing high ranked elements to be chosen numerous times,
and show that this increases the space usage by at most a factor of 2.

In order to build a distance labeling scheme out of their distance oracle, [TZ05] pay
an overhead of O(log' ™"/ n) in the label size (which essentially comes from applying
concentration bounds). Attempting to circumvent this logarithmic dependence on n,
in Theorem 7 we give a different bound on the deviation probability that depends on
the priority ranking of the point. Thus the overhead in the label size for the jth point
in the ranking is only O(logj). To derive our result in Theorem 8, which has fixed
stretch 2t — 1 for all pairs, but fully prioritized label size O(j/*1log), we combine
this probabilistic argument with an iterative application of a source restricted distance
labeling of [RTZ05].

Most results on distance labeling for bounded treewidth graphs, planar graphs,
and graphs excluding a fixed minor, are based on recursively partitioning the graph
into small pieces using small separators (as in [LT79]). The label of a vertex essentially
consists of the distances to (some of) the vertices in the separator. In order to obtain
prioritized label size, such as those given in Theorems 10 and 11, high ranked vertices
should participate in few iterations. To this end, we define multiple phases of applying
separators, where each phase tries to separate only a certain subset of the vertices
(starting with the highest ranked, and finishing in the lowest). This way high ranked
vertices will belong to a separator after a few levels, thus their label will be short.

Tree routing of [TZ01] is based on categorizing tree vertices as either heavy or
light, depending on the size of their subtree. Our prioritized tree routing assigns
each vertex a weight which depends on its priority, and a vertex is heavy if the sum
of weights of its descendants is sufficiently large. This idea paves the way to our
prioritized routing scheme for general graphs as well.

Embeddings. 1t is folklore that a metric minimum spanning tree (henceforth,
MST) achieves distortion n — 1. For our prioritized embedding of general metrics
(X, d) into a single tree we consider a complete graph G = (X, ()2()) with weight func-
tion that depends on the priority ranking. Specifically, edges incident on high priority
points get higher weights. We then compute an MST in this (generally nonmetric)
graph, and show that, given a certain convergence condition on the priority ranking,
this MST provides a desired prioritized single-tree embedding. Remarkably, we also
show that when this condition is not met, no such an embedding is possible even for
the metric induced by C,,. Hence this embedding is tight.

Our probabilistic embedding into trees with prioritized expected distortion in
Theorem 4 is based on the construction of [FRT04]. The method of [FRT04] involves
sampling a random permutation and a random radius, then using these to create a
hierarchical partitioning of the metric from which a tree is built. We make the obser-
vation that, in some sense, the expected distortion of a point depends on its position

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 833

in the permutation. Rather than choosing a permutation uniformly at random, we
choose one which is strongly correlated with the given priority ranking. One must be
careful to allow sufficient randomness in the permutation choice so that the analysis
can still go through, while guaranteeing that high ranked points will appear in the
first positions of the permutation.

The embedding of Theorem 14 for arbitrary metrics (X, d) into Euclidean space
(or any ¢, space) with prioritized distortion uses similar ideas. We partition the points
into sets according to the priorities; for every such a subset K apply as a black box
the embedding of [Bou85]. We show that since the embedding has certain properties,
it can be extended in a Lipschitz manner to all of the metric, while having distortion
guarantee for any pair in K x X.

The result of Theorem 15, which gives prioritized distortion and dimension, is
more technically involved. In order to ensure that high priority points are mapped
to the zero vector in the embeddings tailored for the lower priority points, we change
Bourgain’s embedding, which is defined as distances to randomly chosen sets. Roughly
speaking, when creating the embedding for a set K, we add all the higher ranked points
to the random sets. As a result, the original analysis does not apply directly, and
we turn to a subtle case analysis to bound the distortion; see section 8.2 for more
details.

Subsequent work. Following our work, [BEN16] exhibited a tight connection be-
tween embeddings with prioritized distortion and a certain type of scaling distor-
tion called coarse scaling distortion. Using this connection and a result of [ABN11],
[BFN16] showed an embedding of general metrics into an O(logn)-dimensional Eu-
clidean space (or any ¢, space) with asymptotically optimal prioritized distortion
O(log j), improving our bound of O(log j(loglog j)*/2*€), for any € > 0.

1.2. Organization. After a few preliminary definitions, we show the single-tree
prioritized embedding in section 3, and the probabilistic version in section 4. In
section 5 we discuss our prioritized distance oracles, and in section 6 the prioritized
labeling schemes. The prioritized routing is shown in section 7. Finally, in section 8
we present our prioritized embedding results into normed spaces.

2. Preliminaries. Throughout the paper, all logarithms are in base 2. All the
graphs G = (V, E) we consider are undirected and weighted. Let z1,...,2, € V be
a priority ranking of the vertices. Let dg be the shortest path metric on G, and let
a, f : [n] = Ry be a monotone nondecreasing functions.

A distance oracle for a graph G is a succinct data structure that can approximately
report distances between vertices of G. The parameters of this data structure we will
care about are its space, query time, and stretch factor. We always measure the space
of the oracle as the number of words needed to store it (where each word is O(logn)
bits). The oracle has prioritized stretch a(j) if for any 1 < j < i < n, when queried
for x;, x; the oracle reports a distance d(z;, z;) such that

dG(xjvxi) < d(xj7xl) < O((j) : dG(JUj,Z‘,‘) .

Some oracles can be distributed as a labeling scheme, where each vertex is given a
short label, and the approximate distance between two vertices should be computed
by inspecting their labels alone. We say that a labeling scheme has prioritized label
size B(j) if for every j € [n], the label of x; consists of at most 3(j) words. See
section 7 for the precise settings of routing that we consider.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

834 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

2 8
T3 1 T4 3 8 T4 3 Ty 3 T4
. 3 . 6 6 , . 3
3 1 i 6 4 6 4 i 3 1
prioritized weights MST original weights
x1 4 To Ty 8 o Ty Zo Ty Zo

Fic. 1. An illustration for the algorithm presented during the proof of Theorem 1. We are given
a metric space over X = {x1,z2,x3, x4}, with the function a(l) = 2, a(2) = 4,(3) = 8,a(4) = 16.
In the first step we assign new weights over the edges, then find an MST in the new graph and,
finally, restore the original weights. For example the original distance between x2,x3 was 2, while
in the returned tree the distance is 7. Hence the pair x2,x3 suffers distortion 3.5 < 4.

Let (X, dx) be a finite metric space, and let 1, ..., z, be a priority ranking of the
points in X. Given a target metric (Y, dy), and a noncontractive map f : X — Y2
we say that f has priority distortion a(j) if for all 1 < j < i <mn,

dy (f(x;), f(z:)) < a(j) - dx (2, z;) .

Similarly, if f : X — Y is nonexpansive, then it has priority distortion a(j) if for all
1<j<i<n,dy(f(z;), f(x;)) > dx(z,z;)/a(j). For probabilistic embedding, we
require that each map in the support of the distribution is noncontractive, and the
prioritized bound on the distortion holds in expectation.

In the special case that the target metric is a normed space, we say that the
embedding has prioritized dimension ((j) if for every j € [n], only the first 5(j)
coordinates in f(z;) may be nonzero.

3. Single-tree embedding with prioritized distortion. In this section we
show tight bounds on the priority distortion for an embedding into a single tree.
The bounds are somewhat nonstandard, as they are not attained for a single specific
function, but rather for the following family of functions. Define ® to be the family
of functions « : N — R that satisfy the following properties:

e (is nondecreasing.

e > X 1/a(i) < 1.
3.1. Upper bound.

THEOREM 1. For any finite metric space (X,d) and any a € @, there is a (non-
contractive) embedding of X into a single tree with priority distortion 2a(j).

Proof. Let x1,...,x, be the priority ranking of X, and let G = (X, E) be the
complete graph on X. For e = {u,v} € E, let {(e) = d(u,v). We also define the
following (prioritized) weights w : E — R, for any 1 < j < i < n the edge e = {z;,z;}
will be given the weight w(e) = a(j) - £(e). Observe that the w weights on G may not
satisfy the triangle inequality. Let T be the MST of (X, E,w) (this tree is formed by
iteratively removing the heaviest edge from a cycle). Finally, return the tree T' with
the edges weighted by ¢. We claim that this tree has priority distortion «(j). See
Figure 1 for an illustration of the algorithm to construct 7.

Consider some z;,z; € X, if the edge e = {z;,x;} € E(T), then clearly this pair
has distortion 1. Otherwise, let P be the unique path between x; and z; in 7T". Since
e is not in T, it is the heaviest edge on the cycle P U {e}, and for any edge ¢’ € P we

2The map f is noncontractive if for any u,v € X, dx (u,v) < dy (f(u), f(v)).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 835

have that w(e’) < w(e) = a(j)-d(x;,x;). Consider some z;, € X, and note that there
can be at most 2 edges touching xy, in P. If ¢’ € P is such an edge, and its weight by
w was changed by a factor of a(k), then a(k) - 4(e’) < a(j) - d(z;, z;). Summing this
over all the possible values of k£ we obtain that the length of P is at most

(1) Z) < QZ d(zj,z;) <2a(j) - d(xj, @) . O

e'eP

COROLLARY 1. For any finite metric space (X,d) and any fired 0 < € < 1/2,
there is a (noncontractive) embedding of X into a single tree with priority distortion
O(j(log j)1€). Furthermore, the distortion of the pairs containing x1 is only 1 + 3e.

Proof. Take the function o : N — R defined by a(1) = 1+¢, and for j > 2, a(j) =

M (cis a constant to be determined later). Then ng:% ﬁ < J"QOO de =
“nes 13°= ez Inparticular, - -, ﬁ = l%-e_kz(lnig)“f‘""e £ < lforc = O(e?).
We conclude that a € ®. The corollary now follows by Theorem 1, except that it only
provides distortion 2(1+¢€) for pairs containing x1. To see the improved distortion for
pairs (z1, z;), consider the proof of Theorem 1. Observe that in the case {x1,2;} ¢ T,
the first edge of the path P from z; to x; has weight at most d(x1,x;), while none
of the other edges on P are touching x;. Furthermore, since 1/a(1) > 1 — €, we have

that Y, 1/a(k) <€, and so we can replace (1) by

> Ue) < d(xy, @ +2Z ,1€ (z1,2;) < (1+3€) - d(z1, ;) .

e'eP O

3.2. Lower bound. Here we show a matching lower bound (up to a constant),
which is only 2 for trees without Steiner nodes® on the possible functions admitting an
embedding into a tree with priority distortion. We first show that a (nondecreasing)
function which is not in ® cannot bound the priority distortion in a spanning tree
embedding. Then using an argument similar to that of [Gup01], we extend this for
arbitrary dominating trees,* while losing a factor of 8 in the lower bound.

THEOREM 2. For any nondecreasing function o : N — R with o ¢ ®, there exists
an integer n, a graph G = (V, E) with |V| = n vertices, and a priority ranking of V,
such that no spanning tree of G has priority distortion strictly less than «.

Proof. Since a §§ ®, there ex1sts an integer n’ such that ZZ 3 1/a(i) > 1. Take
some integer n > n’ such that a(z) +7 Is an integer for all 1 <4 <n' (assume without
loss of generality (w.l.o.g.) that the a(i) are rational numbers). Then let G = C,,,
a cycle on n points with unit weight on the edges. Clearly, a spanning tree of C,, is
obtained by removing a single edge, thus we will choose the priorities z1,...,z, € V
in such a way that no edge can be spared.

Seeking contradiction, assume that there exists a spanning tree with priority
distortion less than «. Let x; be an arbitrary vertex, and note that if u is a vertex
within distance (in G) ay = a(1)+1 from z1, then all the edges on the shortest path
from 1 to w must remain in the tree. Otherwise, the distortion of the pair {x1,u}
will be at least ** = a(l). There are # such edges that must belong to the

3We say that the target tree has Steiner nodes if it contains more vertices than the original graph.
4A tree T dominates a graph G if dr > d¢.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

836 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

Fic. 2. An illustration for the proof of Theorem 2. As all the pairs containing x; cannot suffer
distortion greater than or equal to a(i), all the edges of distance at most a; from x; cannot be deleted
from the tree. As > a; > n, placing x1,x2,... so that the relevant sets of edges are disjoint and
cover all the edges, there is no edge that can be deleted.

tree (since we consider vertices from both sides of 7). Now take x2 to be a vertex at

distance —"%— + from z1. By a similar argument, the aé;ﬂ‘_l edges closest to

a(l)+1 oz(2lr;+1
o must be in the tree as well. Observe that these edges form a continuous sequence
on the cycle with those edges near x;. Continue in this manner to define z3, ..., z,,

and conclude that there are at least

’ ’

- 2n ‘. n
(2) Zmzzm>n

i=1 i=1

edges that are not allowed to be removed, but this is a contradiction, as there are
only n edges in C),. See Figure 2 for an illustration of this argument. O

THEOREM 3. For any nondecreasing function o : N — R with o ¢ ®, there ewists
an integer n, a metric (X,d) on n points, and a priority ranking 1, ..., T, € X, such
that there is no embedding of X into a dominating tree metric with priority distortion
strictly less than a/8.

Proof. Take n, the metric (X,d) induced by C,,, and the same priority ranking
as in Theorem 2. First consider any tree T with exactly n vertices, but which is not
necessarily spanning. That is, T is allowed to have edges that did not exist in C,,.
Since T' must be dominating, we may assume that an edge in 1" connecting vertices
of distance k in C,, will have weight exactly k (if it has larger weight, reducing it to
k can only improve the distortion). We extend an argument of [Gup01] to prove that
the priority distortion of T is at least a.

The argument in section 7 of [Gup01] says that T' can be replaced by a tree T’
satisfying d < dp» < dr, and such that any vertex in 7" has at most one edge to its
left semicircle and one edge to its right semicircle.® A crucial observation (made in
[Gup01]) is that for any pair of vertices at distance k in C,, their distance in 7" can
be either k or at least n — k. Now we may use similar reasoning as in the proof of

5If the vertices of Cy, are labeled 0,1,...,n — 1 as ordered on the cycle, the right semicircle of
vertex ¢ is {i+1,i+2,...i+ |n/2]} (addition is modulo n), and the left semicircle is V' \ {¢,i 4+ 1,¢+
2,...1+ [n/2]}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 837

Theorem 2; assume that x; is the ith vertex of C,, and observe that any vertex i + j
for 1 < j < ap, must be connected by an edge to one of the vertices i,i+1,...,i4+j—1,
as otherwise dr (4,4 + j) > n — a1, and the distortion of the pair {z1,j} will be at
least «(1). Notice that the edges xo forced to exist are disjoint from those of z;. It
follows that for each 1 < i < n’/, x; forces at least # disjoint edges to be in the
tree, which is impossible due to (2).

Finally, consider arbitrary dominating tree metrics, which may have Steiner nodes
(nodes which no vertex of C,, is mapped onto). By a result of [Gup01], such nodes
may be removed while increasing the distance between any pair of points by at most
8, so we conclude that such a tree cannot have priority distortion strictly less than
a/8. d

4. Probabilistic embedding into ultrametrics with prioritized distor-
tion. In this section, we present our probabilistic embedding into trees with priori-
tized expected distortion. Specifically, we generalize the embedding of [FRT04] which
has a worst-case expected distortion guarantee, to prioritize expected distortion.

THEOREM 4. For any metric space (X,d), there exists a distribution over embed-
dings of X into ultrametrics with expected prioritized distortion O(log 7).

Proof. Let x1,...,x, be the priority ranking of X, and let A be the diameter
of X. We assume w.l.o.g. that the minimal distance in X is 1, and let § be the
minimal integer so that A < 2%. We shall create a hierarchical laminar partition,
where for each i € {0,1,...,6}, the clusters of level i have diameter at most 2¢, and
each of them is contained in some level ¢ + 1 cluster. The ultrametric is built in
the natural manner, the root corresponds to the level § cluster which is X, and each
cluster in level 4 corresponds to an inner node of the ultrametric with label 2¢, whose
children correspond to the level i —1 clusters contained in it. The leaves correspond to
singletons, that is, to the elements of X. Clearly, the ultrametric will dominate (X, d).

In order to define the partition, we choose a random permutation 7 : X — [n]
which is strongly correlated with the priority ranking, and in addition we choose a
random number S € [1,2] from an appropriate distribution. (See line 2 of Algo-
rithm 1.) Let Ko = {z1,22}, and for any integer 1 < j < [loglogn] let K; =
{1 : 227" < h < 2%} The permutation 7 is created by choosing a uniformly random
permutation on each K;, and concatenating these. Note that 7= 1({h € N : h €
(227" 22)}) = K;, and 7~ 1({1,2}) = K,.

In each step 7, we partition a cluster S of level i + 1 as follows. Each point z € S
chooses the point v € X with minimal value according to = among the points of
distance at most 3; := 3 - 2°~2 from z, and joins to the cluster of u. Observe that
x € S might belong to the cluster of u where u ¢ S. In particular, a point may not
belong to the cluster associated with it, and some clusters may be empty (which we
can discard). The description of the hierarchical partition appears in Algorithm 1.

Let T denote the ultrametric created by the hierarchical partition of Algorithm 1,
and dr (u,v) the distance between u to v in T. Consider the clustering step at some
level i, where clusters in D;;;1 are picked for partitioning. In each iteration [, all
unassigned points z such that d (z,7(l)) < ; assign themselves to the cluster of 7(1).
Fix an arbitrary pair {v,u}. We say that center w settles the pair {v,u} at level 4, if
it is the first center so that at least one of u and v gets assigned to its cluster. Note
that exactly one center w settles any pair {v,u} at any particular level. Further, we
say that a center w cuts the pair {v,u} at level 4, if it settles them at this level, and
exactly one of u and v is assigned to the cluster of w at level i. Whenever w cuts

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

838 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

a pair {v,u} at level i, dr (v,u) is set to be 2i*1 < 83;. We charge this length to
the point w and define d¥ (v, u) to be Y. 1 (w cuts {v,u} at level i) - 83; (where 1 ()

denotes an indicator function). We also define di,lfj (v,u)=>"
dr (v,u) <37, dqlfj (v, u).

wek,; A7 (v,u). Clearly,

Algorithm 1 Modified FRT(X,w).

1: Choose a random permutation 7 : X — [n] as above.

2: Choose 8 € [1,2] randomly by the distribution with the following probability
density function p (z) =

3: Let Ds = X; i+ 6— 1.

4: while D,;; has nonsingleton clusters do

Set B; < - 202,

6 forl=1,...,ndo

7: for every cluster S in D;y; do

8 Create a new cluster in D;, consisting of all unassigned points in S closer

than 8; to 7 (1).

9: end for

10: end for

11: 141 — 1.

12: end while

zln2"°

o

Fix some 0 < j < [loglogn]|. Our next goal is to bound the expected value of

d;fj (v,u) by O (log (|K;])). We arrange the points of K in nondecreasing order of
their distance from the pair {v,u} (breaking ties arbitrarily). Consider the sth point
w, in this sequence. W.l.o.g. assume that d (ws,v) < d (ws,u). For a center ws to cut
{v,u}, it must be the case that

1. d(ws,v) < B; < d(ws,u) for some i;

2. w; settles {v,u} at level i.
Note that for each x € [d (ws,v) ,d (ws,u)), the probability that §; € [x,z + dz) is at
most xfﬁQ. Conditioning on 3; taking such a value z, any one of wy, ..., w, can settle
{v,u}. The probability that wy is the first in the permutation 7 among wq,...ws is
1. (In fact, there may be points from Uo<r<; Kr that settle {v,u} before w,. It is
safe to ignore that, as it can only decrease the probability that w, cuts {v,u}.) Thus,

we obtain

dwe) dy 1 8 16
Eld%s < . - =) — 5 < —- .
@ Bl) < [s L = s) —dws,) £ Do)
Hence, we conclude
(4) Eld;’ (v,u)] < Z Eld7: (v,u)] < 16d(v,u) Z 3= log | K| - O(d(v,u)) .
ws €K s=1

Assume v = xy, is the hth vertex in the priority ranking for some h > 2. Let a be
the integer such that v € K,, and recall that 2 < p < 2% ie., 2% < 2logh. The
crucial observation is that if y € K} such that b > a, then y cannot settle {v,u}. The
reason is that v always appears before y in 7, so v will surely be assigned to a cluster
when it is the turn of y to create a cluster. This leads to the conclusion that for all

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 839

b > a, E[d5*(v,u)] = 0. We conclude

a

Eldr(v,u)] < Y Eldy (v,u)]

§=0
d(v,u)) Y log|K;|
j=0
= O(d(v,u)) Y log (22j)
§=0
= O(d(v,u)) Z2j

= O(d(v,u)) -_2“
= O(d(v,u)) - logh .

4
<

When h € {1,2} we can take a = 0, and thus obtain a bound of O(d(v, u)). d

5. Distance oracles with prioritized stretch. In this section we consider
distance oracles where the stretch scales with the priority of the vertices. See section 2
for the basic definitions. A classical result of [TZ05], with improved query time and
size due to [Chel4, Chel5], asserts that for any parameter ¢ > 1 and any graph on n
vertices, there exists a (2t — 1)-stretch distance oracle of space O(n'*1/) with O(1)
query time.

5.1. Prioritized stretch with small space. Our first result provides a range of
distance oracles with prioritized stretch and extremely low space. They also exhibit a
somewhat nonintuitive (although very good) dependence of the stretch on the priority
of the vertices. The drawbacks of these oracles are that they cannot report the
approximate paths in the graph between the queried vertices, and it is not clear if
they can be distributed as a labeling scheme.

For the sake of brevity, denote 7(j) = LOZ;(%J (where n is always the number

of vertices). For a function f : N — N, define its iterative application F' : N — N as
follows: F(0) = 1, and, for integer k > 1, as F(k) = f(F(k —1)). That is, F(k) is
determined by iteratively applying f for k£ times starting at 1.

THEOREM 5. Let G = (V, E) be a weighted graph on n vertices. For any positive
integer T, let f : N — Ry be any monotone increasing function such that f(1) = 2
and F(T) > logn. Then there exists a distance oracle that requires space O(T - n),
has query time O(1), and prioritized stretch

min{4f (7(5)) — 5,logn} .

COROLLARY 2. Any weighted graph G = (V, E) on n vertices admits distance
oracles with the following possible trade-offs between space and prioritized stretch:

(1) space O(nlogn) and prioritized stretch min{47r(j) — 1,logn};

(2) space O(nloglogn) and prioritized stretch min{87(j) — 5,logn};

(3) space O(nlogloglogn) and prioritized stretch min{47(j)? — 5,logn};

(4) space O(nlog*n) and prioritized stretch min{4 -270) — 5 logn}.

Observe that the first two oracles have stretch 3 for all points of priority rank less
than y/n, and that in all of these oracles, for any fixed ¢ > 0, all vertices of priority
at most n' ¢ have constant stretch.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

840 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

Proof of Corollary 2. All the trade-offs follow by simple choices for T" and f, which
are described in the next bullets.

e For the first trade—off let T' = logn (assume w.l.o.g. this is an integer), and
take the function f(k) = k+ 1, so that F(k) = k + 1 as well for all k, so
indeed F(T') > logn. Thus the space is indeed O(nlogn), and the prioritized
stretch is min{47(j) — 1,logn} by Theorem 5.

e For the second trade-off, using T' = loglogn, it suffices to take f(k) = 2k, so
that F(k) = 2¥ and F(T) = logn as required. The space is now O(n loglogn)
and the prioritized stretch is as promised applying Theorem 5 again.

e In the third trade-off we use T'= 1 + logloglogn, and let f(1) = 2 and for
k > 2, f(k) = k% It implies that F(k) = 22 ". The bounds on the space
and the prioritized stretch follow as before.

e The final trade-off holds by taking 7' = log* n — 1, and setting f(k) = 2¥, so
that F (k) = tower(k).® The bounds on the space and the prioritized stretch
follow as before. |

We now turn to proving the theorem, and start with the following lemma.

LEMMA 1. For any t > 1 and any graph G = (V, E) on n vertices with a subset
K CV of size |K| =k, there exists a distance oracle which can answer in O(1) time
queries on every pair in K x V with stretch 4t — 1, using space O(k' TVt 4+ n).

Proof. Apply the distance oracle of [Chel5] on the complete graph G’ = (K, E’)
with parameter ¢, where the weight of each edge in E’ is the shortest path distance in
G between its endpoints. This gives stretch 2¢ — 1 for any pair in K x K and requires
space O(k'*T1/). For every vertex u € V \ K, store only dg(u, K) and the name of
the vertex k, € K that manifests this distance (that is, dg(u, k) = dg(u, K)). We
obtain a data structure of space O(kHl/ t +n). To answer a distance query between
v e K and u € V, report d(v, ky) + dg(ky,u), where d is the distance reported by
the oracle of G’. It remains to bound the stretch: observe that since k,, is the closest
vertex to u in K, we have that dg (v, ky,) < dg(v,u) +dg(ky,u) < 2dg(u,v), and thus
the reported distance is bounded as follows,

d(v, ky) + dg(ky,u) < (2t — 1)dg (v, ky) + da(u,v) < (4t — 1)dg (u,v) .

Using the triangle inequality and that the reported distance is never larger than the
original,

d(v, ky) + dg(ky,uw) > dg(v, ky) + dg(ky, w) > da(u,v) . 0

We are finally ready to prove Theorem 5.

Proof of Theorem 5. Let x1,...,x, € V be the priority ranking of V. For each
te[T),let S ={z; : 1 <5< n'~Y/F®Y and apply the oracle of Lemma 1 on
G with the set S; and parameter t; = F(i) — 1, let O; be the resulting oracle.” Also
invoke the oracle Oy of [MNO6] on G, that has stretch logn on all pairs using only
O(n) space (with O(1) query time).

Observe that for each i € [T], the stretch ¢; was chosen so that (1 — 1/F(7)) -
(14 1/t;) =1, so that the oracle O; has space

O8I+ 1/% 4n) = O(n) .

Stower(k) is defined as tower(0) = 1 and tower(k) = 2to%er(k—1) '5o that tower(log* n) = n.
"Since F(0) = 1 and f is strictly monotone, it follows that F(i) > 2 for all 4 > 1, so that ¢; > 1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 841

The total space is thus O(T - n), as promised. It remains to prove the prioritized
stretch guarantee. Fix any v = z;, and let ¢ be the minimal such that z; € S;
(observe that if j > n/2 there is not necessarily any such ¢). For i = 1 the stretch
guaranteed by Oy is 4¢; —1 = 4(F (1) —1) —1 = 3, as promised (recall that f(k) > 2 for
all k > 1, so the required stretch is never smaller than 3). For ¢ > 1, by minimality of

i it follows that j > n'~V/F@=1) that is, F(i — 1) < {&%J = 7(5) (since F(i — 1)

is an integer). The stretch of O; for v with any other point is at most
A(F(i) =1) =1 =4F() =5 =4f(F(i =1)) =5 <4f (7(j)) =5,

while the stretch of Oy is at most logn for all pairs, which handles the case no
1 exists, and allows us to report the minimum of the two terms. The query time is
O(1), since each v stores the relevant oracle for it, whose query time is O(1). d

5.2. Prioritized distance oracles with bounded prioritized stretch. In
this section we prove the following theorem, which prioritizes the stretch of the dis-
tance oracle of [TZ05]. Unlike the oracles of Theorem 5, this oracle can also support
path queries, that is, return a path in the graph that achieves the required stretch, in
time proportional to its length (plus the distance query time). Additionally, it can be
distributed as a labeling scheme, which we exploit in the next section. Furthermore,
this oracle matches the best known bounds for the worst-case stretch of [TZ05], which
are conjectured to be optimal.

THEOREM 6. Let G = (V, E) be a graph with n vertices. Given a parametert > 1,

there exists a distance oracle of space O(tn'T/t) with prioritized stretch 2[%] -1
and query time O(f%).

Overview. Recall that in the distance oracle construction of [TZ05], a sequence
of sets V= Ay D A; D --- D A; = 0 is sampled randomly, by choosing each element
of A;_1 to be in A; with probability n='/¢. We make the crucial observation that the
distance oracle provides improved stretch of 2(¢ — i) — 1, rather than 2¢ — 1, to points
in A;. However, as these sets are chosen randomly, they have no correlation with our
given priority list over the vertices. We therefore alter the construction, to ensure

that points with high priority will surely be chosen to A; for sufficiently large 1.

Proof of Theorem 6. Let x1,...,z, € V be the priority ranking of V. For each
i€{0,1,...,t—1}let S; = {x; : 1 <j<n'""/!} Let Ag =V, A, =0, and for each
1 <i<t—1 define A, by including every element of A; ; with probability n=1/t/2,
and let A; = AL US;. For each v € V and 0 < ¢ <t — 1, define the ith pivot p;(v)
as the nearest point to v in A;, and B;(v) = {w € A; : d(v,w) < d(v, Ai11)}.% Also
the bunch of v is defined as B(v) = (Jy<;<;_; Bi(v). The distance oracle will store in
a hash table, for each v € V, all the distances to points in B(v), and also the p;(v)
vertices.

The query algorithm for the distance between u, v is essentially the same as in
[TZ05], the main difference is that we start the process at level ¢ rather than level 0,
for a specified value of 4.

Stretch. Let v = x; be the jth point in the ordering for some j > 1, and fix
any u € V. (For j = 1, observe that every vertex of A;_; lies in all the bunches, so
when considering 27 € A;_1, we have that 1 € B(u) and so Algorithm 2 will return
the exact distance.) Let 0 < i < t — 1 be the integer satisfying that n'~(+D/t <

8We assume that d(v,) = co (this is needed as A¢ = 0).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

842 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

Algorithm 2 Dist(v,u,1).
10 w < v;
2: while w ¢ B(u) do
3 141+ 1;

4 (u,v) + (v,u);

5

6

7

w < pi(v);
: end while
: return d(w,u) + d(w,v);

j < n'~¥t that is, the maximal i such that v € S;. By definition we have that

v € A; as well, so we may run Dist(v,u,i). Assuming that all operations in the
hash table cost O(1), the query time is O(t — i). The stretch analysis is similar to
[TZ05]: letting uy, vg, and wy be the values of u, v, and w at the kth iteration, it
suffices to show that at every iteration in which the algorithm did not stop, d(vg, wy)
increases by at most d(u,v). It suffices because there are at most t — 1 — ¢ iterations
(since wy_1 € A;_1, it lies in all bunches), so if £ is the final iteration, it must be
that d(ve, we) < (€ —1) - d(u,v) (initially d(w;,v;) = 0), and by the triangle inequality
d(we, up) < d(u,v) +d(ve,wp) < (0 —i+1)-d(u,v), and as £ <t — 1 we conclude that

d(w,u) + d(w,v) < (2t —1) — 1) - d(u,v) .

To see the increase by at most d(u, v) at every iteration, we first note that w; = v; € 4;
(this fact enables us to start at level ¢ rather than in level 0). In the kth iteration,
observe that as wy, ¢ B(ug) but wg € Ay, it must be that d(ug, pr+1(uk)) < d(ug, wg).
The algorithm sets wi4+1 = pr+1(uk), Vktr1 = uk, and ug1 = vk, SO we get that

d(Wgt1, Wet1) = (g, D1 (ur)) < d(uk, wi) < d(ug, vg) + d(vg, wg)
= d(u,v) + d(vg, wg) .

Note that as n!= D/t < 5 <nl=i/t it follows that t —i — 1 < tlézgj <t—1i,s0

that t — i = H(l)oggrf]. The guaranteed stretch for pairs containing x; is thus bounded

by 2[2?;#] — 1 (or stretch 1 for z7).

Space. Fix any u € V, and let us analyze the expected size of B(u). Fix any
0 <i <t—2, and consider B;(u). Assume we have already chosen the set A;, and
arrange the vertices of A; = {a1,...a,} in order of increasing distance to u. Note
that if a, is the first vertex in the ordering to be in A; 1, then |B;(u)| = r — 1. Every
vertex of A; is either in S;1; and thus will surely be included in A;;1, otherwise it
has probability n=/*/2 to be in Aj,; and so in A;;; as well. The number of vertices
that we see until the first success (being in A4;41) is stochastically dominated by a
geometric distribution with parameter p = n~'/*/2, which has expectation 21/t
For the last level ¢t — 1, note that each vertex in S; \ S;y; has probability exactly
(n=tj2)t=1=1 = p=1+(@+D/t j9t=1=i {4 he included in A,_;, independently of all
other vertices. As |S;\S;+1] < |S;i] = n'=/t the expected number of vertices in A;_1 is

t—1
(5) anfi/t . n71+(i+1)/t/2t717i < in/t .
=0

This implies that E[|B;_1(u)|] < 2n'/* as well, and so E[|B(u)|] < 2t -n'/*. The total
expected size of all bunches is therefore at most 2t - n!*+1/t, 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 843

6. Prioritized distance labeling. In this section we discuss distance labeling
schemes, in which every vertex receives a short label, and it should be possible to
approximately compute the distance between any two vertices from their labels alone.
The novelty here is that we would like “important” vertices, those that have high
priority, to have both improved stretch and also short labels.

6.1. Distance labeling with prioritized stretch and size. We begin by
showing that the stretch-prioritized oracle of Theorem 6 can be made into a labeling
scheme, with the same stretch guarantees, and with a small label for high ranking
points. The result has some dependence on n in the label size, and it seems to be
interesting particularly for large values of ¢. Indeed, we shall use this result with
parameter t = logn in the following, to obtain a fully prioritized label size which will
be independent of n, and can support any desired maximum stretch. Furthermore,
this result is the basis for our routing schemes with prioritized label size and stretch.

THEOREM 7. For any graph G = (V,E) with n vertices and any t > 1, there
exists a distance labeling scheme with prioritized stretch 21841 — 1 and prioritized

logn
label size O(n'/t -log j).

Proof. Using the same notation as section 5, the label of vertex v € V' consists
of its hash table (which contains distances to all points in the bunch B(v), and the
identity of the pivots p;(v) for 0 <4 <t —1). Note that Algorithm 2 uses only this
information to compute the approximate distance. The stretch guarantee is prioritized
as above, and it remains to give an appropriate bound on the label sizes.

Let x1,...,2, € V be the priority ranking of V. Fix a point v = z; for some
j > 1, and let i be the maximal such that v € S;. Note that this implies that
t—i—1< tkl)‘;grf. Observe that By(v)U---UB;_1(v) = 0, so it remains to bound the
size of B;(v),...,Bi_1(v). For the last set B;_1(v) = A;_1, let £ be the event that
|A; 1] < 8n'/t. We already noted in (5) that the expected size of A;_; is at most
2n!/t, thus using Markov inequality, with probability at least 3/4 event & holds.

For i < k <t —2, let X; be a random variable distributed geometrically with
parameter p = n~/*/2, thus E[X}] = 2n'/t for all k. We noted above that the
distribution of X} is stochastically dominating the cardinality of By (v), thus it suffices
to bound ZZ_; Xj. Observe that for any integer s, if EZ_:% Xk > s, then it means
that in a sequence of s independent coin tosses with probability p for heads, we have
seen less than ¢ — 1 — 4 heads. That is, if Z ~ Bin(s, p) is a binomial random variable,
then

tlog j

} <Pr[Z <logj] .

t—2
Prlg Xk>s] Pr[Z<t1ﬂ§Pr[Z< 1
ogn

k=i

Take s = 16n'/* - log j (assume this is an integer), so that p := E[Z] = 8log j, and by
a standard Chernoff bound

Pr[Z < logj] = Pr[Z < p/8] < e 3W/® < 1/5% .

Let F be the event that for some 2 < j < n, UZ;% Bk(xj)’ > 16n'/t .log j. By taking

a union bound over all 2 < j < n (note that the bound is nonuniform, and depends
on j), we obtain that

n t—2 n
Pr(F] <> Pr || Bi(z)) >16n1/t-1ogj] <> 1/ <1/4.
j=2 k=0 Jj=2

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

844 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

We conclude that with probability at least 1/2 both events £ and F hold, which
means that the size of the bunch of each z; is bounded by O(nt/t -log j), as required.
(Recall that x; € A;_1, so its label size is |A;—1| < 8nl/t when event & holds.) O

COROLLARY 3. Any graph G = (V, E) has a distance labeling scheme with prior-
itized stretch 2[log j] — 1 and prioritized label size O(log 7).

6.2. Distance labeling with prioritized label size. In this section we con-
struct a labeling scheme in which the maximum stretch is fixed for all points, and the
label size is fully prioritized and independent of n.

THEOREM 8. For any graph G = (V,E) and an integer t > 1, there exists a
distance labeling scheme with stretch 2t — 1 and prioritized label size O(j1/ -log 7).

Proof overview. The idea is to partition the vertices into m := [lo%] sets
S1,...,Sm, and to apply the result of section 6.1 in conjunction with a variation
of the source-restricted distance oracles of [RTZ05], using a labeling scheme rather
than an oracle. In a source restricted labeling scheme on X with a subset S C X,
only distances between pairs in S x X can be queried. Replacing the source restricted
oracle with a labeling scheme demands that we use an analysis similar to section 6.1
to guarantee a prioritized bound on the label sizes. We will apply this for each
i €{2,3,...,m} with X = S; U---US,, and the subset S;. Thus an element of S;
will have a label which consists of ¢ schemes, and we will guarantee that their sizes
form a geometric progression, so that the total label size is sufficiently small.

As it turns out, the construction of [RTZ05] is inadequate for the first 2 elements
S1, which have very strict requirement on their label size. We will use the construction
of section 6.1 to handle distances involving the elements in S;. Fortunately, the stretch
incurred by this construction is 2[log j] — 1 which is bounded by 2¢ — 1 for the first 2
elements in the ranking. We begin by stating the source-restricted distance labeling,
based on [RTZ05].

THEOREM 9. For any integer t > 1, any graph G = (V, E) and a subset S C
V', there exists a source-restricted distance labeling scheme with stretch 2t — 1 and
prioritized label size O(|S|'/* -log j).

Proof. The observation made in [RTZ05] is that to obtain a source-restricted
distance oracle, it suffices to sample the random sets S = Ag 2 A1 D --- D A; = (only
from S, where each element of A;_; is included in A; independently with probability
|S|~1/t. They show that defining the bunches as in [TZ05], the resulting stretch is
2t — 1 for all pairs in S x V. We shall use a similar analysis as in Theorem 7 to argue
that this can be made into a labeling scheme. The expected label size is O(|S|'/*), and
we can show that with constant probability, every point x; pays only an additional
factor of O(log j). As the proof is very similar, we leave the details to the reader. 0O

Proof of Theorem 8. Let S; = {z; : 1< j <2'} and for each i € {2,3,...,m}
let S; = {x; : 207D < j < 2%} We have a separate construction for i = 1 and for
i > 1. For the case ¢ = 1, use the labeling scheme of Corollary 3 on G = (V, E). For
each 2 < ¢ < m, apply Theorem 9 on G and the subset S;, but append the resulting
labels only for vertices in S; U -+ U .S,,.

Fix any u,v € V, and w.l.o.g. assume that v € S; has a higher rank than wu.
This implies that v € S; U ---U.S,,, thus the source restricted labeling scheme for S;
guarantees stretch at most 2¢ —1 for the pair u, v (and u indeed stored the appropriate
label). Note that in the case of v = x; € Sy, the stretch can be improved to 2[log j]—1
(recall that logj < t).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 845

We now turn to bounding the label sizes. First consider v = x; € Si, then it
must be that 5 < 2¢. The label size of v is by Corollary 3 at most O(logj), and
this is the final label of v. For v = z; € S; when ¢ > 2, the label of v consists of
labels created for the sets Si,...,S;. Notice that 20— < j < 2% 50 it holds that
2 = (2¢. 2!/t < 241/t By Corollary 3 the label due to S; is at most O(log),
and using Theorem 9 the label size of v is at most

O(logj) + > O(|Sk|'/" -1og j) = O(log j) - Y 2F = O(2" - log j) = O(5"/* - log j) .
k=2 k=1
0

6.3. Prioritized distance labeling for graphs with bounded separators.

6.3.1. Exact labeling with prioritized size. In this section we exhibit a
prioritized exact distance labeling scheme tailored for graphs that admit a small sep-
arator. We say that a graph G = (V| E) admits an s-separator, if for any weight
function w : V. — Ry, there exists a set U C V of size |U| = s, such that each
connected component C of G'\ U, has w(C) < 2w(V)/3.2 Tt is well known that trees
admit a 1-separator, and graphs of treewidth k£ admit a k-separator.

The basic idea for constructing an exact distance labeling scheme based on sep-
arators is to create a hierarchical partition of the graph, each time by applying the
separator on each connected component. Then the label of a vertex u consists of all
distances to all the vertices in the separators of clusters that contain u. To answer a
query between vertices u, v, we return the minimum of d(u, s)+d(v, s) for all separator
vertices s that u, v have in common in their labels (this is the exact distance, because
at some point a vertex on the shortest path from u to v must be chosen to be in a
separator). Since at every iteration the number of vertices in each cluster drops by
at least a constant factor, after O(logn) levels the process is complete, thus the label
size is at most O(slogn).

Our improved label size for vertices of high priority, will be based on the following
observation: if the weight function w is an indicator for a set S C V (that is, if u € S,
then w(u) = 1, and if w € V'\ S then w(u) = 0), then after [log|S|] + 1 iterations, all
vertices of S must have been removed from the graph.

THEOREM 10. Let G = (V, E) be a graph admitting an s-separator, and let V =
(z1,...,2n) be a priority ranking of the vertices. Then there exists an exact distance

labeling scheme with prioritized label size O(s - log).
1

Proof. let Sy = {1,259}, and for 1 < i < [loglogn] let S; = {x; : 2 < j <
22t} The hierarchical partition will be performed in loglogn phases. The ith phase
consists of 2° + 1 levels. In each level of the ith phase, we generate an s-separator for
each remaining connected component C' with the following weight function

{ 1 ifuesng,
w(u) =

0 otherwise.

Then this separator is removed from the component. By the observation made above,
after at most 1+log | S;| < 2¢+1 levels, all remaining components have no vertices from
S;. The label of a vertex uw € V will be the distances to all points in the separators
created for components containing w.

9For a set C' C V, its weight is defined as w(C) = 3, o w(u).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

846 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

Fix some vertex z; (for j > 1), and assume z; € S;. Notice that 2°~! < log j.
Then the label size of z; is at most

Zs-(Qk—Fl):O(s-2i):O(s~logj).
k=0

6.3.2. Planar graphs and graphs excluding a fixed minor. While exact
distance labeling for planar graphs requires polynomial label size or query time, there
is a 1 + € stretch labeling scheme for planar graphs with label size O(logn) [ThoO1,
Kle02], which was extended to graphs excluding a fixed minor [AGO06]. All these
constructions are based on path separators: a constant number of shortest paths in
the graph, whose removal induces pieces of bounded weight. The label of a vertex
consists of distances to carefully selected vertices on these paths. We may use the
same methodology as above; generate these path separators for the sets .S; in order,
and obtain the following.

THEOREM 11. Let G = (V, E) be a graph excluding some fized minor, and V =
(x1,...,2n) a priority ranking of the vertices. Then for any ¢ > 0 there erists a
distance labeling scheme with stretch 1+ € and prioritized label size O((log j)/e€).

7. Routing.

7.1. Routing in trees with prioritized labels. In this section we extend a
result of [TZ01], and show a routing scheme on trees. The setting is that each vertex
stores a routing table, and when a routing request arrives for vertex v, it contains
L(v), the label of vertex v. We will show the following.

THEOREM 12. For any tree T = (V, E) there is a routing scheme with routing
tables of size O(1) and labels of prioritized size log j + 2loglog j + 4.

Proof. The proof follows closely the one of [TZ01], with the major difference being
the assignments of weights, which gives preference to the high priority vertices, thus
ensuring that when routing from the root of the tree to a vertex of rank j, there are
~ log j junctions that require routing information from the label of the vertex.

Let x1,..., 2, be the priority ranking of V. Let Sy = {21} and for each 1 < i <
logn, let S; = {z; : 2i=1 < j <2}, Fix an arbitrary root r of the tree T'. For every

v € 5; define p(v) = m Note that as |S;| < 2 we have that
logn 22—
2P0 <Y e <2
vev = 2+l

For each v € V, define the weight of v as s, = Zuen, p(u), where T, is the subtree
rooted at v (including v itself). A child v’ of v is called heavy if its weight is greater
than s, /2; otherwise it is called light. The root r of the tree will always be considered
heavy. Observe that any vertex can have at most one heavy child. The light level £(v)
of a vertex v is defined as the number of light vertices on the path from the root to v,
denoted by Path(v) = (r = vg,v1,...,v, = v). The label size of v will be £(v) words.

We enumerate all vertices T' in depth-first search (DFS) order, where all the light
children of a vertex are visited before its heavy child is visited. (The order is otherwise
arbitrary.) We identify each vertex v with its DF'S number. Let f, denote the largest
descendant of v. Also, let h, denote its heavy child, if exists. If it does not exist

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 847

define h, = f, +1. Also, let P(w(v)) denote the port number of the edge connecting v
to its parent 7(v), and P(h,) denote the port number connecting v to its heavy child
(if it exists). The routing table stored at v is (v, fy, by, P(7(v)), P(hy)). It requires
O(1) words.

Each time an edge from a vertex to one of its light children is taken, the weight
of the corresponding subtree decreases by at least a factor of 2. Note that a vertex
v =1z, € 5; has weight at least w(v) > p(v) = W, and since the root has weight
at most 2, it follows that £(v) < log(2-2%- (i + 1)?) = i + 2log(i + 1) + 1. Since
2i=1 < j, we conclude that

L(v) <logj +2log(log(y) +2) + 2.

For each index ¢, 1 < ¢ < ¢(v), denote by i, the index of the gth light vertex of
Path(v). Let L(v) = (v, (port(vi, -1, i,), - - -, port(vi,,y ;i) be the label of v,
which consists of its name, and a sequence of at most ¢(v) words containing the port
numbers corresponding to the edges leading to light children on Path(v).

The routing algorithm works as follows. Suppose we need to route a message with
the header L(v) at a vertex w. The vertex w checks if w = v. If it is the case then
we are done. Otherwise, w checks if v € [w,w+1,..., f,]. If it is not the case, then
v is not in the subtree of w, and then w sends the message to its parent. Otherwise
w checks if v € [y, hy + 1,..., fu]. If it is the case then the message is sent to the
heavy child. Otherwise v is a descendant of a light child of w. The vertex w finds
itself in the sequence of L(v), and determines to which light child of w the message
should be sent. Then it sends the message to this child. 0

7.2. Routing in general graphs. To obtain a routing scheme for general
graphs, we use the same method as [TZ01], but replace their distance labeling with
our prioritized ones from Theorem 7. This routing scheme has the following property:
after an initial calculation using the entire label of the destination vertex v, all routing
decisions are based on a much shorter header appended to the message. In particular,
we obtain the following theorem.

THEOREM 13. For any graph G = (V, E) with priority ranking x1,...,x, of V,
and any parameter t > 1, there exists a routing scheme, such that the label size of x;

is at most log j - [1°617 . (14 0(1)), and it stores a routing table of size O(n*/* -log 7).

logn i
Routing from any vertex into x; will have stretch at most 4[%1 — 3 using a header

of sizelog j - (14 0(1)), while routing from x; towards any other vertex incurs stretch

at most 4[%] — 1 using a header of size at most logn - (1 + o(1)).

Sketch. We use the definitions of section 5.2. Consider the distance labeling
scheme given in Theorem 7. Following [TZ05], this labeling scheme yields a tree
cover: a collection of subtrees such that vertex v = x; belongs to at most | B(v)| trees.
The tree T, for vertex z contains z as the root, and the shortest path to all the vertices
inC(z)={zx €V : ze B(x)}. Toroute from some vertex u € V to v, it suffices to
find an appropriate z € B(u) N B(v), and route in 7, by applying Theorem 12.

The routing table stored at each vertex v € V contains the hash table for its
bunch B(v), and the routing table needed to route in T, for each z € B(v). Recall
that by Theorem 7, |B(v)| < O(n'/t -logj) (where v =), and by Theorem 12,
the routing table of each tree is of constant size. Assume first that we route towards
a high ranked vertex, and let ¢ be the minimal such that v = x; € §;. The label
of vis ((pi(v), L;(v)), ..., (pt—1(v), Li—1(v))), where Ly(v) is the label of v that is

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

848 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

required to route in T, (). Note that the label is of size (t —i)logj - (14 o(1)) =

logj - [tkl;;g nj 1 (14 0(1)) (the equality follows from a calculation done in section 5.2).

Finding the tree which guarantees the prioritized stretch as in Theorem 7 could
have been achieved by using Algorithm 2; alas, this requires knowledge of the bunches
of both vertices u and v. It remains to see that using only the label of v and the routing
table at u, one can find a tree in the cover which has stretch at most 4[%1 — 3 for
u,v (routing in the tree does not increase the stretch). To see this, let ¢ <h <t —1
be the minimal such that p;, (v) € B(u). Following [TZ01], we prove by induction that
for each ¢ < k < h it holds that

d(v,pr(v)) < 2(k —1) - d(u,v).

The base case for k = ¢ holds as v = p;(v), assume for k, and for k + 1: Since k < h
it follows that p(v) ¢ B(u), thus it must be that d(u, pgt1(u)) < d(u, pr(v)). Now,

d(v, pr+1(v)) < d(v, pry1(u))
< d(v,u) + d(u, pr11(u))
< d(v,u) + d(u, p(v))
< 2d(v, u) + d(v, p(v))
< (2(k—1)+2)-d(u,v) ,

where the last inequality uses the induction hypothesis. Finally, routing through the
shortest path tree rooted at pp,(v) will have stretch at most

d(u, pr(v)) + d(pa(v),v) < d(u,v) + 2d(v, pa(v))
(4(h—i)+1) - d(u,v)
(4(t — i) — 3) - d(u,v)

<4F10g‘7-‘ - 3) ~d(u,v) ,

logn

using that h < ¢—1 and that t—i = [%1. Note that once the vertex py(v) is found,
all other vertices on the route from u to v only require the information (py(v), Ly (v)),
which is appended to the message as a header of size logj - (1 + o(1)).

We now turn to the case where u is the high ranked vertex, and let ¢ be the minimal
index such that u € S;. Since u € A; by definition, we have that d(v, p;(v)) < d(v,u).
The label of v contains ((p;(v), L;i(v)), ..., (pt—1(v), Li—1(v))) (since v has worse rank
than u), so we can use the same algorithm as above: find the minimal ¢ < h <t —1
such that pj(v) € B(u), and route in T, (). We can prove by induction that for
i<k<h,

<
<
<

d(v,pr(v)) < (2(k — 1) + 1) - d(u,v).

The base case k = i holds since we have d(v,p;(v)) < d(u,v). The rest of the proof
is similar to the one above, and we leave the details to the reader. The final stretch
will be 4f“°g J1 —1 (the 41 will increase it by an additive 2), as required. 0

COROLLARY 4. Any graph G = (V,E) with a priority ranking x1,...,x, has
a fully prioritized routing scheme, such that the label size of x; is at most log? j -
(14 0(1)), and it stores a routing table of size O(logj). Routing from or towards x;
will have stretch at most 4[logj] — 1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 849

8. Prioritized embedding into normed spaces. We start by providing some
notations used in this section. For p € [1,00] and m € N, £7* = (R™, [|-||,,) denotes the
m-dimensional real vector space with the ¢,-norm. Specifically, for z = (z1,...,2m) €

R™ we have ||z|, = Oy |xz|p)% As usual, the £,-norm induces a metric on R™,
where the distance between x,y € R™ is || —y||,. Distortion, priority, and prioritized
distortion are defined naturally using this metric. Given some metric space (X,dx)
and two functions f; : X — égl and fo : X — Eg% their concatenation is a function
from X into €gl+d2, denoted f; @ fo.

For a metric space (K,dk), an embedding f : K — R™ is called a (normalized)
Fréchet embedding if there are some m sets Ay, ..., A, C K such that f is defined as
f(@) =m~ VP @", d (z, A;). A useful property of Fréchet embeddings is that they
can be extended into nonexpansive embedding. Formally, suppose (X, dx) is a metric
space, and K C X admits a Fréchet embedding f : K — £ (with the induced metric).

An extension f is a function f: X — £;t, such that for every z € K, f(z) = f(x) To
get a nonexpansive extension for y € X, simply define f(y) =m~1/P @, dx (y, 4;).
It is straightforward that f is an extension of f. As for every z,y, € X,

1
p)”

f@) = fy)

i~

- (Z ‘m_l cdx (, Ai) —m 7 - dx (y, Ay)
i=1

-

< (;-de (M)p> —d(@.y) |

so f is also nonexpansive.

8.1. Embedding with prioritized distortion. In this section we study em-
bedding arbitrary metrics into normed spaces, where the distortion is prioritized ac-
cording to the given ranking of the points in the metric. Our main result is the
following

THEOREM 14. For any p € [1,00], € > 0, and any finite metric space (X,d) with
2
priority ranking X = (21,...,x,), there exists an embedding of X into Eg(log ™) with

priority distortion O(log j - (loglog j)1+9)/2).

Proof overview. Our improved distortion guarantee for high ranked points comes
from a variation of Bourgain’s embedding [Bou85] of finite metric spaces into £, space.
Bourgain’s embedding is based on randomly sampling sets in various densities, and
defining the coordinates as distances to these sets. Our first observation (see Lemma 2)
is sampling points only from a subset K C X suffices to obtain an embedding which
is nonexpansive for all pairs, and has bounded contraction for pairs in K x X. Fur-
thermore, the contraction depends only on |K]|, rather than on | X]|.

We then use a similar strategy as in previous sections, and partition X into
roughly loglogn subsets So, S1,. .., Sloglogn, Where S; is of size ~ 22" The doubly
exponential size arises because for any w,v € S;, the logarithm of the ranking of u
and of v differs by at most a factor of 2. For each 7, we create the embedding f; that
will “handle” pairs in S; x X, and concatenate all these functions f = @i‘folog" a;- fi.
Without the «; factor, every pair will suffer a (loglogn)'/? term in the distortion
due to expansion. We introduce these factors into the embedding, where «; is such
that Z?io af < 1. In such a way, the function f is nonexpansive, but we pay a small
factor of 1/a; in the distortion for pairs in S; x X.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

850 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

LEMMA 2. Let (X,d) be a metric space of size | X| =mn, K C X a subset of size
|K| =k, and a parameter p € [1,00]. Then there is a nonexpansive embedding of X

O(log k)

into £y such that the contraction of any pair in K x X is at most O(logk).

Proof. Let m = O(log®k), and f : K — £ be a nonexpansive embedding with
contraction ¢ = O(log k) on the pairs of K x K, which exists due to [Bou85, LLR95].
Let f be a nonexpansive extension to all of X as above. Let h : X — R be defined
by h(z) = d(z, K). The embedding F' : X — £* is defined by the concatenation of

these maps F' = f @ h. Since both of the maps f , h are nonexpansive, it follows that
for any z,y € X,

1E(2) = F)llp < 1 (2) = FW)l5 + 1h(z) = h(y)lP < 2 d(z,y)"

hence, F has expansion at most 2'/? for all pairs. Let t € K and z € X, and let
k. € K be such that d(z, K) = d(z, k,) (it could be that k, =). If it is the case that
d(x,t) < 30-d(z, k), then by the single coordinate of h we get a sufficient contribution
for this pair:

d(x,t)

IE () = E(@)llp 2 |h(t) = h(z)] = h(z) = d(z, ks) 2 =55

The other case is that d(z,t) > 30 - d(z, k;), here we will get the contribution from f.
First observe that by the triangle inequality,

(6) d(t, ky) > d(t,z) — d(z, ky) > d(t, 2)(1 — 1/(36)) > 2d(t,z)/3 .

By another application of the triangle inequality, using that f is nonexpansive, and
that f has contraction § on K, we get the required bound on the contraction:

IF(t) = F(@)llp, > I£(t) = F@),
> 1 f(t) = fka)llp — I1f (k) = f(@)lp
= [If @) = f(ka)llp — d(, ka)
S d(t, k) 3 d(t, z)
- 30
@ 2d(t,z) d(t, @)
- 36 30
_ d(t, x)
35

In particular, the function 2% . Fis nonexpansive for all pairs, and has contraction
at most 27 -3+ = O(logk) for pairs in K x X. O

We are now ready to prove Theorem 14.

Proof of Theorem 14. Let Sy = {z1,22}, and for 1 < i < [loglogn] let S; =
{z; : 227 << 22"}, For every i, let f; : X — £, be the embedding of Lemma 2
with K = S;, and let o = ¢ (i + 1)~ (1+9)/? for sufficiently small constant ¢, so that
Yoo e < 1. Finally, define the embedding f : X — ¢, by

[loglog n]

f= @ afi

=0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 851

To see that f is indeed nonexpansive, recalling that each f; is nonexpansive, we obtain
that for any u,v € X

[loglog n]

If () = f@p < > o filuw) = fio)]h < du,0)” Y~ af < d
=0

=0

For the contraction, let v = x; for some j > 1, and take any u € X. Let ¢ be the
index such that v € S;, and note that 28~ < logj. By Lemma 2, the embedding f;
has contraction at most O(log |S;|) = O(2) = O(log j) for the pair u,v. Observe that
of =cP - (i+1)~(+9 = Q ((2 + loglog j)~(1+9), thus

I0) = FOI = - 1£0) = SO 2 @ (o)

It is not hard to verify that z; has constant contraction with any w, so the
prioritized distortion is O (logj - (log logj)_(1+5)/p). Finally, since the dimension of f;
is O(log? |S;]) = O(2%), the embedding f maps X into Zp__og leenl 0(22) = O(log? n)

dimensions. For 1 < p < 2, one may embed first into f2, use [JL84] to reduce the
O(logn)

dimension to O(logn), and then apply an embedding to ¢, , while paying a
constant factor in the distortion [FLM77]. The prioritized distortion will thus be at
most O(log j - (loglog j)(11)/2). 0

8.2. Embedding with prioritized dimension. The main result of this section
is an embedding with prioritized distortion and dimension. This means that a high
ranking point will have low distortion (with any other point) and, additionally, its
image will consist of few nonzero coordinates, followed by zeros in the rest.

THEOREM 15. For any p € [1,00], € > 0, and any metric space (X, d) on n points,

O(log? n)

there exists an embedding of X into {; with priority distortion O (log4JrE) and

prioritized dimension O(log 7)-

Proof overview. The basic framework of this embedding appears at a first glance
to be similar to section 8.1, which is applying a variation of Bourgain’s embedding,
while sampling only from certain subsets S; of the points. However, the crux here is
that we need to ensure that high priority points will be mapped to the zero vector in
the embeddings that handle the lower ranked points.

Recall that the coordinates of the embedding are given by distances to sets. The
idea is the following: while creating the embedding for the points in S;, we insert all
the points with higher ranking (those in SyU---US;_1) into every one of the randomly
sampled sets. This will certify that the high ranked points are mapped to zero in every
one of these coordinates. However, the analysis of the distortion no longer holds, as
the sets are not randomly chosen. Fix some point u € S; and v € X. The crucial
observation is that if none of the higher ranked points lie in certain neighborhoods
around u and v (the size of these neighborhoods depends on d(u,v)), then we can still
use the randomness of the selected sets to obtain some bound (albeit not as good as
the standard embedding achieves). While if there exists a high ranked point nearby,
say z € Sy for some i’ < i, then we argue that u,v should already have sufficient
contribution from the embedding designed for S;;. The formal derivation of this idea
is captured in Lemma 3.

The calculation shows that the distortion guarantee for u,v deteriorates by a
logarithmic factor for each 4, that is, it is the product of the distortion bound for

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

852 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

points in S;_; multiplied by O(log|S;|). This implies that the optimal size of S; is
triple exponential in ¢, which yields the best balance between the price paid due to
the size of S; and the product of the logarithms of S|, ..., |Si—1]-

LEMMA 3. Let p € [1,00] and D > 1. Given a metric space (X,d), two disjoint
subsets A, K C X, where |[K| =k > 2, and a nonexpansive embedding g : X — £, with
contraction at most D for all pairs in A X X, then there is a nonexpansive embedding

2
f:X— E,?(log ") such that the following properties hold:
1. Forallz € A, f(z)=0.

d(z, d(x,1
2. Forall (z,y) € KxX, | f(@)=f®)lp > tomsLr or lg(x)—g()ll, > 5 .

We postpone the proof of Lemma 3 to section 8.2.1, and prove Theorem 15 using
the lemma.

Proof of Theorem 15. Let I = [logloglogn]. Let Sy = {x1,z2,23,24}, and for
1<i<ITlet

Si:{xj L 92 <j§2221}.

Also define S<; = Jy<p<; Sk-

The desired embedding ' : X — {, will be created by iteratively applying
Lemma 3, each time using its output function f as part of the input for the next
iteration. Formally, for each 0 < i < I apply Lemma 3 with parameters A = S,
K =25, 9g=F0Y and D = 221'*‘5"2, to obtain a map f; : X — ¢,. The map
FO X — £, is defined as follows: F(-1) = 0 and F) = @) _, o - fx, where
(o) is a sequence that ensures F(*) is nonexpansive for all i. For concreteness, take
ap = (ﬁ“)z)l/p. The final embedding is defined by F = F).

Fix any pair z,y € X. As f; is nonexpansive by Lemma 3, we obtain that F' is
nonexpansive as well:

I 0o
|1F(z) = F(y)lly = Zaf Al filz) = i)l < Z ﬁ ~d(z,y)? = d(z,y)" .
i=0 i=0

Next, we must show that for each 0 < ¢ < I, the embedding F (i=1) has contraction
at most 22 57" for pairs in S.; X X to comply with the requirement of Lemma 3.
We prove this by induction on i, the base case for i = 0 holds trivially as F(—1 has
no requirement on its contraction (since Sco = (). Assume (for i) that F¢~1) has
contraction at most 22 757 on pairs in S.; x X. For i+ 1, let 2 € S.;4; and y € X.
Recall that F() is generated by applying Lemma 3 with A = S;, K = S;, g = F(~1,
and D = 22 +5° Then the lemma returns f;, and finally F®) = g & (o - f;).

We may assume that = € S;, otherwise ¢ = FU~1 has the required contraction
on z,y by the induction hypothesis. Apply condition (2) of the lemma: if it is the
case that ||g(z) — g(y)|, > d(z,y)/(2D), then clearly 2D < 22" +5(+1* The other
case is that || fi(z) — fi(y)|lp > ﬁfé’;w. Since log |S;| < 22" and 1/a; < 2(i +1)2,
the contraction of F(*) is at most the contraction of a; - f;, which is bounded by

1000D - log |:S;]

< 1000,22i+5¢2,22i_2(i+1)2 < 22-2i+5¢2+210g(i+1)+11 < 22i+1+5(i+1)2 .
a; -

Observe that if z = x; € S; for some j > 1, then 22" < logj, and thus
the distortion of F for any pair containing x is at most 22 +5(+1" = O(log? j) -

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 853

90((2+logloglogj)?) _ O(log**©). Additionally, note that as the distortion of F(/~1)
is at most D = 22'+51 2, the same argument suggests that the maximal distortion of
F = FU) for any pair is at most

1000D - logn

<1000 2257 logm - 2(1 + 1)% = O(log®** n) .
ar

Finally, let us bound the number of nonzero coordinates of the points. Recall
that f; maps X into O(log? |S;]) < O(22i+1) dimensions. Fix some x = z; for j > 1,
and let i be such that z; € S;. Note that 227" < log 7, so that 22" < log*j. By
Lemma 3, for every ¢’ > i, fu(x;) = 0, and the number of coordinates used by F(®) is
at most

Y 0@ =0@*") = 0log" j) .
k=0

Since the dimension of f; is at most O(log? n), we get that the total number of
coordinates used by F' is only

~

-1
0(2*""") + 0(log?n) < O(2)+ O(log? n) = O(log®n) .
0 O

21+10g loglogn

b
Il

8.2.1. Proof of Lemma 3. The basic approach to the proof is similar to
Lemma 2, which is sampling subsets of K, according to various densities. The main
difference is that we insert all the points of A into each sampled set, to ensure f(z) = 0
for all x € A. The standard analysis of Bourgain for a pair x,y, considers certain
neighborhoods defined according to the density of points around z,y. We show that
the analysis still works as long as no point of A is present in those neighborhoods.
Thus we can obtain a contribution which is proportional to the distance of z,y to A
(or to d(z,y) if that distance is large). This motivates the following definition and
lemma.

DEFINITION 1. The ~y-distance between x and y with respect to A is defined to be

d(z,y)
2

v o) =min { U2,),)}

2
LEMMA 4. Let c = 24. There exists a nonexpansive embedding ¢ : X — E,?(log k),

such that for all z € A, ¢(z) =0, and for all z,y € K,

’YA(J% y)

() — oY)l > “closk

We defer the proof of Lemma 4, and proceed first with the proof of Lemma 3.
Define h: X — R for x € X as h(z) = d(z, AU K). Our embedding f is

_pDh
f= 21/p

Since both ¢ and h are nonexpansive and vanish on A, clearly f is nonexpansive as
well, and f(z) =0 for any z € A. It remains to show property (2) of the lemma. Fix
any x € K and y € X, and consider the following three cases:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

854 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

d(z,
Case 1. d({z,y},A) < %'

In this case we shall use the guarantees of the map g. Assume w.l.o.g. that z € A
is such that d(y, z) < %. Then by the triangle inequality
d(z,y) _ 3d(z,y)

Now, using that g is nonexpansive, and has contraction at most D for any pair in
A x X, we obtain that

l9(x) = 9(W)lly = llg(x) = 9(2)llp = ll9(z) — 9(y)ll

> W02 a)

D 3d(z,y) _d(z,y)

= 4D 4D
d(z,y)

2D

which satisfies property (2).

Case 2. d({x,y},A) > % and d(y, K) > % (where ¢ = 24 is the

constant of Lemma 4).
Here we shall use the map h for the contribution. Since d(y, A) > d(z,y)/(4D),
we have that h(y) = d(y, AUK) > #j@gk and of course h(x) = 0, so that

ha) = h(y)| _ _d(w,y)
1£@) = F@llp > TG > e

as required.

Case 3. d({z,y},A) > d(fby) and d(y, K) < %.

In this case, the function ¢ will yield the required contribution, by employing a
similar strategy to Lemma 2. Let k, € K be such that d(y, k,) = d(y, K). Note that

d(ky, A) > d(y, A) — d(y, k,) > Hew) - _dew) > d@y) o0 it follows that

4D 20cD-logk =— 5D >
d(z, y)

By Lemma 4, since f is nonexpansive, and using another application of the triangle
inequality, we conclude that

1f (@) = FW)llp = 1 (@) = fR)llp — I1f () = F(Ry)llp
ECETIC A
valz ky) dz,y)
2clogk 20¢D -log k

© _dxy) __ dxy)
~ 10c¢D -logk 20cD -logk
__d=zy)

20cD -logk *

This concludes the proof of Lemma 3. It remains to validate Lemma 4, which is similar
in spirit to the methods of [Bou85, LLR95]; we give full details for completeness.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 855

Proof of Lemma 4. Let I = [logk] and J = C - logk for a constant C' that will
be determined later. For each i € [I] and j € [J] sample a set Q;; by including
each z € K independently with probability 277, and let Q;; = ;j U A. Define maps
©i; : X = R by letting for each u € X, ¢;;(u) = d(u, Qi;), and p : X — €£'J by

('D(u I J 7. 7\1/p @ @ (p”

i€l je[J]

Since each (;; is nonexpansive, ¢ is nonexpansive as well, and in what follows we
bound its contraction.

Define for v € K and r > 0 the ball restricted to K, Bg(u,r) = B(u,r) N K, and
recall that by B° we mean the open ball. Fix a pair u,v € K, and for each 0 <i < I,
let 7/ be the minimal such that both |Bk(u,r)| > 2¢ and |Bk(v,r)| > 2!. Define
r; = min{r},ya(u,v)} and let A; = r; —r;,_;. Observe that ro = 0 and r; = y4(u,v),
so that

9) ZA =va(u,v) .

i€[I]

We first claim that for each i € [I] and j € [J],
(10) Pr{lpij(u) — @i(v)] = A} > 1/12.

If A; = 0 then there is nothing to prove. Assume then that r;_; < r;, and note that
either | B (u,7;)| < 2% or |B%(v,r;)| < 2 (otherwise it contradicts the minimality of
;). W.Lo.g. we have that | B3 (u,7;)| < 2¢. Furthermore, note that the sets B (u,r;),
Bk (v,7i—1), and A are pairwise disjoint. Let € be the event that {Q;; By (u,r;) =0}
and F be the event that {Q;; N Bx(v,7;—1) # 0}. Observe that if both events hold
then d(u, Qij) > and d(’U7 QU) < Ti—1, SO that

lpij(w) — pij (V)| =1 —ric1 = A .

Since both balls are disjoint from A, we have that

prie]= [Prle¢ @)= (-2 s oo s

x€BY (u,r;)

1
1
And similarly,

PrF]=1- [Prlegqy]=1-(1-27)"0n
z€EBk (v,ri—1)

>1-(1-27)" >1-¢%>

oo\H

Since the events £ and F are independent, this concludes the proof of (10). Let X;;
be an indicator random variable for the event that |¢;;(u) — ¢;;(v)| > A;, and X; =

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

856

MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

Z;’Zl X;j. Using the independence for different values of j, and that E[X;] > J/12,
a Chernoff bound yields that for any 4

Pr(X; < J/24] < e 7100 <13 |

when C' is sufficiently large. Note that if indeed X; > J/24 for all 1 <i < I, then

lo(w) = o)l = [.JZZWJ(“)_W(UHP

vV
ﬁ‘H
~
]

4

where the second inequality uses Holder’s inequality. Applying a union bound over
the (’2“) possible pairs in (]2(), and the I = [log k] possible values of 4, there is at least

a constant probability that for every pair ||o(u) — p(v)[l, > 3

[ABC+-05]

[ABNO7]

[ABN11]

[AC14]

[AGO06]

[AP92]

[Bar96]

[Bar9g|

[BBMN11]

[BFN16]

va(u,v) 0
41/p.logk "

REFERENCES

I. ABRAHAM, Y. BArTAL, H. T.-H. CHAN, K. DHAMDHERE, A.GUPTA, J. M. KLEIN-
BERG, O. NEIMAN, AND A.S SLIVKINS, Metric embeddings with relazed guarantees,
in Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2005), Pittsburgh, PA, IEEE Computer Society, Los Alamitos, CA,
2005, pp. 83-100.

I. ABRAHAM, Y. BARTAL, AND O. NEIMAN, Embedding metrics into ultrametrics and
graphs into spanning trees with constant average distortion, in Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, 2007,
SIAM, Philadelphia, pp. 502-511.

I. ABRAHAM, Y. BARTAL, AND O. NEIMAN, Advances in metric embedding theory, Adv.
Math., 228 (2011), pp. 3026-3126.

I. ABRAHAM AND S. CHECHIK, Distance labels with optimal local stretch, in Proceedings
of the 41st International Colloquium on Automata, Languages, and Programming,
ICALP 2014, Copenhagen, Denmark, 2014, Part I, Springer, Heidelberg, 2014,
pp. 52-63.

I. ABRAHAM AND C. GAVOILLE, Object location using path separators, in Proceed-
ings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed
Computing, PODC 2006, Denver, CO, 2006, ACM, New York, 2006, pp. 1838-197.

B. AWERBUCH AND D. PELEG, Routing with polynomial communication-space trade-
off, SIAM J. Discrete Math., 5 (1992), pp. 151-162.

Y. BARTAL, Probabilistic approximation of metric spaces and its algorithmic applica-
tions, in Proceedings of the 37th Annual Symposium on Foundations of Computer
Science, FOCS ’96, IEEE Computer Society, Los Alamitos, CA, 1996, pp. 184-193.

Y. BARTAL, On approzimating arbitrary metrices by tree metrics, in Proceedings of the
30th Annual ACM Symposium on Theory of Computing, STOC ’98, NY, ACM,
New York, 1998, pp. 161-168.

N. BANSAL, N. BUCHBINDER, A. MADRY, AND J. NAOR, A polylogarithmic-competitive
algorithm for the k-server problem, in Proceedings of the 52th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS ’08, IEEE, Piscataway, NJ,
2011, pp 267 —276.

Y. BARTAL, A. FILTSER, AND O.NEIMAN, On notions of distortion and an almost
minimum spanning tree with constant average distortion, in Proceedings of the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

[Bou85]
[Bou86]

[CDGO6]

[Chel4]

[Chel5]

[EFN15]

[FLM77]
[FRT04]

[GPPRO1]

[Gup01]

[JL84]

[KKM+12]

[Kle02]

[KSWO09]

[LLRO5]

[LT79]

[MNOG6]

[Pel99]

[RROS]

[RTZ05)

[SS09]
[ST04]

[ThoO1]

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 857

Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’16, STAM, Philadelphia, 2016, pp. 873-882.

J. BOURGAIN, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel
J. Math., 52 (1985), pp. 46-52.

J. BOURGAIN, The metrical interpretation of superreflexivity in Banach spaces, Israel
J. Math., 56 (1986), pp. 222-230.

H. T.-H. CHAN, M. DINITZ, AND A. GUPTA, Spanners with slack, in Proceedings of the
14th Annual European Symposium, Algorithms - ESA 2006, Zurich, Switzerland,
Springer, Berlin, 2006, pp. 196-207.

S. CHECHIK, Approxzimate distance oracles with constant query time, in Proceedings
of the 46th Annual ACM Symposium on Theory of Computing, STOC ’14, NY,
ACM, New York, 2014, pp. 654—663.

S. CHECHIK, Approximate distance oracles with improved bounds, in Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, 2015, ACM, New York, 2015, pp. 1-10.

M. ELKIN, A. FILTSER, AND O. NEIMAN, Prioritized metric structures and embedding,
in Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, ACM, New York, 2015, pp. 489-498.

T. FIGIEL, J. LINDENSTRAUSS, AND V. D. MILMAN, The dimension of almost spherical
sections of convez bodies, Acta Math., 139 (1977), pp. 53-94.

J. FAKCHAROENPHOL, S. RAO, AND K. TALWAR, A tight bound on approximating arbi-
trary metrics by tree metrics, J. Comput. System Sci., 69 (2004), pp. 485-497.

C. GAVOILLE, D. PELEG, S. PERENNES, AND R. RAZz, Distance labeling in graphs, in
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 2001, SIAM, Philadelphia, 2001, pp. 210-219.

A. GuPTA, Steiner points in tree metrics don’t (really) help, in Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01,
SIAM, Philadelphia, 2001, pp. 220-227.

W. B. JOHNSON AND J. LINDENSTRAUSS, FEzxtensions of Lipschitz mappings into a
Hilbert space, in Conference in Modern Analysis and Probability (New Haven,
CT, 1982), AMS, Providence, RI, 1984, pp. 189-206.

M. KHAN, F. KUHN, D. MALKHI, G. PANDURANGAN, AND K. TALWAR, Efficient dis-
tributed approximation algorithms via probabilistic tree embeddings, Distrib. Com-
put., 25 (2012), pp. 189-205.

P. N. KLEIN, Preprocessing an undirected planar network to enable fast approximate
distance queries, in Proceedings of the Thirteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2002, San Francisco, CA, STAM, Philadelphia, 2002,
pp. 820-827.

J. KLEINBERG, A. SLIVKINS, AND T. WEXLER, Triangulation and embedding using
small sets of beacons, J. ACM, 56 (2009), 32.

N. LiNiAL, E. LONDON, AND Y. RABINOVICH, The geometry of graphs and some of its
algorithmic applications, Combinatorica, 15 (1995), pp. 215-245.

R. J. LiprtoN AND R. E. TARJAN, A separator theorem for planar graphs, SIAM J.
Appl. Math., 36 (1979), pp. 177-189.

M. MENDEL AND A. NAOR, Ramsey partitions and proximity data structures, in Pro-
ceedings of the 47th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS ’06, IEEE Computer Society, Los Alamitos, CA, 2006, pp. 109-118.

D. PELEG, Proximity-preserving labeling schemes and their applications, in Proceed-
ings of the Graph-Theoretic Concepts in Computer Science, 25th International
Workshop, WG 99, Ascona, Switzerland, 1999, Springer, Berlin, 1999, pp. 30-41.

Y. RABINOVICH AND R. RAZ, Lower bounds on the distortion of embedding finite metric
spaces in graphs, Discrete Comput. Geom., 19 (1998), pp. 79-94.

L. Roprrry, M.THORUP, AND U. ZWICK, Deterministic constructions of approximate
distance oracles and spanners, in Proceedings of the 32nd International Conference
on Automata, Languages and Programming, ICALP’05, Springer, Berlin, 2005,
pp. 261-272.

G. SCHECHTMAN AND A. SHRAIBMAN, Lower bounds for local versions of dimension
reductions, Discrete Comput. Geom., 41, (2009), pp. 273-283.

Y. SHAVITT AND T. TANKEL, Big-bang simulation for embedding network distances in
Euclidean space, IEEE/ACM Trans. Netw., 12 (2004), pp. 993-1006.

M. TuHORUP, Compact oracles for reachability and approximate distances in planar
digraphs, in Proceedings of the 42nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2001, Las Vegas, NV, IEEE Computer Society, Los Alamitos,
CA, 2001, pp. 242-251.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/19/19 to 132.76.61.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

858 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

[TZ01] M. THORUP AND U. Zwick, Compact routing schemes, in Proceedings of the Thir-
teenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
’01 New York, ACM, New York, 2001, pp. 1-10.

[TZ05] M. THORUP AND U. ZWICK, Approximate distance oracles, J. ACM, 52 (2005), pp. 1—-
24.
[Wul13] C. WULFF-NILSEN, Approzimate distance oracles with improved query time, in Pro-

ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2013, New Orleans, LA, 2013, STAM, Philadelphia, 2013, pp. 539—
549.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Part III

On Notions of Distortion and an Almost
Minimum Spanning Tree with Constant
Average Distortion

52

Journal of Computer and System Sciences 105 (2019) 116-129

Contents lists available at ScienceDirect

JOURNAL oF
COMPUTER
a2~ SYSTEM

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

On notions of distortion and an almost minimum spanning
tree with constant average distortion ™

Check for
updates

Yair Bartal ®*!1, Arnold Filtser >*2, Ofer Neiman >*:2

4 School of Engineering and Computer Science, Hebrew University, Israel
b pepartment of Computer Science, Ben-Gurion University of the Negev, Israel

ARTICLE INFO ABSTRACT

Article history:

Received 5 February 2018

Received in revised form 3 February 2019
Accepted 25 April 2019

Available online 4 May 2019

This paper makes two main contributions: a construction of a near-minimum spanning tree
with constant average distortion, and a general equivalence theorem relating two refined
notions of distortion: scaling distortion and prioritized distortion. Scaling distortion provides
improved distortion for 1 — e fractions of the pairs, for all € simultaneously. A stronger
version called coarse scaling distortion, has improved distortion guarantees for the furthest
pairs. Prioritized distortion allows to prioritize the nodes whose associated distortions

Keywords:

Metric embedding
Prioritized distortion
Scaling distortion
Average distortion

will be improved. We show that prioritized distortion is essentially equivalent to coarse
scaling distortion via a general transformation. This equivalence is used to construct the
near-minimum spanning tree with constant average distortion, and has many further
implications to metric embeddings theory. Among other results, we obtain a strengthening

Light spanner of Bourgain’s theorem on embedding arbitrary metrics into Euclidean space, possessing

optimal prioritized distortion.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

One of the fundamental problems in graph theory is that of constructing a Minimum Spanning Tree (MST) of a given
weighted graph G = (V, E). This problem and its variants received much attention, and has found numerous applications.
In many of these applications, one may desire not only minimizing the weight of the spanning tree, but also other desirable
properties, at the price of losing a small factor in the weight of the tree compared to that of the MST. Define the lightness
of T to be the total weight of T (the sum of its edge weights) divided by the weight of an MST. One well known example
is that of a Shallow Light Tree (SLT) [27,6], which is a rooted spanning tree having near optimal (1 + p) lightness, while
approximately preserving all distances from the root to the other vertices.

It is natural to ask that the spanning tree will preserve well all pairwise distances in the graph. However, it is easy to
see that no spanning tree can maintain such a requirement. In particular, even in the case of the unweighted cycle graph
on n vertices, for every spanning tree there is a pair of neighboring vertices whose distance increases by a factor of n — 1.
A natural relaxation of this demand is that the spanning tree approximates all pairwise distances on average. Formally,

i i i i i dr(u.v) i | dr (u.v)
the distortion of the pair u,v € V in T is defined as TV and the average distortion is G Z{u,v}e(v) TV where dg

u,
2 u,v

* Preliminary version of this paper was published in SODA'16 [13].
* Corresponding authors.
E-mail addresses: yair@cs.huji.ac.il (Y. Bartal), arnoldf@cs.bgu.ac.il (A. Filtser), neimano@cs.bgu.ac.il (O. Neiman).
! Supported in part by a grant from the ISF (1817/17).
2 Supported in part by ISF grant No. (1817/17) and by BSF grant No. 2015813.

https://doi.org/10.1016/j.jcss.2019.04.006
0022-0000/© 2019 Elsevier Inc. All rights reserved.

Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129 117

(respectively dr) is the shortest-path metric in G (resp. T).> There are graphs where the average distortion of the MST can
be as large as Q(n) (see for example the graph described in Lemma 13). In [4], it was shown that for every weighted graph,
it is possible to find a spanning tree which has constant average distortion. However, the question of whether it is possible
to obtain a tree with non-trivial bounds on both its lightness and the average distortion remained open.

In this paper we resolve this question in the affirmative. Specifically, we devise a spanning tree of optimal (1 + p)
lightness that has O(1/p) average distortion over all pairwise distances. We show that this result is tight by exhibiting
a lower bound on the tradeoff between lightness and average distortion, that in order to get 1 4+ p lightness the average
distortion must be ©(1/p) (this holds for 1/n < p <1, and even if the spanning subgraph is not necessarily a tree).

Our main result of a light spanning tree with constant average distortion may be of interest for network applications. It
is extremely common in the area of distributed computing that an MST is used for communication between the network
nodes. This allows easy centralization of computing processes and an efficient way of broadcasting through the network,
allowing communication to all nodes at a minimum cost. Yet, as already mentioned above, when communication is required
between specific pairs of nodes, the cost of routing through the MST may be extremely high, even when their real distance
is small. However, in practice it is the average distortion, rather than the worst-case distortion, that is often used as a
practical measure of quality, as has been a major motivation behind the initial work of [28,3,4]. As noted above, the MST
still fails even in this relaxed measure. Our result overcomes this by promising small routing cost between nodes on average,
while still possessing the low cost of broadcasting through the tree, thereby maintaining the standard advantages of the
MST.

Our main result on a low average distortion embedding follows from analyzing the scaling distortion [28,3] of the embed-
ding. This refined notion of distortion turns out to be closely related to another useful measure of prioritized distortion [22].
The second main contribution of this paper is providing an equivalence theorem stating the relation between these useful
notions.

1.1. Scaling distortion vs. prioritized distortion: a general equivalence theorem

Scaling distortion, first introduced in [28],* requires that for every 0 < € < 1, the distortion of all but an e-fraction of
the pairs is bounded by the appropriate function of €. In [3] it was shown that one may obtain bounds on the average
distortion, as well as on higher moments of the distortion function, from bounds on the scaling distortion. In [3] several
scaling distortion results were shown including O (log(1/€)) scaling distortion embedding into Euclidean space, and in [4]
an 0(1/./€) scaling embedding into trees, and spanning trees in particular.

Prioritized distortion, introduced recently in [22], requires that for every given ranking v1i,..., v, of the vertices of the
graph, there is an embedding where the distortion of pairs including v; is bounded as a function «(j) : [n] — R4 of the
rank j. Several prioritized distortion results were given in [22], including O (log j)° prioritized distortion embedding into
Euclidean space. (See Section 2 for formal definitions of embeddings and various notions of distortion.)

One of the main ingredients of our work is a general reduction relating the notions of prioritized distortion and scaling
distortion. In fact, we show that prioritized distortion is essentially equivalent to a strong version of scaling distortion called
coarse scaling distortion, in which for every point p and every 0 < € < 1, the distances to the 1 — € fraction of the farthest
points from p are preserved with the desired distortion. We prove that any embedding with a prioritized distortion o has
coarse scaling distortion bounded by O (x(8/¢€)). This result could be of independent interest; in particular, it shows that
the results of [22] have their scaling distortion counterparts (some of which were not known before). We further show a
reduction in the opposite direction, informally, that given an embedding with coarse scaling distortion y, there exists an
embedding with prioritized distortion y ((j)), where w is a function such that >*; u(i) =1 (e.g. n(j) = ﬁ). We note
that this reduction heavily relied on the property of coarse scaling distortion embeddings and does not apply to non-coarse
scaling embeddings. Yet, most existing scaling embeddings are indeed coarse. This result implies that all existing coarse
scaling distortion results have priority distortion counterparts, thus improving few of the results of [22]. In particular, by
applying a theorem of [3] we obtain prioritized embedding of arbitrary metric spaces into I, in dimension O (logn) and
prioritized distortion O (log j), which exhibits a strengthening of Bourgain’s theorem [15] (which asserts O (logn) worst-
case distortion), and is best possible. It also implies better bounds for decomposable metrics (see [3]), such as planar and
doubling metrics, where we obtain an optimal O (y/log j) prioritized distortion.

We also show an equivalence between embeddings with coarse partial distortion and terminal embeddings, which can
be used to extend and improve previous results. See Section 3.3 for details.

In the context of our main construction of a light spanning tree, the first direction of the above equivalence theorem
allows us to devise prioritized distortion embeddings and use these to obtain scaling distortion embeddings which possess
the desired constant average distortion.

3 Distortion is sometimes referred to as stretch.
4 Originally coined gracefully degrading embedding.
> By O(f(n)) we mean O(f(n) - polylog(f (n))).

118 Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129

1.2. Light spanning tree of constant average distortion

Our main spanning tree construction provides a spanning tree with 1 + p lightness and scaling distortion O (1/+/€)/p,
which is nearly tight as a function of € [4]. This result implies that the average distortion is O (1/p).

We also devise a probabilistic embedding: a distribution over spanning trees, each tree in the support of the distribution
has 1+ p lightness, and the expected scaling distortion is at most polylog(1/€)/p. Thus providing constant bounds on all
fixed moments of the distortion (i.e., the lg-distortion [3] for fixed q). (See the end of Section 5 for a formal definition of
probabilistic embedding.)

Our main technical contribution, en route to this result, may be of its own interest: We devise a spanner (a subgraph of
G) with 1+ p lightness and low prioritized distortion. Here we show a light spanner construction with prioritized distortion
at most O (log j)/p. Using the equivalence theorem relating prioritized distortion and scaling distortion (discussed above),
we obtain a spanner having scaling distortion O (log(1/€))/p, and thus average distortion O(1/p). Although we do not
obtain a spanning tree here, this result has a few advantages, as we get constant bounds on all fixed moments of the
distortion function (the ¢4-distortion). Moreover, the worst-case distortion is only logarithmic in n. We note that all of our
results admit deterministic polynomial time algorithms.

Another technical contribution is a general, black-box reduction, that transform constructions of spanners with distortion
t and lightness ¢ into spanners with distortion t/8§ and lightness 1+ §¢ (here 0 <8 < 1). This reduction can be applied in
numerous settings, and also for many different special families of graphs. In particular, this reduction allows us to construct
prioritized spanners with lightness arbitrarily close to 1.

Outline and techniques. Our proof has the following high level approach; Given a graph and a ranking of its vertices, we
first find a low weight spanner with prioritized distortion O (log j)/p. We then apply the general reduction from prioritized
distortion to scaling distortion to find a spanner with scaling distortion O (log(1/€))/p. Finally, we use the result of [4] to
find a spanning tree of this spanner with scaling distortion O (1/4/€). We then conclude that the scaling distortion of the
composed embeddings® is roughly their product, which implies our main result of a spanning tree with lightness 1+ p and
scaling distortion O (1//€)/p.

Similarly, we can apply the probabilistic embedding of [4] to get a light counterpart, devising a distribution over spanning
trees, each with lightness 1 + p, with (expected) scaling distortion polylog(1/€)/p.

The main technical part of the paper is finding a light prioritized spanner. In a recent result [19] (following [23,17]), it
was shown that any graph on n vertices admits a spanner with (worst-case) distortion O (logn) and with constant lightness.
However, these constructions have no bound on the more refined notions of distortion. To obtain a prioritized distortion,
we use a technique similar in spirit to [22]: group the vertices into loglogn sets according to their priority, the set K; will
contain vertices with priority up to 22'. We then build a low weight spanner for each of these sets. As prioritized distortion
guarantees a bound for every pair containing a high ranking vertex, we must augment the spanner of K; with shortest paths
to all other vertices. Such a shortest path tree may have large weight, so we use an idea from [16] and apply an SLT rooted
at Kj, which balances between the weight and the distortion from Kj;.

The main issue with the construction described above is that the weight of the spanner in each phase can be proportional
to that of the MST, but we have loglogn of those. Obtaining constant lightness, completely independent of n, requires a
subtler argument. We use the fact that the weight of the light spanners in each phase comes “mostly” from the MST,
and then some additional weight. We ensure that all the spanners will have the same MST. Then we select the parameters
carefully, so that the additional weights will be small enough to form converging sequences, without affecting the distortion
by too much.

1.3. Related work

Partial and scaling embeddings’ have been studied in several papers [28,1,3,16,4,5]. Some of the notable results are
embedding arbitrary metrics into a distribution over trees [1] or into Euclidean space [3] with tight O (log(1/€)) scaling
distortion. The notion {¢-distortion was introduced in [3], they show that their scaling distortion results imply constant
average distortion and O (q) bound on the {4-distortion. This notion has been further studied in several papers, including [4,
5,16], and most recently applied in the context of dimensionality reduction [14]. In [4], an embedding into a single spanning
tree with tight O(1/./€) scaling distortion was shown, which implies, in particular, constant average distortion, but there
is no guarantee on the weight of the tree. It follows from [1] that this bound is tight even when embedding into arbitrary
(non-spanning) trees.

Prioritized distortion embeddings were studied in [22], for instance they give an embedding of arbitrary metrics into
a distribution over trees with expected prioritized distortion O(log j), and into Euclidean space with prioritized distortion
O (log j).

6 Given two embeddings f:X — Y, g:Y — Z, the composition go f is defined from X to Z, sending every point x € X to g(f(x)) € Z.
7" A partial embedding (introduced by [28] under the name embedding with slack) requires that for a fixed 0 < € < 1, the distortion of all but an e-fraction
of the pairs is bounded by the appropriate function of €.

Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129 119

Probabilistic embedding into trees [10-12,24] and spanning trees [8,20,2,9] has been intensively studied, and found
numerous applications to approximation and online algorithms, and to fast linear system solvers. While our distortion
guarantee does not match the best known worst-case bounds, which are O (logn) for arbitrary trees [12,24] and O (logn) for
spanning trees [2,9], we give the first probabilistic embeddings into spanning trees with polylogarithmic scaling distortion
in which all the spanning trees in the support of the distribution are light.

The paper [16] considers partial and scaling embedding into spanners, and show a general transformation from worst-
case distortion to partial and scaling distortion. In particular, they show a spanner with O (n) edges and O (log(1/€)) scaling
distortion. For a fixed € > 0, they also obtain a spanner with O (n) edges, O (log(1/€)) partial distortion and lightness
0 (log(1/€)).® Note that these results fall short of achieving both constant average distortion and constant lightness.

In a subsequent work, [25] used our general reduction for light spanners (Theorem 8), to show that the
O (logn/p)-greedy spanner has lightness 1+ p.

2. Preliminaries

All the graphs G = (V, E, w) we consider are undirected and weighted with nonnegative weights. Throughout the paper
we denote by n the number of vertices and by m the number of edges in the given graph. We shall assume w.l.o.g. that all
edge weights are different. If it is not the case, then one can break ties in an arbitrary (but consistent) way. Note that under
this assumption, the MST T of G is unique. The weight of a graph G is w(G) =) . w(e). Let dg be the shortest path
metric on G. For a subset K CV and v € V let dg(v, K) = minyeg{d(u, v)}. For r >0 let Bg(v,r)={ueV :dgu,v)<r}
(we often omit the subscript when clear from context).

For a graph G = (V, E) on n vertices, a subgraph H = (V, E’) where E’ C E (with the induced weights) is called a spanner
of G. We say that a pair u, v € V has distortion at most t if

dH(V,u) fth(Vsu) s

(note that always dg(v,u) <dy(v,u)). If every pair u,v € V has distortion at most t, we say that the spanner H has
distortion t. Let T be the (unique) MST of G, the lightness of H is the ratio between the weight of H and the weight of the
MST, that is W(H) = % We sometimes abuse notation and identify a spanner or a spanning tree with its set of edges.

A metric space (X, dy) is defined over a set of points X and a nonnegative distance function dx, with positive values on
distinct points, and obeying the triangle inequality. Every weighted graph G can be viewed as a metric space (V,dg). For

two metric spaces (X, dy), (Y,dy) and a non-contractive embedding f : X — Y,? the distortion of a pair x, y € X under f

is defined as 2.1/ AL
x(x.y
When considering a graph G and its subgraph H, we may view the metric of G as being embedded into H via the

identity map, in which case the last definition of distortion given above coincides with the those given earlier. Hence, the
following definitions may be interpreted in the graph case in the obvious way.

Prioritized distortion. Let (X,dx), (Y,dy) be metric spaces. Let m = vq,..., v, be a priority ranking (an ordering) of the
points (vertices) of X, and let & : N — R be some monotone non-decreasing function. We say that a non-contractive
embedding f: X — Y has prioritized distortion « (w.r.t. 7r), if for all 1 < j <i <n, the pair v;, v; has distortion (under f) at
most a(j).

Scaling distortion. Let (X,dx),(Y,dy) be metric spaces, with |X| =n. For v € X and € € (0,1) let R(v,€) =
min{r: |B(v,r)| > en}. A point u € X is called e-far from v if dx(u, v) > R(v,€). Given a function y : (0,1) - R, we
say that a non-contractive embedding f : X — Y has scaling distortion y, if for every € € (0, 1), there are at least (1 — e)(|>2<|)
pairs that have distortion at most y (¢). We say that f has coarse scaling distortion y, if every pair v, u € X such that both

u, v are €/2-far from each other, has distortion at most y (¢).'°

Moments of distortion. Let (X.dx), (Y.dy) be metric spaces. For 1 < q < oo, define the {4-distortion of a non-contractive
embedding f: X — Y as:

dy (f (u), f(v)))"]”"

distq(f):IE[< Ao V)

where the expectation is taken according to the uniform distribution over (;() The classic notion of distortion is expressed

by the ¢, -distortion and the average distortion is expressed by the ¢;-distortion. The following was proved in [4].

8 The original paper claims lightness O (log(1/€)), but their proof in fact gives the improved bound.
9 An embedding f is non-contractive if for every x, y € X, dy (f %), f(¥)) = dx(x. y).
10 It can be verified that coarse scaling distortion y implies scaling distortion y.
Moreover, in this paper we prove that the definition that requires only one of u. v to be §-far from the other, is almost equivalent. See Remark 1.

120 Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129

Lemma 1. ([4]) Let (X, dx), (Y, dy) be metric spaces. If a non-contractive embedding f : X — Y has scaling distortion y then

1/q
1

disty(f) < | 2 / y (x)%dx
367
3. Prioritized distortion vs. coarse scaling distortion

In this section we study the relationship between the notions of prioritized and scaling distortion. We show that there is
a reduction that allows to transform embeddings with prioritized distortion into embeddings with coarse scaling distortion,
and vice versa.

3.1. Coarse scaling distortion implies prioritized distortion

The following theorem shows that coarse scaling distortion implies prioritized distortion, implying some new prioritized
distortion embedding results, and in particular a prioritized version of Bourgain’s theorem.

Theorem 1. Let ;o : N — R be a non-increasing function such that Y ;_; u(i) = 1. Let Y be a family of finite metric spaces, and
assume that for every finite metric space (Z, dz) there exists a non-contractive embedding f7 : Z — Yz, where (Yz,dy,) € Y, with
(monotone non-increasing) coarse scaling distortion y. Then, given a finite metric space (X, dx) and a priority ranking x1, ..., X, of
the points of X, there exists an embedding f : X — Y, for some (Y, dy) €), with prioritized distortion y (1 (i)).

Proof. Given the metric space (X,dx) and a priority ranking x1, ..., X, of the points of X, let § = minj+jdx(x;, x;)/2. We
define a new metric space (Z,dz) as follows. For every 1 <i <n, every point x; is replaced by a set Xj of |Xj| = [u(i)n]
points, and let Z = UL] Xi. For every u € X; and v € X; define dz(u, v) =dx(x;, xj) when i # j, and dz(u, v) = § otherwise.
Observe that |Z| =" |Xi| <> L, (u@n+1) <2n.

We now use the embedding f7 : Z — Y, with coarse scaling distortion y, to define an embedding f: X — Yz, by
letting for every 1 <i<n, f(xi) = fz(u;) for some (arbitrary) point u; € X;. By construction of Z, for every j > i, we have
that X; € B(uj, dz(u;, uj)) N B(uj, dz(ui, uj)). As |Xi| > u@n > #lZl, it holds that u;, u; are €/2-far from each other for

. dy, (F0).F6) dy, (Fz(up). fzuy) ,
dx (xi.xj) dz(uj.uj) SJ/(M(I)) o

€ = u(i). This implies that

It follows from a result of [22] that the convergence condition on @ in the above theorem is necessary (more details
below). We note that this reduction can also be applied to cases where the coarse scaling embedding is only known for a
class of metric spaces (rather than all metrics), as long as the transformation needed for the proof can be made so that the
resulting new space is still in the class. This holds for most natural classes, such as metrics arising from trees, planar graph,
graphs excluding a fixed minor, bounded degree graphs, doubling metrics, etc.'!

3.1.1. Implications
The reduction implies that all existing coarse scaling distortion embeddings and distance oracles have priority distortion
counterparts, thus improving few of the results of [22].

Embeddings. By applying a theorem of [3] we get the following.

Corollary 2. For every 1 < p < oo and every finite metric space (X, dx) and a priority ranking of X, there exists an embedding with
P . . s O (log|X])
prioritized distortion O (log j) into I, .

Another consequence of the results of [3] is better bounds for decomposable metrics'?:

Corollary 3. For every 1 < p < oo and every finite T-decomposable metric space (X, dx) and a priority ranking of X, there exists an

embedding with prioritized distortion O (z'~1/P(log j)'/P) into Ig“ogz XD,

1 For the graph classes mention above (as well as for doubling metrics), a small change in the construction is needed. From each original vertex x;, we
will grow a path X; of [/4(i)n] vertices, where all the path edges have weight 52—2‘ for arbitrarily small « > 0. We will also need to choose u; to be the
single leaf in the added path (rather then simply arbitrarily chosen vertex). The same proof will guarantee a (1 +)y (u(i)) prioritized distortion.

12 Roughly, a metric space is called t-decomposable if it allows probabilistic partitions with padding parameter T; e.g. Planar metrics and doubling
metrics. An exact definition appears in [3].

Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129 121

Spanners. Applying Theorem 1 on [16, Corollary 3] we get a linear size prioritized spanner.

Corollary 4. Given a graph G = (V, E) and any priority ranking v1, va, ..., vy of V, there exists a spanner H with O (n) edges and
prioritized distortion O (log j).

We remark that in Theorem 6 we show directly a spanner with O (nloglogn) edges and prioritized distortion O (log j)
(which could easily be made O (log j)). While not being of linear size, that spanner is very light. We currently do not know
how to achieve both lightness and linear size spanner with prioritized distortion O (log j).

Distance oracles. In [22], among other possible tradeoffs, it was shown how to construct distance oracles with O (nloglogn)
space and prioritized distortion O (logn/log(n/j)) with O(1) query time. (Alternatively, they had O(nlog*n) space and
0 (2logn/log/ i)y prioritized stretch with O (1) query time.) The space requirement in [22] was never truly linear in n.
Chechick [18] showed that for every metric space (X,dx), one can construct a distance oracle with O (logn)-stretch,
0(1)-query time and O(n) space. A black box reduction from [16], will provide us with distance oracle with O(log%)
coarse scaling distortion, O (1)-query time and O (n) space. We conclude with a linear size prioritized distance oracle.

Corollary 5. For every metric space (X, dy) and every priority ranking, there exist a distance oracle requiring O (n) space, that answer
distance queries in O (1) time and O (log j) priority distortion.

We remark that the prioritized distortion O (logn/log(n/j)) of [22] is superior to our O (log j).
3.2. Prioritized distortion implies coarse scaling distortion

Here we prove the direction that is used for our main result of a light constant average distortion spanning tree, specifi-
cally, that prioritized distortion implies scaling distortion.

Theorem 2. Let (X, dy), (Y, dy) be metric spaces, then there exists a priority ranking T = X1, ..., X of the points of X such that the
following holds: If there exists an embedding f : X — Y with (monotone non-decreasing) prioritized distortion ¢ (with respect to 1),
then f has coarse scaling distortion O (c(8/¢€)).

The basic idea of the proof is to choose the priorities so that for every €, every v € X has a representative v’ of
sufficiently high priority within distance =~ R(v, €). Then for any u € X which is e-far from v, we can use the low distortion
guarantee of v/ with both v and u via the triangle inequality. To this end, we employ the notion of a density net due to [16],
who showed that a greedy construction provides such a net.

Definition 1 (Density net). Given a metric space (X, d) and a parameter 0 < € < 1, an e-density-net is a set N C X such that:
1) for all v € X there exists u € N with d(v,u) <2R(v,€) and 2) [N| < %

Proof of Theorem 2. We begin by describing s, the desired priority ranking of X. For every integer 1 <i < [logn] let
€; =27", and let N; C X be an ¢;-density-net in X. Set 7t to be a priority ranking of X satisfying that every point v € N;
has priority at most ‘U’j:1 Nj} <Y |Nj|. As for any j, [Nj| < t‘]_, =2/, each point in N; has priority at most Y"';_, :—j <
Y 2i <2t

Let f: X — Y be some non-contractive embedding with priority distortion o with respect to . Fix some € € (0, 1) and

a pair v,u € V so that u is e-far from v. Let i be the minimal integer such that €¢; < € (note that we may assume 1 <i <
llogn], because there is nothing to prove for € < 1/n). By Definition 1 we can take v’ € N; such that d(v, v') < 2R(v, €;). As
u is e-far from v, it holds that

dx(v,v') <2R(v,€) < 2R (v,€) < 2dx(v,u) . (M

In particular, by the triangle inequality,

1
dx(u, V') < dx(u, v) +dx (v, v') 2 3dx u, v) @)

The priority of v/ is at most 211, hence

dy (f (v). f)
< dy(fW). fOV) +dy (FV). fw)
@) dx(v.v) +a @) - dx (v, u)

=
A2
=

)
5a(2/€) -dx(v,u) .

122 Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129

By the minimality of i it follows that 1/€; <2/€, and since « is monotone

dy (f(v), f(u)) <5a(2/€) -dx(v,u) <5a(4/e)-dx(v,u),

as required. Since we desire distortion guarantee for pairs that are €/2-far, the distortion becomes O (x(8/€)). O

Remark 1. The proof of Theorem 2 provides an even stronger conclusion, that any pair u, v € X such that one is €/2-far from
the other, has the claimed distortion bound. While in the original definition of coarse scaling both points are required to
be €/2-far from each other, it is often the case that we achieve the stronger property. Yet, in some of the cases in previous
work the weaker definition seemed to be of importance. Combining Theorem 2 and Theorem 1, we infer that essentially
any coarse scaling embedding can have such a one-sided guarantee, with a slightly worse dependence on €, as claimed in
the following corollary.

Corollary 6. Let 11 : N — R™ be a non-increasing function such that 3 ;_, ;t(i) = 1. Let Y be a family of finite metric spaces, and
assume that for every finite metric space (Z,dy) there exists a non-contractive embedding f7 : Z — Yz, where (Y7, dy,) € Y, with
(monotone non-increasing) coarse scaling distortion y (€). Then given any finite metric space X, there exists an embedding f: X — Y,
Jorsome (Y, dy) € Y, with (monotone non-decreasing) one-sided coarse scaling distortion O (y (iL(8/€))).

Proof. By the assumption, there exists (Y, dy) € Y so that X embeds to Y with coarse scaling distortion y (¢€). According to
Theorem 1, there is an embedding f with prioritized distortion y (. (i))) (w.r.t. to any fixed priority ranking 7). We pick 7
to be the ordering required by Theorem 2, and conclude that f has one-sided coarse scaling distortion O (y (i (8/€))). O

3.3. Coarse partial distortion and terminal distortion

As a special case of the reductions Theorem 1 and Theorem 2, we can prove an equivalence between coarse partial
distortion to terminal distortion.

Definition 2 (Coarse partial distortion). Let (X, dx), (Y,dy) be metric spaces, and let € € (0,1), ¥y > 1. A non-contractive
embedding f: X — Y has (1 — €)-coarse partial scaling distortion y, if every pair v,u € X such that both u, v are €/2-far
from each other, has distortion at most y.

Note that the embedding f has coarse scaling distortion y if and only if for every € € (0, 1), f has (1 — €)-coarse partial
distortion y (€).

Definition 3 (Terminal distortion). Let (X.dx), (Y,dy) be metric spaces, and K C X a subset of terminals. A non-contractive
embedding f : X — Y has terminal distortion « w.r.t. K, if every pair (v, u) € K x X has distortion at most c.

Note that for a priority ranking 7 =x1, ..., Xn, the embedding f has priority distortion « w.r.t. 7w if and only if for every
k, f has terminal distortion (k) w.r.t. K = {xq,...,X,}. It is important to note that Definition 3 differs from the original
definition of terminal distortion in [21], which did not require f to be non-contractive on all pairs. We elaborate on this
issue in Subsection 3.3.1.

Theorem 3. Let /+ : N — R™ be a non-increasing function such that % ;_, ;(i) = 1. Let k € N. Let Y be a family of finite metric
spaces, and assume that for every finite metric space (Z, dz) there exists an embedding ¢ : Z — Yz, where (Yz,dy,) € IV, with coarse
(1 — 1/(2k))-partial distortion y. Then, given a finite metric space (X, dx) and a set of terminals K C X of size |K| =k, there exists
an embedding f : X — Y, for some (Y,dy) € Y, with terminal distortion y .

1

Proof. Simply follow the proof of Theorem 1, using u(x) = 5; for x € K, and w(x) = for xe X\ K. As every xe K

1

2k 20Xk
has % copies, and the new metric Z contains at most 2n points, x is ﬁ-far from any other y € X (in the metric space Z).
Also this y is 41—k-far from x (since |Bz(y.d(x, y))| >n/(2k)). Thus the embedding with coarse (1 — 1/(2k))-partial distortion

for Z has distortion at most y for such a pair x, y. O

Theorem 4. Let (X, dx), (Y, dy) be metric spaces, and k € N a parameter. There exists a subset K C X of size k, such that the following
holds: If there exists an embedding f : X — Y with terminal distortion «, then f has coarse (1 — %)-partial scaling distortion 5.

Proof. Following the lines of the proof of Theorem 2 let K be a ;-density net. Fix a pair v,u € V so that u is 3 - # = 1-far
from v. Let v/ € N such that dx (v, v/) <2R(v, §) < 2dx (v, u). It holds that,

Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129 123

dy (f(v), fw) <dy(f(v), f(vV) +dy(f(V), f(w))
<a-dx(v,v)+a-dx(v, u)

<2a-dx(v,u)+3a-dx(v,u) =5« -dx(v.,u). O
Among other implications, Theorem 4 implies the following:

Corollary 7. For every parameters 0 < €, § < 1, every n-vertex weighted graph G contains a spanning tree with (1 — €)-coarse partial
distortion 0 (%) and 1+ § lightness.

Proof. In [21] it was shown that for every weighted graph G = (V,E, w) and terminal set K C V of size k, there is a
spanning tree T with terminal distortion O (k) and constant lightness. Using Theorem 8 (proven below), we get that G
contains a spanning tree with terminal distortion O (k/8) and lightness 1 + §. Now, Theorem 4 (with k = 2) implies the

€
corollary. O

3.3.1. Weak terminal distortion

Our definition of terminal distortion has a one-sided guarantee on all pairs, e.g., the embedding must not contract any
distance. This definition differs from the original definition of terminal distortion which appears in [21], where the non-
contractive requirement was missing (formally, by [21], f has terminal distortion « iff there is some constant ¢ € R such
that V(v,u) e K x X, dx(u,v) <c-dy(f(u), f(v)) <a-dx(u,v)). We will refer to the original definition from [21] as weak
terminal distortion.

These two definitions are indeed different. For example, in [21] it was shown that given n points containing k terminals
in R™, they can be embedded into R91°¢kK with weak terminal distortion O (1) (under the ¢»-norm). However, any non-
contracting embedding with constant distortion requires $2(logn) dimensions, so this is impossible under our Definition 3.
As a result of the difference between these definitions, there are some results in [21] on which the reduction of Theorem 4
cannot be used.

Nevertheless, if the target space is £p, we devise a transformation from weak terminal distortion into terminal distortion,
while increasing the dimension additively by O (logn). The first step is Theorem 5, in which we extend a standard embedding
into a terminal one, in a different manner than [21]. This theorem has other implications: in particular, we generalize and
improve the dimension in a result of [1,3] on embedding into ¢, with coarse partial distortion.

Theorem 5. Let (X, dx) be metric space of size n, and K C X be a subset of terminals. Suppose that there exists an embedding
f:K— E’Z with distortion c, then there is an embedding f : X — éﬁ“mogm with terminal distortion O ().

Proof. Assume, as we may, that f is non-contractive. That is, for every v,u e K, dx(u, v) < ||f(u) — f(W)lp < -dx(u,v).

Fix m = O (logn). Let g : X — {£1}™ such that for every v, u € X, there are at least % coordinates i where g;(v) # g;i(u)
(a random g will work with high probability, as can be verified by Chernoff inequality). For every vertex u € X, let k, be
the closest terminal to u. The embedding]’ is defined as follows. For u € X,

N d Jky
Fa = flk @ 0K oy

ml/p

First, we will show that f has expansion at most O («) on terminal pairs. Fix some v € K and u € X.

R R 1 m
1F) = F@lh =15 m) = Falf + — 3 1gi@) - dx . ko)l?
i=1

<aP-dx (v, k)P +dx (u, ky)?
< (aP +1) - dx (v, u) +dx (u, ky))P
< (P +1)-dx (v,u)? .

Thus, () = F@llp =2(@? +1)""7 - dx (v.u) =2 (@ +1) - dx (v, w).
Next, we bound the contraction for all pairs. Fix some v,u € X. If dx(u, v)/2 >dx(v,ky) +dx(u, k), then

1F) = Falp = I1f tky) = f k) llp > dx(ky, ky)
>dx (v,u) —dx (v, ky) —dx (u,ky) >dx (v,u) /2.

124 Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129

Otherwise,
R R 1"
Ifv)y—faly = - Z 1gi(v) - dx(v. ky) — gi(u) - dx (u. ky)|P

i=1
m 1

3|~

2 A
To ensure the embedding does not contract, our final embedding will be 2! -f. O

We now show the transformation from weak terminal distortion to (non-contracting) terminal distortion. (By Theorem 4
this can provide embeddings with coarse partial distortion as well.) Suppose an embedding f : X — Y has weak terminal
distortion «. In particular, its restriction to K has distortion «. Using Theorem 5 we conclude:

Corollary 8. Let (X, dx) be metric space of size n, and K € X be a subset of terminals. Suppose that there exists an embedding
f:X— L”; with weak terminal distortion c, then there exist embedding f : X — €g+0(]°g”) with terminal distortion O ().

Fix some p > 1. Let X’ be a subset-closed family of finite metric spaces such that for any n > 1 and any n-point metric
space X € X' there exists an embedding fx : X — ¢, with distortion «(n) and dimension g(n). In [1,3] it was shown that,
assuming all fx are strongly non-expansive,'> there is a universal constant C and an embedding from X into £, with
(1 — €)-coarse partial distortion O (x(C/€)) and dimension S(C/€) - O (logn). By combining Theorem 5 with Theorem 4 we
considerably improve the dimension, and remove the strongly non-expansive requirement.

Corollary 9. Fix some p > 1. Let X be a subset-closed family of finite metric spaces such that for any n > 1 and any n-point metric
space X € X there exists an embedding fx : X — £, with distortion :(n) and dimension f(n). Then there is an embedding from X
into €, with (1 — €)-coarse partial distortion O (x(2/¢€)) and dimension f(2/€) + O (logn).

4. Light spanner with prioritized distortion

In this section we prove that every graph admits a light spanner with bounded prioritized distortion. (The runtime
analysis of our algorithms appears in Subsection 4.2.)

Theorem 6 (Prioritized spanner). Given a graph G = (V, E), a parameter 0 < p < 1 and any priority ranking v, v2,..., vp of V,
there exists a spanner H with lightness 1 4+ p and prioritized distortion O (log j) / p.

Combining Theorem 6 and Theorem 2 we obtain the following.

Theorem 7. For any parameter 0 < p < 1, any graph contains a spanner with coarse scaling distortion O (log (1/€)) /p and lightness
1+ p. Moreover, the spanner can be computed in O (n - (m + nlogn)) time.

By Lemma 1 it follows that this spanner has ¢4-distortion 0(q)/p for any 1 <q < oo.

We can also obtain a spanner with both scaling distortion and prioritized distortion simultaneously, where the priority
is with respect to an arbitrary ranking 7 = vq, ..., vy. To achieve this, one may define a ranking which interleaves 7 with
the ranking generated in the proof of Theorem 2.

We now turn to proving Theorem 6. The proof is based on the following main technical lemma:

Lemma 10. Given a graph G = (V, E), a subset K C V of size k, and a parameter 0 < § < 1, there exists a spanner H that 1) contains
the MST of G, 2) has lightness 1 + 8, and 3) every pair in K x V has distortion O ((logk)/8).

Before proving this lemma, let us first apply it to prove Theorem 6.

Proof of Theorem 6. For every 1 <i < [loglogn] let K; = {vj D j< 22*'}. Let H; be the spanner given by Lemma 10 with

respect to the set K; and the parameter §; = p/i%. Hence H; has 1+ p/i? lightness and O (%1—') =0(2!-i/p) distortion

for pairs in K; x V. Let H =J; H; be the union of all these spanners (that is, the graph containing every edge of every one
of these spanners). As each H; contains the unique MST of G, it holds that

13 Embedding f: X — £, is strongly non-expansive if f = (1 f1...., Nm fm) where Y7, n; =1, and each f; is non-expansive embedding into R.

Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129 125

WH) <14+) p/i*=140(p) .

i>1
To see the prioritized distortion, let vj, v, € V be such that j <r, and let 1 <i < [loglogn] be the minimal index such

that v; € K;. Note that 22" < j, and in particular 2i=! <log j (with the exception of j = 1, but that case holds by the virtue
of j =2, say). This implies that

du(vj,vy) <dm,(vj,ve) < 0Q2'-i%/p) -dg(vj, vr)
<0 (logj)/p-dc(vj, vr),

as required. O

4.1. Proof of Lemma 10

The construction of the spanner that fulfills the properties promised in Lemma 10 is as follows. First, we use the spanner
of [19] to get a spanner with lightness O (1) and distortion O (logk) over pairs in K x K. Then, by combining this spanner
with the SLT by [27], we expand the O (logk) distortion guarantee to all pairs in K x V, while the lightness is still 0(1).
Finally, we use a general reduction (Theorem 8), that reduces the weight of a spanner while increasing its distortion. By
applying the reduction, we get a spanner with 1+ p lightness while paying additional factor of 1/p in the distortion.

We begin by describing the general reduction.

Theorem 8. Let G = (V, E) be a graph, 0 < § < 1 a parameter and t : (‘2/) — R some function. Suppose that for every weight
function w : E — R there exists a spanner H with lightness ¢ such that every pair u, v € V suffers distortion at most t(u, v). Then
for every weight function w there exists a spanner H with lightness 1 4+ 8¢ and such that every pair u, v suffers distortion at most
t(u, v)/8. Moreover, H contains the MST of G with respect to w.

Proof. Fix some weight function w and let G = (V, E, w) be the graph associated with this weight function, and let T be
the MST of G. Set w’: E — R to be a new weight function

_Jw(e) eeT

w'(e) = ;
w(e)/s e¢T
that is, we multiply the weight of all non-MST edges by 1/§. Let G’ = (V, E, w') be the graph G associated with the new
weight function w’. Note that T is also the MST of G’ (since the weight of any spanning tree is higher in G’ than in G
except for T itself). By our assumption there exists a spanner H' = (V, Ey, w’) of G’ with distortion bounded by t and
lightness ¢. Set H= (V, Eyr UT, w) as a spanner of G. The edge set of H consists of the edges of H’ together with the MST
edges, all with the original weight function w.
As the weight of the non-MST edges are larger in G’ by 1/8 factor compared to their weight in G, we have

WEDN=wT) +wEF\T)=w(T)+8- W (Eg\T) <w(T)+68-w (Ep)
<wW(T)+8¢-w (T) = (1+8¢) - w(T),

concluding that the lightness of H is at most 1 + §¢.
To bound the distortion, consider an arbitrary pair of vertices u, v € V. Let P, , be the shortest path from u to v in G.
As for each edge e € Py .y, w/(e) < w(e)/8 we have that

1 1
dgw.v)< Y we<)y sWE=5-dov).

ecPy.y ecPy .y
Therefore:

t(u,v)
8

dy (u,v) <dy (u,v) <t(u,v)-dg (u,v) < dg (u,v) ,
as required. O

In a recent work, Chechik and Wulff-Nilsen achieved the following result:

Theorem 9 ([19]). For every weighted graph G = (V, E, w) and parameters k > 1 and 0 < € < 1, there exist a polynomial time
algorithm that constructs a spanner with distortion (2t — 1)(1 + €) and lightness n/t . poly(%).

126 Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129

Note that for an n-vertex graph with parameters t =logn, € = 1, they get a spanner with distortion O (logn) and constant
lightness. However, their construction does not seem to provide lightness arbitrarily close to 1.

A tree T = (V’, E', w’) is called a Steiner tree for a graph G = (V,E, w) if (1) V € V’, and (2) for any pair of vertices
u,v €V it holds that d7 (u, v) > d¢ (u, v). The minimum Steiner tree T of G, denoted SMT (G), is a Steiner tree of G with
minimum weight. It is well-known that for any graph G, w (SMT (G)) > %MST (G). (See, e.g., [26], Section 10.)

We will use [19] spanner to construct a spanner with O(1) lightness and distortion O (logk) over pairs in K x K. Let
Gr = (K, (’2() wy) be the complete graph over the terminal set K with weights wy (u, v) =dg(u, v) (for u, v € K) that are
given by the shortest path metric in G. Let T, be the MST of Gi. Note that the MST T of G is a Steiner tree of G, hence
Wi(Tk) <2 - wi(SMT(Gg)) <2 - w(T).

Using Theorem 9, let H, = (K, Ex, wi) be a spanner of G, with weight O (wy(Ty)) = O(w(T)) (constant lightness) and
distortion O (logk). For a pair of vertices u,v € K, let Py, denote the shortest path between u and v in G. Let H' =
(V, E’, w) be a subgraph of G with the set of edges E’ = Uy, vjek, Puv (i.e. for every edge {u, v} in Hy, we take the shortest
path from u to v in G). It holds that,

wH) < D wPw) =) wie)=0w(T)).
{u.vieE ecEy

Moreover, for every pair u, v € K,

dy (u,v) <dp,(u, v) < 0(logk) - dg, (u, v) = O (logk) - d¢ (u, v) . 3)
Now we extend H' so that every pair in K x V will suffer distortion at most O (logk). To this end, we use the following
lemma regarding shallow light trees (SLT), which is implicitly proved in [27,6].

Lemma 11. Given agraph G = (V, E), a parameter & > 1, and a subset K C V, there exists a spanner S'* of G with lightness 1+ a%]
and for any vertexu € V,ds(u, K) <« - dg(u, K).

Let S be the spanner of Lemma 11 with respect to the set K and parameter o = 2. Define H” as the union of H’ and
S. As both H” and S have constant lightness, so does H”. It remains to bound the distortion of an arbitrary pair v € K and
ueV. Let k, € K be the closest vertex to u among the vertices in K with respect to the distances in the spanner S. By the
assertion of Lemma 11,

ds(u,ky) =ds(u,K)<2-dg(u,K)<2-dg(u,v). (4)

Using the triangle inequality,

4
de (v, k) < de (v,) + dg (. ky) < dg (v,)+ ds (. k) © 3+ dg (v, u) . (5)

Since both v, k, € K it follows that

(3) (5)
dyr (v, ky) < 0(logk) -dg (v, ky) < 0(logk) -dg(v,u). (6)

We conclude that

(4)A(6)
dyr (v,u) <dp (v, ky) +ds (ky,u) < O(logk)-dg(v,u).

We showed a polynomial time algorithm, that given a weighted graph G = (V, E, w) and a subset K C V of size k, constructs
a spanner H with lightness O (1), and such that every pair in K x V has distortion at most O (logk). Now Theorem 8 implies
Lemma 10.

4.2. Efficient implementations

First we describe an O (k- (m + nlogn))-time algorithm for the terminal spanner of Lemma 10. We start by constructing
Gy, the full graph on K. For this goal we need to compute all distances in the terminal set K. This can be done by computing
k shortest path trees rooted in each terminal vertex in K, using Dijkstra’s algorithm it will take O (k- (m + nlogn)) time.
Our next step is to compute a light spanner for G. Instead of using [19] in the construction of the spanner Hj, we will use
a more efficient construction by Alstrup et al. [7], who provide us with a O (logk) stretch spanner with O (1) lightness and
0 (k) edges in O (k%) time."” Next, for every edge {u, v} € H, we find the shortest path between u and v in G and add it

14 In fact, S is a spanning forest of G.
15 See Theorem 4 in [7]. In fact, for n-vertex graph with m edges with stretch parameter O (logn), their running time is O (m +n'+¢) for arbitrarily small
constant €.

Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129 127

to H'. This is done using the shortest path tree rooted in u computed earlier in O (n) time per edge. Thus H’ is constructed
from Hj in total O(k-n) time. Our next step is to compute an SLT rooted in K using the O(m + nlogn) time algorithm
of [27]. Finally, it is straightforward that the spanner reduction lemma takes linear time (once the MST is computed). We
conclude that the total running time of the spanner construction of Lemma 10 is O (k- (m +nlogn)).

Next, in order to compute the prioritized spanner of Theorem 6 we simply construct terminal spanners for the sets Kj,
1 <i < [loglogn]. The total time required is Z[l:]glogﬂ 0 (IK;| - (m +nlogn)) = O (n- (m +nlogn)).

Finally, we analyze the running time of Theorem 7. Theorem 7 is achieved by combining Theorem 6 with Theorem 2. First
we need to compute the priority ranking of Theorem 6, which is based on density nets. Specifically we need to compute for
every 1 <i<T[logn], a 2~ density net. [16] did not analyze explicitly the running time required for computing a density
net, but it is not hard to see that the running time of their algorithm is O (n- (m 4+ nlogn)) (the time it takes to compute
all-pairs-shortest-paths).

5. Alight tree with constant average distortion

Here we prove our main theorem on finding a light spanning tree with constant average distortion. Later on we show
a probabilistic embedding into a distribution of light spanning trees with improved bound on higher moments of the
distortion.

Theorem 10. For any parameter 0 < p < 1, any graph contains a spanning tree with scaling distortion 0(/T/€)/p and lightness
1 + p. Moreover, this tree can be found in O (m - n) time.

It follows from Lemma 1 that the average distortion of the spanning tree obtained is O (1/0). Moreover, the {4-distortion
is 0(1/p) for any fixed 1 <q <2, O (logl“r’n) /p for g=2, and O (n'~2/9)/p for any fixed 2 < q < co.

We will need the following simple lemma, that asserts the scaling distortion of a composition of two maps is essentially
the product of the scaling distortions of these maps.'®

Lemma 12. Let (X,dx), (Y.dy) and (Z,dz) be metric spaces. Let f : X — Y (respectively, g : Y — Z) be a non-contractive onto
embedding with scaling distortion o (resp., 8). Then g o f has scaling distortion «c(€/2) - B(€/2).

Proof. Let n = |X|. Let distf(v,u) = W be the distortion of the pair u, v € X under f, and similarly let distg (v, u) =
W. Fix some € € (0, 1). We would like to show that at most € - () pairs suffer distortion greater than «(e/2) -
B(€/2) by go f. Let A= {{v, u}e ()2<) sdisty (v, u) > oz(e/Z)} and B = {{v,u} € ()2<) s distg (v, u) > 15(6/2)}. By the bound on

the scaling distortions of f and g, it holds that [A U B| < |A| + |B| <€ - (5). Note that if {v,u} ¢ AU B then

dz (g(f(v), g(fw)))
dx (v,u)

=distg(v,u) - distg (v, u)
<w(e/2)-B(€/2),

which concludes the proof. O

We will also need the following result, that was proved in [4]. (The bound on the running time was not explicitly stated
in [4]. Their algorithm uses the star-decomposition of [20] whose running time is O(m), and a certain iterative algorithm
that chooses a radius for each of the O (n) cones, which can be trivially implemented in O (n) time.)

Theorem 11 ([4]). Any graph contains a spanning tree with scaling distortion O (\/1/€), and this tree can be found in O (m - n) time.
Now we can prove the main result.

Proof of Theorem 10. Let H be the spanner given by Theorem 7. Let T be a spanning tree of H constructed according to
Theorem 11. By Lemma 12, T has scaling distortion O(4/1/€)- O(log(1/€))/p = 0(s/1/€)/p with respect to the distances
in G. The lightness follows as W(T) < W(H) <1+ p. O

Random tree embedding. We also derive a result on probabilistic embedding into light spanning trees with scaling distor-
tion. That is, the embedding construct a distribution over spanning tree so that each tree in the support of the distribution

16 Note that this is not true for the average distortion — one may compose two maps with constant average distortion and obtain a map with Q(n) average
distortion.

128 Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129

is light. In such probabilistic embeddings [10] into a family), each embedding f = fy : X — Y (for some (Y,dy) €)) in
the support of the distribution is non-contractive, and the distortion of the pair u, v € X is defined as EY[M]. The

dx(u.v)
prioritized and scaling distortions are defined accordingly. We make use of the following result from [4]."7
Theorem 12. ([4]) Every weighted graph G embeds into a distribution over spanning trees with coarse scaling distortion O (log2 (1/€)).

We note that the distortion bound on the composition of maps in Lemma 12 also holds whenever g is a random
embedding, and we measure the scaling expected distortion. Thus, following the same lines as in the proof of Theorem 10,
(while using Theorem 12 instead of Theorem 11), we obtain the following.

Theorem 13. For any parameter 0 < p < 1 and any weighted graph G, there is an embedding of G into a distribution over spanning
trees with scaling distortion O (log>(1/€))/p, such that every tree T in the support has lightness 1 + p.

It follows from Lemma 1 that the £4-distortion is O (1/p), for every fixed q > 1.
6. Lower bound on the trade-off between lightness and average distortion

In this section, we give an example of a graph for which any spanner with lightness 1+ p has average distortion Q(1/p)
(of course this bound holds for the ¢4-distortion as well). This shows that our results are tight.'8

Lemma 13. For any n > 32 and p € [1/n,1/32], there is a graph G on n + 1 vertices such that any spanner H of G with lightness at
most 1 + p has average distortion at least Q (1/p).

Proof. We define the graph G = (V, E) as follows. Denote V = {vg,vy,..., vy}, E= (‘2/) and the weight function w is
defined as follows.

1 ifli—jl=1
w({viovip = 2 otherwise .

L.e., G is a complete graph of size n + 1, where the edges {v;, v;+1} have unit weight and induce a path of length n, and all
non-path edges have weight 2. Clearly, the path is the MST of G of weight n. Let k = [pn]. Let H be some spanner of G
with lightness at most 1+ p < # in particular, w(H) <n +k. Clearly H has at least n edges (to be connected). Let g be
the number of edges of weight 2 contained in H. Then w(H) > (n—q)-1+q-2 =n+ q. Therefore q <k.

Let S be the set of vertices which are incident on an edge of weight 2 in H. Then |S| <2q <2k. Let § = 32 . For any
veSs, let N, CV be the set of vertices that are connected to v via a path of length at most § in H, such that this path
consists of weight 1 edges only Necessarily, for any v € S, [Ny| <28+ 1. Let N =, .5 Ny, it holds that [N| <2k-(25§+1) <
4/)"(15p —H)_4—|—8 = 8 Let N=V \N.

Consider u € N. By definition of N every weight 2 edge is further than § steps away from u in H. It follows that there
are at most 28 + 1 vertices within distance at most § from u (in H). Let F, ={veV : dy(u,v) > 8}. It follows that
|Fy| >n—268 — 1. Note that for any v € Fy, the distortion of the pair {u, v} is at least % Hence, we obtain that

dy (v,u) dy (v,u)
Z dc v,u) _X[:VV;:“ dc (v, u)

5n)
>— .- n—=25—1) =
16 2
5n 7n 1
_]6 s 64p

Finally, the average distortion is bounded as follows.

dist; (H) = Z 32’ g Z;

17" The fact the embedding yields coarse scaling distortion is implicit in their proof.
18 We also mention that in general the average distortion of a spanner cannot be arbitrarily close to 1, unless the spanner is extremely dense. E.g., when
G is a complete graph, any spanner with lightness at most n/4 will have average distortion at least 3/2.

Y. Bartal et al. / Journal of Computer and System Sciences 105 (2019) 116-129 129

._no3» 1
“n+1 64 64p
-1 g

= 128p

7. Conclusions

In this paper we constructed a spanning tree with 1+ p lightness and O(l) average distortion for any parameter

p € (0,1). We also proved that this tradeoff is best possible, up to constant factors. The main technical contribution is a
new equivalence theorem between prioritized and coarse scaling distortions. We used this equivalence theorem in order
to derive several other results in metric embeddings. In particular, we show that every finite metric space embeds into
¢, space with prioritized distortion O (log j). We hope that this equivalence theorem will lead to additional results and
applications.

Acknowledgment
We are grateful to Michael Elkin and Shiri Chechik for fruitful discussions.

References

[1] Ittai Abraham, Yair Bartal, Hubert T.-H. Chan, Kedar Dhamdhere, Anupam Gupta, Jon M. Kleinberg, Ofer Neiman, Aleksandrs Slivkins, Metric embeddings
with relaxed guarantees, in: 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, 23-25 October 2005, Pittsburgh, PA, USA,
Proceedings, 2005, pp. 83-100.

[2] Ittai Abraham, Yair Bartal, Ofer Neiman, Nearly tight low stretch spanning trees, in: Proceedings of the 49th Annual [EEE Symposium on Foundations
of Computer Science, FOCS ’08, IEEE Computer Society, Washington, DC, USA, 2008, pp. 781-790.

[3] Ittai Abraham, Yair Bartal, Ofer Neiman, Advances in metric embedding theory, Adv. Math. 228 (6) (2011) 3026-3126.

[4] Ittai Abraham, Yair Bartal, Ofer Neiman, Embedding metrics into ultrametrics and graphs into spanning trees with constant average distortion, SIAM].
Comput. 44 (1) (2015) 160-192.

[5] Ittai Abraham, Yair Bartal, Ofer Neiman, Leonard J. Schulman, Volume in general metric spaces, Discrete Comput. Geom. 52 (2) (2014) 366-389.

[6] B. Awerbuch, A. Baratz, D. Peleg, Efficient Broadcast and Light-Weight Spanners, Technical Report CS92-22, The Weizmann Institute of Science, Rehovot,
Israel, 1992.

[7] Stephen Alstrup, Seren Dahlgaard, Arnold Filtser, Morten Stockel, Christian Wulff-Nilsen, Constructing light spanners deterministically in near-linear
time, CoRR, arXiv:1709.01960, 2017.

[8] Noga Alon, Richard M. Karp, David Peleg, Douglas West, A graph-theoretic game and its application to the k-server problem, SIAM]. Comput. 24 (1)
(1995) 78-100.

[9] Ittai Abraham, Ofer Neiman, Using petal-decompositions to build a low stretch spanning tree, in: Proceedings of the Forty-fourth Annual ACM Sympo-
sium on Theory of Computing, STOC '12, ACM, New York, NY, USA, 2012, pp. 395-406.

[10] Yair Bartal, Probabilistic approximation of metric spaces and its algorithmic applications, in: Proceedings of the 37th Annual Symposium on Founda-
tions of Computer Science, [EEE Computer Society, Washington, DC, USA, 1996, p. 184.

[11] Yair Bartal, On approximating arbitrary metrices by tree metrics, in: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
STOC '98, ACM, New York, NY, USA, 1998, pp. 161-168.

[12] Yair Bartal, Graph decomposition lemmas and their role in metric embedding methods, in: Algorithms - ESA 2004, 12th Annual European Symposium,
Bergen, Norway, September 14-17, 2004, Proceedings, 2004, pp. 89-97.

[13] Yair Bartal, Arnold Filtser, Ofer Neiman, On notions of distortion and an almost minimum spanning tree with constant average distortion, in: Pro-
ceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '16, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2016, pp. 873-882.

[14] Yair Bartal, Nova Fandina, Ofer Neiman, On moment analysis of metric embedding and its application in dimensionality reduction, 2017, manuscript.

[15] Jean Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Isr.]. Math. 52 (1-2) (1985) 46-52.

[16] T.-H. Hubert Chan, Michael Dinitz, Anupam Gupta, Spanners with slack, in: Proceedings of the 14th Conference on Annual European Symposium -
Volume 14, ESA’06, Springer-Verlag, London, UK, 2006, pp. 196-207.

[17] Barun Chandra, Gautam Das, Giri Narasimhan, José Soares, New sparseness results on graph spanners, in: Proceedings of the Eighth Annual Symposium
on Computational Geometry, SCG '92, ACM, New York, NY, USA, 1992, pp. 192-201.

[18] Shiri Chechik, Approximate distance oracles with improved bounds, in: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, 2015, pp. 1-10.

[19] Shiri Chechik, Christian Wulff-Nilsen, Near-optimal light spanners, ACM Trans. Algorithms 14 (3) (2018) 33:1-33:15.

[20] Michael Elkin, Yuval Emek, Daniel A. Spielman, Shang-Hua Teng, Lower-stretch spanning trees, SIAM J. Comput. 38 (2) (2008) 608-628.

[21] Michael Elkin, Arnold Filtser, Ofer Neiman, Terminal embeddings, Theor. Comput. Sci. 697 (2017) 1-36.

[22] Michael Elkin, Arnold Filtser, Ofer Neiman, Prioritized metric structures and embedding, SIAM]. Comput. 47 (3) (2018) 829-858.

[23] Michael Elkin, Ofer Neiman, Shay Solomon, Light spanners, SIAM]. Discrete Math. 29 (3) (2015) 1312-1321.

[24] Jittat Fakcharoenphol, Satish Rao, Kunal Talwar, A tight bound on approximating arbitrary metrics by tree metrics, J. Comput. Syst. Sci. 69 (3) (2004)
485-497.

[25] Arnold Filtser, Shay Solomon, The greedy spanner is existentially optimal, in: Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, 2016, pp. 9-17.

[26] E.N. Gilbert, H.O. Pollak, Steiner minimal trees, SIAM]. Appl. Math. 16 (1) (Jan 1968) 1-29.

[27] Samir Khuller, Balaji Raghavachari, Neal E. Young, Balancing minimum spanning and shortest path trees, in: SODA, 1993, pp. 243-250.

[28] Jon Kleinberg, Aleksandrs Slivkins, Tom Wexler, Triangulation and embedding using small sets of beacons, J. ACM 56 (6) (September 2009) 32:1-32:37.

Part IV
Steiner Point Removal with distortion
O(log k), using the Relaxed-Voronoi algorithm

67

SIAM J. COMPUT. (© 2019 Society for Industrial and Applied Mathematics
Vol. 48, No. 2, pp. 249-278

STEINER POINT REMOVAL WITH DISTORTION O(log k) USING
THE RELAXED-VORONOI ALGORITHM*

ARNOLD FILTSER'

Abstract. In the Steiner point removal problem, we are given a weighted graph G = (V, E)
and a set of terminals K C V of size k. The objective is to find a minor M of G with only
the terminals as its vertex set, such that distances between the terminals will be preserved up
to a small multiplicative distortion. Kamma, Krauthgamer, and Nguyen [SIAM J. Comput., 44
(2015), pp. 975-995] devised a ball-growing algorithm with exponential distributions to show that
the distortion is at most O(log® k). Cheung [Proceedings of the 29th Annual ACM/SIAM Symposium
on Discrete Algorithms, 2018, pp. 1353-1360] improved the analysis of the same algorithm, bounding
the distortion by O(log? k). We devise a novel and simpler algorithm (called the Relaxed-Voronoi
algorithm) which incurs distortion O(logk). This algorithm can be implemented in almost linear
time (O(|E|log |V])).

Key words. Steiner point removal (SPR), distortion, metric embedding, minor graph, random-
ized algorithm

AMS subject classifications. 41, 60, 68

DOI. 10.1137/18M1184400

1. Introduction. In graph compression problems the input is usually a massive
graph. The objective is to compress the graph into a smaller graph, while preserving
certain properties of the original graph, such as distances or cut values. Compression
allows us to obtain faster algorithms while reducing the storage space. In the era
of massive data, the benefits are obvious. Examples of such structures are graph
spanners [37], distance oracles [39], cut sparsifiers [7], spectral sparsifiers [6], and
vertex sparsifiers [36].

In this paper we study the Steiner point removal (SPR) problem. Here we are
given an undirected graph G = (V, E) with positive weight function w : £ — R4,
and a subset of terminals K C V of size k (the nonterminal vertices are called Steiner
vertices). The goal is to construct a new graph M = (K, E’) with positive weight
function w’, with the terminals as its vertex set, such that (1) M is a graph minor of
G and (2) the distance between every pair of terminals ¢, ¢ is distorted by at most a
multiplicative factor of «, formally

Vi, t' e K, dg(t,t') <dm(t,t') <a-dg(tt) .

Property (1) expresses preservation of the topological structure of the original graph.
For example, if G was planar, so will M be. Property (2), however, expresses preser-
vation of the geometric structure of the original graph, that is, distances between
terminals. The question is, What is the minimal a (which may depend on k) such
that every graph with a terminal set of size k will admit a solution to the SPR. problem
with distortion a?

The first to study a problem of this flavor was Gupta [24], who showed that given
a weighted tree T with a subset of terminals K, there is a tree 77 with K as its vertex

*Received by the editors April 30, 2018; accepted for publication January 22, 2019; published
electronically March 26, 2019. A preliminary version appeared in Proceedings of SODA’18, 2018.
http://www.siam.org/journals/sicomp/48-2/M118440.html
Funding: The research was supported in part by ISF grant (1718/18) and BSF grant 2015813.
fDepartment of Computer Science, Ben Gurion University of the Negev, Beer Sheva, 8410501,
Israel (arnoldf@cs.bgu.ac.il).

249

250 ARNOLD FILTSER

set that preserves all the distances between terminals up to a multiplicative factor of
8. Chan et al. [9] observed that the tree T' of Gupta is in fact a minor of the original
tree T'. They showed that 8 is the best possible distortion and formulated the problem
for general graphs. This lower bound of 8 is achieved on the complete unweighted
binary tree and is the best known lower bound for the general SPR, problem.

Basu and Gupta [5] showed that on outerplanar graphs, the SPR problem can be
solved with distortion O(1).

Kamma, Krauthgamer, and Nguyen were the first to bound the distortion for
general graphs. They suggested the Ball-growing algorithm. Their first analysis
provide O(log® k) distortion (conference version [26]), which they later improved to
O(log” k) (journal version [27]). Recently, Cheung [11] improved the analysis of the
Ball-growing algorithm further, providing an O(log2 k) upper bound on the distor-
tion.

The Ball-growing algorithm constructs a terminal partition, that is, a partition
where each cluster is connected and contains a single terminal. The minor is then
constructed by contracting all the internal edges in all clusters. The weight of the
minor edge {¢,t'} (if it exists) is defined simply to dg(¢,t’). The clusters are generated
iteratively. In each round, by turn, each terminal ¢; increases the radius R; of its ball
cluster V; in an attempt to add more vertices to its ball cluster V;. Once a vertex
joins some cluster, it will remain there. In round ¢, the radii are (independently) dis-
tributed according to an exponential distribution, where the mean of the distribution
grows in each round. A description of the Ball-growing algorithm can be found in
Appendix B.

The main contribution of this paper is a new upper bound of O(log k) for the SPR
problem. In a preliminary conference version [20], the author improved the analysis
of the Ball-growing algorithm, providing an O(logk) upper bound. In this paper
we devise a novel algorithm called the Relaxed-Voronoi algorithm. We bound the
distortion incurred by the minor produced using the Relaxed-Voronoi by O(log k)
as well. Nevertheless, the Relaxed-Voronoi algorithm is arguably simpler and more
intuitive compared to the Ball-growing algorithm. Both algorithms grow clusters
around the terminals; the main difference is that the Ball-growing algorithm has
many iterations, growing slowly from all terminals (almost in parallel), while the
Relaxed-Voronoi algorithm has one round only (the terminals create clusters by
turns. Once a cluster is created it will remain unchanged till the end of the algorithm).
The analysis in [20] was built upon [11]. In both papers, a considerable effort was
made to lower and upper bound the number of the round in which each nonterminal is
clustered. The analysis in this paper is quite similar to [20], while all the round-base
analysis simply becomes unnecessary.

Furthermore, we devise an efficient implementation of the Relaxed-Voronoi al-
gorithm in almost linear time O (m + min{m,nk} -logn) (m (resp., n) here is the
number of edges (resp., vertices) in G). While the Ball-growing algorithm can be
implemented in polynomial time, it is not clear how to do so efficiently.

We show that the analysis of the Relaxed-Voronoi algorithm is asymptotically
tight. That is, there are graphs for which the Relaxed-Voronoi produces a mi-
nor which incurs distortion Q(logk). We prove a similar lower bound also for the
Ball-growing algorithm. However, there we are only able to prove an Q(+v/logk)
lower bound on the performance of the algorithm.

1.1. Related work. Englert et al. [17] showed that every graph G admits a
distribution D over terminal minors with expected distortion O(log k). Formally, for

all t;,t; € K, it holds that 1 < W < O (logk). Thus, Theorem 3.1 can be
G\li, .7)

STEINER POINT REMOVAL WITH DISTORTION O(log k) 251

seen as an improvement upon [17], where we replace distribution with a single minor.
Englert et al. showed better results for S-decomposable graphs; in particular, they
showed that graphs excluding a fixed minor admit a distribution with O(1) expected
distortion.

Krauthgamer, Nguyen, and Zondiner [29] showed that if we allow the minor M to

2
contain at most (g) Steiner vertices (in addition to the terminals), then distortion 1

can be achieved. They further showed that for graphs with constant treewidth, O(k?)
Steiner points will suffice for distortion 1. Cheung, Goranci, and Henzinger [12]
showed that allowing O(k;2+%) Steiner vertices, one can achieve distortion 2¢ — 1 (in
particular distortion O(log k) with O(k?) Steiners). For planar graphs, they achieved
1 + € distortion with O((f)Q) Steiner points.

There is a long line of work focusing on preserving the cut/flow structure among
the terminals by a graph minor. See [36, 32, 10, 34, 17, 13, 30, 2, 23, 31].

There are works studying metric embeddings and metric data structures concern-
ing preserving distances among terminals, or from terminals to other vertices, out of
the context of minors. See [14, 38, 25, 28, 15, 16, 4].

Finally, there are clustering algorithms similar in nature to the Relaxed-Voronoi
and Ball-growing algorithms [33, 3, 19, 8, 18, 35].

1.2. Technical ideas. The basic approach in this paper, as well as in all previous
papers on SPR in general graphs, is to use terminal partitions in order to construct
a minor for the SPR problem. Specifically, we partition the vertices into k connected
clusters, with a single terminal in each cluster. Such a partition induces a minor
by contracting all the internal edges in each cluster. See the preliminaries for more
details. Considering such a framework, the most natural idea will be to partition the
vertices into the Voronoi cells, i.e., the cluster V; of the terminal ¢; will contain all
the vertices v for which ¢; is the closest terminal. However, this approach miserably
fails and can incur distortion as large as k — 1. See Figure 1.1 for an illustration.

V1 V2 U3 Vg Up—2 [U Vg
€ € € € €
G 1 1 1 1 1 1] 1
) () o - - - - ()
i1 t2 i3 U th—2 tg=1 t}
24+€ 2+4+€ 2+¢€ 24+€ 2+¢€
i 2tz Uy th—2 lp—1 1}

Fic. 1.1. The graph G consists of a k-path of Steiner vertices v1,...,v, with edges of weight
€. To each Steiner vertex v; we add a terminal using a unit weight edge. The Voronoi cell of the
terminal t; is {tj,v;}. The minor M induced by this terminal partition is a path t1,...,t; where
the weight of each edge equals 2 + €. The original distance in G between t1 to tx is 2+ (k — 1) - ¢,
while the distance in the minor M equals (k — 1) - (2 4 €). In particular, when € tends to 0, the
distortion tends to k — 1.

252 ARNOLD FILTSER

Our idea is to introduce some noise in order to avoid the sharp boundaries between
the clusters. Specifically, we order the terminals in an arbitrary order. For each
terminal ¢{; we sample a parameter R; > 1 that we will call its magnitude. Then, by
turn, each terminal will construct a cluster V; which will be essentially a magnified (by
R;) Voronoi cell (in the remaining graph). However, in order to maintain connectivity,
the magnified Voronoi cell is constructed in a “Dijkstra manner” as follows. For
every vertex v, denote by D(v) the distance from v to its closest terminal. Initially
V; = {t;}. In each step, every unclustered neighboring vertex v of V; is examined. If
dg(v,tj;) < R; - D(v), then v joins the cluster V;. The process terminates when no
new potential vertices remain. Then we move on to the next terminal and repeat the
same process on the remaining graph. Eventually, all of G is partitioned into clusters.

To sample R;, we first sample g; according to geometric distribution with param-
eter p = 1. Then, R; is set to be (1+)%, where § = (). In particular, all the
R;’s are bounded by some universal constant with high probability (w.h.p.).

Next, we provide some intuition for the distortion analysis. Consider a pair of
terminals ¢,¢’, and let P, »» be the shortest path between them in the original graph
G. When the algorithm terminates, all the vertices in P, 4+ are clustered by different
terminals. See Figure 4.2 for an illustration. Let Dy,,..., Dy, be the partition of
the vertices in P; 4 induced by the partition of all vertices created by the algorithm.
i.e., Dy, = Py NV, For simplicity at this stage, we will assume that every Dy, is
continuous. In the induced minor graph, there is an edge between any two consecutive
terminals ¢y, and ty, . Therefore the distance between ¢ and t’ in the minor graph can
be bounded by >, dg(te;, te;,,). Let v% be the “first” vertex on P; 4 to be covered
by ty;. “First” here is in the following sense: we think about the sampling of R; in a
gradual manner. For a vertex v, let r, denote the minimal value of R; such that v € V;.
Then v/ is defined to be the vertex with the minimal value 7,. Using the triangle
inequality, dg(te;,te;,,) < dg(tgj,vzj) + dg (v, vh+) + dg(veﬁl,tng). Therefore
dar(t,) < S5 da (o', 0t + 208 da(t, v") < da(tt) + 258 dal(te,, v%)
(see Figure 4.2 for an illustration).

In order to bound the distortion, we need to bound the sum of “deviations”

Zf;l dg(te,,v") from the shortest path. However, these deviations are heavily de-
pendent. Instead of analyzing the deviations directly, we will follow an approach first
suggested by [11]. We partition the shortest path P, from ¢ to ¢’ into a set of in-
tervals Q; the idea will be to count for each interval () how many deviations start
from this interval (denoted X (@Q)). Specifically, for each deviation, we will charge the
interval in which this deviation was initiated. Afterward, we will be able to replace
the sum of deviations above by a linear combination of the interval charges.

The partition of the shortest path P; . into intervals is done such that the length
of each interval @@ € Q will be a logk fraction of the distance from the interval to
its closest terminal. Such interval lengths will ensure the following crucial property:
given that some vertex v €) joins the cluster V; (of the terminal ¢;), with probability
at least 1 — p, all of @ joins V;.

Using this property alone, one can show that the expected charge on each interval
is bounded by a constant. This already will imply an O(log k) distortion on each pair
in expectation. However, as we are interested in O(logk) distortion on all pairs
w.h.p., a more subtle argument is required. We couple the interval charges into a
series of independent random variables that dominate the interval charges. Then, a
concentration bound on the independent variables implies an upper bound on the sum
of interval charges, which provides O(log k) distortion w.h.p.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 253

1.3. Paper organization. In section 3 we describe the Relaxed-Voronoi al-
gorithm and prove some of its basic properties. Then, in section 4 we analyze the
distortion incurred by the Relaxed-Voronoi algorithm. In section 5 we introduce a
small modification to the Relaxed-Voronoi algorithm. We prove that the distortion
analysis is still valid and explain how the modified algorithm can be efficiently imple-
mented. In section 6 we prove that our analysis of the Relaxed-Voronoi algorithm
is asymptotically tight (and provide some lower bound on the performance of the
Ball-growing algorithm). Finally, in section 7 we provide some concluding remarks
and discuss further directions.

2. Preliminaries. Appendix C contains a summary of all the definitions and
notation we use. The reader is encouraged to refer to this index while reading.

We consider undirected graphs G = (V, E) with positive edge weights w : E —
R>o. Let dg denote the shortest path metric in G. For a subset of vertices A C V,
let G[A] denote the induced graph on A. Fix K = {t1,...,tx} C V to be a set of
terminals. For a vertex v, D(v) = minge g dg(v,t) is the distance from v to its closest
terminal. For clarity, we will assume that all metric distances are unique (that is, for
{v,v'} #{u,u'}, dg(v,v") # dg(u,u’)). Moreover, we will assume that for every pair
v,u there is a unique shortest path. Otherwise, we can introduce arbitrarily small
perturbations.

A graph H is a minor of a graph G if we can obtain H from G by edge deletions/
contractions and vertex deletions. A partition {V1,...,V;} of V is called a terminal
partition (w.r.t. K) if for every 1 < i < k, t; € V;, and the induced graph G[V] is
connected. See Figure 2.1 for an illustration. The induced minor by terminal partition
{V1,...,V&} is a minor M, where each set V; is contracted into a single vertex called
(abusing notation) ¢;. Note that there is an edge in M from ¢; to t; iff there are vertices
v; € V; and v; € V; such that {v;,v;} € E. We determine the weight of the edge
{t;,t;} € E(M) to be dg(t;,t;). Note that by the triangle inequality, for every pair
of (not necessarily neighboring) terminals t;,t;, it holds that das(¢;,t;) > da(t,t;5).

. dpg(ti,t;
The distortion of the induced minor is max; ; W
isly

2.1. Probability. For a distribution D, X ~ D denotes that X is a random
variable distributed according to D.

F1G. 2.1. The left side of the figure contains a weighted graph G = (V, E), with weights specified
in red, and four terminals {t1,t2,t3,ta}. The dashed black curves represent a terminal partition of
the vertex set V into the subsets V1, Va, V3, V4. The right side of the figure represent the minor M
induced by the terminal partition. The distortion is realized between t1 and t3, and is % =

12
12 -3

254 ARNOLD FILTSER

Geo(p) denotes the geometric distribution with parameter p. Here we toss a
biased coin with probability p for heads, until the first time we get heads. Geo(p) is
the number of coin tosses. Formally, Geo(p) is supported in {1,2,3,...}, where the
probability to get s is (1 —p)*~! - p.

Ezxponential distribution is the continuous analogue of geometric distribution.
Exp(A) denotes the exponential distribution with mean A and density function f(z) =
%e‘§ for x > 0. Exponential distribution is closed under scaling, that is, for
X ~ Exp(\), ¢ X is distributed according to Exp(cA). We will use the following
concentration bound.

LEMMA 2.1. Suppose X1,..., X, s are independent random variables, where each
X; is distributed according to Exp(\;). Let X = 3 . X; and Ay = max; \;. Set
H=E[X]= T, A

1
For a > 2y, Pr[X > a] <exp (—2>\ (a—2u)) .
M

In Appendix A we prove a more general bound. In particular, Lemma 2.1 above
is a special case of Lemma A.1 (which is obtained by choosing parameters o = % -1

and t = ﬁ)

3. Algorithm. The terminals are ordered in arbitrary order ¢y,%s,...,tx. The
Relaxed-Voronoi algorithm has k rounds, where in the round 4, the cluster V; (con-
taining ¢;) is constructed in the graph induced by the non-terminal vertices not clus-
tered so far.

The clusters are created using the Create-Cluster procedure. The algorithm
provides a random variable R; = (1 4 §)9%, where g; is distributed according to
geometric distribution with parameter p.

The Create-Cluster procedure runs in a Dijkstra-like fashion. During the exe-
cution, we maintain three sets: (1) Vj: the currently created cluster (initiated to be
{t;}). (2) U: the set of vertices that were “refused” to join V;. (3) N: the set of
neighboring vertices to V; (that are not in U).

While N is nonempty, the algorithm extracts an arbitrary vertex v from N. If
da(v,t;) < R(j) - D(v) (the distance from ¢; to v is at most R, times the distance
from v to its closest terminal), then v joins V;. Otherwise v joins U. In the case
where v joins Vj, all its neighbors (outside of U U V;) join N. As each vertex might
join N at most once, eventually N becomes empty. Then the procedure ceases and
returns V.

THEOREM 3.1. With probability 1 — %, in the minor graph M returned by Algo-

rithm 3.1, it holds that for every two terminals t,t', dps(t,t) < O (logk) - da(t,t).
First we argue that Algorithm 3.1 indeed produces a terminal partition.

LEMMA 3.2. The sets Vi,..., Vi constructed by Algorithm 3.1 form a terminal
partition.

Proof. 1t is straightforward from the description of the algorithm that the sets
W1,..., Vi are disjoint and that for every j, t; € V; and G[V;] is connected. The only
nontrivial property we have to show is that every vertex v € V joins some cluster.

Fix some v € V, let t; be the closest terminal to v (s.t. D(v) = dg(v,t;)), and
let P = {t; = up,u1,...,us = v} be the shortest path from ¢; to v in G. Note that
as P is a shortest path, ¢; is also the closest terminal to all the vertices in P. As
t; = ug €V}, at least one vertex from P is clustered during the algorithm. Let uy be

STEINER POINT REMOVAL WITH DISTORTION O(log k) 255

Algorithm 3.1. M = Relaxed-Voronoi(G = (V,E,w), K = {t1,...,tx}).
: Setézmandp:%.
:Set V), « V\K. // V1 is the currently unclustered vertices.
: for j from 1 to k do

1

2

3

4: Choose independently at random g; distributed according to Geo(p).
5: Set, Rj < (]. —+ 5)91'.
6

7

8

9

Set V; < Create-Cluster(G,Vy,t;, R;).
Remove all the vertices in Vj from V.
: end for
: return the terminal-centered minor M of G induced by Vi,..., V.

the first clustered vertex from P (w.r.t. time). Denote by Vj, the cluster u; joins to.
We argue by induction on i > 4’ that u; also joins Vj,. This will imply that us = v joins
Vj» and thus is clustered. Suppose u; joins Vj.. It holds that d¢(us, tj) < Rjr - D(u;).
Moreover, all the neighbors of u; join N. Therefore w41 necessarily joined to the set
N (at some stage during the execution of the Create-Cluster procedure for V). As

da(uit1,tj) < da(wigr,w;) + da(ug, tj)
<dg(tit1,u;) + Ry - da(ug, ty)
< Ry -dg(uit1,t5) = Ry - D(uita)

U1 will join Vj/, as required. 0

3.1. Modification. Let A = min, ycx{dc(t,t')} denote the minimal distance

between a pair of terminals. Note that A > 0. For the sake of analysis we will make
a preprocessing step to ensure that every edge e has weight at most ¢, - A= % -A.
This can be achieved by subdividing larger edges, i.e., adding additional vertices of
degree two in the middle of such edges. Denote by G the modified graph G, when we
repeatedly subdivide edges until every edge e has small enough weight. We argue that
such subdivisions did not affect whatsoever the terminal-centered minor returned by

Algorithm 3.1.

CLAM 3.3. Let G = (V, E,w) be a weighted graph with terminal set K = {t1,...,
tx}. Consider an edge e = {v,u} € E of weight w. Let G be the graph G with
subdivided edge e. Specifically, we add a new Steiner vertex v, and replace the edge e
by two new edges {ve,v}, {ve,u}, both of weight w/2.

Fix g1, ..., gr and consider Algorithm 3.1, where the random choices in line 4 are
G1,-- -, gk, respectively. Then the terminal-centered minor M returned on input G is
the same as the terminal-centered minor M returned on mput G .

Proof. As g1, ..., gk are fixed, Algorithm 3.1 is now deterministic. Let Vi,..., Vg
be the terminal partition induced by Algorithm 3.1 on G, and similarly let ‘71, ceey Vie
be the terminal partition induced by Algorithm 3.1 on G. We argue that for all j,
V; = V;\ {v.}. Note that this will imply our claim. Indeed, let V}, Vj be the clusters
such that v € V; and u € V. As each cluster is connected, necessarily v, € V; U Vjs.
By the definition of subdivision, this will imply that the terminal-centered minors are
indeed identical.

Each Steiner vertex can be clustered only after at least one of its neighbors is
clustered. Therefore v, cannot be clustered before both v and u. Without loss of
generality (w.l.o.g.) v joined V; while u is still unclustered. The vertex v, wasn’t

256 ARNOLD FILTSER

Algorithm 3.2. V; = Create-Cluster(G = (V, E,w),V,t;, R;).
1: Set ‘/J — {tj}.
2: Set U <« (. // U is the set of vertices already denied from V.
3: Set N to be all the neighbors of ¢; in V.
4: while N # () do
Let v be an arbitrary vertex from N.

5
6 Remove v from N.

7 if dg(l)ﬂfj) < Rj : D(’U) then
8

9

Add v to V.

Add all the neighbors of v in V, \ (UUVj) to N
10: else
11: Add v to U.
12: end if

13: end while
14: return V.

examined before the clustering of v. Denote by V} (resp., f/j’) the set V; (resp., f/J)
right after the clustering of v at the execution of Algorithm 3.1 on G (resp., é)
Note that the order of extraction from N in line 5 of Algorithm 3.2 is determined
deterministically. Therefore, up to the clustering of v the algorithm behaved the
same on both G and G. In particular, for all j” < j, Vj» = Vju. Moreover, V= V’
After v joins Vj, v, joins (for the first time) to the set N (for G). Note that

D(ve) = min {D(v), D(w)} + 5.
dei(t;,v) = min {de(t;,0), de(t;, W)} + 5

As v joined Vj, necessarily dg(t;,v) < R; - D(v). Consider the following cases:

o u ¢ V;: In the algorithm for G, u was examined (as v € V}), thus d¢(t;,u) >
R; - D(u). Therefore u will also not join Vj. As v, has edges only to v and
U, Ve has no impact on any other vertex. Therefore the cluster f/] will be
constructed in the same manner as V; (up to maybe containing v.). Note
that all the other clusters will not be affected, as if v, remained unclustered,
it becomes a leaf. We conclude that for every j”, Vi = Vju \ {v.}.

o u € V;: It holds that dg(tj,u) < R; - D(u). Therefore

de(t;ve) = min {dg(t;v), da(tje)} + g < R; -min {D(v), D(u)}
+%§Rj-D(ve) .

Therefore v, will join \7j, which will ensure that u joins N, and afterward
to Vj. Note that v has no other impact. In particular, for every j” # j,
V'// = V‘// while V U {'Ue} = V 0

Con51der the modified graph G Suppose that we proved that with probability at
least 1 — L, in the minor graph M returned by Algorithm 3.1 for G, it holds that for
every two termlnalb t,t', dy (t,t") <O (logk)-da(t,t') = O (logk) - dg(t,t). Then by
repetitive use of Claim 3.3 (once for every new vertex), Theorem 3.1 follows. From
now on, we will abuse notation and refer to the graph G as G. Note that all this is

STEINER POINT REMOVAL WITH DISTORTION O(log k) 257

done purely for the sake of analysis, as by Claim 3.3 we will get the same minor when
running Algorithm 3.1 for either G or G. Thus, in fact, we will execute Algorithm 3.1
on the original graph with no modifications.

4. Distortion analysis.

4.1. Interval and charges. In this section we describe in detail the probabilistic
process of breaking the graph into clusters from the viewpoint of the Steiner vertices.
The main objective will be to define a charging scheme, which we can later use to
bound the distortion.

Consider two terminals ¢ and ¢'. Let P,y = {t = vg,...,v, =t'} be the shortest
path from ¢ to ¢ in G. We can assume that there are no terminals in P, 4+ other than
t,t’. This is because if we will prove that for every pair of terminals ¢,¢' such that
P,y N K = {t,t'} it holds that dp(¢,t") < O(logk) - dg(t,t'), this property will be
implied for all terminal pairs.

For an interval Q = {v,,..., v} C P, v, the internal length is L(Q) = dg(va, vs),
while the external length is LT(Q) = dg(va_1,vps1).! The distance from the interval
@ to the terminals, denoted D(Q) = D(v,), is simply the distance from its leftmost
point v, to the closest terminal to v,. Set ¢, = % (“int” for interval). We partition
the vertices in F; p into consecutive intervals Q such that for every @ € Q,

(4.1) L(Q) < cwd - D(Q) < LH(Q) .

Such a partition could be constructed as follows. Sweep along the interval P in
a greedy manner; after partitioning the prefix vg,...,v,_1, to construct the next @,
simply pick the minimal index s such that LT ({vp,...,vp4s}) > ¢wd - D(vp). By the
minimality of s, L({vn, ..., vn1s}) < LT({vn, .o, vhas-1}) < med - D(vy) (in the case
s =0, trivially L({vp}) =0 < ¢;,.6 - D(vp,)). Note that such s could always be found,
as LT ({vn,...,vy}) = dg(vp—1,t') > da(vn,t') > D(vp) = D(Q).

In the beginning of Algorithm 3.1, all the vertices of P; . are active. Consider
round j in the algorithm when terminal ¢; constructs its cluster V;. Specifically, it
picks g; and sets R; < (1 + 6)%. Then, using the Create-Cluster procedure it
grows a cluster in a “Dijkstra” fashion. If no active vertex joins Vj, we say that t;
doesn’t participate in P; . Otherwise, let a; € P,y (resp., b;) be the active vertex
that joins to V; with minimal (resp., maximal) index (w.r.t. P,y). All the vertices
{aj,...,bj} C P,y between a; and b; (w.r.t. the order induced by P;) become
inactive. We call this set {a;,...,b;} a detour D; from a; to b;. See Figure 4.1 for
an illustration.

Within each interval), each maximal subinterval of active vertices is called a
slice. We denote by S(Q) the current number of slices in @. In the beginning of the
algorithm, for every interval @, S(Q) = 1, while at the end of the algorithm S(Q) = 0.

For an active vertex v, let r, be the minimal choice of R; (determined by g;) that
will force v to join V;. Let v/ be the active vertex with minimal r, (breaking ties
arbitrarily). Note that V; is monotone with respect to R;. That is, if v will join V;
for R; = r, it will join V; for R; =1’ > r as well. We denote by @Q); € Q the interval
containing v7. Similarly, S; is the slice containing v/. We charge Q; for the detour
D;. We denote by X(Q) the number of detours the interval @ is currently charged
for. For every detour Djs which is contained in D; (that is, a; < a;r < bjy < b; w.r.t.
the order induced by P,), we erase the detour and its charge. That is, for every

1For ease of notation we will denote v_; = t and Uyp1 =t

258 ARNOLD FILTSER

Fig. 4.1. The figure illustrates round j in Algorithm 3.1, when t; grows the cluster V;. We
present two scenarios for different choices of Rj. The black line is part of P, the shortest path
from t to t'. The blue intervals Q; represent the intervals in Q. The red subintervals S; represent
the slices (mazimal continuous subsets of active vertices), where S2,S3 C Q2 and S1, S5 C Q3. The
yellow areas represent detours Dy, and Dy,, where Q2 (resp., Q3) is charged for Dy, (resp., D,).
Note that vertices in those areas are inactive. The terminal t; increases gradually R;, and the first
vertex to be covered is v?. In scenario (A), the growth of R; terminates immediately after covering
vJ and sets the borderline vertices aj and b; within the subinterval S;. In scenario (B), the growth of
R; continues for another step, setting both a; and b; out of S;j. Vertices already inactive are shown
in blue. Vertices that join the cluster V; are shown in red. The green vertices are vertices which are
still uncovered, but nevertheless become inactive. Vertices which remain active after the creation
of V; are colored in black. In scenario (A) all the vertices that become inactive, Dj, are included
in S4. Q3 is charged for D;. The number of slices in Q3 is increased by 1, and no other changes
occur (X(Q2) =1, X(Q3) = 2). In scenario (B) Dy contains all the vertices in Sa2,Ss, S4, S5 and
part of the vertices in S1,S¢. The number of slices in Q2 and Qs becomes 0, while the number of
slices in Q1 and Q4 remains unchanged. Q3 is charged for Dy, while its charge for Dy, is erased.
Additionally, the charge of Q2 for Dy, is erased. That is, Q2 will remain uncharged till the end of

the algorithm (X(Q2) = X(Q2) =0, X(Q3) =1).

Q' # Qj, X(Q') might only decrease, while X (Q,) might increase by at most 1 (and
can also decrease as a result of deleted detours). We denote by X (Q) the size of X (Q)
by the end of Algorithm 3.1. Figure 4.1 illustrates a single step.

Next, we analyze the change in the number of slices as a result of constructing
the cluster V;. If R; < r,;, then no active vertex joins V; and therefore X (Q) and
S(Q) stay unchanged, for all Q € Q. Otherwise, R; > r,;, a new detour will appear

STEINER POINT REMOVAL WITH DISTORTION O(log k) 259

and will be charged upon @);. All the slices S which are contained in D; are deleted.
Every slice S that intersects D; but is not contained in it will be replaced by one or
two new slices. If D, NS ¢ {D;, S}, then S is replaced by a single new subslice S’.
The only possibility for a slice to be replaced by two subslices is if D; C S, and D;
does not contain an “extremal” vertex in S (see Figure 4.1, scenario (A)). This can
happen only at S;. We conclude that for every Q" # Q;, S(Q’) might only decrease,
while §(Q;) might increase by at most 1.

CLAIM 4.1. Assuming R; > 7., all of S; joins V; with probability at least 1 —p

Proof. As v7 joins V; for R; > r,;, by line 7 of Algorithm 3.2, necessarily

% < ryi. We will argue that for every u € S;, the following inequality holds:

de(u,tj) _ dg (v, ;)

(42) D) = D)

(146) <7y (146) .

Next, assume that R; > (1 4 d)r,s. Before the execution of the Create-Cluster
procedure for V;, all the vertices in S; belong to V| (as all of them are active).
Because R; > r,i, v/ will join V; (by the definition of r,;). In particular, additional
vertices from S; (if they exist) will join N. Using inequality (4.2), for every u € S,
da(u,t;)/Dy < 1y, (1+6) < Rj. Therefore every vertex from S; joining N will also
join Vj. In such a way, since S; is connected in V|, all the vertices of S; will join V7,
as required.

Next, we analyze the probability that indeed R; > (1 + §)r,;. Recall that R; =
(1+)%, where g; is distributed according to geometric distribution with parameter
P, 4. Conditioned on the event R; > r,;, we have that

Pr[R > (14) | Ry > 1]
Pr[g; > logy 5 ((1+06)ry) | g5 > 10g1 1570]
(43) =Pr [Z 1+ 10g1+5 Tyi | 9gj 2 10g1+5 TUJ] =1 —p

It remains to prove inequality (4.2). By the definition of D(Q;) and the triangle
inequality

(4.1) ,
L(Qj) < cwd-D(Q)) < cinid - (D(V) + L(Q5))
(4.4) < 26,0 - D(v?) < 2¢,,,6 - dg(vj,tj) .

Therefore, for every u € Sj,

) (4.4))
da(u,t;) <dg(v’,t;) + L(Q;) < da(v?,t5) (1 + 2¢,.9) .

Similarly,
(4.5) D(u) > D(v?) — L(Q;) > D(v?) (1 — 2¢,,,0) .
We conclude that

da(u,t;) < da(v7,t) (1 + 2¢,,,6) < da(v?,t))
D(u) — D)1 —2c,0) — D(vi)

dg(v t;)

(1+3-2¢,,0) = D(o7)

(1+9) .

260 ARNOLD FILTSER

4.2. Bounding the number of failures. Next, we define a cost function
f: RLQI — R. Intuitively, the cost function is simply a summation over the inter-
vals, where for each interval @ we add its length L(Q) for each time it was charged.
Formally, f({zg}qea) = Y geo 2@ LT(Q) . Even though our goal will be to bound

F{X(Q)}gea), we define f as a general function from RI9! in order to use it on other
variables as well. Note that the cost function f is linear and monotonically increas-
ing coordinatewise. In subsection 4.3 we show that the distance dp(t,t") between t
and t' in the minor graph M can be bounded by logk - f({X(Q)}QEQ), the scaled
cost function applied on the charges. This section is devoted to proving the following
lemma.

LEMMA 4.2. Prlf({X(Q)}geo) > 43 -dg(t,)] < k3.

Using Claim 4.1, one can show that for every Q € Q, E[X(Q)] = O(1), and
moreover, w.h.p. X(Q) = O(log k) for all Q. However, we use a concentration bound
on all {X(Q)}geo simultaneously in order to provide a stronger upper bound.

4.2.1. Bounding by independent variables. In our journey to bound
F{X(Q)}gea), the first step will be to replace { X (Q)}geo with independent random
variables. Consider the following process: a box B which contains coins of two types,
active and inactive. In the beginning, there is a single active coin. In each round,
we toss an active coin, which gets 0 (failure) with probability p, and 1 (success) with
probability 1 — p. If we get a 0, two additional active coins are added to the box. In
any case, the tossed coin becomes inactive. All the coin tosses throughout the process
are independent. The process terminates when no active coins remain. Let {Bg}geo
be a set of |Q| independent boxes (here the box Bg resembles the interval Q). For the
box Bg, denote by Z(Q) the number of active coins, by Y (@) the number of inactive
coins, and by f’(Q) the number of inactive coin at the end of the process.

CLAM 4.3. For every a € Ry,

Pr|f ({X(@}aee) = o] <Pr|f ({V(@}eeo) 2 af -

Proof. The proof is done by coupling the two processes of Algorithm 3.1 and the
coin tosses. We execute Algorithm 3.1, which implicitly induces slices and detour
charges. Simultaneously, we will use Algorithm 3.1 to toss coins. Inductively, we will
maintain the invariant that {Y(Q)}geo and {Z(Q)}ge o are no less than {X(Q)}geo
and {S(Q)}geo (respectively) coordinatewise.

In the beginning {X(Q)}gco = {V(Q}oco = {0}geo and {S(Q)}geo —
{Z2(Q)}qego = {1}geco- Consider round j, where the cluster V; is created for the
terminal ¢;. If R; < r,;, then nothing happens, and the invariant holds. Else,
R; > ry;, we will make a coin toss from the Bg, box. Let p’ be the probability that
not all of S; joins V;. By Claim 4.1, p’ < p. If indeed not all of S; joins Vj, the toss

result is set to 0. Otherwise, with probability {':g: the toss is set to 0. Note that the

probability of 0 is exactly p' - 14 (1 —p’) - % =p.

Next we argue that the invariant is maintained in either case. If not all of S; joins
Qj, then S(Q;) might increase by at most one, while the number of active coins Zg,
increases by exactly one. Otherwise, all of S; joins @);. In this case S(Q;) necessarily
decreases by at least one, while Zg, might either decrease or increase by one. For the
charge parameter, X (Q);) might increase by at most one, while the number of inactive

coins Y (Q;) increases by exactly one. For every Q' # Q;, S(Q') and X (Q’) might

STEINER POINT REMOVAL WITH DISTORTION O(log k) 261

only decrease, while Zg/ and Y (Q') stay unchanged. We conclude that the invariant
holds after the construction of the cluster V;.

Intuitively speaking, creating a cluster for a terminal ¢; is a global processes that
can involve many slices in different terminals, the crux being that only the interval
Q; is charged, and only the slice S; might get splitted. For all other intervals, charges
can only get erased and slices eliminated. The process of coin tosses in the boxes
imitates charge and slice counting, while ignoring the potential savings.

At the end of the algorithm (when no slices are left), we might still have some
active coins. In this case we will simply toss coins until no active coins remain (note
that this indeed happens with probability 1). Note that by doing so {Y(Q)}geo can
only grow coordinatewise. As the marginal distribution on {Y(Q)}geo is exactly
identical to the original one, the claim follows.]

4.2.2. Replacing coins with exponential random variables. Our next step
is to replace each Y (Q) with exponential random variable. This replacement will
make the use of concentration bounds more convenient. Consider some box Bg. An
equivalent way to describe the probabilistic process in Bg is the following. Take a
single coin with failure probability p, and toss this coin until the number of successes
exceeds the number of failures. The total number of tosses is exactly Y (Q). Note
that ?(Q) is necessarily odd. Next we bound the probability that ?(Q) >2m+1
for m > 1. This is obviously upper bounded by the probability that in a series of
2m tosses we had at least m failures (as otherwise the process would have stopped
earlier). Let y; be an indicator for a failure in the ith toss, and x = 212:1 xi- Note
that E[x] = 2m - p. A bound on x follows by the Chernoff inequality.

Fact 1 (Chernoff inequality). Let Xi,..., X, be independent and identically
distributed (i.i.d.) indicator variables each with probability p. Set X =)" X; and
p = E[X] = np. Then for every § < 2e — 1, Pr[X > (1+ §)u] < exp(—ud?/4).

Pr|Y(Q) 22m+1} <Pr[x >m]=Pr {xz (1+ (21‘@—1>>JE[X]}
<an(-2m (35 1) 1) = (- i)
oo 1)

We conclude that the distribution of ¥(Q) is dominated by 14 Exp (10) (as for W ~
Exp(10), Pr[l+W >2m+1] = exp(—2)). Let ({W(Q)}geo) be iid. random
variables distributed according to Exp(10); since all the boxes are independent and f
is linear and monotone coordinatewise, we conclude as follows.

CrLAIM 4.4. For every a € Ry,

pel1 ({79}) 2 0] <o (aco) + (W @Poco) 2]

Proof. Set ¢ = |Q|. Let Q',Q?,...,Q¥ be some arbitrarily fixed ordering of the

intervals. For s € [i0], set f\(s3(T1,. -+, Tsm1, Doty Tp) = D e) Ti - LH(QY).
When integrating over the appropriate measure space, it holds that

262 ARNOLD FILTSER

Pr [f (?(Ql), N .,?(Q“’)) > a}

I
v
—
~
/N
[t
|
=
a2
1<l
Q
N
\:.<I
Q
©
N
v
&n

4.2.3. Concentration. Set A = dg(¢,t'). It holds that

A< LT <24,

Qe

as every edge in P,y is counted at least once, and at most twice in this sum. In
particular f({1}5co) < 2A. Recall that by our modification step, every edge in P
is of weight at most ¢,,-A. In particular, for every Q € Q, LT (Q) < L(Q)+2¢,,-A. For
every vertex v on Py, it holds that D(v) < min{dg(v,t),dg(v,t')} < %. Therefore
for every @ € Q,

(4.1) _
LH(Q) < L(Q) +2c0 A < - D(Q) + 20 - A < (C'§6

—|—2cw> A =c,0-A.

~ Let W(Q) ~ L*(Q) - Exp(10). In particular, W(Q) ~ Exp (10 L*(Q)). Set
W =3 0coW(Q). Then f({W(Q)}yco) is distributed exactly as W. The maximal
mean among the W(Q)’s is A\yy = maxgeg 10 - LH(Q) < 10 - ¢;,,6 - A. The mean of
Wis p = > 0eo 10 LT(Q) < 20A. Set ceon = 1 (con for concentration). Using
Claim 4.3, Claim 4.4, and Lemma 2.1, we conclude

P [f ({X@)}QEQ) > (ccon + 42)4

({ﬂ@)}@@) > (Ceon + 42)A]
£ ((W(@1geo) = (ceon+42A = 1 ({1}geo)|
r [W > (Ceon + 40)4

((con +40) A =20

2

1 1 C)
< — e — . CeonA] = - con =k
= oxp < 2 10,008) P (20 ¢ip0 >

Note that ccon < 1, thus Lemma 4.2 follows.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 263

4.3. Bounding the distortion. Denote by £®¢ the event that for some pair of
terminals t,#', f({X(Q)}oea) > 43 - dg(t,t').2 By Lemma 4.2 and the union bound,
Prigme] < () k5 < L.

Let £® be the event that for some j, R; > cq, where ¢g = 2. Note that if £% does

not hold, then every vertex v joins to a cluster V; such that dg(v,t;) < cq- D(v).
CLAIM 4.5. Pr[€%] < 4.
Proof. Let &} be the event that R; > c4. It holds that

_ 2_ 1
Pr[ﬁf] = Prlg; > log; scqa) < (1 —p)long ca—l < (1-p)s < =R
where the second inequality holds as log, , scq = 1r11n1(f5 > %. By the union bound,
Pr[€7] < 7 < 5 as required. d

LEMMA 4.6. Assuming E® and E, for every pair of terminals t,t', dys(t,t') <
O(logk) - dg(t,1).

Proof. Fix some t,t'. By the end of Algorithm 3.1, all the vertices in P,y =
{t =vo,...,vy =t} are divided into consecutive detours® Dy,,...,Dy,,. The detour
Dy; was constructed at round £; by the terminal y,. The detour D, was charged upon
the interval ()¢, which contains the vertex v%. The leftmost vertex in Dy, is called
ag,, while the rightmost vertex is called b,,. In particular, for every 1 < j < K —1,
there is an edge in G between by, and ay,,,, and therefore there is an edge between
te; to tg, ., in the terminal-centered minor M. As t = vy joins the cluster of itself,
necessarily t,, = t. Similarly t;,,, = t'. See Figure 4.2 for an illustration. Using the
triangle inequality, we conclude

th.

t bfl ag, Uty bfz Qg
= ’U[l
= ay,
F1G. 4.2. The vertices P,y = vo...v are divided into consecutive detours Dy, ..., Dy .
Loy, tegstegstoy,tes,teg s a path in the terminal-centered minor M of G (induced by Vi,...,Vy).

The weight of the edge {tgj,tgj+1} in M is dg(te;,te

de(vey,ve; 1) +da (Ve yote;)

j+1)’ which is bounded by dg(te;,ve;) +

2We abuse notation here and use the same {X(Q)}geo for all terminals.
3Note that we consider only detours that inflict a charge by the end of the algorithm. Therefore
the detours are disjoint and every vertex in P; ;/ belongs to some detour.

264 ARNOLD FILTSER

k'—1 k'—1
dM(t,tl) < Z dG(tgj,tngrl) < Z [dg(tzj,véj) + dG(ij’uejH) + dG(Uéjﬂ,t[jJrl)]
j=1 j=1
k' —1 I’

< 3 dah, 05 123 da(te;, 0")
=1 =1
.
<da(t,t')+2) cq- DY),

j=1
where the last inequality follows by our assumption £8. By the definition of D(Qq,),
inequality (4.1) and the triangle inequality, D(v%) < D(Qq;) + L(Qe;) < (c;jté +1)
LT(Qy,) <

2t5 - LT(Qq,). Using the assumption £™i&, we conclude

y
(46) du(t,t) < do(t.t) +2ca Y —= L (Qu)
i=1 "
=da(t,t') + jc‘g > X(Q)-LT(Q)
Qe
= da(t,t) + = - £ ({X(@)qee) = O (k) -da(t,)

int

As Pr[EP A E®is] > 1— (Pr[€®] 4+ Pr[€™#]) > 1— 5 — o =1— +, Theorem 3.1

follows. 0

5. Fast-Relaxed-Voronoi algorithm. In this section, we describe a slightly
modified version of the Relaxed-Voronoi algorithm. Then we will show how to
implement the modified algorithm in O(mlogn) time.

Given two terminals t;,¢;, and two clusters V;,V; C V s.t. t; (resp., t;) is the
unique terminal in V; (resp., Vj), dg,v,+v, (ti,t;) denotes the length of the shortest
path between ¢; and ¢; in G[V; U V;] that uses exactly one crossing edge between V;
and Vj. See Figure 5.1 for an illustration.

In order to allow fast implementation, and avoid costly shortest path computa-
tions, we will introduce several modifications:

e In Algorithm 3.1, line 9, we will modify the edge weights in the induced
terminal-centered minor. The weight of the edge {t¢;,¢;} (if exists) will be
dG,Vi—&-Vj (ti, tj) instead of dG (ti, tj).

Fic. 5.1. t1,to,ts are terminals. The different color areas describes the terminal partition.
The shortest path in G from ti to t2 is t1,a,b,ta and has length dg(t1,t2) = 10. Note that all the
vertices in this path are in V1 U Va. Nevertheless, the shortest path from t1 to to that uses only one
crossing edge from t1 to ta is {t1,b,t2} and has length dg v, +v, (t1,t2) = 12.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 265

Algorithm 5.1. M = Fast-Relaxed-Voronoi(G = (V,E,w), K = {t1,...,t1}).
: Setézmandp:%.
Set V), «+ V\K. // V1 is the currently unclustered vertices.
for j from 1 to k do

Choose independently at random g; distributed according to Geo(p).

Set Rj < (]. —+ 6)91'.

Set V; < Fast-Create-Cluster(G,V,t;, R;).

Remove all the vertices in Vj from V.
end for
Let M be the minor of G created by contracting all the internal edges in V1, ..., V.
The weight of the edge {;,t;} (if it exists) is defined to be dg v, +v; (i, t;)-
return M.

—
14

Algorithm 5.2. V; = Fast-Create-Cluster(G = (V, E,w),Vy,t;, R;).
1: Set Vi« {tj}.
2: Set U « 0. // U is the set of vertices already denied from V.
3: Set N to be all the neighbors of ¢; in V.
4: while N # () do
5. Let v € N be the vertex with minimal dgv, U0y (v, 5)-
6: Remove v from N.
7. if dG[VjU{v}] (’Uﬂfj) < R; - D(v) then
8.
9

Add v to V}.

Add all the neighbors of v in V| \ U to N.
10: else
11: Add v to U.
12: end if

13: end while
14: return V.

e In Algorithm 3.2, line 5, instead of extracting an arbitrary vertex v from N,
we will extract the closest vertex v to t; in N w.r.t. the shortest path metric
induced by V; U {v} (i.e., v € N with minimal dgv, (v} (v, t;), and note that
it is a different graph for each vertex).

Similarly, in line 7, instead of checking whether dg(v,t;) < R; - D(v), we will
check whether dgv, U0y (v, t5) < Rj - D(v).
The pseudocode of the modified algorithm appears in Algorithms 5.1 and 5.2.

THEOREM b.1. With probability 1 — %, for the minor graph M returned by Algo-
rithm 5.1, it holds that for every two terminals t,t', dp(t,t') < O (logk) - dg(t,t').
Moreover, executing Algorithm 5.1 takes O(m + min {m,nk} - logn) time.

We prove Theorem 5.1 in several steps. First, in subsection 5.1 we show that
Algorithm 5.1 indeed returns a terminal partition and that similarly to Algorithm 3.1,
the edge subdivision does not change the outcome of the algorithm. Then in subsec-
tion 5.2 we’ll go through the analysis provided in section 4 and verify that it still goes
through for Algorithm 5.1 as well. Finally, in subsection 5.3 we describe an efficient
implementation of Algorithm 5.1.

266 ARNOLD FILTSER

5.1. Basic properties. Consider the Fast-Create-Cluster procedure (Al-
gorithm 5.2). This is a Dijkstra-like algorithm. For every vertex v, set ¢, =
dav,ufey) (v, t5). Note that for a vertex v, the value £, is decreasing throughout
the algorithm as the set V; grows. Note also that ¢, is defined for all the vertices (but
simply has value oo for vertices out of V; UN). Denote by ?, the value £, at the time
v is extracted from N at line 6 of Algorithm 5.2 (if such an occasion indeed occurs).

CLAIM 5.2. Consider the values 0, of the vertices, extracted from N at line 6 of
Algorithm 5.2. Then these values are nondecreasing. That is, if v was extracted before
v, then by < 0y

Moreover, after v is extracted, the value £, remains unchanged till the end of the
algorithm.

Proof. The proof of the first property is by induction on the execution of the
algorithm. Let v, v’ be a pair of vertices such that v" was extracted from N right after
v. It will be en~ough to show that ¢, < £,,. Consider the time when v was extracted
from N. Let V; denote the set V; at that time. By minimality, for every u € N,
by = dgp,u10y (v,t5) < darv,uguy) (u,tj). If the value ¢, did not change, we already
have (= dgy. gy (V' 85) > Lo (as necessarily v' € N because it is extracted next).
Otherwise, if the value ¢, decreased, then necessarily v joined V; and the shortest
path from from ¢; to ¢’ (in V; U {v,v'}) goes through v (as otherwise ¢,, would
not have changed). In particular, ¢,, = dG[Vju{v,u/}] (tj,0) = dG[f/ju{v,v'}] (tj,v) +

dai, v,y (v:0) > Lo

For the second property (that after extraction, ¢, remains unchanged), seeking
contradiction, assume that ¢, is updated after some u is extracted from N and joined
V;. This implies that the new shortest path from ¢; to v goes through u and thus is

of length greater than gu, a contradiction.]

Now we are ready to show that Algorithm 5.1 indeed returns a terminal partition
(that is, reprove Lemma 3.2).

LEMMA 5.3. The sets Vi,..., Vi constructed by Algorithm 5.1 form a terminal
partition.

Proof. 1t is clear that the clusters Vi,...,V; are disjoint and that each cluster is
connected. It will be enough to argue that every vertex v € V is clustered. Following
along the lines of the proof of Lemma 3.2, let ¢; be the closest terminal to v, and let
P ={t; = up,u1,...,us = v} be the shortest path from ¢; to v. Let uy be the first
vertex from P; 4 to be clustered during the algorithm (ug = t; € Vj}, so at least one
vertex in P, is clustered). Let V}/ be the cluster u; joins to. We argue by induction
on ¢ > i’ that u; also joins Vj,. This will imply that us; = v joins V}, and thus is
clustered.

Suppose u; joins V.. Denote by ij‘, the set Vjs right after u; joins it. As u; joins
Vir, dc[vf,](uutj') < Rj: - D(u;). In particular, at that stage

buss = UG [y Ufus)] (i1, ty) < dg [vi] (ui, 1) +w ({ui, tiy1})

S RJ’ ’ D(ul) + dG(uiuui+1) S R]’ . D(Ui+1).

STEINER POINT REMOVAL WITH DISTORTION O(log k) 267

As at least one neighbor (u;) of u;41 joins Vs, u;41 joins N at some stage of the
algorithm. In particular, by Claim 5.2, when u;11 will be extracted from N, £, , <
Rjr - D(u;41), and thus ;41 will join Vs as required. |

We will use the modified graph G (with the subdivided edges) for the distortion
analysis. In order to prove validity, we will argue that Claim 3.3 still holds.

CrLAM 5.4. In Claim 3.3, if we replace Algorithm 3.1 with Algorithm 5.1, the
claim still holds.

Proof. We follow the lines of the proof of Claim 3.3. Let Vi,..., Vi (resp,
Vi, .. Vk) be the terminal partition induced by Algorithm 5.1 on G (resp G). W
argue that for all j, Vj = V; \ {ve}. As previously, this will imply that the termlnal—
centered minors have the same edges set. As v, only subdivides the edge e, it will
also hold for all 4, j that dg vi4v; (ti, 1) = dg y, +V; (ti,t;), and thus the edge weights
in both minors will also be identical. In partlcular the claim will follow.

Suppose w.l.o.g. that v joins V; while u is still unclustered. Denote by Vj’ (resp.,
Vj’) the set V; (resp., f/J) right after the clustering of v at the execution of Algo-
rithm 5.1 on G (resp., G). As previously, for all j < j, Vju = Vju, while V= f/j’.

Recall that fv = dG[Vj/](t].’v) (resp., ZZ,) denotes the distance between t; to v at

the time of the extraction of v from N (resp. N) Note that ¢, = f,. As v joins
Vj, necessarily £, < R; - D(v). In the rest of the proof we consider the following

cases:
o iy > R; - D(v): In this case u will not join V;. As v. has edges only to

v and u, ve has no impact on any other vertex. In particular, 0, < éu
Therefore V; will be constructed in the same manner as V; (up to maybe
containing v.). Note that all the other clusters will not be affected, as if
ve remained unclustered, it becomes a leaf. We conclude that for every 7,
Vy =V \ {vu}.
o /,, <R;-D(v): Recall that w is the weight of e. There are two subcases:
— éu = EU + w. After v joins Vj, the label of v, is updated to éve < év + 3.
It holds that

In particular, v, will join f/j, and £, will be updated to 4, Lt = =0, +w.
From this point on, the two algorithms will behave in the same way. In
partlcular for every j" # j, Vi = Vw while V; U {v.} = V

— 0y < Uy + w. Tt holds that u joins V. However, the shortest path in V;
from ¢; to u did not goes through v. Therefore, as v, did not affect any
vertex (other than v,u), the execution will proceed in the same way in
both algorithms, and u will join ‘7 As each cluster is connected and all
the vertices are clustered, necessarlly ve will join V as well. We conclude
that for every j” # j, V;n = Vu while V; U{v.} =V; O

268 ARNOLD FILTSER

5.2. Distortion analysis. We will follow the distortion analysis of Algo-
rithm 3.1 given in section 4. Consider two terminals ¢,¢'. We will use the exact
same notation (the reader is referred to Appendix C in order to recall notation and
definitions). We start by reproving Claim 4.1.

CLAIM 5.5. During the execution of Algorithm 5.1, assuming R; > r,;, all of S;
joins V; with probability at least 1 — p.

Proof. Denote S; = {uj_q/s. . Uj,...,Ujrq} € Q; C Ppy where v/ = uj.
Denote by Vj' the cluster V; right after u; joins. As wu; joined, necessarily

dG[Vj/U{uj 3 (ws:ts)

Bluy) < ryi < R;. We will denote by ‘7] the cluster V; at the end of
the algorithm. Following inequality (4.3), with probability 1 —p, R; > (14 6)r,;. We
will show that if this event indeed occurs, then S; C V]

We argue by induction on i that u;4; € V] The proof that u;_; € VJ is sym-
metric. Assume that {w;, w;y1,... 7uj+i,1} C ‘7J Following inequalities (4.4) and

(4.5), L(Q;) < 2¢y 6 - D(v7) and D(ujt;) > D(v7) (1 —2¢,,0). As ujpj—1 € V;

u;j+; necessarily joins IV at some stage. In particular, at the time u;; was extracted
from N,

Cuyie = Ay, g] B i) < dapvn(t5,07) + L(Q5) < gy (t5,07) (14 26,0)

where the first equality follows by Claim 5.2, as Zuj ., remains unchanged after ex-
traction. We conclude that

é dG[Vj/] (tj7 Uj) (1 + QCinté) dG[Vj’] (tj, Uj)

Uj+i

Dluys) = D) (1-2cw0) = D()

(143-26,.0) < (1+0)R; .

We conclude that u;4; joins V; as required.]

In subsection 4.2 we defined charge function f({zg}geg) = > geo X(Q)-LT(Q),
and in Lemma 4.2 we upper bounded its value (w.h.p.). In that analysis we ex-
ploit only Claim 4.1. Replacing it with Claim 5.5, the analysis still hold. That
is, Pr[f({X(Q)}oeo) > 43 - da(t,t')] < k3. Denote by £®¢ the event that for
some pair of terminals ¢, f(X(Q"),..., X (Q¥%)) > 43 -dg(t,t') . As previously, by
union bound Pr [£™] < ﬁ Denote by £® the event that for some j, R; > cq. By
Claim 4.5, Pr[€®] < 5. We argue that assuming £ and €™ (which happens with
probability 1 — %), the distance between every pair of terminals ¢,# in the minor
returned by Algorithm 5.1 bounded by O(logk) - dg(v,u). This will conclude the
proof of the distortion argument in Theorem 5.1. Recall that in contrast to Algo-
rithm 3.1, the weight of the edge {t;,¢;} (if it exists) is dg,v,4v, (ti,t;) rather than
dg(ti, tj); this will force some changes to our analysis. Recall the notation we used
in Lemma 4.6: the path P is divided into consecutive detours Dy,,...,Dy,,. The
leftmost (resp., rightmost) vertex in Dy, is denoted by ag, (resp., be,). Both ay,, by,
belong to V,, the cluster of ;.. In particular, the graph G contains an edge between
be; to ar;,,. Recall also that t,, =t and ¢, = t' (as each terminal covers itself). It
holds that

STEINER POINT REMOVAL WITH DISTORTION O(log k) 269

k'—1
dy(t,t') < Z dG,ve, +Vi, ., (te; te; 1)
j=1
k' —1
< Z {dG[ng} (tfj) bfj) + dG(b@j’WHl) + dG[le] (WHNQJH)}
j=1

K —1
<ca- Z [dG(tfj ybe;) + da(beys an;) + dola,,, t4j+1)]
j=1
k-1
<cq- Z [da(te,,v") + da (v, by,) + da (b, a,)
j=1

+ dg(&€j+1 ’ Uej_H) + dG(UIZH—1 ’ t€j+1)]
k' —1 K
Scd~ Z dg(vej,’l)ej+l)+2ng(t[j,’l)€j)
J=1 Jj=1
k/
<ca- | da(t,t') +2ca- Y D(")
j=1

=0 (Ink)-dg(t,t') .

The third inequality follows by our assumption £, as for every index j and vertex
v € V;, it holds that dgv,)(tj,v) < ca-D(v) < ca-dg(t;,v). The fifth inequality follows
as all Uzj,bgj,aej H,vg-?'“ lie on the same shortest path P;. The sixth inequality
follows by E® as dg(te,, v%) < dG[ng] (te;,v) < ca- D(v"). The equality follows by

inequality (4.6) and £®is,

5.3. Runtime. For the implementation of Algorithm 5.1 and the
Fast-Create-Cluster procedure we will use two basic data structures. The
first one is a binary array to determine set membership of the vertices. It is folklore
(see, for example, [1]) that an array could be initialized in constant time to be the
all 0 array (that is, the empty set). Changing entry (that is, adding or deleting an
element) also takes constant time. The second data structure is the Fibonacci heap
(see [22]). Here each element has a key (some real number), and we can add a new
element or decrease the value of the key in constant time. Finding the minimal
element in the heap and deleting it takes O(log h) time (assuming there are currently
h elements in the heap).

Before the execution of Algorithm 5.1, we compute the values D(v) for all v € V.
This is done using an auxiliary graph G’ where we add new vertex s with edges of
weight 0 to all the terminals. Note that for every vertex v, the distance from s exactly
equals D(v). Thus we can simply run the Dijkstra algorithm from s to determine D(v)
for all v € V. The runtime is O(m + nlogn) (see [22]).

Next we give a detailed implementation of the Fast-Create-Cluster procedure.
The sets V;,U, and V| are stored using the arrays described above (V| will be a
global variable). The set N will be stored using the Fibonacci heap, where the key
value of v € N will be £, (i.e., dapv,u{v})(v,t;)). Denote by Nj all the elements that
belong to N at any stage of the execution of the Fast-Create-Cluster procedure
(which created V;). Let m; denote the number of edges incident on vertices of Vj.

270 ARNOLD FILTSER

Each iteration of the while loop starts by deleting an element v with minimal key
(of value £,) from N (O(log|N;|) time). Then we examine whether to add v to V;
(in O(1) time). If v is rejected, we add v to U (in O(1) time). Otherwise, v is
added to Vj;. In the latter case we go over each neighbor u of v. If u € U we do
nothing. If u € N, its key ¢, is updated to be min{¢,, ¢, + w({v,u})}. Finally, if
u €V, \ (UUN), then u is added to N with the key £, < €, + w({v,u}). It is easy
to verify that all the keys are indeed maintained with the correct values. Note that
all this processing for u takes only O(1) time. In particular, processing all neighbors
throughout the Fast-Create-Cluster procedure takes O(m;) time. All the deletion
of elements from the heap N takes O(|N;|log|N|) time.

Next we bound the total cost of the k calls to the Fast-Create-Cluster proce-
dure. |Nj| can be bounded from above by both m; and n. Moreover, Zj m; < 2m,
as every edge is incident on only two vertices. We provide two upper bounds on the
running time:

k k
O(n)—FZO(m]——i-L/\fj\log\/\/j\)gO m—i—ijlogn = O(mlogn) ,
Jj=1 j=1
k k
O(n) + ZO(mj + |Nj|log |N;]) < O m—i—anogn = O(m +nklogn) .
j=1 j=1

Thus the total running time of these k calls is bounded by O(m + min {m,nk} -
logn). Finally we bound the total runtime of Algorithm 5.1 without the calls to the
Create-Cluster. It is straightforward that up line 9, where we create the minor M
given the clusters, all computations took O(n) time.* Using Claim 5.2, by the end of
the for loop in Algorithm 5.1, for every j and v € Vj it holds that 0, = dav;)(ts,v). In
order to create the minor graph M, we go over all the edges iteratively, for every edge
{v,u} € E, such that v € V;, uw € V;, and i # j. We add an edge {t;,¢;} to M (if it
does not exist already). The weight of the edge updated to be the minimum between
the current weight (oo if it does not exist yet) and £, +w({v,u}) + £, (the keys at the
time of extraction from N). It is straightforward that by the end of this procedure
we will indeed compute the minor M, and each edge {¢;,¢;} in M will have weight
da,v,+v; (ti,t;). This iterative process takes O(m) time. Theorem 5.1 now follows.

6. Lower bounds on the performance of the algorithms. Chan et al. [9)
gave a lower bound of 8 for the distortion in the SPR problem. This lower bound has
not been improved since. This section is dedicated to lower bounding the performance
of the various algorithms which were suggested for the problem. That is, while we
do not provide better lower bounds for the SPR, problem itself, we are able to lower
bound the performance of the algorithms used so far.

In subsection 6.1 we prove that our analysis of the Relaxed-Voronoi algorithm
(Algorithms 3.1 and 5.1) is asymptotically tight. That is, there is a graph family
on which the achieved distortion is ©(log k). Next, in subsection 6.2, we provide a
lower bound on the performance of the Ball-growing algorithm studied by [27, 11,
20]. Specifically, we provide (the same) graph family on which the Ball-growing
algorithm incurs Q(v/log k) distortion. Recall that in [20], the author proved that the
Ball-growing algorithm finds a minor with distortion O(logk). That is, while the

4In fact, the sampling of g1, ..., gx takes O(k) time only w.h.p. But we will ignore this issue.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 271

analysis of the Ball-growing algorithm still might be improved, it cannot be pushed
further than Q(y/logk).

First, we show that the expected distortion incurred by the minor returned by
the algorithms is large. Then, we deduce that with constant probability the (usual
worst-case) distortion is also large. Formally, both algorithms are randomized and
thus can be viewed as producing a distribution D over graph minors. Given such

distribution D, the expected distortion of the pair ¢,t" is Ep;up [zﬂg ((ftt,,))] The overall
expected distortion is the maximal expected distortion among all terminal pairs.

A final remark. Both algorithms used an arbitrary order over the terminals, in
contrast to similar algorithms for other problems [8, 19] which consider a random
order. Our lower bounds will still hold even if one replaces the arbitrary order with a

random one.

6.1. Lower bound on the performance of the Relaxed-Voronoi algo-
rithm. The following theorem provides a lower bound on the expected distortion
incurred by Algorithm 3.1. The graphs which we will use for the lower bound are
trees. As both Algorithm 3.1 and Algorithm 5.1 are identical where the input graph
is a tree, the lower bound will also hold on Algorithm 5.1.

THEOREM 6.1. Fiz some k € N. There is a graph G = (V, E, w) with terminal set

K of size k such that the expected distortion of the minor returned by Algorithm 3.1
is Q(log k).

Proof. We will assume that k is large enough, as otherwise 1 = Q(logk) and
hence every graph with k& terminals provides a valid lower bound. Let Gj be the
graph described in Figure 1.1 with parameter ¢ = 14§ = @(@). Let X; be an
indicator for the event v; € Vj, that is, ¢; covers v;. For X; to occur, it is enough
that for every ¢ # j, dg(ti,v;) > R; - D(v;). That is, R; < 14 |i — j| - €. By the
definition of R;,

Pr(R; > 1+ i —jld = Pr[gi > log, s (1+ i — jl)] = (1 —p)[rrss¥lizlo=t]

For i such that |i — j| < 1, it holds that log, 5 (1 + i — j|e) = In(tli—jle) |i7{5|6/2,

In(1+9) =
while for ¢ such that i — j| > %, logy 5 (1+ |i —j|e€) > 1nlr11-2-5 > 5. We conclude

Pr(X;] > Pr[V,z (R; < 1+ i — jle)]

>1-) Pr[R;>1+]i—jl¢
J#i

L ie/2 S 7\i oo .

Now, T 1 -p)F < £ -p7) < X4 = i = L while

(%)NIHk = k=102 < 1 Tn particular Pr(X;] > 1— (1 —p)~"-
)

Set X = Zi:zl X;. By linearity of expectation, E[X] = Q(k). Note that the
distance from ¢; to ¢ in the minor graph My equals 2+ (k — 1) e +2X. We conclude

dag,(ty tw)] _ 2+ (k=D e+2B[X] _ Q(k) _ o (1 _
E[dck(tl,tm)] 24+ (k—1)e O(k‘e)Q(€>Q(lgk)' q

272 ARNOLD FILTSER

COROLLARY 6.2. Fiz some k € N. There is a graph G = (V, E, w) with terminal
set K of size k such that with constant probability, the distortion incurred by the minor
returned by Algorithm 3.1 is Q(log k).

Proof. We will use the graph and notation from the proof of Theorem 6.1. Set
W= E[%] Q(log k). Note the largest possible distortion is 2"212(';7(}1_)61)6 =cpu

for some constant ¢ > 1 (this distortion occurred exactly when each vertex v; belongs
to V;). Denote by x the event that W L. Then
o (s

u=E [‘M] < Prly] -ent (1 - Pr(x) - gu,
therefore
Prig > > 5~)
Therefore, with constaint probability, the distortion is at least % w=Qlogk).]

6.2. Lower bound on the performance of the Ball-Growing algorithm.
In this subsection we provide a lower bound on the performance of the Ball-Growing
algorithm. For completeness, we give in Appendix B a full description of the
Ball-Growing algorithm as it appeared in [20]. In particular, we will use the no-
tation defined there. The Ball-Growing as described in [20] also had a modification
step. As our lower bound example is a tree, this modification has no impact on the
minor returned by the algorithm, and thus we can ignore it. Formally, a claim similar
to Claim 3.3 can be proven.

THEOREM 6.3. Fiz some k € N. There is a graph G = (V, E,w) with termi-
nal set K of size k such that the expected distortion of the minor returned by the
Ball-Growing algorithm is Q(+/logk).

Proof. We will use the graph described in Figure 1.1 with modified parameters:
the weight of an edge between terminal to Steiner vertex will be 2— ¢, while the weight
of an edge between two Steiner vertices will be 2¢ for € to be specified later. Note that
the Ball-Growing algorithm assumes that the minimal distance between a terminal
to a Steiner vertex in the input graph is exactly 1. In order to satisfy this condition
we will add an additional Steiner vertex as a leaf connected to t; via an edge of unit
weight. Note that this new vertex has no impact on the resulting minor whatsoever
and therefore can be completely ignored.

As previously, we denote by X; the indicator for the event v; € V;. Following the
analysis of Theorem 6.3, if we prove that Pr[X;] = Q(1) (for arbitrary j) it will imply
expected distortion of Q(2).

Let R; be equal to R; (the magnitude of ¢;) at the end of the m = log, 3 — 1
round. For simplicity we will assume that m is an integer; otherwise the analysis will
go through after slight modification of the parameters. Recall that R; = > %, qf
where qf is distributed according to Exp(D -). Here r = 1 + ﬁ, 0= 20, D= lnk’
and all the qf are independent. It holds that

STEINER POINT REMOVAL WITH DISTORTION O(log k) 273

n ¢ T‘m+1—1
E[R. = pt=D.—_~ —
R;]=Y_D-r*=D — 2,
£=0
v = (S| -3V -3
=0 =0 =0
r2(m+1) 2 9-1 5 1
:D2~7 —<4.—: —
2_1 <1nk;) +)2 - Ink O(lnk> ’
lnk Ink

where we used linearity of expectation and independence. In order that X; will occur,
it is enough that R; > d(t;,v;), while for every j' # j, R; < d(t;,v;). Using the
Chebyshev inequality,

Pr[R; > d(t;,0;)] = Pr[R; >2— ¢ > Pr[[R; —E[R,]| < 21_“’6@ ,
Pr[Ry: > d(tyr,uy)] < Pr([Ry —E[Ry]| > (21j —] ~ 1) < — L
(27 —=4'1-1)

By the union bound, the probability that for some j’ # j, Rj» > d(t;7,v;) is bounded
by
2

=1
Z:?_ 62 %

D Pr[Ry > d(ty,v))] <
%’

We conclude

Pr[X;] > Pr[Ry > d(ty,v;)] - | 1= Y Pr[Ry > d(t;,v;)]
%’

> (1) (1=) <im0 (1) =)

for e = @(ﬁ). The theorem now follows. |

Following the lines of the proof of Corollary 6.2, we conclude as follows.

COROLLARY 6.4. Fiz some k € N. There is a graph G = (V, E, w) with terminal
set K of size k such that with constant probability, the distortion of the minor returned
by the Ball-Growing algorithm is Q(y/logk)

Remark 6.5. Theorem 6.3 can also be proved using concentration bounds. How-
ever, the lower bound remains Q(v/log k) so we provided the more basic proof using
the Chebyshev inequality. Nevertheless, the curious reader can find the required con-
centration bounds for such a proof in Appendix A.

7. Discussion. In this paper we proved an O(logk) upper bound for the SPR
problem, improving the previous O(log® k) upper bound by [11]. The lower bound
is still only 8 [9]. Closing this gap remains an intriguing open problem. Both the
Relaxed-Voronoi and Ball-growing algorithms proceed by creating random termi-
nal partitions. These partitions are determined using random parameters, which are
chosen with no consideration whatsoever of the input graph G. In contrast, the opti-
mal tree algorithm of [24] is a deterministic recursive algorithm which make decisions

274 ARNOLD FILTSER

after considering the tree structure at hand. It seems that the input-oblivious ap-
proach of the Relaxed-Voronoi and Ball-growing algorithms is doomed for failure,
and in fact, both these algorithms already fail to achieve constant distortion on a
simple tree example. As a conclusion, input-sensitive approaches seem to be more
promising for future attempts to resolve the SPR problem.

In a follow-up paper with Krauthgamer and Trabelsi [21], we used the
Relaxed-Voronoi algorithm in order to re-prove Gupta’s [24] upper bound of 8.
Formally, let » € V be an arbitrary vertex and order the terminals w.r.t. their
distances from r (that is, d(t1,7) < d(te,7) < ...d(tg,7)). Surprisingly, given a tree,
if we run the Relaxed-Voronoi algorithm w.r.t. the order specified above (instead
of an arbitrary order), and all magnitudes R; are exactly 3, we will get a tree mi-
nor with distortion at most 8. This example demonstrates that one can use the
Relaxed-Voronoi algorithm also in an input-sensitive manner in order to achieve
optimal results.

We would like to emphasize two additional open problems:

e Expected distortion: Currently the state of the art for usual (worst-case)
distortion and expected distortion for the SPR problem is the same. Both
have O(log k) upper bound and (1) lower bound. There are cases where
much better results can be achieved for expected distortion (e.g., embedding
a graph into a tree must incur distortion Q(n), while a distribution over
embeddings into trees can have expected distortion O(logn) [19]). What are
the right bounds for expected distortion in the SPR problem?

e Special graph families: Basu and Gupta [5] showed that constant distortion
for the SPR problem can be achieved on outer-planar graphs. It will be very
interesting to achieve better upper bounds for planar graphs, and more gen-
erally for minor-free graphs, bounded treewidth graphs, etc. In the expected
distortion regime, an O(1) upper bound is already known [17] for minor-free
graphs. Possibly one can use the Relaxed-Voronoi algorithm with a clever
choice of order and magnitudes in order to achieve such results.

Appendix A. Concentration bounds for sum of exponential distribu-
tions.

LEMMA A.1. Suppose X1, ..., X, s are independent random variables, where each
X; is distributed according to Exp(\;). Let X = 3 . X; and Ay = max; \;. Set

p=E[X] =X\,
For0<t< ﬁ, and o > 2ty

Pr|
Pr|

v

(1+a)u] <exp(—tp- (a—2tAn)),

X
X <(1-a)y] <exp(—tu(a—1tiy)) .

IN

Proof. For each X;, the moment generating function w.r.t. ¢ equals

1
E[¢] = 5 o = Lt DTN | STt (14 2tN) < M0,
i >0

Using the Markov inequality,

STEINER POINT REMOVAL WITH DISTORTION O(log k) 275

Pr(X > (14 a)u] =Pr [etX > et(1+0f)u}
<[] - et

= eft(l‘i'a) ZZ Af . H]E I:etXZ]
14

< e—(l-‘ra) Zz tAp 3 eZztAZ(lJ"Qt/\l)
— e (tAe(2tAe—a))

tAe) (2t — —tp-(a—2tA
< 6(25 tz)(M—a) _ e (o M)7

where in the second equality we use the fact that {X;}, are independent.
For the second inequality, it holds that

1
—tX;] _
E [e] 14t

=) (D () STt (1 —thy) S et
>0

Therefore,
PrX < (1-a)u] = Pr[e7X > et00]
<E[e7X] femttmen

— et(lfa),u. 3 HeE I:efth:I
< e(l—a) ZZ tAe e~ Ez t)\z(l—t)\g)

—e Zé t)\g(aft)\[)

< e—tu(a—t/\M) . O

We derive the following corollary.

COROLLARY A.2. Suppose X1,...,X, are independent random variables, where
Xi ~ Exp(N;). Let X =35, X; and Ay = max; A;. Set p=E[X] =" \;. Then,
a?u
Fora<2: PriX>(1+a)u <exp|———] ,
SAm
a?u
Fora<l: PriX<(1l-a)u]<exp|——7+—] .
Ay
For the first inequality we choose the parameter ¢ = 5 - ﬁ, while for the second

1
22

inequality we choose the parameter t = « -

Appendix B. The Ball-Growing algorithm. The Ball-Growing algorithm
assumes w.l.o.g. that the minimal distance between a terminal to a Steiner vertex in
the input graph is exactly 1. Throughout the execution of the algorithm each terminal
t; is associated with a radius R; and cluster V; C V. The algorithm iteratively grows
clusters V1, ..., V) around the terminals. Once some vertex v joins some cluster Vj, it
will stay there. When all the vertices are clustered, the algorithm terminates. Initially
the cluster V; contains only the terminal ¢;, while R; equals 0. The algorithm will
have rounds, where each round consist of k steps. In step j of round ¢, the algorithm
samples a number qf according to distribution Exp(D - rf) (note that the mean of
the distribution grows by a factor of = in each round). The radius R; grows by
qf. We consider the graph induced by the unclustered vertices V| union V. Every
unclustered vertex of distance at most R; from ¢; in G[V U V}] joins Vj.

276

ARNOLD FILTSER

Algorithm B.1. M = Ball-Growing(G =

(V,E),w, K = {t1, ...t }).

Choose independently at random qf distributed according to Exp(D - r*).

1: Set r < 1+ 06/Ink, where 6 = 1/20.

2: Set D «+ ﬁ

3: For each j € [k], set V; « {t;}, and set R; < 0.
4: Set Vi + V\ (U;?:le).

5. Set £ <« 0.

6: while (U;?:le) # V do

7. for j from 1 to k do

8:

9: Set R; +— R; + qf.

10: Set V; «+ BG[VLUVJ-](tﬁRj)- .

Vi « V;UBgv,uv(t, Rj).
11: Set Vi« V\ (U, Vj).
12: end for
13: £« (+1.
14: end while

15: return the terminal-centered minor M of G induced by V7, ...

// This is the same as

7Vk-

Appendix C. Index.

Preliminaries.
dg: shortest path metric in G.
G[A]: graph induced by A.
K ={t1,...,tx}: set of terminals.
D(v) = mingex dg (v, 1)
Terminal partition: partition {Vi,...,Vi} of
V, s.t. for every i, t; € V; and V; is con-

nected.
Induced minor: given terminal partition
{V1,...,Vx}, the induced minor ob-

tained by contracting each V; into the
super vertex t;. The weight of the edge
{ti,t;} (if it exists) set to be dg(t, ;).
Cda (tisty)
T dg (tisty) *
Geo(p): geometric distribution with parameter A.
Exp(X): exponential distribution with parameter

Distortion of induced minor: max;

p.
Modification. Every edge on P, ;s has
weight at most ¢y - dg (¢,).

Constants.
p = %: parameter of the geometric distribution.
6 = 20-}nk: jumps in R; are of magnitude 1+ 6.
cw = 2.
Cint = %: governs the size of interval in the par-
tition Q of Py ,s.
Ccon = %: used to bound the variation of the

charge function from its expectation.
¢q = €2: bound on the maximal size of R;.
Events.
EBis: denotes that for some pair of terminals
t,t, f{X(Q)}geg = 43 da(t,t').
EB: denotes that there exist j such that R; >
cq-
Notation.
Vj: cluster of t;.
R;: magnitude of the cluster of t;.

V : set of unclustered (uncovered) vertices.
P,y ={t=o,...,vy = t'}: shortest path from

ttot.

L({va,va+1,---,vp}) = dg(va,vp): internal
length.

LT ({va,vat1,---,0}) = dg(va—1,vp41): ex-

ternal length.
Q: partition of P, ;s into intervals Q.
aj: the leftmost active vertex covered by t;.
b;: the rightmost active vertex covered by ¢;.

D; = {aj,...,b;}: detour created by terminal
tj.

Slice maximal subinterval (of some Q) of active
vertices.

ry: minimal choice of R; such that v joins Vj.

vJ: vertex with the minimal 7, (among active
vertices).

Q;: interval containing v;.

Sj: slice containing v;.

f{zqlqeo): = Xgeozq - LT(Q), charge
function.

Bg: a coin box which resembles the interval Q.

da,vi+v; (ti,t5): the weight of the shortest path
in G between t; and t2 that uses only
vertices from V; UV} and only a single
crossing edge between V; to Vj.

Counters.

S(Q): (current) number of slices in interval Q.

X(Q): number of detours the interval Q is (cur-

rently) charged for.

number of detours the interval @ is

charged for by the end of Algorithm 3.1.

Z(Q): number of active coins in Bg. Each coin
is active when added to the box.

Y (Q): number of inactive coins in Bg. A coin

becomes inactive after tossing.

number of inactive coins in Bg by the

end of the process.

X(Q):

Y(Q):

STEINER POINT REMOVAL WITH DISTORTION O(log k) 277

Acknowledgment. The author would like to thank his advisors Ofer Neiman,

for fruitful discussions, and Robert Krauthgamer, for useful comments.

(1]
(2]

(3]

(4]

(5]

[6]

[7]

(8]

(9]

(10]

(11]

(12]

(13]

14]

(15]

(16]

(17]

(18]

(19]

REFERENCES

A. V. AHO AND J. E. HOPCROFT, The Design and Analysis of Computer Algorithms, Addison-
Wesley, Boston, MA, 1974.

A. ANDONI, A. GUPTA, AND R. KRAUTHGAMER, Towards (1+€)-approzimate flow sparsifiers, in
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, Portland,
OR, 2014, pp. 279293, https://doi.org/10.1137/1.9781611973402.20.

Y. BARTAL, Probabilistic approximations of metric spaces and its algorithmic applications, in
Proceedings of the 37th Annual Symposium on Foundations of Computer Science, Burling-
ton, VT, 1996, pp. 184-193, https://doi.org/10.1109/SFCS.1996.548477.

Y. BARTAL, A. FILTSER, AND O. NEIMAN, On notions of distortion and an almost minimum
spanning tree with constant average distortion, in Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms, Arlington, VA, 2016, pp. 873-882, https://doi.
org/10.1137/1.9781611974331.ch62.

A. Basu AND A. GUPTA, Steiner Point Remowval in Graph Metrics, manuscript, http://www.
math.ucdavis.edu/~abasu/papers/SPR.pdf (2008).

J. D. BaTsoN, D. A. SPIELMAN, AND N. SRIVASTAVA, Twice-Ramanujan sparsifiers, SIAM J.
Comput., 41 (2012), pp. 17041721, https://doi.org/10.1137/090772873.

A. A. BENCzUR AND D. R. KARGER, Approzimating s-t minimum cuts in O(n2) time, in Pro-
ceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia,
PA, 1996, pp. 47-55, https://doi.org/10.1145/237814.237827.

G. CALINESCU, H. J. KARLOFF, AND Y. RABANI, Approzimation algorithms for the 0-extension
problem, SIAM J. Comput., 34 (2004), pp. 358-372.

T.-H. CuaN, D. Xi1a, G. KoNJEVOD, AND A. RICHA, A tight lower bound for the Steiner
point removal problem on trees, in Proceedings of the 9th International Conference on
Approximation Algorithms for Combinatorial Optimization Problems, and 10th Inter-
national Conference on Randomization and Computation, Springer-Verlag, Berlin, 2006,
pp. 70-81, https://doi.org/10.1007/11830924.9.

M. CHARIKAR, T. LEIGHTON, S. LI, AND A. MOITRA, Vertex sparsifiers and abstract rounding
algorithms, in Proceedings of the 51th Annual IEEE Symposium on Foundations of Com-
puter Science, Las Vegas, NV, 2010, pp. 265-274, https://doi.org/10.1109/FOCS.2010.32.

Y. K. CHEUNG, Steiner point removal—distant terminals don’t (really) bother, in Proceedings
of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA,
2018, pp. 1353-1360.

Y. K. CHEUNG, G. GORANCI, AND M. HENZINGER, Graph minors for preserving terminal
distances approximately—lower and upper bounds, in 43rd International Colloquium on
Automata, Languages, and Programming, Rome, Italy, 2016, pp. 131:1-131:14, https:
//doi.org/10.4230/LIPIcs.ICALP.2016.131.

J. CHUZHOY, On vertex sparsifiers with Steiner nodes, in Proceedings of the 44th Symposium
on Theory of Computing Conference, New York, 2012, pp. 673-688, https://doi.org/10.
1145/2213977.2214039.

D. CoOPPERSMITH AND M. ELKIN, Sparse source-wise and pair-wise distance preservers, in
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, STAM,
Philadelphia, PA, 2005, pp. 660-669, http://dl.acm.org/citation.cfm?id=1070432.1070524.

M. ELKIN, A. FILTSER, AND O. NEIMAN, Prioritized metric structures and embedding, in Pro-
ceedings of the 47th Annual ACM on Symposium on Theory of Computing, Portland, OR,
2015, pp. 489-498, https://doi.org/10.1145/2746539.2746623.

M. ELKIN, A. FILTSER, AND O. NEIMAN, Terminal embeddings, Theoret. Comput. Sci., 697
(2017), pp. 1-36, https://doi.org/10.1016/j.tcs.2017.06.021.

M. ENGLERT, A. GUPTA, R. KRAUTHGAMER, H. RACKE, I. TALGAM-COHEN, AND K. TALWAR,
Vertex sparsifiers: New results from old technigques, SIAM J. Comput., 43 (2014), pp. 1239—
1262, https://doi.org/10.1137/130908440.

J. FAKCHAROENPHOL, C. HARRELSON, S. RAO, AND K. TALWAR, An improved approrimation
algorithm for the 0-extension problem, in Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms, Baltimore, MD, 2003, pp. 257-265, http://dl.acm.
org/citation.cfm?id=644108.644153.

J. FAKCHAROENPHOL, S. RA0o, AND K. TALWAR, A tight bound on approzimating arbitrary
metrics by tree metrics, J. Comput. System Sci., 69 (2004), pp. 485-497, https://doi.org/
10.1016/j.jcss.2004.04.011.

278

20]

(21]

(22]

(23]

[24]

25]
[26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

M.

M

ARNOLD FILTSER

. FILTSER, Steiner point removal with distortion O (log k), in Proceedings of the 29th Annual

ACM-STAM Symposium on Discrete Algorithms, New Orleans, LA, 2018, pp. 1361-1373,
https://doi.org/10.1137/1.9781611975031.90.

. FILTSER, R. KRAUTHGAMER, AND O. TRABELSI, Relaxed voronoi: A simple framework

for terminal-clustering problems, in Proceedings of the 2nd Symposium on Simplicity in
Algorithms, San Diego, CA, 2019, pp. 10:1-10:14, https://doi.org/10.4230/OASIcs.SOSA.
2019.10.

L. FREDMAN AND R. E. TARJAN, Fibonacci heaps and their uses in improved network
optimization algorithms, J. ACM, 34 (1987), pp. 596-615, https://doi.org/10.1145/28869.
28874.

. GoraNcCI, M. HENZINGER, AND P. PENG, Improved guarantees for verter sparsification in

planar graphs, in Proceedings of the 25th Annual European Symposium on Algorithms,
Vienna, Austria, 2017, pp. 44:1-44:14, https://doi.org/10.4230/LIPIcs.ESA.2017.44.

. GUPTA, Steiner points in tree metrics don’t (really) help, in Proceedings of the 12th Annual

ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, 2001, pp. 220-227,
http://dl.acm.org/citation.cfm?id=365411.365448.

. GupTA, V. NAGARAJAN, AND R. RAvVI, An improved approzimation algorithm for require-

ment cut, Oper. Res. Lett., 38 (2010), pp. 322-325.

. KaMMA, R. KRAUTHGAMER, AND H. L. NGUYEN, Cutting corners cheaply, or how to remove

Steiner points, in Proceedings of SODA, 2014, pp. 1029-1040.

. Kamma, R. KRAUTHGAMER, AND H. L. NGUYEN, Cutting corners cheaply, or how to re-

move Steiner points, SIAM J. Comput., 44 (2015), pp. 975-995, https://doi.org/10.1137/
140951382.

. KAvITHA AND N. M. VARMA, Small stretch pairwise spanners, in Automata, Languages, and

Programming Part I, Lecture Notes in Comput. Sci. 7965, Springer-Verlag, Berlin, 2013,
pp. 601-612, https://doi.org/10.1007/978-3-642-39206-1_51.

. KRAUTHGAMER, H. L. NGUYEN, AND T. ZONDINER, Preserving terminal distances using mi-

nors, SIAM J. Discrete Math., 28 (2014), pp. 127-141, https://doi.org/10.1137/120888843.

. KRAUTHGAMER AND I. RIKA, Mimicking networks and succinct representations of terminal

cuts, in Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms,
New Orleans, LA, 2013, pp. 1789-1799, https://doi.org/10.1137/1.9781611973105.128.
KRAUTHGAMER AND I. RIKA, Refined Vertex Sparsifiers of Planar Graphs, CoRR
abs/1702.05951, 2017.

. T. LEIGHTON AND A. MOITRA, Eztensions and limits to vertex sparsification, in Proceedings

of the 42nd ACM Symposium on Theory of Computing, Cambridge, MA, 2010, pp. 47-56,
https://doi.org/10.1145/1806689.1806698.

. LINIAL AND M. E. SAKS, Decomposing graphs into regions of small diameter, in Proceed-

ings of the 2nd Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, San
Francisco, CA, 1991, pp. 320-330, http://dl.acm.org/citation.cfm?id=127787.127848.

. MAKARYCHEV AND Y. MAKARYCHEV, Metric extension operators, vertex sparsifiers and Lip-

schitz extendability, in Proceedings of the 51th Annual IEEE Symposium on Foundations
of Computer Science, Las Vegas, NV, 2010, pp. 255-264, https://doi.org/10.1109/FOCS.
2010.31.

. L. MILLER, R. PENG, A. VLADU, AND S. C. XU, Improved parallel algorithms for spanners

and hopsets, in Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms
and Architectures, Portland, OR, 2015, pp. 192-201, https://doi.org/10.1145/2755573.
2755574.

. MOITRA, Approxzimation algorithms for multicommodity-type problems with guarantees in-

dependent of the graph size, in Proceedings of the 50th Annual IEEE Symposium on Foun-
dations of Computer Science, Atlanta, GA, 2009, pp. 3-12, https://doi.org/10.1109/FOCS.
2009.28.

. PELEG AND A. A. SCHAFFER, Graph spanners, J. Graph Theory, 13 (1989), pp. 99-116,

https://doi.org/10.1002/jgt.3190130114.

. RopirTy, M. THORUP, AND U. ZWICK, Deterministic constructions of approximate dis-

tance oracles and spanners, in Automata, Languages and Programming, Lecture Notes in
Comput. Sci. 3580, Springer-Verlag, Berlin, 2005, pp. 261-272, https://doi.org/10.1007/
11523468_22.

. THORUP AND U. ZWICK, Approzimate distance oracles, J. ACM, 52 (2005), pp. 1-24, https:
//doi.org/10.1145/1044731.1044732.

Part V
Sparsification of Two-Variable Valued CSPs

98

SIAM J. DISCRETE MATH. (© 2017 Society for Industrial and Applied Mathematics
Vol. 31, No. 2, pp. 1263-1276

SPARSIFICATION OF TWO-VARIABLE VALUED CONSTRAINT
SATISFACTION PROBLEMS*

ARNOLD FILTSER' AND ROBERT KRAUTHGAMER}?

Abstract. A valued constraint satisfaction problem (VCSP) instance (V,II, w) is a set of vari-
ables V' with a set of constraints IT weighted by w. Given a VCSP instance, we are interested in a
reweighted subinstance (V,II' C II,w’) that preserves the value of the given instance (under every
assignment to the variables) within factor 1 £ e. A well-studied special case is cut sparsification in
graphs, which has found various applications. We show that a VCSP instance consisting of a single
boolean predicate P(z,y) (e.g., for cut, P = XOR) can be sparsified into O(|V|/e?) constraints iff the
number of inputs that satisfy P is anything but one (i.e., |[P~1(1)| # 1). Furthermore, this sparsity
bound is tight unless P is a relatively trivial predicate. We conclude that also systems of 2SAT (or
2LIN) constraints can be sparsified.

Key words. valued constraint satisfaction problem, cut sparsification, boolean predicates,
MAX-CSP

AMS subject classifications. 68Q25, 68 W25

DOI. 10.1137/15M1046186

1. Introduction. The seminal work of Benczir and Karger [4] showed that
every edge-weighted undirected graph G = (V, E, w) admits cut sparsification within
factor (1+¢) using O(e~2nlogn) edges, where we denote throughout n = |V|. To state
it more precisely, assume that edge weights are always non negative and let Cutg(.S)
denote the total weight of edges in G that have exactly one endpoint in S. Then for
every such G and € € (0, 1), there is a reweighted subgraph G. = (V, E. C E,w,) with
|E.| < O(e2nlogn) edges such that

(1) VSV, Cutg, (5) € (1 £¢) - Cutg(S),

and moreover, such G, can be computed efficiently.

This sparsification methodology turned out to be very influential. The original
motivation was to speed up algorithms for cut problems—one can compute a cut
sparsifier of the input graph and then solve an optimization problem on the sparsifier—
and indeed this has been a tremendously effective approach; see, e.g., [4, 5, 10, 14, 12].
Another application of this remarkable notion is to reduce space requirements, either
when storing the graph or in streaming algorithms [1]. In fact, followup work offered
several refinements, improvements, and extensions (such as to spectral sparsification
or to cuts in hypergraphs, which in turn have more applications); see, e.g., [16, 17, 15,
7,8, 9, 13, 3, 11]. The current bound for cut sparsification is O(n/e?) edges, proved
by Batson, Spielman, and Srivastava [3], and it is known to be tight [2].

We study the analogous problem of sparsifying constraint satisfaction problems
(CSPs), which was raised in [11, section 4] and goes as follows. Given a set of

*Received by the editors October 30, 2015; accepted for publication (in revised form) January 27,
2017; published electronically June 22, 2017. A preliminary version is available at arXiv:1509.01844.
http://www.siam.org/journals/sidma,/31-2/M104618.html
Funding: The first author was partially supported by the Lynn and William Frankel Center for
Computer Sciences. The second author’s work was supported in part by Israel Science Foundation
grant 897/13 and US-Israel BSF grant 2010418.
TBen-Gurion University of the Negev, Beer-Sheva 8410501, Israel (arnoldf@cs.bgu.ac.il).
fWeizmann Institute of Science, Rehovot 76100, Israel (robert.krauthgamer@weizmann.ac.il).

1263

1264 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

constraints on n variables, the goal is to construct a sparse subinstance that has
approximately the same value as the original instance under every possible assign-
ment; see section 2 for a formal definition. Such sparsification of CSPs can be used
to reduce storage space and running time of many algorithms.

We restrict our attention to two-variable constraints (i.e., of arity 2) over boolean
domain (i.e., alphabet of size 2). To simplify matters even further we shall start with
the case where all the constraints use the same predicate P : {0,1}? — {0,1}. This
restricted case of CSP sparsification already generalizes cut sparsification—simply
represent every vertex v € V by a variable x, and every edge (v,u) € E by the
constraint x, # x,.

Observe that such CSPs also capture other interesting graph problems, such as
the uncut edges (using the predicate z, = x,), covered edges (using the predicate
Xy V @,,), or directed-cut edges (using the predicate z, A —x,). Even though these
graph problems are well-known and extensively studied, we are not aware of any
sparsification results for them, and at a first glance such sparsification may even seem
surprising, because these problems do not have the combinatorial structure exploited
by [4] (a bound on the number of approximately minimum cuts) or the linear-algebraic
description used by [15, 3] (as quadratic forms over Laplacian matrices).

Results. For CSPs consisting of a single predicate P : {0,1}? — {0, 1}, we show in
Theorem 3.7 that a (1+¢)-sparsifier of size O(n/e?) always exists iff |[P7(1)] # 1 (i.e.,
P has 0, 2, 3, or 4 satisfying inputs). Observe that the latter condition includes the
two graphical examples above uncut edges and covered edges but excludes directed-
cut edges. We further show in Theorem 4.1 that our sparsity bound above is tight,
except for some relatively trivial predicates P. We then build on our sparsification
result in section 5 to obtain (1 + €)-sparsifiers for other CSPs, including 2SAT (which
uses four predicate types) and 2LIN (which uses two predicate types).

Finally, we explore future directions, such as more general predicates and a gen-
eralization of the sparsification paradigm to sketching schemes. In particular, we see
that the above dichotomy according to number of satisfying inputs to the predicate
extends to sketching.

2. Two-variable boolean predicates and digraphs. A predicate is a function
P : {0,1}> — {0,1} (recall we restrict ourselves throughout to two variables and
a boolean domain). Given a set of variables V, a constraint ((v,u), P) consists of
a predicate P and an ordered pair (v,u) of variables from V. For an assignment
AV — {0,1}, we say that A satisfies the constraint whenever P(A(v), A(u)) = 1.
A valued constraint satisfaction problem (VCSP) instance Z is a triple (V,II, w),
where V' is a set of variables, II is a set of constraints over V' (each of the form
m; = ((vi,ui),pi)), and w : IT — Ry is a weight function. The value of an assignment
A:V —{0,1} is the total weight of the satisfied constraints, i.e.,

Valz (A) := Y w(m) - pi(A(v), Aus)).

s €11

For e € (0,1), an e-sparsifier of T is a (reweighted) subinstance Z, = (V, 1. C II, w,)
where
VA:V —{0,1}, Valz, (A4) € (1 ¢) - Valz(A).

The goal is to minimize the number of constraints, i.e., |II|. There are 16 different
predicates P : {0,1}?> — {0,1}, which are listed in Table 1 with names for easy
reference.

SPARSIFICATION OF TWO-VARIABLE VALUED CSPs 1265

TABLE 1
All possible predicates P : {0,1}2 — {0,1}, where blank cells denote value 0. Predicates
0x,x0,x1, 1z are determined by a single variable. Predicates 01, Dicut, 10,01 are satisfied by a single
assignment or all but a single one.

‘ 1 ‘ To H 0 ‘ nOr ‘ 01 ‘ 0z ‘ Dicut ‘ 20 ‘ Cut ‘ nAnd ‘ And ‘ unCut ‘ zl ‘ 10 ‘ 1z ‘ 01 ‘ Or ‘ 1 ‘
0 0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

We first focus on the case where all the constraints in IT use the same predicate
P!, in which case we can represent the VCSP Z by an edge-weighted digraph GT =
(V, E,w). Each variable in V is represented by a vertex, and each constraint over the
pair (v, u) will be represented by a directed edge from v to u, with the same weight as
the constraint (formally, E = {(v,u) | ((v,u),P) € II}, and abusing notation set edge
weights w(v,u) = w({(v,u), P))). This transformation preserves all the information
about the VCSP and allows us to make reductions between VCSPs with different
predicates P as their sole predicate.

Given a digraph G, a predicate P and a subset S C V', define

Pa(S):= Y P(Ls(v),1s(u)) - w((v,u)),

(vyu)EE

where 15 denotes the indicator function. For example, applying this definition to the
cut predicate Cut : (x,y) — 1{;,}, we have

Cutg(S) = Y Cut(ls(v),Ls(w) - w((v,uw)) = Y [1s(v) = Ls(u)| - w((v,u)),

(v,u)€EE (v,u)EE

which is just the total weight of the edges crossing the cut S. This matches the
definition we gave in the introduction, except for the technical subtlety that G is now
a directed graph, which makes no difference for symmetric predicates like Cut. We
shall assume henceforth that G is directed.

We shall say that a subinstance G, is an e-P-sparsifier of G if

VS CV, Pe.(S) e (1te)-Pg(S).

Observe that given an assignment A for the variables V, we can set S4 := {u |
A(u) = 1}. Tt then holds that Valz(A) = Pgz(S4), where GT is the appropriate di-
graph for the VCSP. As there exists a bijection between such VCSPs and digraphs, we
conclude as follows.

Observation 2.1. The existence of an e-P-sparsifier G, = (V, E.,w,) for GT im-
plies the existence of an e-sparsifier Z, for Z with |E.| constraints.

Note that the converse is true as well, i.e., an e-sparsifier for Z implies the existence
of an e-P-sparsifier for Gz of size |II|. From now on, we focus on finding an e-P-
sparsifier for an arbitrary digraph G (for different choices of the predicate P).

1The collection of predicates used in a VCSP is sometimes called its signature. In this paper we
mainly deal with VCSPs whose signature is of size one.

1266 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

3. A single predicate. In this section we go over all the predicates P : {0,1}% —
{0,1} and classify them into sparsifiable and nonsparsifiable predicates; see
Theorems 3.5, 3.6, and 3.7. For simplicity, we state our sparsification results as
existential, but in fact all these sparsifiers can be computed in polynomial time.

Our main technique is a graph transformation, which is well-known but apparently
only in very different contexts. On the face of it, it is not clear which predicates other
than Cut do admit nontrivial sparsification. For example, the uncut edges in a graph
do not satisfy a key property of cuts that was used in [4] for cut-sparsification (namely,
a polynomial bound on the number of near-minimum cuts in a graph), and it is not
clear a priori which edges must be included in every sparsifier (again in analogy
with cuts, where all bridge edges must be retained), These deficiencies suggest that
the edge-sampling approach, which is very effective for cuts [4, 15, 8], would fail
for other predicates and may further be viewed as evidence for the impossibility of
sparsification. Thus, we were surprised to find out that different predicates can all
be analyzed using one simple graph transformation, which appears easy in retrospect
and provides a unifying explanation.

In our classification, we appeal to two basic predicates, the first of which is Cut,
which is already known to be sparsifiable.

THEOREM 3.1 (see [3]). For every digraph G and parameter € € (0,1), there is
an e-Cut-sparsifier for G with O (|V|/€®) edges.

Our second basic predicate is the predicate And, which behaves significantly dif-
ferently. We call a digraph G = (V, E) strongly asymmetric if for every (v,u) € E it
holds that (u,v) ¢ E.

THEOREM 3.2. For every strongly asymmetric digraph G = (V, E,w) with strictly
positive weights and € € (0,1), every e-And-sparsifier G. = (V, E.,we) must satisfy
E.=E.

Proof. Let G, = (V, E.,w.) be such a sparsifier, i.e., for every S C V it holds
that Andg, (S) € (1 +€) - Andg(S). Then for every e = (v,u) € E we must have
(v,u) € E., as otherwise for the set S = {v,u} it will hold that Andg, ({v,u}) =0
while Andg({v,u}) = w(e) > 0, a contradiction. O

Remark 3.3. For every digraph (which is not necessarily strongly asymmetric),
the same proof shows that |E| > $|E|.

Remark 3.4. Our definition of an e-P-sparsifier requires G, to be a subgraph of
G, but we can state Theorem 3.2 in a more general way: For every digraph G, =
(V, Ec,w.) (not necessarily a subgraph) such that every S C V satisfies Andg, (S) €
(1 +¢€)-Andg(S) necessarily E. agrees with F up to the directions of the edges.

Next, we show that every other predicate is similar either to Cut or to And in terms
of sparsifability. We describe a reduction that will be useful to show both sparsifability
and nonsparsifability. (This reduction is based on a well-known transformation of
a given graph, called the “bipartite double cover” (see, e.g., [6]), although we are
not aware of its use in the same way.) Let 7 be a function that maps a digraph
G = (V,E,w) where V = {v1,va,...,v,} to a digraph v(G) = (V7, EY,w"Y) where
VY = {v_p,...;o_1,01,. .., 0n), EY = {(vi,v-5) | (vi,v5) € E}, w((vs,v—5)) =
w((v;,v;)). For every subset S C V, we introduce the notation —S := {v_; | v; € S},
S:={v;|v; e V\S}and —S := {v_; | v; € V'\ S}. Figure 1 illustrates the effect of
~ on an arbitrary set S.

THEOREM 3.5. For every digraph G = (V,E,w) and ¢ € (0,1) there
is a subdigraph G. with O(|V|/€%) edges such that for every predicate P €

SPARSIFICATION OF TWO-VARIABLE VALUED CSPs 1267

News
TR

F1c. 1. The mapping v applied on G and its effect on an arbitrary S C V. For example,
an edge from v; € S to v; € S is represented by an arrow of type 3 and becomes in v(G) an
edge from v; € S tov_; € —S.

{ Cut, unCut, Or, nAnd, 10,01, 20, 21, 0z, 1z, 1,0}, the digraph G is an e-P-sparsifier of
G. (Note that G, does not depend on P.)

Proof. Given G and e, first construct v(G) as above. Next, apply Theorem 3.1
to obtain for v(G) a cut sparsifier v(G). = (V7,EY C E¢ w?), which contains
O(|V7|/€?) = O(|V]/€?) edges. Now construct a digraph G, = (V, E.,w.) where
Ee = {(vi,v5) | (vi,v—;) € EY} and we(v;,v;) = w)(v;,v_;). Observe that v(Ge) =
Y(G)e, i.e., if we apply v on G, we get exactly v(G)..

Now suppose that for a predicate P, there is a function fp : 2 — 2V such that
for every digraph H on the vertex set V, it holds that

(2) vs v, Pu(S) = Cutym)(fr(S)).
Then we could apply (2) twice, first to G, and then to G, and obtain that
VS C V, ch (S) = CUt»y(G)e(fP(S)) S (1 + 6) . Cut,y(G)(fp(S)) = (1 + 6) . Pg(S)

Hence, the existence of such a function fp implies that G, is an e-P-sparsifier. And
indeed, we can show such fp for some predicates P, as follows:

o funCut(S) =5SuU _S;

o feut(S)=8SU-85;

L4 wa(S) = ;_
* fro(S)=—
o fr1(S) =~
o f1,(5) =S;

e f7(S)=SUS;and

o f5(5) = _
To verify that funcut(S) = S U —S satisfies Equation 2, i.e., that unCuty(S) =
Cutymy(SU S), observe that both sides consist exactly of the edges of types 1 and
2 in Figure 1. The other predicates can be easily verified similarly, which completes
the proof for all P € {Cut, unCut, Oz, 20, 21, 1z, I, 6}

To show that G. is a sparsifier also for predicates P € {Or,nAnd, 10,01} we need

a slightly more general argument. Suppose that for a predicate P, there are functions
fhy f2, 52V — 2V such that for every digraph H on the vertex set V,

(3) P (S) = 3 [Cutym)(fH(S)) + Cutyany (f3(S)) + Cuty (i (f2(9))] -

1268 ARNOLD FILTSER AND ROBERT KRAUTHGAMER
Then we could apply (3) twice, first to G. and then to G, and obtain that

Pe. (S) =3 [CUt'y(G) (fp(8)) + Cuty(q). (f3(9)) + Cuty (). (f3(9))]
€ (L£e)- 3 [Cuty)(fp(S)) + Cutyc) (f5(5)) + Cuty(a) (f3(5))]
= (1£¢)-Pc(9).

Hence, the existence of three such functions will imply that G, is an e-P-sparsifier.
And indeed, we let

. fOr() =5, f3.(5) —5, fgr(S) =S5U=S5;

° nAnd(S): _7 And =5, [iana(S) = SU=S;

o FL(8) = 5. F1(8) = -8, F5(5) = 5U -8 and

°f§—1()—5af§() —5 f3() SU-=S.
To verify that f3,, f&,, f3, satisfies (3), observe that both sides consist exactly of the
edges of types 1, 3,4 in Figure 1. The other predicates can be easily verified similarly,
which completes the proof for all P € {Or,nAnd, 10,01} 0

IIAII

Next, we use « for a reduction from And to all the remaining predicates. In
particular it will imply their “resistance to sparsification.”

THEOREM 3.6. Given parametersn andm < () there is a digraph G = (V, E,w)
with 2n vertices and m edges such that for every e € (0,1) and every predicate P €
{nOr, 01, Dicut, And}, for every e-P-sparsifier Ge = (V, Ec,we) of G it holds that that
E. = E. (Note that G does not depend on P.)

Proof. Let G = (V,E,w) be an arbitrary strongly asymmetric digraph with n
vertices, m edges, and strictly positive weights. Let v(G) be the digraph constructed
by our reduction. Note that v(G) consist of 2n vertices and m edges. v(G) will be
the digraph for which we will prove the theorem.

Fix some predicate P. Let v(G). = (V7, EY C E.,w]) be some e-P-sparsifier for
7(G). Let G = (V, Ec,w.) be a digraph where E. = {(v;,v;) | (vi,v—;) € E]} and
we ((vi,v5)) = w? ((vi,v—;)). Note that y(Ge) = (G)e.

Now suppose that there is a function fp : 2V — 2V such that for every digraph
H on the vertex set V, it holds that

(4) VSV, Andg (S) =P, (fr(9))-
Then we could apply (4) twice, first to G. and then to G, and obtain that
VSCV, Andg.(S) = Pya).(fp(S)) € (1 £€) Py (fp(SF)) = (1 £¢€) - Andg(S).

Hence, assuming such a function f exists, G, is an e-And-sparsifier for G. According
to Theorem 3.2, necessarily E. = E, and in particular E) = E7.
Hence, the existence of such functions fp for all P € {nOr, 01, Dicut, And} will
imply our theorem. And indeed, we let
o fana(S)=SU-S5;
e f0r(S)=8SU-S;
hd fDicut(S) =S5U _§§ and
o fo1(S)=SU-S.
To verify that fpicus(S) = S U —S satisfies (4), observe that both sides consist
exactly of the edges of type 1 in Figure 1. The other predicates can be easily verified
similarly. O

SPARSIFICATION OF TWO-VARIABLE VALUED CSPs 1269

We conclude our main theorem, which basically puts together Theorems 3.5
and 3.6.

THEOREM 3.7. Let P be a binary predicate, and let € € (0,1) be some parameter.

o If P has a single “1” in its truth table, then there exist a VCSP T = (V, 11, w)

with a single predicate P such that every e-P-sparsifier of T will have Q(|V|?)
constraints.

e If P does not has a single “1” in its truth table, then for every VCSP T =

(V, 11, w) with single predicate P, there exists an e-P-sparsifier with O (|V|/62)
constraints.

4. Lower bounds (for a single predicate). In this section we will show
that Theorem 3.5 is tight. More precisely, we will show that for every P €
{Cut, unCut, Or,nAnd, 10,01}, there exists an m-vertex graph G such that every e-
P-sparsifier G, of G must contain Q(n/e?) edges.? The first step was done by [2], who
showed that Theorem 3.1 is tight, i.e., for every n and € € (1/4/n, 1), there exists an
n-vertex graph G such that every e-Cut-sparsifier G, of G must contain Q(n/e?) edges.
Using our reduction 7 in a similar manner to Theorem 3.5, this lower bound can be
extended to unCut based on the fact that Cute(S) = unCut, (g (S U —S). However,
~ fails to extend the lower bound to predicates with three 1’s in their truth table. To
this end, we will define sketching schemes, a variation of sparsification where the goal
is to maintain the approximate value of every assignment using a small data structure,
possibly without any combinatorial structure; see the definition below. We will use a
lower bound on the sketch-size of Cut from [2] to prove the lower bound on the number
of edges in a sparsifier (and also on the sketch-size) for Or. The extension to other
predicates with three 1’s in their truth table is straightforward using . Sketching
is interesting on its own, and we have further discussion and lower bounds regarding
sketching in section 6.3.

Formally, a sketching scheme (or a sketch in short) is a pair of algorithms (sk, est).
Given a weighted digraph G = (V, E,w) and a predicate P, algorithm sk returns a
string sk (intuitively, a short encoding of the instance). Given skz and a subset S C
V, algorithm est returns a value (without looking at G) that estimates P (S). We say
that it is an e-P-sketching-scheme if for every digraph G, and for every subset S C V',
est(skg, S) € (1 +€)-Pg(S). The sketch-size is maxg | skg |, the maximum length of
the encoding string over all the digraphs with n variables, often measured in bits. sk
might be probabilistic algorithm, but for our purposes it is enough to think only about
the deterministic case. Note that an algorithm for constructing e-sparsifiers always
provides an e-sketching-scheme, where the sketch-size is asymptotically equal to the
number of constraints in the constructed sparsifiers when measured in machine words
(and up to logarithmic factors when measured in bits). Sparsification is advantageous
over general sketching as it preserves the combinatorial structure of the problem.
Nevertheless, one may be interested in constructing sketches as they may potentially
require significantly smaller storage.

THEOREM 4.1. Fiz a predicate P € {Cut, unCut, Or, nAnd, 10}, an integer n, and
e € (1/v/n,1). The sketch-size of every e-P-sketching-scheme on n wvariables is
Q(n/e®). Moreover, there is an n-vertex digraph G, such that every e-P-sparsifier
of G has Q(n/e?) edges.

2The other predicates {x0,z1,0z, 1z, T, 6} are kind of trivial in the sense of sparsification. 0
sparsified by the empty graph. 1 can be sparsified using a single edge. {z0,z1,0z, 1z} could be
sparsified using n edges.

1270 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

Proof. We follow the line-of-proof of Theorems 2.3 and 2.4 in [2]. Specifically,
they show that the sketch-size of every e-Cut-sketching-scheme is Q(n/e?) bits, by
proving that a certain family F of n-vertex graphs is hard to sketch and consequently
to sparsify. By similar arguments to Theorem 3.5, this lower bound easily extends
to unCut. Indeed, recall that Cutg(S) = unCuty(q) (SU 75’), and thus a e-unCut-
sparsifier (or sketch) for v(G) yields an e-Cut-sparsifier (or sketch) for G with the
same number of edges (size).

Once we prove the lower bound for predicate Or, a reduction from Or using v will
extend it also to nAnd, 10 and 01, because

(5) Org<S) = nAndW(G)(S‘ @] —5’) = my(g)(s @] —5) = TOW(G)(S @] —S).

We will thus focus on the predicate Or. As it is a symmetric predicate, we can work
with graphs rather then digraphs. The main observation in our proof is that for every
undirected graph G = (V| E,w), if deg(v) denotes the degree of vertex v, then

(6) VSCV, Cuta(S)=2-0rg(S) - Y degg(v).

veES

The graph family F consists of graphs G constructed as follows. Let s1,...,8,/2 €
{0,1}1/<° be balanced 1/€2 bit-strings (i.e., each s; has normalized Hamming weight
exactly 1/2), and let the graph G be a disjoint union of the graphs {G; | j € [¢2n/2]},
where each G is a bipartite graph, whose two sides, each of size 1/ €2, are denoted
L(G;) and R(Gj). The edges of G are determined by si,...,5, /2, where each bit
string s; is indicates the adjacency between vertex i € U;L(G;) and the vertices in
the respective R(G;). They further observe (in the proof of [2, Theorem 2.4]) that
the lower bound holds even if the sketching scheme is relaxed as follows:

1. The estimation is required only for cut queries contained in a single Gj,
namely, cut queries S UT, where S C L(G;) and T C R(G;) for the same j.

2. The estimation achieves additive error /€3, where p = 107* (instead of
multiplicative error 1 +).

To prove a sketch-size lower bound for a (ye)-Or-sketching-scheme (sk®", est®"),
we assume it has sketch-size s = s(n, €) bits and use it to construct a Cut-sketching-
scheme (skC“t,estC“t) that achieves the estimation properties 1 and 2 on graphs of
the aforementioned form and has sketch-size s + 2nlog(1/e€) bits. Then by [2], this
sketch-size must be Q(n/e?), and we conclude that s = (n/e?) as required.

Given a graph G € F, let sk&' be a concatenation of sk and a list of all vertex
degrees in G. The degrees in G are bounded by 1/¢2, hence the size of skg”t is
indeed s +2nlog(1/€) bits. Given a cut query SUT contained in some G}, define the
estimation algorithm (which we now construct for Cut) to be

(7) estCUt (skSE S UT) == 2 - estO (skS, SUT) — Z degq(v).
vesSUT
Let us analyze the error of this estimate. First, observe that as in each G; there

are precisely ﬁ edges, Org(SUT) < %, and thus

estO" (skST, SUT) € (1 + pe) - Org(SUT) C Org(SUT) + 27,113 .
€

Plugging this estimate into (7) and then recalling our initial observation (6), we obtain
as desired

SPARSIFICATION OF TWO-VARIABLE VALUED CSPs 1271

estUt(sk& S UT) € 2- Org(SUT) Z degg (v
veSUT
= Cutg(SUT) + 6%

To prove a lower bound on the size of an Or-sparsifier, we follow the argument
n [2, Theorem 2.4], which shows that given an e-Cut-sparsifier G, with s = s(n,€)
edges for a graph G € F, there is a Cut-sparsifier G, of G., with additive error
(/2€3, such that G, has only integer weights and henceforth can be encoded using
O(s(u=2 +log(e 2n/s))) bits. In fact, there is nothing special here about Cut. The
same proof will work (with the same properties) for predicate Or, assuming a sparsifier
is required to be a subgraph (to remove this restriction, just erase all the edges between
G, to G; for i # j, which adds only a small additive error).

Now suppose that every graph G of the form specified above admits a 5e-Or-
sparsifier G, with s edges. Then as explained above (about repeating the argument
of [2]) there is a graph G, that sparsifies G, with additive error ;1/2¢* and can be
encoded by a string Z¢ of size O(slog(e~2n/s)) bits (recall that y is a constant). Use
it to construct a Cut-sketching-scheme with additive error /e as follows. Given the
graph G, set skC“t to be the concatenation of Zg and a list of the degrees of all the
vertices in G. Then |Zg| = O(slog(e~2n/s)) + 2nlog(1/¢). For a cut query SUT
contained in some G;, define the estimation algorithm (using the Or sparsifier) to be

est®(skg", SUT) :=2-Org, (SUT) — > degg(v
veSUT

Then we can again analyze it by plugging the above error bounds and then using (6),

eStCUt(SkCUt SuT)e?2- Org, (SuT) Z deg(;
veSUT
€2 -0rg(SUT) + Z degg(v
veSUT

= Cutg(SUT) + % :

€
By [2], the sketch-size must be |Zg| = Q(n/e?), hence s = Q(n/e?) (for at least one
graph G € F) as required. d

5. Multiple predicates and applications. In this section we extend
Theorem 3.5 to VCSPs using multiple types of predicates. In particular, we prove
sparsifability for some classical problems. Again, our sparsification results are stated
as existential bounds, but these sparsifiers can actually be computed in polynomial
time.

THEOREM 5.1. For every € € (0,1) and a VCSP (V,II,w) whose constraints
((v,u), Py € II all satisfy P ¢ {nOr,01, Dicut, And}, there exists an e-sparsifier for
T with O(|V|/€2) constraints.

This bound is tight, according to Theorem 4.1. We prove it by a straightfor-
ward application of Theorem 3.5. Partition Z to disjoint VCSPs according to the
predicates in the constraints, and then for each sub-VCSP find an e-sparsifier using
Theorem 3.5. The union of this sparsifiers is an e-sparsifier for Z. A formal proof
follows.

1272 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

Proof of Theorem 5.1. For each predicate P, let TI¥ = {7 € Il | 7 = ((v,u), P)}.
Note that {II”'} forms a partition of II. For each P, let Z¥ = (V,II¥,w?), where
w? is the restriction of w to II¥. Let ZF = (V,II7,wF) be an e-P-sparsifier for
TF with |IF| = O(|V|/€?) constraints according to Theorem 3.5 (recall that P ¢
{nOr, 01, Dicut, And}). Set Z. = (V, I, w.), . = Jp I and we = Jp w?. For every
assignment A,

Valz_ (A) = Z we (m;) - pi (A(vi), A(ui))

= (1=xe€)- Valz(A),
and note that indeed [IL.| < O (n/€?). 0

2SAT (boolean satisfiability problem over constraints with two variables) can
be viewed as a VCSP which uses only the predicates Or, nAnd, 10, and 01. By
Theorem 5.1, for every 2SAT formula ® over n variables, and for every € € (0,1),
there is a sub-formula ®, with O(n/€?) clauses, such that ® and ®, have the same
value for every assignment up to factor 1 + €.3

2LIN is a system of linear equations (modulo 2), where each equation contains
two variables and has a nonnegative weight. Notice that the equation x +y = 1 is
a constraint using the Cut predicate, while the equation x + y = 0 is a constraint
using the unCut predicate. By Theorem 5.1, if n denotes the number of variables,
then for every € € (0,1) we can construct a sparsifier with only O(n/€?) equations
(i.e., a reweighted subset of equations, such that on every assignment it agrees with
the original system up to factor 1+ €).

We note that by our lower bound (Theorem 4.1), there are instances of 2SAT
(2LIN) for which every e-sparsifier must contain Q(n/€?) clauses (equations).

6. Further directions. Based on the past experience of cut sparsification in
graphs—which has been extremely successful in terms of techniques, applications,
extensions, and mathematical connections—we expect VCSP sparsification to have
many benefits. A challenging direction is to identify which predicates admit sparsifi-
cation, and our results make the first strides in this direction.

We now discuss potential extensions to our results in the previous sections (which
characterize two-variable predicates over a boolean alphabet). We first consider pred-
icates with more variables, and in particular show sparsification for k-SAT formulas,
in section 6.1. We then consider predicates with large alphabets in section 6.2, show-
ing in particular a sparsifier construction for k-Cut and that linear equations (modulo
k > 3) are not sparsifiable. We also consider sketching schemes; notably we discuss
a looser sketching model called for-each in section 6.3. Finally, we study spectral
sparsification for unCut, a notion that preserves some algebraic properties in addition
to the “uncuts” in section 6.4.

3We use here the version of 2SAT where each clause has weight and every assignment has value,
rather than the version when we only ask whether there is an assignment that satisfies all the clauses.

SPARSIFICATION OF TWO-VARIABLE VALUED CSPs 1273

6.1. Predicates over more variables and k-SAT. It is natural to ask for the
best bounds on the size of e-P-sparsifiers for different predicates P : {0, 1}* — {0,1}.
A first step toward answering this question was already done by [11].

THEOREM 6.1 (see [11]). For every hypergraph H = (V,E,w) with hyperedges
containing at most r vertices, and € € (0,1), there is a reweighted subhypergraph H,
with O(n(r + logn)/€?) hyperedges such that

VS CV, Cuty (S)e€ (1xe)- Cuty(S).

Here we say that a hyperedge e is cut by S if SNne ¢ {0, e} (ie., not all the
vertices in e are in the same side). Observe that Cut is equivalent to the predicate
NAE (not all equal). In particular Theorem 6.1 implies that for every VCSP using
only NAE, there is an e-sparsifier with O(n(r + logn)/€?) constraints.

A Ek-SAT is essentially a VCSP that uses only predicates with a single 0 in
their truth table. Kogan and Krauthgamer [11] use Theorem 6.1 to construct an
e-sketching-scheme with sketch-size O(nk/e?) for k-SAT formulas (i.e., only for VC-
SPs of this particular form). We observe that their sketching scheme can be further
used to construct an e-sparsfier, as follows.

First, recall how the sketching scheme of [11] works. Given a k-SAT formula
® = (V,C,w) (variables, clauses, weight over C), construct a hypergraph H on vertex
set VU -V U{f}. We associate the literal v; with vertex v;, associate the literal —w;
with vertex v_;, and use f to represent the “false.” Each clause becomes a hyper-
edge consisting of f and (the vertices associated with) the literals in C (for example,
vs V —wy V v1g becomes {f,vs,v_7,v12}). Observe that given a truth assignment
A:V = {0,1}, if we define S4 := {u | A(u) = 0}, then Valg(A) = Cuty(Sa U{f}),
and using Theorem 6.1 this provides a sketching scheme. Moreover, given an e-Cut-
sparsifier H, for H, let ®. be the formula which has only the clauses associated with
edges that “survived” the sparsification, with the same weight. Notice that for every
assignment A,

Valg_ (A) = Cutp (SaU{f}) € 1 Le) - Cutyg(SaU{f}) =(1+xe)- Valp(A).

THEOREM 6.2. Given k-SAT formula ® over n variables and parameter ¢ € (0, 1),
there is an e-sparsifier subformula ¢. with O(n(k + logn)/€?) clauses.

In contrast, we are not aware of any nontrivial sparsification result for the par-
ity predicate (on k > 3 boolean variables), and this remains an interesting open
problem.

6.2. Predicates over larger alphabets. Our results deal only with predicates
that get two input values in {0,1}. A natural generalization is to sparsify a VCSP
that uses a predicate over an alphabet of size k, i.e., P : [k] x [k] — {0, 1}, where [k] :=
{0,1,...,k—1}. One predicate that we can easily sparsify is NE (not-equal), which is
satisfied if the two constrained variables are assigned different values. Indeed, in the
graphs language, this is called a k-Cut, where the value of a partition (Sp,...,Sk—1) of
the vertices is the total weight of all edges with endpoints in different parts. It turns

1274 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

out that the e-Cut-sparsifier is in particular an e-k-Cut-sparsifier, using the following
well-known double-counting argument:

k-Cutg, (Soy ..., Sk—1) == - [Cutce (50,570) + -+ Cutg, (Skfl, Skfl)}

1
2
e (
=1

—_

1 — .
+e)- 3" [Cutg (S@, So) + -+ Cutg (Sk—ly Skfl)}
+ 6) - k-Cutg (So, ceey Sk—l)-

In contrast, linear equation predicates are nonsparsifiable for alphabet [k] of size
k > 3. Specifically, for a € [k], let the predicate Sum, be satisfied by z,y € [k]
iff x +y = a (mod k). Then for every positively weighted digraph G = (V, E, w),
and every € € (0,1), a € [k], every Sumg-e-sparsifier G, = (V, E¢,we) of G must
have F = FE.. The argument is similar to the proof of Theorem 3.2. Assume for
contradiction there exist e € E \ E.. Choose x,y,z € [k] that satisfy = +y = a,
however the three sums z + x, z + y, z + 2 are all not equal to a (modulo k); this is
clearly possible for k > 4 and easily verified by case analysis for k = 3. Consider an
assignment where the endpoints of e have values x and y, respectively, and all other
vertices have value z. Under this assignment, the value of G is w(e) > 0, while the
value of G, is zero, a contradiction.

6.3. Sketching. In Theorem 4.1 we showed that for every predicate P €
{Cut, unCut, Or,nAnd, 10}, the sketch-size of every e-P-sketching-scheme is Q(n/e?).

Let us now address predicates with a single 1 in their truth table. In the spirit
of the proof of Theorem 3.2, given encoding skg by an e-And-sketching-scheme we

can completely restore the graph G. As there are 2(3) different graphs, the sketch-
size of every e-And-sketching-scheme is at least ©(n?) bits. Imitating the proof of
Theorem 3.6, we can extend this lower bound to Dicut, 01, and 10.

For-each sketches. In order to reduce storage space of a sketch, one might weaken
the requirements even further and allow the sketch to give a good approximation only
with high probability. A for-each sketching scheme is a pair of algorithms (sk, est);
algorithm sk is a randomized algorithm that given a graph G returns a string skg,
whose distribution we denote by Dg; algorithm est is given such a string skg and a
subset S C V and returns (deterministically) a value est(skg, S). We say that it is
an (e, 0)-P-sketching-scheme if

VG = (V,E,w),VS CV, Pr [est(skg,S) € (1+e€)-Pg(S)]>1-96.
skg€Dg

In [2], it was showed that if we consider n-vertex graphs with weights only in the
range [1, W], then there is an (e, 1/poly(n))-Cut-sketching-scheme with sketch-size
O (ne~! -loglog W) bits. Imitating Theorem 3.5, we can construct (e, 1/poly(n))-
P-sketching-scheme with the same sketch-size for every predicate P whose truth ta-
ble does not have a single 1 (and weights restricted to the range [1,W]). A nearly
matching lower bound by [2] shows that for every € € (2/n,1/2), every (e,1/10)-Cut-
sketching-scheme must have sketch-size Q(n/e). Using +, this lower bound can be
extended to unCut. This technique does not work for predicates with three 1’s in
their truth table. Fortunately, we can duplicate the proof of [2] while replacing Cut
by Or and using the fact that for every two vertices v, u in the graph G, it holds that
Or({v}) + Or({u}) — Or({v,u}) = 1{{u,vyer}. We omit the details of this straightfor-
ward argument. A reduction from Or using v and (5) will extend the lower bound
also to nAnd,10 and 01.

SPARSIFICATION OF TWO-VARIABLE VALUED CSPs 1275

Given a sketch sk (i.e., one sample from distribution D¢) which encodes an (e, 6)-
And-sketching-scheme, one can reconstruct every edge of G (every bit of the adjacency
matrix) with constant probability. Standard information-theoretical arguments (in-
dexing problem) imply that the sketch-size of every (e, d)-And-sketching-scheme is
Q(n?) bits. Using v we can extend this lower bound to Dicut, 01 and 10.

6.4. unCut spectral sparsifiers. Given an undirected n-vertex graph G =
(V, E,w), the Laplacian matrix is defined as Lg = Dg — Ag, where Ag is the adja-
cency matrix (l.e., 4;; = w; ; = w({vi,v;})) and D¢ is a diagonal matrix of degrees
(i.e,, D;; = Zj# w; ; and for i # j, D;; = 0). For every x € R™ it holds that
2'Lax = Z{v,;,vj}eE w; ;- (T — xj)2. In particular, for 1g the indicator vector of
some subset S C V it holds that 15Ls1g = Cutg(S). A subgraph H of G is called
an e-spectral-sparsifier of G if

Vz e R", z'Lyz e (l1+e) -a'Loxw.

Note that an e-spectral-sparsifier is in particular an e-Cut-sparsifier. Nonetheless,
spectral sparsifiers preserve additional properties such as the eigenvalues of the Lapla-
cian matrix (approximately). Batson, Spielman, and Srivastava [3] showed that every
graph admits an e-spectral-sparsifier with O(n/e?) edges.

DEFINITION 6.3. Given a graph G, we call Us = (Dg + Ag) the negated Lapla-
clan of G. Given a subset S CV, let pg € R™ be a vector such that ¢s; =1 if v, € S
and ¢g,; = —1 otherwise.

One can verify that for arbitrary x € R",

xtUGa: = Zwm : (.131 + l‘j)z.

i<j
In particular, for every subset S C V, it holds that
(Z%Uc;(bs =4- unCutg(S) .

Next, we will show how we can use Ug to construct an unCut-sparsifier G (in
an alternative way to Theorem 3.5) such that Ug, has (approximately) the same
eigenvalues as Ug. A matrix M € R™*" is called balanced symmetric diagonally
dominant (BSDD) if M = M" and for every index i, M;; = >, |M; ;|. Note that
Lg and Ug are both BSDD. A matrix M’ is governed by M if whenever M; ; # 0,
also M; ; # 0 and has the same sign. Note that if H is a subgraph of G, then Uy is
governed by Ug. A matrix M’ is called an e-spectral-sparsifier of M if M’ is governed
by M and

Vz eR", a'Mzec(l+e) -2'Mz .
The following was implicitly shown in [2].
THEOREM 6.4 (see [2]). Given BSDD matrizx M € R™ ™ and parameter € €

(0,1), there is an e-spectral-sparsifier M’ for M, where M' is BSDD matriz with
O(n/e?) nonzero entries.

Fix a graph G and parameter ¢; according to Theorem 6.4, there is a BSDD
balanced matrix H with O(n/e?) nonzero entries, which is a e-spectral-sparsifier for
Ug. Moreover, H is governed by Ug. These properties define a graph G, such that
Ug, = H. In particular G, is an e-unCut-sparsifier of G with O(n/e?) edges.

1276

(1]

2]

3]

(4]

(5]
[6]
[7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

ARNOLD FILTSER AND ROBERT KRAUTHGAMER

REFERENCES

K. J. AN AND S. GUHA, Graph sparsification in the semi-streaming model, in 36th In-
ternational Colloquium on Automata, Languages and Programming, Lecture Notes in
Comput. Sci. 5556, Springer-Verlag, Berlin, 2009, pp. 328-338, https://doi.org/10.1007/
978-3-642-02930-1_27.

A. AnNDONI, J. CHEN, R. KRAUTHGAMER, B. QIN, D. P. WOODRUFF, AND Q. ZHANG, On
sketching quadratic forms, in Proceedings of ITCS’16, ACM, 2016, pp. 311-319, https:
//doi.org/10.1145,/2840728.2840753.

J. D. BaTsoN, D. A. SPIELMAN, AND N. SRIVASTAVA, Twice-Ramanujan sparsifiers, SIAM
Rev., 56 (2014), pp. 315-334, https://doi.org/10.1137/130949117.

A. A. BENCzZOR AND D. R. KARGER, Approzimating s-t minimum cuts in O(n2) time, in
Proceedings of the 28th Annual ACM Symposium on Theory of Computing, ACM, 1996,
pp. 47-55, https://doi.org/10.1145/237814.237827.

A. A. BENCZUR AND D. R. KARGER, Randomized Approzimation Schemes for Cuts and Flows
in Capacitated Graphs, CoRR ¢s.DS/0207078, https://arXiv.org/abs/cs/0207078, 2002.

R. A. BrRuALDI, F. HARARY, AND Z. MILLER, Bigraphs versus digraphs via matrices, J. Graph
Theory, 4 (1980), pp. 51-73, https://doi.org/10.1002/jgt.3190040107.

M. K. DE CARLI SiLvA, N. J. A. HARVEY, AND C. M. SATO, Sparse Sums of Positive Semidef-
inite Matrices, CoRR abs/1107.0088, https://arXiv.org/abs/1107.0088, 2011.

W. S. Fung, R. HARIHARAN, N. J. HARVEY, AND D. PANIGRAHI, A general framework for
graph sparsification, in Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing, ACM, 2011, pp. 71-80, https://doi.org/10.1145/1993636.1993647.

M. KAPRALOV AND R. PANIGRAHY, Spectral sparsification via random spanners, in Proceed-
ings of the 3rd Innovations in Theoretical Computer Science Conference, ACM, 2012, pp.
393-398, https://doi.org/10.1145/2090236.2090267.

D. R. KARGER AND M. S. LEVINE, Random sampling in residual graphs, in Proceedings of the
Symposium on Theory of Computing, 2002, pp. 63-66.

D. KocAN AND R. KRAUTHGAMER, Sketching cuts in graphs and hypergraphs, in Proceedings of
the Conference on Innovations in Theoretical Computer Science, ACM, 2015, pp. 367-376,
https://doi.org/10.1145/2688073.2688093.

A. MADRY, Fast approxzimation algorithms for cut-based problems in undirected graphs, in
Proceedings of the Symposium on Foundations of Computer Science, IEEE, 2010, pp. 245—
254.

I. NEWMAN AND Y. RABINOVICH, On multiplicative A-approrimations and some geometric ap-
plications, SIAM J. Comput., 42 (2013), pp. 855-883, https://doi.org/10.1137/100801809.

J. SHERMAN, Breaking the multicommodity flow barrier for O(y/log n)-approzimations to spars-
est cut, in Proceedings of the Symposium on Foundations of Computer Science, 2009,
pp. 363-372.

D. A. SPIELMAN AND N. SRIVASTAVA, Graph sparsification by effective resistances, SIAM J.
Comput., 40 (2011), pp. 1913-1926, https://doi.org/10.1137/080734029.

D. A. SPIELMAN AND S.-H. TENG, Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems, in Proceedings of the 36th Annual ACM Sympo-
sium on Theory of Computing, ACM, 2004, pp. 81-90, https://doi.org/10.1145/1007352.
1007372.

D. A. SPIELMAN AND S.-H. TENG, Spectral sparsification of graphs, SIAM J. Comput., 40
(2011), pp. 981-1025, https://doi.org/10.1137/08074489X.

TV 92PN VP>TIS JPOY MNYNN 'ON ORY DIRIN DNIN .2DTD OIN”N
DUPTI O(n/e2) NRYI IMN I IMN 9979 1) N, 1 NPNR NNN
IN NN TIY DAPNY NN DNYN PYTI WY NIpna WThn DOpYvInn

OPIVARD D011 O(n?) N 931 WHRNWNo A 9979 1) K

DOVIND 2¥ DONIND VMNP YINDN MIPY 1D ¥ 10992 NV NN
STONM DTN 7P OINDY TN NTYN ONDY DY OPP DD .O9PY NONN
9N OV YN YY DN T MOPYIA DUNNYN NNIN ,OPYINGD 97 1NYN2
12,3012 YPN wNan Yy Dpwn onys 1 4+ p Aanvn o0 1Vpwn IUR
R NIY p € (0,1) 70179 Y5 NN, O(%) 1012 YNNI MY
PN DPVY MNP NPXNN NPYI IX NPND 09 DN 1IN INND
>Tna K C V odrnio Sv nxap nm G = (V, E,w) Spwvmn 9
AN PTIPTIPD OOPNI0N DY G SV M M0 Nisnd N0 Donn Lk
NORYN INYOD MY >TD Ty ,D0»NI0N P DPNIND DD NN YN
PYYND N2 IOV STIPTIP NADIN > DY ONRN NN ,YPI2 NI NONWIY
PNAD NI NINT NN .PNI0N DINYHD DY PIVMININ DR TP MYNVN
NPIVMINDN D NN NNYNI NNAYN . NPI0OMIND DY MNavn 2 P2
NYN Y NNV Lk DTN 0NN 9N ONPTP kT DYy masnn
NNV Y55 51T 9901 YDya DN DN MYAPNNN NPIVMINDN DD
DOPNPI0 £ P2 Opnann Dy P ODON0N NNIN AYRD ,OTNPTP DY
G0 MIVN NNAYNNND N DI 1OVD 1NNV IN MNY 105N MNSYNN ONN
MTPY NP MY 1OV MDD 2P MPY DY INYNRIN NNavNa
oTpn DoNN NN 19vN R O(log k) v vIn Nrdy DoON NYN VY
20N DONN DY NIN TR 07995 @90 DN wow oonn . O(log? k) Sv
Anra 200 oonn N O(logk) V92 .0»NWN D9NY YTPN NP2
INAYN DY OMINDN IWVIYN DY NORYD TN
oY NNDMAN NTIAYa 29T YY 727N MNA YMY PINND NYIN
9T YOTN 0 NNAS 1N ,ONPTIP N DY 9N INPNAY DRI L,0°ONN
D990 PN . 1 £ € 2TD TY DONNN Y NN Mwn N O(n/e?)
N VP>TID DPTIN VNN .D2ONND T2y DAV DXVPPTIND It NN
DVP>TI YOI PN DR 1IN HW yom {0, 1} Y ©Inwn 2n d8pns
oY DOPYNN DIDD NYN NNYNN DY SPYnn ,Nnvn Jn»na opvinn
NN 9970 NN NAVNN LDINN NN INPNT .OPMN0NN DVPTINN
MY MNYNN D3 DY DpWnn IR 0P N> ©VP>TION 'OV Td NIDINN
DNOVPTIO NVN SV NOVP NPN XD TOIN INNINN . 1 € D Ty

Sy

)PP DPNIN NIYN TUN ,DMI0N DN Y P TPNPNY NN 1DV
MNON Sya N, DIV 1N D0IOWN PON NINNN 2NN MNP YD
DNYNND NNOT AUN TPRIPINVOR DO DR DNDY MINK. MDD
290N ONIINOR VP MNIPINONRD OVIDY 1Y INND) VI9A NN
JOMYNYN 1020 ¥ DPONOPN DY LT DANIAN DDNINON
NON YYD TAT2 ,DPNID INYD DNPONN NN DND TY 1PNT MY
120 W ON NONTO OVWD DO7NYN NN IMNX 2NN MTIPIN 19002
MmN ,MINR N2 . O(logn) > Myyn 0127 DIPHNI MNP n
PIY T NP2 NN MTIPIN N DY OONINIAN 29D NTTNI POV
12912 20 PVIYVN MVPYNY

DXPTIN VNN .TIPYN IWIN DY NP DTV D TTH DIPIN DAIN
MTMIPIN DY IT0 DDAPN NMIN VNN ANTINY GONA JND . NTYN NIV
NN DYNON DPNINY Td NY XY o0 monan , X = {zq,...,x,}
NNY 29 DY GN . n D21DN ANINN DTN N j2 0N > x; NP
N TN ON D) ,0IPNN N2 ,MPyn DY ANY apin INVaN OYNT
DNV DY DWNNIAN [, INPA DN NN DY TTND DN 1OV DINDWUN
MINXIN 190N0Y ROVTD .OPONOPN DNPVUIN MNS RO DV 1OV
YTOPIN ANINY PPNYH MTIPI 1 DY 0N AN DOW NN NNV
5y oon W {z;, z;} MmN Sy mryn s . O(log j) MTYN My oy
TINY »VN AN SV PV NN Naon XoNT . O(log(max{i, j})) >
. O(log 7) mvy nomMn Dy DPVIPMT DXNY DY NHYINN

PN NI DD MNP PV NIPI DAIMIYNHD NN 12 g0 YD T
PONS KON VI NN 9D YV MY, € € (0,1) N9 YOV DYVNT
POV (e VNN HY TPXPNAD) NV MPY NNVIANN D’ € DT PO
MTYN NPY PNYNT VIANY AP YNINN MPY VI M DTN P
NAY MIYAN N W NTYN MDY NPT DNY DX DTN MIP NN
1912 POIPVN NRMNNN TN ,TRD YOP MPYN VIPY MNP DY NP
DYDY DWW 1Y PX DTN NIP NV NNE NMIYY .Y 2T YO T2 Nvind
OIPVN NINNN TN ,MPYN DY N2V INVIANHN VY NN IOR 12D

N PN ,N0ND DINND I8P TONIN IN

.DNINN DR ONODPY NDTNN NNY NONNY P8P >NDN NN ONIDN @
PN TR0 NP NMPNN MIPNN 2319 1PN I NTIAYA DOIIN YTHN NN e

10192 .OINN DY N2WA MDY 279 NINY SNPN DN 555) NN IPNN NTIYI e
073 99 PPON ORDND OY NPV WYY 1 P92 MIRHND
SMIVINAP VI DY NIV VY)Y 3 PI9T MININN
3993 99 HVI PN DY NPV VYY) 4 P92 MINSIN

¢y Tonr 26-Mar-2019

%/ laal ov TINN

NO9TNA NNYYIY NTAYN

AVIVIRAP VA3 WOONO) YO A9YY WOONO

VNN SYTND NPoNNA
YavN YYTNO NVMPIA

232 PN 12 NVIDIVNIN

"P91D1D90 MOIT” ANIN NOAPOY MYITH DY *PON MM DYWD PPN

MYYN AWM SV DINPY DY
MPr0N MIva

Ny

9899 T919N

22 PP 12 NVDIVNN OXRYDY WD

DT DY IWIN
MO L el
IHIVINIP VI 1) 9y
N mIaM)A)
2019 Y O’yvn ‘2 9N

yav N2

232 1PN 12 NVIDIVININ

"P9D1D90 MOIT! ANIN NOAPOY MYITH DY *PbN N DYD PPN

MVPYN WM YV DNIPY Yy
MPI0N WA

nNn

9899 T5919N

22 PP 12 NVDIVNN OXRYDD WD

2019 Y O’yvn ‘2 9N

yav X2

	I Introduction, Results and Discussion
	Introduction
	Refined Notions of Embeddings
	Related Work

	Results
	Results Presented in this Thesis
	Results: Related, Published During the PhD, but do not appear in the Thesis

	Summary, Discussion and Open Problems

	II Prioritized Metric Structures and Embedding
	III On Notions of Distortion and an Almost Minimum Spanning Tree with Constant Average Distortion
	IV Steiner Point Removal with distortion O(log k), using the Relaxed-Voronoi algorithm
	V Sparsification of Two-Variable Valued CSPs

