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Abstract

In stochastic versions of combinatorial optimization problems, the goal is to optimize an

objective function under constraints that specify the feasible solutions, when some parameters

involve uncertainty. We focus on maximizing a linear objective
∑N

i=1Wixi, where x1, . . . , xN

are the decision variables, W1, . . . ,WN are mutually independent random coefficients, and the

constraints are deterministic. This formulation captures many real-world problems and has

been extensively studied in Operations Research. In most prior work, the uncertainty in the

objective is modeled by unknown distributions and various mechanisms are used to acquire

information on these distributions. In contrast, we assume that the distributions are known and

use a mechanism to acquire information on realizations.

We consider problems where a decision-maker can test any desired coefficient Wi, which

reveals its realization wi and incurs a fixed cost c > 0. Testing a coefficient reduces uncertainty,

which can only improve the optimization, but it may or may not compensate for the testing

cost. The decision-maker can test coefficients in a sequential and possibly adaptive manner,

and then has to return a feasible solution based on the current information. A policy is a set of

rules that determines the sequential decisions of the decision-maker in every possible situation.

The goal is to find a policy that maximizes the expected profit, where profit is defined as the

returned solution’s objective value minus all the testing costs.

A policy that obtains optimal expected profit can usually be computed by dynamic program-

ming. However, if the dimension of the problem is high, this method becomes intractable. As

an alternative, we study policies that are myopic – a myopic policy decides whether to test coef-

ficients based on the marginal profit from exactly one test, without considering possible future

effects, i.e., it makes decisions based on a limited horizon of one test. Compared to dynamic

programming, myopic policies are simpler and easier to compute, but more restrictive and thus

possibly suboptimal.

We show that myopic policies can actually achieve optimal expected profit for a number of

interesting problems:

1. Selection with testing, where the feasible solutions represent selecting exactly one of the

N coefficients and each decision variable xi indicates whether coefficient Wi is selected;

2. Maximum spanning tree with testing, where the feasible solutions represent spanning trees

in a given graph G and each xi indicates whether the corresponding edge is included in

the tree;

3. Linear optimization over a polymatroid with testing, where the feasible solutions are de-

fined by a given submodular function.

For more general optimization problems with testing, we derive weaker results in the form of

sufficient conditions under which a myopic rule for deciding whether to stop testing is optimal.
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1 Introduction

Many real-world problems that involve uncertainty can be formulated in the framework of sequential

stochastic combinatorial optimization, defined as follows. Combinatorial optimization is the task of

finding an optimal solution in a finite collection of feasible solutions, i.e., a solution that maximizes

(or minimizes) an objective function under specified constraints. For example, a solution could

be a subset of edges or vertices in a graph problem, or an ordering in a scheduling problem, or a

subset of items in a knapsack problem, and so forth. In the stochastic framework, the revenue (or

cost) of a solution is modeled using random variables with known distributions, which captures an

inherent uncertainty when selecting any solution. Throughout, we only consider cases where the

randomness is restricted to the objective function and does not affect the constraints, i.e., the set of

feasible solutions is deterministic. Sequential (or multi-stage) optimization models scenarios where

information is revealed in stages, and decisions are required at each stage. In this case, a solution

is described by a policy, which is a set of rules that determines a decision at each stage, given the

currently available information. The goal is to find a policy that produces a feasible solution for

all the possible data instances and maximizes the total expected revenue (or minimizes the total

expected cost) of the selected solution.

In this thesis, we study stochastic combinatorial optimization problems in a setting where any

random variable can be tested (in the sense of observing its specific realization) prior to returning

a feasible solution. A test models acquiring information about a random variable – it reveals its

realization, which reduces uncertainty and can only improve the optimization, but incurs a cost, and

thus might have a negative effect overall. The goal is to find a policy that maximizes the expected

profit, where profit is defined as the returned solution’s objective value minus all the testing costs.

Levi et al. (2014) introduced the testing framework in the context of scheduling problems. The

definition of profit balances between the costs and benefits of testing and thus captures an inherent

tradeoff between spending resources to reduce uncertainty and perform the optimization. Our work

follows their model of reducing uncertainty by testing random variables, but addresses a different

and quite general set of optimization problems, as described next. We discuss comparisons with

previous work in Section 1.2.

As an example, consider a manager who needs to select (exactly) one out of several competing

projects. It will be useful later to view these projects as parallel edges between two vertices, where

the edge weights represent project revenues. Different levels of uncertainty regarding the revenue

of each project are modeled as different probability distributions, possibly estimated based on past

experience or preliminary examination. To reduce this uncertainty, the manager can “test” any

project, for example by performing market research to obtain the realization of its revenue, which
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incurs a cost. The goal of the manager is to maximize the expected profit, where profit in this

example is the revenue of the selected project minus all the testing costs. If the testing cost is

high, then the manager may not want to test many projects (and if it is extremely high, she may

not wish to test any). So the first decision the manager must make is whether to perform any

test at all, or to select a project based on the current information. If she decides that testing is

worthwhile, the manager must also choose which project to test. Once the realization of the tested

project is observed, she must make another decision based on her updated information – whether

to test another project, and if so which one, and so on and so forth. These decisions define an

adaptive policy for the manager, and our goal is to find such a policy with optimal expected profit.

This example describes the selection with testing problem, which is the subject of Section 2.

As a second example, consider a contractor laying out a new telecommunication network between

sites, modeled as a graph whose vertices represent sites and whose edges represent potential cable

routes. Each edge has a weight that represents the cost of laying the corresponding cable. This cost

may be affected by many factors, some of which are a-priori known (such as its length) and some

not known (such as physical conditions along the route). To reduce the uncertainty, the contractor

can test a certain route, for example by digging up small parts of it to examine the terrain. This

test would reveal the installation cost, but incur a cost of its own. The contractor’s goal is to

minimize the expectation of the costs of installing the selected cables plus the testing costs, under

the constraint that all the sites must be connected. In essence, the goal is to find a spanning tree in

the network that minimizes the expectation of the combined costs of the edge weights and testing

costs. It is a well known fact that finding a minimum spanning tree can be done by negating all

edge weights and finding a maximum spanning tree, which is the variant we study in this work

and refer to as maximum spanning tree with testing, or MST with testing for short. This problem

generalizes selection with testing, because selection can be viewed as the MST problem on a graph

with two vertices and parallel edges between them.

Even more generally, consider (deterministic) linear programs whose feasible region has the

structure of a polymatroid, defined as follows. For a given ground set N and a non-decreasing

submodular set function f : 2N → R, a polymatroid is a polyhedron in RN consisting of all vectors

x with non-negative coordinates that satisfy
∑

s∈S x(s) ≤ f(S) for every subset S ⊆ N (see Chapter

44 in Schrijver (2003) for more details). Although a polymatroid is defined by an exponential

number of linear inequalities, Edmonds (1970) showed that optimizing a linear objective over a

feasible region which is a polymatroid can be solved efficiently by a greedy algorithm. Another

result by Edmonds (1971) shows that the maximum spanning tree problem can be formulated as

a linear optimization problem where the feasible region is the forest polymatroid (see also Section

50.4 in Schrijver (2003)). In addition to selection and MST, many other problems fall under the
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polymatroid framework, including for example K-selection, the problem of selecting K out of N

alternatives so as to maximize the total revenue. In linear optimization over a polymatroid with

testing (LOPT for short), each coefficient Wi in the linear objective
∑

iWixi is a random variable

(for example, in MST with testing, the coefficients are random edge weights). We study the case

of LOPTs in Section 3, and the special case of MST with testing in Section 3.5. We also discuss

more general optimization problems with testing in Section 4.

Stopping Rule and Testing-Order Rule. In the aforementioned problems, the objective’s

coefficients (such as edge weights) are modeled as independent random variables with known dis-

tributions. At any stage in the execution of a policy, it can either stop, i.e., optimize based on the

current information, or test a coefficient, i.e., observe its realization, which incurs a cost. Therefore,

a policy is characterized by two rules that determine the decisions it makes at each stage. The first

rule, referred to as a stopping rule, determines whether to stop or test. If the policy decides to test,

then the second rule, referred to as a testing-order rule, determines which coefficient to test.

The most closely related literature is that of optimal stopping problems (see for example Fer-

guson (2012)), which concern choosing a time to take a particular action based on sequentially

observed random variables in order to maximize an expected reward (or minimize an expected

cost). A specific optimal stopping problem that is closely related to selection with testing is the

famous house-selling problem, introduced by MacQueen and Miller Jr (1960). These problems are

similar to our setting in the sense that both aim to find an optimal stopping rule. However, the

difference is that in our setting a policy also consists of a testing-order rule, i.e., in what order to

test the random variables. The number of possible testing orders is the number of permutations

of the coefficients, i.e., factorial in the number of coefficients. In fact, the testing order may be

determined adaptively as new information is gathered, and thus the testing order may need to

be recomputed after each test. This implies that the testing framework is more general than the

optimal stopping framework and has higher complexity. We discuss other related work in Section

1.2.

Myopic Decisions. Sequential decision problems such as those described above can generally be

solved by dynamic programming, as discussed in Bellman (1954). However, if the dimension of the

problem is high, then this method becomes intractable. A different approach used in such problems

is to consider myopic policies, which choose between alternatives based on the marginal profit from

only one action (test), without considering the future effects of their decision. In our framework,

myopic policies choose the better of two alternatives: (1) to stop testing, which yields an expected

profit based on the information gathered so far; (2) to test one more coefficient and then to stop
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testing, which yields an expected profit that also takes the new information and additional testing

cost into account. Notice that a myopic policy determines both a stopping rule and a testing-order

rule, because if it decides to test, it also determines which coefficient to test. The best myopic

policy can be described alternatively as making an optimal decision when having a budget for at

most one more test. Compared to dynamic programming, myopic policies are simpler and easier

to compute, but more restrictive and thus potentially suboptimal. However, we show that for a

number of interesting problems, myopic policies can achieve the same expected profit as dynamic

programming, and can therefore achieve optimal expected profit.

1.1 Our Results1

We organize our results by problem complexity, ordered from the simplest to the most involved.

Throughout, any random coefficient in the objective can be tested, which reveals its realization and

incurs a fixed testing cost c > 0, which is the same for all coefficients and is known.

Selection with Testing. Selection with testing is the problem of selecting a candidate from N

alternatives (or parallel edges), whose revenues (weights) Wi are mutually independent random

variables, drawn from known distributions with the same finite mean (notice that the revenues

need not be identically distributed). We provide for this problem a myopic policy that obtains

optimal expected profit. Furthermore, the policy is threshold-based, i.e., it computes for each

edge an a-priori threshold that depends only on its weight distribution and the testing cost (and

therefore can be precomputed), and decides whether to stop testing by comparing the maximal

realization revealed so far to this threshold. Moreover, the testing order of the edges is based on

these thresholds, and is thus non-adaptive and can be precomputed as well.

Maximum Spanning Tree with Testing. Let G = (V,E) be a connected graph with vertices

V = {v1, ..., vn} and edges E = {e1, ..., em}. We prove that if the edge weights, denoted Wi, are

drawn i.i.d. from a known distribution with a finite mean, then there exists a myopic policy for

constructing a spanning tree that obtains optimal expected profit. In contrast to selection with

testing, here the graph structure comes into play in the sense that information gathered on a

certain edge can affect the desirability of testing other edges. In particular, the testing-order rule

is adaptive.

1Some of this work was carried out jointly with Yaron Shaposhnik from MIT. In particular, the results in Sections

3 and 4 will appear also in his PhD thesis.
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Additional Results. We also discuss more general stochastic optimization problems with test-

ing. For linear optimization over a polymatroid with testing (as mentioned above, a polymatroid is

a certain type of polytope defined by a submodular function), we show that under certain technical

conditions (such as symmetry of the feasible region and a convex order between the random vari-

ables), there exist myopic policies that obtain optimal expected profit. This captures, for example,

K-selection with testing, which is the problem of selecting K out of N alternatives (parallel edges)

so as to maximize the expected profit.

For even more general optimization problems with testing, we derive weaker results in the form

of sufficient conditions under which a myopic stopping rule is optimal.

For sake of simplicity, throughout we address only maximization problems, however similar

results can be proved for minimization problems.

1.2 Related Work

In general, testing problems are stochastic multi-period optimization problems. Traditionally how-

ever, in these problems information gathering is an exogenous process. For example, the classical

work of Scarf (1959) studies a finite horizon inventory model where at the beginning of every period,

an order is placed and the demand which is a-priori random is realized. In this model decisions

about inventory replenishment do not affect information collection. In other work on stochastic

optimization, decisions could impact the belief state. For example, Dean et al. (2004) considered a

stochastic knapsack problem where items have random sizes that are realized only when attempt-

ing to place these items in the knapsack. Thus, the item we choose affects what we know. Chen

et al. (2009) studied a stochastic matching problem where edges need to be probed prior to their

selection. Once an edge is probed and found fit, the edge is selected. In these two examples, item

selection and information collection decisions are not disjoint, because once an item or an edge is

probed, it is irrevocably selected. In contrast, in our model, information collection is separate from

optimization, as the decision-maker first adaptively collects information, and only then selects a

feasible solution. See also Gupta and Nagarajan (2013) and Adamczyk et al. (2013) for additional

examples of stochastic optimization problems, in which decisions affect information collection.

Multiple areas of research are concerned with sequential information collection. Perhaps the

most notable one is Ranking and Selection where information is gathered about a set of alterna-

tives with the goal of choosing the best one, see, e.g., Swisher et al. (2003) for a survey. Different

objectives were studied for this problem, including maximizing the probability of selecting the best

alternative (e.g., the secretary problem), or minimizing the total cost of selecting the best alterna-

tive. The closely related multi-armed bandit problems (see, e.g., Gittins et al. (2011) and Bubeck

and Cesa-Bianchi (2012)) is a framework for balancing rewards obtained from exploring different
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alternatives in the selection process, and committing to an alternative. Two known problems are

especially close to the selection problem with testing that we study in Section 2. The first one is

the famous house-selling problem, in which a seller meets buyers sequentially. Each potential buyer

offers to buy the house at some price, and the seller needs to decide whether to sell the house at

this price, or to continue meeting potential buyers. Meeting a customer is associated with some

fixed cost, and the seller must therefore balance the meetings costs and improving the current offer.

This is a stopping time problem with infinite number of buyers, where the offers are independent

and identically distributed (i.i.d.). In contrast, in our setting there is a finite number of buyers

and their offers are drawn from different distributions. Unlike the house-selling problem, in our

setting the decision-maker needs to decide not only whether to accept or reject an offer, but also

to choose the customer to meet next, which is important when customers are non-homogeneous.

Guha et al. (2007) studied a problem that can be viewed as a selection with testing problem, where

each alternative is distributed according to the Bernoulli distribution, and could incur different

testing costs.

The area of Optimal Learning focuses on optimization problems with uncertain parameters

that are described stochastically, and that can be learned. For example, Ryzhov and Powell (2012)

studied a Linear Program with random cost coefficients, where there is a prior knowledge about

the joint distribution of cost coefficients, and a budget for drawing samples from this distribution.

The goal is to devise a learning strategy that maximizes the outcome of the optimization problem

solved after the learning phase is completed. A similar setting in the context of a Ranking and

Selection problem with correlated alternatives has been studied by Frazier et al. (2009). In general,

Optimal Learning takes a Bayesian approach in which learning refers to sampling and updating the

belief about unknown distributions. In contrast, we assume that the distributions are known and

one can reduce uncertainty by observing the realization of random variables. This requires different

methods and leads to results of a different nature. In particular, we prove optimality of certain

myopic policies rather than asymptotic analysis or worst-case guarantees. Similarly, Ranking and

Selection problems and Multi-armed bandit problems are often studied in Bayesian or adversarial

settings. See Powell and Ryzhov (2012) for a comprehensive overview of recent work in the area of

Optimal Learning.

Recently, Golovin and Krause (2011) introduced the concept of Adaptive Submodularity which

generalizes the definition of submodularity. They showed that stochastic optimization problems that

satisfy a few properties can be solved near-optimally by a simple greedy algorithm. In particular,

various data collection problems satisfy these properties. For example, Javdani et al. (2014) showed

that the problem of deciding adaptively on medical tests before deciding on an action is adaptively

submodular. Two main differences between these approaches and ours are that, first, while the
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Adaptive Submodularity framework provides general sufficient conditions under which a greedy

algorithm is near-optimal, our work establishes the optimality of certain policies. Second, we do

not focus on finding the best alternative (such as determining the exact medical condition), but

rather on applications where the costs and benefits of testing must be balanced. See Section 13 in

Golovin and Krause (2011) for a discussion about related problems and applications.

A related line of work deals with optimization problems with interval uncertainties. In these

problems the value of some parameters is only known to lie within certain intervals. The goal in

such problem is to decide on the set of parameters to be tested (also called queried or probed) that

would guarantee finding an optimal or near-optimal values. Feder et al. (2000) studied the problem

of minimizing the total cost of selecting the k-th smallest among n uncertain values with interval

uncertainties that guarantees a solution that is within a certain range. Feder et al. (2007) considered

the problem of finding an optimal shortest path in a graph with uncertainty about its exact edge

weights. Erlebach et al. (2008) and Megow et al. (2015) then studied a similar setting where the

objective is to find a minimum spanning tree. In all of these problems, uncertainties are adversarial

in nature and algorithms that guarantee worse-case bounds are developed (for adaptive and non-

adaptive variants of these problems). In contrast, we assume a stochastic model of uncertainty and

seek to optimize the expected values of some objectives. For further work in this area see Khanna

and Tan (2001), Gupta et al. (2011) and Goerigk et al. (2015).

Multiple researchers explored probabilistic testing problems. Goel et al. (2006) studied non-

adaptive testing problems where one needs to decide in advance about all future tests. Once testing

decisions are made, the true realizations of the tested parameters are observed, and an optimization

is performed based on the observed parameters. They assume that there is a finite budget and every

coefficient is associated with a known testing cost. They show that in general these problems are

NP-hard, and develop near-optimal algorithms for variants of the knapsack problem. Guha and

Munagala (2007) studied the adaptive version of the above problem, and showed that for many

problems there is a non-adaptive policy that achieves a constant factor approximation for the best

adaptive problem (see also Guha and Munagala (2008) and Goel et al. (2010)). Whereas the above

work considered a budget for testing, we assume that there is a testing cost that can be compared

against the optimization value, and the goal is to maximize the optimization value minus the testing

costs. For multiple problems we find not an approximately optimal, but rather an optimal policy.

The closest to our model and indeed the motivation for our work is a model studied by Sun

et al. (2014) and more generally by Levi et al. (2014). The latter considered the problem of

scheduling jobs with random processing times and weights by a single server with the objective

of minimizing the expected weighted sum of completion times. They assumed that jobs can be

tested, an activity that utilizes the server but reveals the exact processing times and weights of
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the tested job. They showed that the optimal policy admits the structure of an optimal stopping

problem, and that under a certain condition, a myopic rule is optimal in determining when to stop

testing. A significant difference from our work is that they consider an online setting in which

testing and processing decisions are made interchangeably, that is, some jobs can be tested, other

jobs can then be processed and so forth. In contrast, we study an offline setting, where we begin by

testing to reduce uncertainty, and only then optimize. Moreover, we consider a much broader class

of problems, for which the offline version of the above scheduling problem is a special case. We

show that some of the structural properties of the optimal policy in the scheduling problems carry

through to our generalized setting, including in particular, the main result, which is the optimality

of a certain myopic policy. In addition, our analysis uncovers and explains a mathematical structure

that results in the optimality of myopic policies.
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2 Selection with Testing

In this section we study selection with testing, which is a basic example of combinatorial opti-

mization problems with testing, and serves as a motivating example for the following sections. A

straightforward dynamic programming formulation of the optimal policy has a large state space

and therefore solving it may be intractable. In contrast, we design a simple, threshold-based, and

easy to compute policy for the problem, and prove in Theorem 2.13 that if all edge weights have

the same finite mean, then it obtains optimal expected profit.

2.1 Problem Formulation

Selection with testing is the problem of selecting a single candidate from N candidates, which we

model as N parallel edges indexed by 1, . . . , N , each associated with a random weight Wi drawn

from a known distribution. We assume that all Wi have the same finite mean, i.e., E [Wi] = µ <∞
and that W1, . . . ,WN are mutually independent. With slight abuse of notation, we refer to Wi as

the random weight of edge i, as well as its weight distribution and as the name of the respective

edge.

In this model, a policy can test an edge at a cost c > 0 and obtain its exact realization.

The objective is to maximize the expected profit, where profit is defined as the weight of the

selected edge minus all testing costs (if any). At any moment during the execution, we denote

by wmax the maximal weight among all tested edges (by convention, when there are no tested

edges wmax = −∞), and by W̄ the set of yet untested edges, hence the current state can be

summarized as
(
W̄ , wmax

)
. At any state, a policy can choose to either stop, i.e., optimize based

on the currently available information (that is, with respect to wmax), or to test some yet-untested

edge with random weight Wi, which reveals its weight realization wi and changes the state to

(W̄ \ {Wi},max{wmax, wi}). A policy should then choose between optimizing or testing another

edge, and so forth. It is straightforward to verify that upon optimizing, the profit is maximized by

choosing an edge with maximum expected weight.

2.2 An Optimal Policy via Dynamic Programming

First consider a variant of the selection with testing problem in which a policy must fix a testing

order in advance, i.e., the order in which edges are tested is decided before the adaptive decision of

when to stop. In this case, there are N ! different testing orders to consider, which already describe

a huge state space. Adding the option to dynamically decide which edge to test next leads to an

even more elaborate computation, because all possible permutations of yet-untested edges must be

reconsidered after each test. A less naive approach is to exploit the fact that we are looking for an
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edge with maximal expected weight, therefore all tested edges with weights lower than wmax can be

discarded. Hence, for each state
(
W̄ , wmax

)
, the following dynamic program computes an optimal

policy based on backward induction

Jopt
(
W̄ , wmax

)
= max

max {wmax, µ} // Optimize

maxWi∈W̄ {−c+ E
[
Jopt

(
W̄ \ {Wi} ,max {wmax,Wi}

)]
} // Test an edge.

(1)

Observation 2.1. The policy computed by the Dynamic Program (1) achieves optimal expected

profit.

Since we need to consider all subsets W̄ ⊆ {W1, . . . ,WN}, the state space of the aforementioned

DP is at least 2N (even without considering all possible wmax), thus selection with testing seems

hard to solve. However, under the equal means assumption, we design a simple, easy to compute

policy that obtains optimal expected profit in Theorem 2.13. We begin by addressing the base case,

of only one yet-untested edge.

2.3 A Simple Optimal Policy for N = 1 Untested Edges

Consider the case of one untested edge with random weight W1 and arbitrary wmax (which can

model a state that is reached after some tests were made). There are merely two types of possible

strategies. The first one is to stop, i.e., return (without further testing) an edge with maximal

expected revenue, either a maximal tested edge or the single untested edge, and achieve an expected

profit max {wmax, µ}. The second strategy is to test the untested edge W1 and then return the edge

of largest weight out of all the tested edges, and achieve an expected profit −c+E [max {wmax,W1}].
An optimal policy can choose the strategy that has higher expected profit among the two, i.e., stops

if and only if

max {wmax, µ} ≥ −c+ E [max {wmax,W1}] .

We examine how this decision whether to test depends on wmax. Intuitively, if wmax has an ex-

tremely high value, then there is a low probability that an even higher value will be revealed by

testing W1, so it is better to select wmax and stop. Similarly, if wmax has an extremely low value,

then it is better to select W1 without testing it, because there is a low probability that an even

lower value will be revealed by testing W1. However, if wmax is in some intermediate range, then

testing W1, i.e., ”buying” its observation, can be worthwhile, because there is a high uncertainty

regarding which of wmax and w1 is higher. Overall, testing is worthwhile when wmax is in a certain

interval around µ, which we determine by computing a lower testing threshold and an upper testing

threshold in Definition 2.2.
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Of course, if the cost of testing is extremely high, then selecting max {wmax, µ} without testing

is the best option regardless of wmax. Thus, the thresholds become irrelevant in this case. These

intuitions are formalized in Lemma 2.5 and visualized in Figure 2.1.

Definition 2.2. (Testing thresholds).

The upper testing threshold of a random variable W1 is the unique θ+
1 ∈ R satisfying

c = E
[(
W1 − θ+

1

)+]
. (2)

The lower testing threshold of a random variable W1 is the unique θ−1 ∈ R satisfying

c = E
[(
θ−1 −W1

)+]
. (3)

We prove that the thresholds θ+
1 , θ

−
1 exist and that they are uniquely determined in Section 2.5.

Lemma 2.3. There are only two possibilities for the order between the thresholds θ+
1 , θ

−
1 and µ =

E [W1], specifically, if E
[
(W1 − µ)+] ≥ c then θ−1 ≤ µ ≤ θ

+
1 , otherwise θ+

1 < µ < θ−1 .

Proof. Observe that (z)+ − (−z)+ = z for every z ∈ R. It follows that for every w1 ∈ R,

(w1 − µ)+ − (µ− w1)+ = w1 − µ.

And thus by linearity of expectation,

E
[
(W1 − µ)+]− E

[
(µ−W1)+] = E [W1 − µ] = 0.

Define c̃ by

c̃ = E
[
(W1 − µ)+] = E

[
(µ−W1)+] ≥ 0. (4)

By Lemma 2.14 (see Section 2.5), the functions b → E
[
(W1 − b)+] and b → E

[
(b−W1)+] are

strictly monotone in b when they take positive values. Hence, comparing equation (4) to equations

(2),(3) yields that in the case 0 < c ≤ c̃ we have

θ−1 ≤ µ ≤ θ
+
1 ,

and in the case c > c̃ ≥ 0 we have

θ+
1 < µ < θ−1 .

Fact 2.4. For every random variable X and a constant b ∈ R,

max {b,X} − b = max {0, X − b} = (X − b)+ , (5)

max {b,X} −X = max {b−X, 0} = (b−X)+ . (6)
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The next lemma identifies an optimal action for each value of wmax, given additional parameters

of the problem (such as c, µ and the distribution of W1). Altogether, we obtain an optimal policy

whose decision is almost completely determined by the maximum among {wmax, µ, θ
+
1 }.

Lemma 2.5. For a state (W1, wmax) with one untested edge {W1},

1. If wmax ≥ max
{
µ, θ+

1

}
then stopping and returning wmax (without testing any more edges)

has optimal expected profit;

2. Else, if either

(a) µ > max
{
θ+

1 , wmax

}
, or

(b) θ+
1 > max {wmax, µ} and wmax ≤ θ−1 ,

then stopping and returning W1 (without testing it) has optimal expected profit;

3. Otherwise, testing W1 and returning an edge with weight max{w1, wmax} has optimal expected

profit.

Figure 2.1: An optimal policy for one untested edge as a function of wmax, as described in Lemma

2.5. The top figure depicts the case θ−1 ≤ µ ≤ θ+
1 and the bottom figure depicts the other case

θ+
1 < µ < θ−1 (see Lemma 2.3).

Proof. As mentioned in the beginning of Section 2.3, with only one untested edge, there are merely

two types of possible strategies. The first one is to stop, i.e., return (without further testing)

an edge with maximal expected revenue, either a maximal tested edge or the single untested

edge, and achieve an expected profit max {wmax, µ}. The second strategy is to test W1 and then

return the edge of largest weight among the tested edges, and achieve an expected profit −c +
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E [max {wmax,W1}]. It is clearly an optimal policy to choose the strategy that has higher expected

profit, i.e., stop if and only if

max {wmax, µ} ≥ −c+ E [max {wmax,W1}] .

Consider first the case wmax ≥ µ. In this case, stopping and returning wmax is optimal if and

only if wmax ≥ −c + E [max {wmax,W1}], otherwise testing is optimal. The last inequality can be

written as

c ≥ E [max {wmax,W1} − wmax] ,

or alternatively, by Definition 2.2 of the thresholds and by Fact 2.4, as

E
[(
W1 − θ+

1

)+] ≥ E
[
(W1 − wmax)+] ,

which in turn holds iff wmax ≥ θ+
1 , by the monotonicity of b→ E

[
(W1 − b)+] (see Lemma 2.14 in

Section 2.5). Therefore, when wmax ≥ max
{
µ, θ+

1

}
, stopping and returning wmax is optimal, which

proves case 1. Otherwise, when θ+
1 > wmax ≥ µ, testing is optimal, which is used to prove case 3.

Now consider the other case wmax < µ. In this case stopping and returning W1 (without testing

it) is optimal if µ ≥ −c+E [max {wmax,W1}], otherwise testing is optimal. The last inequality can

be written as

c ≥ E [max {wmax,W1} −W1] ,

or alternatively, by Definition 2.2 and Fact 2.4, as

E
[(
θ−1 −W1

)+] ≥ E
[
(wmax −W1)+] ,

which holds iff wmax ≤ θ−1 , by the monotonicity of b→ E
[
(b−W1)+] (see Lemma 2.14 in Section

2.5). Therefore, when wmax < µ and wmax ≤ θ−1 , stopping and returning W1 without testing is

optimal, and when θ−1 < wmax < µ, testing is optimal. By Lemma 2.3, either θ+
1 < µ < θ−1 holds,

or θ−1 ≤ µ ≤ θ+
1 holds. In the first case, θ+

1 < µ < θ−1 , the testing region is empty, so altogether it

is optimal to return W1 without testing it if µ > max{θ+
1 , wmax}, which proves case 2(a). In the

second case, θ−1 ≤ µ ≤ θ+
1 , the testing region is θ−1 < wmax < µ, and so altogether it is optimal to

return W1 without testing it when θ+
1 > max{wmax, µ} and wmax ≤ θ−1 , which proves case 2(b).

Since there are only two types of alternatives (stop or test), in the remaining cases it is optimal to

test, which proves case 3 and the lemma. The different cases are visualized in Figure 2.1.

2.4 A Simple Optimal Policy for N Untested Edges with Equal Means

Now consider having N > 1 untested edges W1, . . . ,WN of equal finite mean E [Wi] = µ <∞. The

thresholds θ−i , θ
+
i for each edge Wi are defined below similarly to Definition 2.2, by considering Wi
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as a single untested edge and comparing between a policy that stops and a policy that myopically

tests Wi, i.e., tests only edge Wi and stops. Notice that although the decision whether to stop

depends on wmax, the thresholds themselves only depend on c and the distribution of Wi.

Clearly, if some edge Wi is ”worth testing” myopically, then stopping is suboptimal. The other

direction is true as well, but is not as trivial. We will prove in Lemma 2.11 in Section 2.4.2 that

if none of the edges is ”worth testing” myopically, then stopping is optimal. This implies that

one comparison of max {wmax, µ} to the highest upper testing threshold maxi θ
+
i (among untested

edges) is sufficient to determine whether to stop or to continue testing.

If stopping is suboptimal, then an optimal policy must now determine which edge to test. It

may seem that the entire distribution of each untested edge Wi, and specifically the conditional

distribution Wi|Wi > wmax might affect this decision, but perhaps surprisingly, we prove in Lemma

2.12 in Section 2.4.3 that it is always optimal to test the edge with the highest upper testing

threshold θ+
i . This implies that the testing order is fixed and can be precomputed before any of

the tests, and the only decision to make at a state is merely whether to stop or to continue testing.

Finally, the stopping rule and testing-order rule are combined into Policy 1, which achieves

optimal expected profit, as we assert in Theorem 2.13 in Section 2.4.4.

2.4.1 Preliminaries

Definition 2.6. (Testing thresholds).

The upper testing threshold of a random variable Wi is the unique θ+
i ∈ R satisfying

c = E
[(
Wi − θ+

i

)+]
. (7)

The lower testing threshold of a random variable Wi is the unique θ−i ∈ R satisfying

c = E
[(
θ−i −Wi

)+]
. (8)

Without loss of generality we assume the edges are numbered such that

θ+
1 ≥ θ

+
2 ≥ · · · ≥ θ

+
N . (9)

We prove that the thresholds θ+
i , θ

−
i exist and that they are uniquely determined in Section 2.5.

Definition 2.7. When a policy is at a state
(
W̄ , wmin

)
, denote by k = k

(
W̄ , wmin

)
the index of

an edge with maximal upper threshold among the yet-untested edges, i.e., θ+
k = maxWi∈W̄ θ+

i .

Lemma 2.8. There are only two possibilities for the order between the thresholds θ+
i , θ

−
i and µ =

E [Wi], specifically, if E
[
(Wi − µ)+] ≥ c then θ−i ≤ µ ≤ θ

+
i , otherwise θ+

i < µ < θ−i .
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The proof is identical to that of Lemma 2.3.

Definition 2.9. (Policies)

For state
(
W̄ , wmax

)
, denote an optimal policy by Πopt

(
W̄ , wmax

)
and let Jopt

(
W̄ , wmax

)
be its

expected profit, as defined in section 2.2.

For state
(
W̄ , wmax

)
, denote by Πstop

(
W̄ , wmax

)
a policy that stops and returns max {wmax, µ}

(where µ represents returning an untested edge). Its expected profit is

J stop
(
W̄ , wmax

)
= max {wmax, µ} . (10)

For state
(
W̄ , wmax

)
with N > 1 untested edges, denote by Πmy

i

(
W̄ , wmax

)
a myopic policy that

tests Wi and then stops and returns max {wmax, µ, wi}. Its expected profit is

Jmy
i

(
W̄ , wmax

)
= −c+ E [max {wmax, µ,Wi}] . (11)

2.4.2 Stopping-Rule Analysis

In this section, we show in Lemma 2.11 that a myopic stopping rule with a simple, threshold-based

structure, is optimal. First, we will need the following technical lemma that compares between a

myopic policy Πmy
i and stopping Πstop.

Lemma 2.10. For each state
(
W̄ , wmax

)
with N > 1 untested edges, and for each untested edge

Wi, policy Πstop is at least as good as the myopic policy Πmy
i , i.e.,

J stop
(
W̄ , wmin

)
≥ Jmy

i

(
W̄ , wmin

)
if and only if

max {wmax, µ} ≥ θ+
i .

Proof. By equations (10),(11), Fact 2.4 and Definition 2.6,

J stop
(
W̄ , wmin

)
− Jmy

i

(
W̄ , wmin

)
= max {wmax, µ}+ c− E [max {wmax, µ,Wi}]

= c− E [max {wmax, µ,Wi} −max {wmax, µ}]

= E
[(
Wi − θ+

i

)+]− E
[
(Wi −max {wmax, µ})+] .

By the monotonicity property proved in Lemma 2.14 (see Section 2.5),

E
[(
Wi − θ+

i

)+]− E
[
(Wi −max {wmax, µ})+] ≥ 0

iff max {wmax, µ} ≥ θ+
i , and this concludes the proof.
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Lemma 2.11. (Stopping Rule) For every state
(
W̄ , wmax

)
and N > 1 untested edges, stopping is

optimal, i.e., Jopt
(
W̄ , wmax

)
= J stop

(
W̄ , wmax

)
iff

max {wmax, µ} ≥ θ+
k .

Figure 2.2: An optimal policy for N > 1 untested edges as a function of wmax, as described in

Lemma 2.11. Recall that Wk is an edge with maximal upper testing threshold among the yet-

untested edges. The top figure depicts the case θ−k ≤ µ ≤ θ+
k and the bottom figure depicts the

other case θ+
k < µ < θ−k (see Lemma 2.8).

Proof. Recall that by Definition 2.7, wk is an edge with maximal upper threshold among the yet-

untested edges. First, assume that max {wmax, µ} < θ+
k . To show that stopping is sub-optimal, it

suffices to show a policy Π′ such that J stop
(
W̄ , wmax

)
< JΠ′ (

W̄ , wmax

)
. Taking Π′ to be Πmy

k gives

the desired result by Lemma 2.10, and this concludes the forward direction.

We prove the other direction by induction on the number of untested edges. Assume that

max {wmax, µ} ≥ θ+
k (thus max {wmax, µ} ≥ θ+

i for every yet untested edge Wi). We shall prove

this direction for all N ≥ 1 edges, and the base case N = 1 was already proved in Lemma 2.5, cases

1 and 2(a).

For N > 1 untested edges, by the induction hypothesis we know that stopping is optimal for

any subset of N − 1 untested edges out of W̄ . Assume that an optimal policy Πopt does not stop,

and hence tests some edge Wi, at which point the yet-untested edges W̄ \{Wi} are a subset of W̄ of

size N − 1. Since wmax can only increase after the test, it is optimal to stop. Therefore, an optimal

policy will only perform one test and then stop, i.e., it is the myopic policy Πmy
i . By Lemma 2.10,

J stop
(
W̄ , wmax

)
≥ Jmyi

(
W̄ , wmax

)
= Jopt

(
W̄ , wmax

)
.

Therefore stopping is optimal for N untested edges, which proves the inductive step. The testing

and stopping regions are visualized in Figure 2.2.
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2.4.3 Testing-Order Analysis

In this section, we show in Lemma 2.12 that there exists an optimal policy that tests edges in a

predetermined testing-order, which depends only on their upper testing thresholds θ+
i .

Lemma 2.12. (Testing Order) There exists an optimal policy that tests edges only in non-increasing

order of their upper thresholds θ+
i .

Proof. Proceed by induction on the number N ≥ 1 of untested edges. The base case N = 1 trivially

holds as there is only one possible order. For N > 1 untested edges, assume by induction that

for any subset of N − 1 untested edges out of W̄ , whenever stopping is sub-optimal, testing an

edge with the largest upper testing threshold is optimal. Fix an optimal policy Πopt. If Πopt stops

or tests Wk (recall by Definition 2.7 that θ−k is the largest upper testing threshold) then we are

done by the induction hypothesis. Otherwise, Πopt tests Wi for some i 6= k. By Lemma 2.11, not

stopping implies max{wmax, µ} < θ+
k . Notice that out of wmax, µ and θ+

k , testing an edge i 6= k

can only change wmax. According to Lemma 2.11, after testing Wi there are 2 cases: the first is

Wi ≥ θ+
k , and then Πopt stops and returns Wi (by Lemma 2.11); the second is Wi < θ+

k , and then

Πopt does not stop (by the induction hypothesis) and the next edge to be tested will be Wk (notice

that θ+
k remains minimal until Wk is tested). Now if Wk ≥ θ+

k , then Πopt returns Wk and stops,

otherwise it continues according to an optimal policy for that state and achieves expected profit

E
[
Jopt
−i−k|Wk < θ+

k ,Wi < θ+
k

]
= E

[
Jopt

(
W̄ \ {Wk,Wi} ,max {wmax,Wk,Wi}

)
|Wk < θ+

k ,Wi < θ+
k

]
.

The expected profit of policy Πopt can be written as

Jopt
(
W̄ , wmax

)
= −c+ piE

[
Wi|Wi ≥ θ+

k

]
(12)

+ (1− pi)
(
−c+ pkE

[
Wk|Wk ≥ θ+

k

]
+ (1− pk)E

[
Jopt
−i−k|Wk < θ+

k ,Wi < θ+
k

])
,

where pi = P
(
Wi ≥ θ+

k

)
, and similarly pk = P

(
Wk ≥ θ+

k

)
.

We now consider an alternative policy Πalt as follows: policy Πalt starts by testing Wk. If Wk ≥
θ+
k , then Πalt returns Wk and stops. Otherwise Πalt tests edge Wi. If Wi ≥ θ+

k , then Πalt stops and

returnsWi. Otherwise it testsWi and then imitates policy Πopt in state
(
W̄ \ {Wk,Wi} ,max {wmax,Wk,Wi}

)
.

The expected profit of policy Πalt can be written as

Jalt
(
W̄ , wmax

)
= −c+ pkE

[
Wk|Wk ≥ θ+

k

]
(13)

+ (1− pk)
(
−c+ piE

[
Wi|Wi ≥ θ+

k

]
+ (1− pi)E

[
Jopt
−i−k|Wk < θ+

k ,Wi < θ+
k

])
.

Notice that a policy that tests Wk first and then follows the optimal policy is even better than

Policy Πalt. For example, after testing Wk the next largest testing threshold θ+
k′ may be strictly
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smaller than θ+
k , i.e., θ+

k′ < θ+
k . According to Lemma 2.11 it is optimal to stop after testing Wk

iff Wi ≥ θ+
k′ . However policy Πalt tests Wi even if θ+

k > Wi > θ+
k′ . Hence, to complete the proof,

it suffices to show that for every state
(
W̄ , wmax

)
, the inequality Jalt

(
W̄ , wmax

)
≥ Jopt

(
W̄ , wmax

)
holds. To this end, using equations (12),(13) and careful manipulation, we obtain

Jalt
(
W̄ , wmax

)
− Jopt

(
W̄ , wmax

)
= pkpiE

[
Wk|Wk ≥ θ+

k

]
− pkpiE

[
Wi|Wi ≥ θ+

k

]
+ pkc− pic

= pkpi
(
E
[
Wk|Wk ≥ θ+

k

]
− θ+

k + θ+
k − E

[
Wi|Wi ≥ θ+

k

])
+ pkc− pic

= pkpi
(
E
[
Wk − θ+

k |Wk ≥ θ+
k

]
− E

[
Wi − θ+

k |Wi ≥ θ+
k

])
+ pkc− pic

= piE
[(
Wk − θ+

k

)+]− pkE [(Wi − θ+
k

)+]
+ pkc− pic

= pic− pkE
[(
Wi − θ+

k

)+]
+ pkc− pic

= pk

(
E
[(
Wi − θ+

i

)+]− E
[(
Wi − θ+

k

)+])
≥ 0

where the last inequality is because the function b→ E
[
(Wi − b)+] is strictly monotone in b when

it take positive values by Lemma 2.14 (see Section 2.5), and this concludes the proof of Lemma

2.12.

2.4.4 A Simple Optimal Policy for Selection with Testing

We can now define Policy 1, and prove that it achieves optimal profit. Policy 1 is threshold-based,

and its decision whether to test depends on which of the three wmax, µ, θ
+
k is largest (except for the

last untested edge). In addition, it tests edges in a predetermined order of non-increasing upper

thresholds θ+
i . These two properties make Policy 1 very easy to implement – the testing order

can be computed in advance, and the decision whether to test or stop at any state is made by

comparing the three values wmax, µ and θ+
k .

Theorem 2.13. For N ≥ 1 untested edges with equal finite mean µ, Policy 1 achieves optimal

expected profit.
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Policy 1

1: for l = 1, . . . , N do // assuming θ+
1 ≥ θ

+
2 ≥ · · · ≥ θ

+
N and wmax = −∞

2: if wmax ≥ max
{
θ+
l , µ

}
then // wmax is the largest of

{
wmax, µ, θ

+
l

}
3: return an edge associated with wmax

4: else if µ ≥ max
{
θ+
l , wmax

}
then // µ is the largest of

{
wmax, µ, θ

+
l

}
5: return an arbitrary untested edge (without testing)

6: else // θ+
l is the largest of

{
wmax, µ, θ

+
l

}
7: if l = N and wmax ≤ θ−N then

8: return edge WN (without testing)

9: else

10: test Wl to reveal its realization wl // pay testing cost c

11: set wmax = max {wmax, wl}
12: end if

13: end if

14: end for

Proof. Notice that lines 2-5 in Policy 1 are equivalent to the following: if max {wmax, µ} ≥ θ+
l , then

stop and return max {wmax, µ} (in the sense that taking an arbitrary untested edge has expected

cost of µ). Hence, for the case l < N , i.e., more than one untested edge remaining, Theorem 2.13

is equivalent to claiming that the following is an optimal policy:

1. stop testing iff max {wmax, µ} ≥ θ+
k .

2. otherwise, test edges in non-increasing order of their upper testing thresholds θ+
i .

When there is more than one untested edge, Lemma 2.12 implies that testing edges according to

their upper testing thresholds θ+
i in non-increasing order is an optimal strategy, and Lemma 2.11

indicates when it is optimal to stop. When l = N , i.e., there is only one edge left the optimal policy

is described in Lemma 2.5. Policy 1 implements the three lemmas and therefore is optimal. The

theorem follows.

2.5 Existence and Uniqueness of the Thresholds θ−i , θ
+
i

In this section, we show that for a random variable Wi with a finite mean E [Wi] = µ < ∞, the

thresholds θ−i , θ
+
i from Definitions 2.2 and 2.6 exist and are uniquely determined. First, we show

that the functions b → E [(b−X)+] and b → E [(X − b)+] are strictly monotone whenever they

receive positive values.
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Lemma 2.14. Let X be a random variable and let I = [l, h] be the smallest interval such that

P(X ∈ I) = 1. Then the function b → E [(b−X)+] is strictly monotonically increasing for b > l,

and is clearly constant 0 for b ≤ l. Similarly, the function b→ E [(X − b)+] is strictly monotonically

decreasing for b < h, and is clearly constant 0 for b ≥ h.

Proof. By definition, for all b > l

E
[
(b−X)+

]
=

∫ ∞
−∞

max {b− x, 0} px (x) dx =

∫ b

l
(b− x) px (x) dx. (14)

Notice that
∫ b
l px (x) dx > 0 for all b > l, thus for any δ > 0,

E
[
(b+ δ −X)+

]
=

∫ b+δ

l
(b+ δ − x) px (x) dx

≥
∫ b

l
(b+ δ − x) px (x) dx

=

∫ b

l
(b− x) px (x) dx+ δ

∫ b

l
px (x) dx︸ ︷︷ ︸
>0

> E
[
(b−X)+

]
,

and therefore E [(b−X)+] is strictly monotonically increasing in b when b > l. For b ≤ l, clearly

E [(b−X)+] = 0.

The second part of the lemma is proved in a similar manner.

We can now use Lemma 2.14 to prove the existence and uniqueness of the testing thresholds.

Corollary 2.15. If a random variable Wi has a finite mean E [Wi] <∞, then the lower and upper

testing thresholds θ−i and θ+
i exist and are uniquely determined.

Proof. By Lemma 2.14, the functions b → E
[
(b−Wi)

+] and b → E
[
(Wi − b)+] are strictly

monotonic in b whenever they are positive and thus attain any positive value c > 0 exactly once

(E
[
(b−Wi)

+]→∞ when b→∞ and E
[
(Wi − b)+]→∞ when b→ −∞). Therefore, there must

exist unique solutions for equations (7) and (8) (and in particular to equations(2) and (3)).
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3 Linear Optimization over a Polymatroid with Testing

In this section, we study a class of problems that generalize the selection problem discussed in

Section 2. We call these linear optimization over a polymatroid with testing (LOPT) problems.

In linear optimization over a polymatroid (LOP), the objective is to maximize a linear function

when the constraint polyhedron has the structure of a polymatroid (Schrijver (2003)), a well-known

notion in combinatorial optimization that is defined through an exponential number of constraints.

In particular, for each subset of the decision variables there is a constraint asserting that the sum

of these variables is smaller than a given submodular set function evaluated on this subset. In

LOPTs, each coefficient of the linear objective is a random variable that can be tested to obtain its

realization. There is a fixed cost associated with testing a coefficient, and the goal is to maximize

the expected value of the linear program minus the testing costs.

We start by reviewing known results about polymatroid optimization problems in Section 3.1,

and provide a few representative problems that can be modeled as polymatroids in Section 3.2.

We then formally formulate the LOPT problem in Section 3.3 and prove that when the random

coefficients have equal means, the myopic stopping rule for the selection problem (Lemma 2.11)

is also optimal in deciding when to stop testing in LOPTs (Section 3.4). We then show that in

some interesting special cases it is optimal to decide on the testing order myopically, based on

the expected improvement to the objective with a limited budget of a single test. These cases

include the Maximum Spanning Tree problem when edge weights are independent and identically

distributed (Section 3.5), and a family of symmetric LOPTs, which implies that underlying opti-

mization problem is symmetric under permutations of the coefficients (Section 3.6). In the latter,

the random coefficients are drawn independently from distributions that satisfy convex order, which

is a partial order between probability distributions that have equal means but different magnitudes

of uncertainty (the convex order is discussed in detail in Section 3.6).

3.1 Submodular Set Functions and Polymatroids

We now review some basic definitions and properties of submodular set functions and polymatroids,

as described in detail by Yao and Zhang (1997) and by Schrijver (2003).

Submodular set functions

Given a finite ground set N , a set function f : 2N → R is called submodular if for all subsets

A,B ⊆ N ,

f (A) + f (B) ≥ f (A ∩B) + f (A ∪B) . (15)
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Equivalently, f is submodular if for all subsets A ⊆ B ⊆ N and for all elements e such that

e ∈ N \B,

f (A+ e)− f (A) ≥ f (B + e)− f (B) . (16)

Similarly to concavity, submodularity is a property of diminishing marginal returns. The above

definition asserts that when an element e is added to a set A, the value of f increases at by the

same or larger amount than when the same element is added to a larger set B ⊇ A. In fact, in

the special case that f(A) depends only on the cardinality of A, the function f must be a concave

function of |A|.
Supermodular function are defined analogously. f is called supermodular if −f is submodular,

i.e., f satisfies equations (15) and (16) with the inequality sign reversed. f is modular if f is

both submodular and supermodular, i.e., if f satisfies (15) and (16) with an equality. Note that

the relation between submodular and supermodular functions is similar to the relation between

concave and convex functions (for example, in terms minimizing one versus maximizing the other).

A set function f on N is called non-decreasing if f(A) ≤ f(B) whenever A ⊆ B ⊆ N , and

non-increasing if f(A) ≥ f(B) whenever A ⊆ B ⊆ N . We say that f is normalized if f(∅) = 0.

Polymatroids

For each subset S ⊆ N , define

x(S) :=
∑
e∈S

xe. (17)

Using this notation, define a polyhedron Pf associated with a set function f on 2N

Pf =
{
x ∈ RN |x ≥ 0 and x (S) ≤ f (S) ∀S ⊆ N

}
. (18)

By Yao and Zhang (1997), Pf is called the polymatroid associated with f if f is normalized, non-

decreasing and submodular. Observe that every polymatroid is bounded (since 0 ≤ xe ≤ f({e})
for each e ∈ N), and hence it is a polytope.

Optimization over a Polymatroid using the Greedy Algorithm

Let f : 2N → R be a normalized, non-decreasing, and submodular function, given by a value giving

oracle, that is, by an oracle that returns f(S) for any S ⊆ N . Given f and a vector of positive

coefficients w = (w1, . . . , wN ) ∈ RN+ , the maximization problem

ϕ(w) = max
x∈Pf

∑
e∈N

wexe (19)

is called a Linear Optimization over a Polymatroid (LOP) problem. Despite the fact that poly-

matroids are defined using exponentially many constraints, LOPs can be solved rather efficiently

using the following greedy algorithm (see Yao and Zhang (1997)):
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1. Define a non-increasing order on the elements by a permutation σ : [N ] → [N ] with respect

to their coefficients, i.e., wσ(1) ≥ wσ(2) ≥ ... ≥ wσ(N). Assume ties are broken in a consistent

manner.

2. For each i ∈ N let

xσ(i) = f ({σ(1), ..., σ(i− 1), σ(i)})− f ({σ(1), ..., σ(i− 1)}) . (20)

The greedy algorithm is a strongly polynomial-time algorithm since it requires a linear number

of calls to the value oracle. Observe that if f is integer valued, then the solution x given by

Equation (20) is integral.

Next, we provide examples of combinatorial optimization problems that can be written as LOPs.

3.2 Examples of LOPs

Linear optimization over a polymatroid captures many important problems in graph theory, lin-

ear algebra, and other branches of mathematics and computer science. We now review several

representative examples.

K-Selection

In Section 2, we studied the problem of selecting an element from a given set so as to maximize

its value. We now consider the more general problem of selecting K elements from a given set so

as to maximize their combined value. Without testing, this problem can be written as the linear

program

max wTx

s.t.
N∑
i=1

xi ≤ K

0 ≤ xi ≤ 1 ∀i ∈ N.

(21)

Interestingly, the problem can be also written as an LOP using the submodular function

f (S) =

0 S = ∅

min(K, |S|) otherwise.
(22)

To see this, we divide the constraints based on the cardinality of the set S:

1. |S| = 1: the resulting constraints are xi ≤ 1 for each i ∈ N ,

2. |S| = N : the resulting constraint is
N∑
i=1

xi ≤ K,

3. |S| ≤ K: the resulting constraint can be written as
∑
i∈S

xi ≤ |S|, which is redundant by 1,
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4. |S| > K: the resulting constraint can be written as
∑
i∈S

xi ≤ K and is redundant by 2.

Matroid Optimization

A matroid is a combinatorial structure that captures and generalizes the notion of independent sets

in vector spaces. It is of particular interest as many subset selection problems can be formulated

using matroids (either directly or using composition), and due to the algorithms for solving the

corresponding optimization problems.

Formally, a matroid is a pair (S, I), where S is a finite set of elements (called the ground set),

and I is a non-empty collection of subsets of S (called the independent sets), which satisfies the

following properties (Schrijver (2003)):

1. if I ∈ I, and J ⊂ I, then J ∈ I (closure to taking subsets),

2. if I, J ∈ I and |I| < |J |, then I + z ∈ I for some z ∈ J \ I (all inclusion-wise maximal

independent sets have the same cardinality).

We define the rank function of a set U ⊂ S to be the cardinality of the largest independent subset

of U :

r(U) := max{|Z| : Z ∈ I, Z ⊆ U}.

Edmonds (1970) showed that given a matroid and a weight function on the ground set w : S → R+,

finding an independent set whose total weight is maximal can be formulated as an LOP with the

submodular function f being the rank function r:

max
∑

e∈S w(e)xe

s.t. x(U) ≤ r(U) ∀U ⊆ S
xe ≥ 0

, (23)

where xe is a decision variable that indicates if element e ∈ S is in the resulting set. Note that

the rank of any singleton {e} is equal to 1, and therefore 0 ≤ xe ≤ 1 for each e ∈ S. Since r is an

integral submodular function, using the greedy algorithm we obtain that xe are binary variables.

Graphic Matroids and the Maximum Spanning Tree (MST)

One particularly interesting class of matroids is the Graphic Matroid (see Schrijver (2003)), defined

as follows. Let G = (V,E) be a connected graph with vertices V = {v1, ..., vn} and edges E =

{e1, ..., em}. We denote by V (E′) ⊂ V the subset of vertices covered by E′:

V (E′) =
{
v1 ∈ V : ∃v2 : (v1, v2) ∈ E′

}
.
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Figure 3.3: Example of subset of edges in a graphic matroid.

In the graphic matroid (S, I) defined over G, the ground set S contains all edges (that is, S = E),

and the collection of independent sets I contains the subsets E′ ⊆ E that form a forest (i.e., there

are no cycles in E′). The rank function r for the graphic matroid can then be written as follows.

For a subset E′ ⊆ E, let κ(V,E′) denote the number of components in the graph G(V,E′). Then,

it is easily verified that

r(E′) = |V (E′)| − κ(V,E′).

An interesting interpretation of the resulting LOP is that for any non-empty subset of edges E′ ⊆
E such that G(V,E′) has only one connected component, this constraint implies that x(E′) ≤
|V (E′)| − 1, and is hence a spanning tree of the subgraph G(V,E′). Moreover, all the other

constraints (associated with non-empty subsets E′ ⊆ E such that G(V,E′) has more than one

connected component) are redundant and can be expressed using constraints on non-empty subsets

where the induced subgraph has one connected component. Figure 3.3 illustrates a subset of two

edges e1, e2, in a graphic matroid that includes 6 vertices. The rank function associated with the

sets {e1},{e2}, and {e1, e2} is:

r({e1}) = 6− 5 = 1, r({e2}) = 6− 5 = 1, r({e1, e2}) = 6− 4 = 2.

The resulting constraints are:

x1 ≤ 1, x2 ≤ 1, x1 + x2 ≤ 2,

respectively. The edges in of the set {e1, e2} connect two components and the constraint associated

with the set {e1, e2} is indeed redundant.

Given edge weights w1, .., wm, the problem of finding a spanning tree of the graph G (i.e, a subset

of edges that connect all the vertices in the graph and does not contain a cycle) with maximal total

weight is therefore a matroid optimization problem and can be solved using the following LOP:

max
∑

e∈E wexe

s.t. x(E′) ≤ r(E′) ∀E′ ⊆ E
xe ≥ 0

(24)

where xe represents the decision to include edge e ∈ E in the maximum spanning tree.

Observe that the selection problem of a single element can be viewed as a special case of the

maximum spanning tree problem, where G has two vertices and parallel edges between them.
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3.3 The LOPT Problem Formulation

Linear Optimization over a Polymatroid with Testing (LOPTs) are LOPs, in which the objective

coefficients W̄ are independent random variables from known distributions. Without testing, the

vector x that maximizes the expected objective value is the same vector x that solves the LOP

when the objective coefficients are E[W̄ ]:

max
x

E
[
W̄Tx

]
= max

x
E
[
W̄
]T
x, (25)

which follows directly from of the linearity of the expectation operator.

In LOPTs we assume that a decision-maker can test the coefficients prior to returning a feasible

solution, i.e., solving the corresponding LOP based on the current information. Testing an objective

coefficient Wi reveals its realization, denoted subsequently wi, but incurs a cost c > 0. After testing,

a decision-maker can either test a yet-untested coefficients, or stop testing and simply optimize with

respect to the tested coefficients and expected values of the untested coefficients, similarly to (25).

Our goal is to develop an adaptive policy that maximizes the expected profit, where profit is defined

as the returned solution’s objective value minus all the testing costs. A policy for an LOPT problem

decides adaptively whether to continue testing or optimize the LOP with respect to the expected

values of the untested objective coefficients and known values of the tested objective coefficients.

Whenever a policy decides to test, it must also decide which yet-untested coefficient to test, and

this decision could depend on the values of already tested coefficients. To put things in context of

the examples of Section 3.2, in the K-Selection problem, the coefficients W̄ represent the random

valuation of each element of the ground set. In the MST problem, the objective represent the

random edges weights.

Dynamic Programming Formulation of LOPTs

The system state of an LOPT can be described as a tuple
(
W̄ , w̄

)
, where W̄ denotes the vector

of random coefficients, and w̄ denotes the vector of tested coefficients. After testing coefficient

Wi ∈ W̄ , we transition to state
(
W̄ −Wi, w̄ +Wi

)
, where we use ’-’ and ’+’ to denote exclusion

and inclusion of elements from a set, i.e., W̄ −Wi ≡ W̄ \ {Wi} and w̄ + Wi ≡ w̄ ∪ {Wi}. With a

slight abuse of notation, we use ϕ(E[W̄ ], w̄) to denote the expected value of an optimal solution to

the LOP without future testing. This is based on the observation of Equation (25), in which the

optimal solution to the LOP with random objective coefficients can be obtained from the LOP by

replacing the untested coefficients with their expected values E[W̄ ]. Denote the value function of

the optimal policy at state
(
W̄ , w̄

)
by Jopt

(
W̄ , w̄

)
. The dynamic programming formulation of the
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LOPT problem can be then written as:

Jopt
(
W̄ , w̄

)
= max

ϕ(E[W̄ ], w̄) stop

−c+ EWi

[
Jopt

(
W̄ −Wi, w̄ +Wi

)]
test Wi

(26)

To motivate why testing could be valuable observe that ϕ(E[W̄ ], w̄) computes a solution that

is optimal with respect to the mean of the untested coefficients. However, this solution is not

necessarily optimal with respect to each realization, and revealing the exact values through testing

could therefore increase the total expected objective value function. In the extreme case, we can

test all the coefficients and ensure obtaining the optimal solution for any specific objective vector

realization, however, the testing costs might be too costly. The goal is to find a policy that optimally

balances the benefit from reducing the uncertainty associated with the objective vector and the

cost incurred by testing.

Observe that a state
(
W̄ , w̄

)
corresponds to the product of a subset of untested coefficients

and all possible realizations of the tested coefficients. This results in a huge state space, which we

cannot hope to solve optimally without characterizing the optimal policy. To do so, we examine

the structural properties of LOPs.

Properties of LOPs and LOPTs

Recall that by equation (19), for a given polymatroid Pf , the function ϕ(w) denotes the optimal

value of an LOP with a coefficients vector w ∈ RN+ . We now show what happens to the value of an

LOP when one of the coefficients changes and the rest remain fixed. This will be useful for showing

the optimality of a myopic stopping rule in Section 3.4.

Lemma 3.1. Without loss of generality, consider coefficient w1 and assume the remaining co-

efficients are fixed and sorted in non-increasing order w2 ≥ · · · ≥ wN . Define the function

ϕ̃(w1) = ϕ(w) of equation (19). The function ϕ̃(w1) satisfies the following properties:

1. ϕ̃(w1) is continuous, convex, and piecewise linear;

2. The separation points between linear segments in ϕ̃(w1) are the values of the remaining coef-

ficients w2, . . . , wN . In other words, ϕ̃(w1) is linear in each of the intervals (wi, wi+1) for all

i = 2, . . . , N − 1.

3. The derivative of ϕ̃(w1) in any linear segment (wi, wi+1) is constant and equals to

∂

∂w1
ϕ(w) =

d

dw1
ϕ̃(w1) = f({1, . . . , i})− f({2, . . . , i}).
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Proof. The first property is a known result for polytopes (see Theorem 5.3 in page 217 of Bertsimas

and Tsitsiklis (1997)), and the other properties follow directly from the same theorem, which states

that the derivative with respect to an objective coefficient is equal to the value of the respective

decision variable. For LOPs, this decision variable is given by equation (20) of the greedy algorithm,

which proves property 3.

One can interpret the dynamic programming formulation of the LOPT as a composition of

LOPs. As a consequence, some of the properties of LOPs carry through to LOPTs as given by the

following lemma.

Lemma 3.2. The value function Jopt
(
W̄ , w̄

)
is continuous, convex, and piecewise linear in every

tested coefficient wt ∈ w̄.

Proof. Proceed by induction on N . When N = 0, then W̄ = ∅ and the value function of Πopt is

Jopt (∅, w̄) = ϕ (∅, w̄)

which is continuous, convex, and piecewise linear in wt ∈ w̄ by Lemma 3.1.

For N ≥ 1, the value function of Πopt is given by equation (26). By the induction hypothesis,

Jopt
(
W̄ −Wi, w̄ +Wi

)
is continuous, convex, and piecewise linear in wt for any random coefficient

Wi ∈ W̄ and any realization of Wi. Since that continuity, convexity, and the piecewise linearity

are being preserved through summation and the maximum operator, the function Jopt
(
W̄ , w̄

)
is

continuous, convex, and piecewise linear for every wt ∈ w̄.

Myopic Policies

We define a few terms that will be useful in the discussion of myopic policies:

Definition 3.3. Πstop is the policy that at every state
(
W̄ , w̄

)
stops testing and solves the opti-

mization problem using the expected values of the untested parameters. The value function J stop of

policy Πstop satisfies:

J stop
(
W̄ , w̄

)
= ϕ

(
E
[
W̄
]
, w̄
)
. (27)

Definition 3.4. Πtest
i is the policy that every state

(
W̄ , w̄

)
tests parameter Wi ∈ W̄ and continues

according to the optimal policy Πopt. The value function J test
i of policy Πtest

i satisfies:

J test
i

(
W̄ , w̄

)
= −c+ EWi

[
Jopt

(
W̄ −Wi, w̄ +Wi

)]
. (28)

Definition 3.5. Πmy
i is the policy that at every state

(
W̄ , w̄

)
tests parameter Wi ∈ W̄ and stops.

The value function Jmy
i of policy Πmy

i satisfies:

Jmy
i

(
W̄ , w̄

)
= −c+ EWi

[
ϕ
(
E
[
W̄ −Wi

]
, w̄ +Wi

)]
. (29)
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Definition 3.6. For state
(
W̄ , w̄

)
and untested parameter Wi ∈ W̄ denote by ∆i

(
W̄ , w̄

)
the myopic

gain from testing Wi,

∆i

(
W̄ , w̄

)
= Jmy

i

(
W̄ , w̄

)
− J stop

(
W̄ , w̄

)
. (30)

Remark 3.7. Since the myopic policy Πmy
i

(
W̄ , w̄

)
only observes one more realization and the stop-

ping policy obtains no new information, ∆i is only sensitive to Wi, and treats all other untested

coefficients as their expectations. Hence, ∆i

(
W̄ , w̄

)
= ∆i

(
W̄ −Wl, w̄ + E[Wl]

)
for all Wl ∈{

W̄ −Wi

}
.

3.4 An Optimal Stopping Rule for LOPT with Coefficients with Equal Means

We now prove that a myopic rule is optimal in determining when to stop testing coefficients in

LOPTs in which the untested coefficients have equal means. We start by proving that a certain

monotonicity property holds, which we then use to show that the myopic stopping rule is indeed

optimal.

Lemma 3.8. At each state
(
W̄ , w̄

)
, for each untested parameter Wi ∈ W̄ and tested parameter

wt ∈ w̄, the function ∆i

(
W̄ , w̄

)
of an LOPT with equal mean µ of all untested coefficients is

unimodal in wt and maximized at wt = µ.

Proof. To prove the above, we first show that the function ∆i is continuous and piecewise linear in

wt ∈ w̄. We then show that in every linear segment where wt < µ, the derivative of ∆i with respect

to wt is non-negative, and that in every linear segment where wt > µ the derivative is non-positive.

The continuity of ∆i would then imply that ∆i is unimodal in wt and achieves its maximal value

at wt = µ.

By definition (Equation (30)) the function ∆i

(
W̄ , w̄

)
can be written as follows:

∆i

(
W̄ , w̄

)
= Jmy

i

(
W̄ , w̄

)
− J stop

(
W̄ , w̄

)
= −c+ EWi

[
ϕ
(
W̄ −Wi, w̄ +Wi

)]
− ϕ

(
W̄ , w̄

)
= −c+

∑
j

Prob(Wi = w′j)ϕ
(
W̄ −Wi, w̄ + w′j

)
− ϕ

(
W̄ −Wi, w̄ + µ

)
, (31)

where w′j denotes specific realizations of the random coefficient Wi. In the last equality we use the

fact that under the function ϕ, random coefficients are replaced by their expected value (which is

why we replaced ϕ
(
W̄ , w̄

)
with ϕ

(
W̄ −Wi, w̄ + µ

)
).

In Equation (31), we see that the function ∆i is the weighted summation of the function ϕ

applied to different states that share the same untested and tested coefficients, with the exception

of having different values for the tested parameter wi. By Lemma 3.1 (while changing to the names

of the variables), the function ϕ is continuous in wt ∈ w̄ and therefore so is the function ∆i.
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Moreover, Lemma 3.1 asserts that the function ϕ is piecewise linear with the non-smooth points

being the set of coefficients w̄\{wt}∪{µ}. Therefore, the summation in Equation (31) is a piecewise

linear function of wt where the non-smooth points are the union of all coefficients values:

S = wt \ {wt} ∪ {µ} ∪j {w′j}.

This implies that the function ∆i is not only continuous, but also piecewise linear in wt. Therefore,

the function ∆i is linear in every segment defined by two consecutive points in S.

We now take derivative of ∆i

(
W̄ , w̄

)
with respect to wt to show that the function ∆i

(
W̄ , w̄

)
is non-decreasing in wt in segments where wt < µ, and that it is non-increasing in wt in segments

where wt > µ (by definition µ ∈ S and therefore all segments are either below or above µ). The

derivative of ∆i with respect to wt can be written as follow:

∂

∂wt
∆i

(
W̄ , w̄

)
=

∂

∂wt

−c+
∑
j

Prob(Wi = w′j)ϕ
(
W̄ −Wi, w̄ + w′j

)
− ϕ

(
W̄ −Wi, w̄ + µ

)
=

∑
j

Prob(Wi = w′j)
∂

∂wt
ϕ
(
W̄ −Wi, w̄ + w′j

)
− ∂

∂wt
ϕ
(
W̄ −Wi, w̄ + µ

)
=

∑
j:w′

j<wt

(
Prob(Wi = w′j)

∂

∂wt
ϕ
(
W̄ −Wi, w̄ + w′j

))

+
∑

j:w′
j>wt

(
Prob(Wi = w′j)

∂

∂wt
ϕ
(
W̄ −Wi, w̄ + w′j

))

− ∂

∂wt
ϕ
(
W̄ −Wi, w̄ + µ

)
, (32)

where the second equality follows from the linearity of the derivative operator, and because c is a

constant. In the third equality we split the support of Wi to values that are higher and lower than

wt. Since that the support of Wi is included in S, there is no value w′j where w′j = wt.

Let w−j be a realization of Wi that satisfies w−j < wt, and let x−t denote the derivative of

ϕ
(
W̄ −Wi, w̄ + w−j

)
with respect to wt:

x−t =
∂

∂wt
ϕ
(
W̄ −Wi, w̄ + w−j

)
.

By Lemma 3.1 (property (3)), x− is insensitive to the value of w′j as long as it remains below wt:

x−t =
∂

∂wt
ϕ
(
W̄ −Wi, w̄ + w′j

)
, for all w′j < wt.

Similarly, we denote by x+
t the derivative of ϕ

(
W̄ −Wi, w̄ + w′j

)
with respect to wt for any real-

ization w′j > wt:

x+
t =

∂

∂wt
ϕ
(
W̄ −Wi, w̄ + w′j

)
, for all w′j > wt.
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We can then write Equation (32) as follows:

∂

∂wt
∆i

(
W̄ , w̄

)
=

∑
j:w′

j<wt

Prob(Wi = w′j)x
−
t +

∑
j:w′

j>wt

Prob(Wi = w′j)x
+
t − x

stop
t

=
∑

j:w′
j<wt

Prob(Wi = w′j)
(
x−t − x

stop
t

)
+

∑
j:w′

j>wt

Prob(Wi = w′j)
(
x+
t − x

stop
t

)
= Prob(Wi < wt)

(
x−t − x

stop
t

)
+ Prob(Wi > wt)

(
x+
t − x

stop
t

)
(33)

where xstopt denotes the derivative of ϕ
(
W̄ −Wi, w̄ + µ

)
with respect to wt. Recall that we compute

the derivative for each segment independently and that by construction wt 6= w′j and wt 6= µ.

Moreover, in every segment x−t , x+
t , and xstopt are constants.

Now that we have an expression for the derivative of ∆i

(
W̄ , w̄

)
with respect to wt ∈ w̄, we

show that it non-negative when wt < µ, and that it is non-positive when wt > µ.

Consider first the case where wt > µ. By Lemma 3.1, when wt > µ, the value of the derivative

of ∆i

(
W̄ −Wi, w̄ + w′j

)
with respect to wt ∈ w̄ is the same for all realizations w′j of Wi that are

smaller than wt, including wt = µ, which is why xstopt = x−t . We can then write Equation (33) as

follows:

∂

∂wt
∆i

(
W̄ , w̄

)
= Prob(Wi < wt)

(
x−t − x

stop
t

)
+ Prob(Wi > wt)

(
x+
t − x

stop
t

)
= Prob(Wi < wt) (0) + Prob(Wi > wt)x

+
t − Prob(Wi > wt)x

stop
t

= Prob(Wi > wt) (f({j : wj > wt} ∪ {t, i})− f({j : wj > wt} ∪ {i})))

−Prob(Wi > wt) (f({j : wj > wt} ∪ {t})− f({j : wj > wt}))

≤ 0,

where the third equality follows from Lemma 3.1, and the fact that wt > µ, and because x+
t corre-

sponds to realizations of Wi that are higher than wt. The inequaity results from the submodularity

of the function f .

Similarly, when wt < µ, the derivative of ∆i

(
W̄ −Wi, w̄ + w′j

)
with respect to wt is equal for

all the realizations of Wi that are larger than wt including µ. This implies that xstopt = x+
t , and

Equation (33) can be written as follows:

∂

∂wt
∆i

(
W̄ , w̄

)
= Prob(Wi < wt)

(
x−t − x

stop
t

)
+ Prob(Wi > wt)

(
x+
t − x

stop
t

)
= Prob(Wi < wt)x

−
t − Prob(Wi < wt)x

stop
t + 0

= Prob(Wi < wt)
(
f({j : wj > wt} ∪ W̄ ∪ {t})− f({j : wj > wt} ∪ W̄ )

)
−Prob(Wi < wt)

(
f({j : wj > wt} ∪ W̄ ∪ {t, i})− f({j : wj > wt} ∪ W̄ ∪ {i})

)
≥ 0,
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which holds for similar reasons.

The function ∆i is decreasing when wt > µ, and increasing when wt < µ, and is therefore

unimodal and obtains its maximal value in wt = µ.

Intuitively, Lemma 3.8 implies that the myopic gain of testing is monotonically decreasing when

we test, as coefficients drift from their expected value. We formalize this in the following corollary.

Corollary 3.9. At each state
(
W̄ , w̄

)
and for each untested parameter Wj ∈ W̄ , the myopic gain

∆j

(
W̄ , w̄

)
of an LOPT with equal mean µ does not increase by testing another untested coefficient

Wi ∈ W̄ −Wj:

∆j

(
W̄ , w̄

)
≥ ∆j

(
W̄ −Wi, w̄ + wi

)
, for every coefficient Wi ∈ W̄ −Wj , and realization wi.

Proof. Immediate by Lemma 3.8.

Corollary 3.9 implies that once all myopic gains are non-positive, they will remain non-positive

in future steps. We use this fact to prove that the myopic stopping rule is optimal.

Definition 3.10. We say that a policy adheres to the myopic stopping rule if at every state
(
W̄ , w̄

)
the policy stops, if and only if, all myopic gains are non-positive, that is:

∀Wi ∈ W̄ : ∆i

(
W̄ , w̄

)
≤ 0.

Theorem 3.11. The myopic stopping rule is optimal for LOPTs with untested coefficients that

have equal means.

Proof. One direction is straightforward since it is readily verified that if there exists an untested

parameter Wi ∈ W̄ , such that ∆i

(
W̄ , w̄

)
> 0 clearly stopping is not optimal since that a single

test of coefficient Wi outperforms stopping.

We prove the other direction by induction on the number of untested coefficients k. When

k = 1 the myopic stopping rule is optimal by definition. We prove the step k > 1 by contradiction.

Suppose that at state
(
W̄ , w̄

)
the myopic gains are non-positive (∀Wi ∈ W̄ : ∆i

(
W̄ , w̄

)
≤ 0) and

that the optimal policy π tests the yet-untested coefficient Wj . Using Lemma 3.8, in the next state(
W̄ −Wj , w̄ +Wj

)
the myopic gains remain non-positive regardless of the realization of Wj , that

is:

∀Wi ∈ W̄ −Wj : ∆i

(
W̄ −Wj , w̄ +Wj

)
≤ 0.

Using the induction hypothesis, it is therefore optimal to stop in state
(
W̄ −Wj , w̄ +Wj

)
. This

implies that policy π tests exactly once, and that the following holds:

Jπ
(
W̄ , w̄

)
= JMY

j

(
W̄ , w̄

)
≤ JSTOP

(
W̄ , w̄

)
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where the equality holds since that policy π tests exactly once, and the inequality holds since that

it is equivalent to ∆j

(
W̄ , w̄

)
≤ 0. This is a contradiction to the suboptimality of stopping in state(

W̄ , w̄
)
.

An interesting consequence of Lemma 3.8 is the following. Suppose that the myopic gain for

testing coefficient i is positive. If we test coefficient j and the realization of Wj happens to be close

to µ, then the myopic gain of testing coefficient i remains positive. That is, we can think about

untested coefficients as being a-priori at the mean value of their respective distributions; once we

test, the coefficients drift away from the mean values. The closer the realizations are to the mean,

the more likely we are to test again. On the other hand, if the realizations are farther away from

the mean, then we are less likely to test again. That is, for every state, there exists an interval

around the mean value where testing is optimal, as given by the following corollary.

Corollary 3.12. For an LOPT with untested coefficients that have the same mean and each given

state
(
W̄ , w̄ + v

)
, it is either optimal to stop regardless of the value v, or there exists v1, v2, such

that it is optimal to test if and only if v1 ≤ v ≤ v2.

Proof. By Lemma 3.8, the function ∆i

(
W̄ , w̄ + v

)
is unimodal in v and maximal in v = µ. Thus if

for each i it holds that ∆i

(
W̄ , w̄ + µ

)
≤ 0, then by Theorem 3.11 it is not optimal to test for any

value of v. If on the other hand, there exists an untested coefficient Wi such that ∆i

(
W̄ , w̄ + µ

)
> 0,

then we define v1, and v2 as follows:

v1 = inf
{
v : ∃j s.t. ∆j

(
W̄ , w̄ + v

)
> 0
}
,

and,

v2 = sup
{
v : ∃j s.t. ∆j

(
W̄ , w̄ + v

)
> 0
}
.

By Theorem 3.11, it is optimal to test, if and only if, v1 ≤ v ≤ v2.

The monotonic decrease in the myopic gain when we test also implies that if at a given state

stopping is optimal, and we still decide to test, it will always be optimal to stop in the next state,

for any choice of coefficient to be tested regardless of its realization. As we shall see, this will be

useful in later sections when analyzing certain suboptimal policies.

Corollary 3.13. For an LOPT with untested coefficients that have the same mean, if stopping

at state
(
W̄ +Wi, w̄

)
is optimal, then stopping is also optimal at state

(
W̄ , w̄ + v

)
, where v is a

realization of Wi.

Proof. Immediate by Corollary 3.9 and Theorem 3.11.
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We completely characterized the decision to stop testing for LOPTs with identical mean value

of untested coefficients. In the next two sections, we address the issue of deciding which coefficient

to test, when stopping is not optimal.

3.5 A Simple Optimal Policy for MST with Testing

We now focus on a special LOPT, Maximum Spanning Tree with Testing, or MST with Testing for

short. The formulation of the MST problem as an LOP is described in Section 3.2. Theorem 3.11

implies that when the cost coefficients (edge weights in MST) have the same mean, the myopic

stopping rule is optimal. In this section, we show that when the edge weights are also identically

distributed, then a myopic policy that consists of a myopic stopping rule and a myopic testing-order

rule, i.e., the order in which edges are tested is determined myopically, achieves optimal expected

profit. It is a well known fact that finding a minimum spanning tree can be done by negating

all edge weights and finding a maximum spanning tree, so we will only address the maximization

problem.

Formally, let G = (V,E) be a connected graph with vertices V = {v1, ..., vn} and edges E =

{e1, ..., em}. The edge weights denoted Wei , or Wi for short, are drawn i.i.d. from a known

distribution Wi ∼ W , with a finite mean E [Wi] = µ < ∞. The cost of testing an edge is c > 0.

The goal is to obtain an optimal policy that finds a spanning tree of the graph G, such that it

maximizes the expected profit, where profit in this case is the weight of the selected spanning tree

minus testing costs.

Remark 3.14 (Tie breaking). Throughout this section, we will use Kruskal’s algorithm to construct

MSTs. Kruskal’s algorithm orders the edges according to their weights in non-increasing order and

adds them to the MST if they do not close a cycle with existing tree edges. We will assume that ties

between edge weights are broken in a consistent manner, i.e., if there are several possible MSTs, the

algorithm will always return the same MST for the same weights. Furthermore, for simplicity, we

will assume that if an edge weight changes, such that it is tied with an existing edge weight, the tie

will be broken, such that the new value will be ordered after the old value in Kruskal’s algorithm.

When a policy stops testing, it optimizes based on tested edge weights and expectations of

untested edge weights (w̄,E[W̄ ]), so in fact the MST is computed on a deterministic graph, i.e., a

graph with deterministic edge weights. Therefore, we start by considering a deterministic graph

and defining the important notion of a substituting edge, that will be useful for following proofs.

Intuitively, the substituting edge is the best candidate for swapping with ei into (or out of) the

tree after testing it.
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Definition 3.15. Let T be a maximum spanning tree constructed by Kruskal’s algorithm in a

deterministic graph H = (V,E). For each edge ei ∈ E, the unique substituting edge esub(i), and

the unique cycle Cyclei that contains both ei and esub(i), are defined as follows:

• If the edge ei /∈ T , then Cyclei is the unique cycle that is created by adding ei to the tree. The

substituting edge esub(i) is defined as the tree edge with smallest weight in Cyclei \{ei}, i.e.,

appears latest in the ordering of Kruskal’s algorithm.

• If the edge ei ∈ T , then consider all the non-tree edges that close with the tree a cycle that

contains ei. The substituting edge esub(i) is the edge that has maximal weight among them,

i.e., appears first in the ordering of Kruskal’s algorithm. Denote by Cyclei the unique cycle

that is created by adding esub(i) to the tree.

We can now prove a lemma on the effect of changing one edge weight in a deterministic graph.

Lemma 3.16. Let T be a maximum spanning tree constructed by Kruskal’s algorithm in a deter-

ministic graph H. Consider changing the weight of edge ei from wi to w′i and let the resulting MST

be T ′. Then the tree T ′ is one out of three possible trees, the same tree T ′ = T , or T ′ = T−ei+esub(i),
or T ′ = T + ei − esub(i).

Proof. We use the following well-known ”Cycle Properties” of the MST:

1. For an edge el /∈ T , and for every edge ek ∈ Cyclel, it holds that wk ≥ wl.

2. For every cycle C in H, if there exists el ∈ C such that wk > wl for every other edge ek ∈ C,

then edge el /∈ T . Notice that by our tie breaking assumption, there is a unique such el even

if the former strong inequality is replaced by its weak version wk ≥ wl.

Consider first the case ei /∈ T . If w′i ≤ min{wk : ek ∈ Cyclei}, then by the first cycle property

also ei /∈ T ′. Since ei /∈ T and ei /∈ T ′, then the only cycle ei can close with T ′ is Cyclei.

Hence, the two executions of Kruskal’s algorithm make the same decisions (also) for all other edges

and therefore T ′ = T . Otherwise, w′i > wsub(i). Hence, ei is before esub(i) in the ordering and

Kruskal’s algorithm will place ei ∈ T ′ and esub(i) /∈ T ′. Notice that no other edge can be affected

by this change because there can only be one cycle formed by adding ei to the tree T . Therefore

T ′ = T + ei − esub(i).
Now consider the case ei ∈ T . By the first cycle property, wk ≥ wsub(i) for all ek ∈ Cyclei. If

w′i > wsub(i) their relative order in Kruskal’s algorithm remains the same, and by the second cycle

property esub(i) /∈ T ′ and ei ∈ T ′. Because esub(i) is the first in the ordering among all other non-tree

edges that form a cycle that contained ei with T , there is no cycle containing ei in which relative
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orders switch, hence Kruskal’s algorithm will return the same tree T ′ = T . Otherwise, w′i ≤ wsub(i),
the relative orders of ei and esub(i) switch (and possibly relative orders of ei and other non-tree

edges that form a cycle that contained ei with T also switch). Recall that esub(i) is ordered after

all the (tree) edges in Cyclei \{ei, esub(i)}, and before all (non-tree) edges that form a cycle that

contained ei with T . Thus esub(i) does not form a cycle with edges that are before it in the ordering

and are in T ′, so esub(i) ∈ T ′ and ei does form a cycle with tree edges since Cyclei \{ei} ⊂ T ′, so

ei /∈ T ′. Also, no other edge is affected by the change because every other non-tree edge that formed

a cycle that contained ei with T , now forms a cycle that contains esub(i) with T ′ (by transitivity).

Hence T ′ = T − ei + esub(i).

In conclusion, T and T ′ differ by at most one swap, and this swap can only be of ei and its

substituting edge esub(i).

Going forward, we return to the setting of MST with testing, in which some of the edge weights

are random. Recall that we denote the random edge weights by W̄ and the tested edge weights by

w̄. Recall also Definitions 3.3-3.5 of policies Πstop
(
W̄ , w̄

)
, Πtest

i

(
W̄ , w̄

)
, and Πmy

i

(
W̄ , w̄

)
. For each

state
(
W̄ , w̄

)
, if a policy chooses to stop, it returns a MST of the graph G, denoted by T stop

(
W̄ , w̄

)
,

which is constructed by Kruskal’s algorithm using expectations to replace random variables. For

an untested edge ei, the substituting edge esub(i)
(
W̄ , w̄

)
and Cyclei

(
W̄ , w̄

)
are defined similarly to

esub(i) and Cyclei in Definition 3.15, with regard to the MST T stop
(
W̄ , w̄

)
. Finally, recall definition

3.6 of the myopic gain of testing edge ei, denoted by ∆i

(
W̄ , w̄

)
. For simplicity, when the state is

clear from the context, we omit it from the notation.

We can now state the main result of this section. We show a myopic policy for MST with

testing when edge weights are i.i.d, that achieves optimal expected profit.

Theorem 3.17. If all the edge weights Wi are independent and identically distributed with mean

µ, then at each state
(
W̄ , w̄

)
the following policy is optimal: test an edge with the highest positive

myopic gain ∆i

(
W̄ , w̄

)
, and stop when all myopic gains are non-positive.

In Section 3.2, the MST with testing problem was formulated as an LOPT and therefore, by

Section 3.4, it is optimal to stop testing when all myopic gains are non-positive. It remains to show

that a policy that tests in non-increasing order of myopic gains is optimal. We do so by showing

that testing an edge can only affect edges that have the same myopic gain value. This implies that

if a myopic gain value is positive at some state, it remains positive as long as no other edge with

the same myopic value is tested. We then use this to show that testing by descending myopic gains

is optimal. First, we prove a couple of useful technical results.
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Lemma 3.18. At every state
(
W̄ , w̄

)
, testing a yet-untested edge ei can cause at most one difference

between T stop
(
W̄ , w̄

)
and T stop

(
W̄ −Wi, w̄ + wi

)
, which is swapping between ei and its substituting

edge esub(i)
(
W̄ , w̄

)
.

Proof. T stop
(
W̄ , w̄

)
and T stop

(
W̄ −Wi, w̄ + wi

)
are constructed using the deterministic values

(E[W̄ ], w̄) and (E[W̄ −Wi], w̄+wi) respectively. The only difference between these two executions

of Kruskal’s algorithm is the weight of ei that changes from E[Wi] to wi. Hence, by Lemma 3.16,

the MST can change by at most one edge, and that change is exactly swapping between ei and

esub(i)
(
W̄ , w̄

)
.

We can now use the previous lemma to simplify the expression for the myopic gain of edge ei.

For consistency we use the notation E
[
Wsub(i)

]
to denote the weight of edge esub(i), although is can

potentially be a deterministic value wsub(i) if the edge esub(i) was already tested.

Corollary 3.19. At each state
(
W̄ , w̄

)
and for each untested edge ei:

1. If ei /∈ T stop
(
W̄ , w̄

)
, then E

[
Wsub(i)

]
≥ µ and the myopic gain of ei is

∆i

(
W̄ , w̄

)
= E

[(
Wi − E

[
Wsub(i)

])+]− c. (34)

2. If ei ∈ T stop
(
W̄ , w̄

)
, then E

[
Wsub(i)

]
≤ µ and the myopic gain of ei is

∆i

(
W̄ , w̄

)
= E

[(
E
[
Wsub(i)

]
−Wi

)+]− c. (35)

Proof. If ei /∈ T stop
(
W̄ , w̄

)
, then esub(i) ∈ T stop

(
W̄ , w̄

)
by Definition 3.15. By the cycle properties

E[Wj ] ≥ E[Wi] = µ for all ej ∈ Cyclei. In particular, also E
[
Wsub(i)

]
≥ µ. The myopic gain will

be, by Definition 3.6 and Lemma 3.18,

∆i

(
W̄ , w̄

)
= Jmy

i

(
W̄ , w̄

)
− J stop

(
W̄ , w̄

)
= −c+ EWi

[
ϕ
(
E
[
W̄ −Wi

]
, w̄ +Wi

)]
− ϕ

(
E
[
W̄
]
, w̄
)

= EWi

[
ϕ
(
E
[
W̄
]
, w̄
)

+Wi − E
[
Wsub(i)

]
|Wi > E

[
Wsub(i)

]]
P
(
Wi > E

[
Wsub(i)

])
+EWi

[
ϕ
(
E
[
W̄
]
, w̄
)
|Wi ≤ E

[
Wsub(i)

]]
P
(
Wi ≤ E

[
Wsub(i)

])
− ϕ

(
E
[
W̄
]
, w̄
)
− c

= EWi

[
Wi − E

[
Wsub(i)

]
|Wi > E

[
Wsub(i)

]]
P
(
Wi > E

[
Wsub(i)

])
− c

= E
[(
Wi − E

[
Wsub(i)

])+]− c.
Similarly, if ei ∈ T stop

(
W̄ , w̄

)
, then esub(i) /∈ T stop

(
W̄ , w̄

)
by Definition 3.15. By the cycle proper-
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ties E
[
Wsub(i)

]
≤ µ. The myopic gain will be, by Definition 3.6 and Lemma 3.18,

∆i

(
W̄ , w̄

)
= Jmy

i

(
W̄ , w̄

)
− J stop

(
W̄ , w̄

)
= −c+ EWi

[
ϕ
(
E
[
W̄ −Wi

]
, w̄ +Wi

)]
− ϕ

(
E
[
W̄
]
, w̄
)

= EWi

[
ϕ
(
E
[
W̄
]
, w̄
)

+ E
[
Wsub(i)

]
−Wi|Wi < E

[
Wsub(i)

]]
P
(
Wi < E

[
Wsub(i)

])
+EWi

[
ϕ
(
E
[
W̄
]
, w̄
)
|Wi ≥ E

[
Wsub(i)

]]
P
(
Wi ≥ E

[
Wsub(i)

])
− ϕ

(
E
[
W̄
]
, w̄
)
− c

= EWi

[
E
[
Wsub(i)

]
−Wi|Wi < E

[
Wsub(i)

]]
P
(
Wi < E

[
Wsub(i)

])
− c

= E
[(
E
[
Wsub(i)

]
−Wi

)+]− c.

We can now show the independence between testing edges with different myopic gains.

Lemma 3.20. Assume that at state
(
W̄ , w̄

)
the two untested edges ei, ej have different myopic gain

values ∆i

(
W̄ , w̄

)
6= ∆j

(
W̄ , w̄

)
. Then for each realization wj of Wj, we have ∆i

(
W̄ −Wj , w̄ + wj

)
=

∆i

(
W̄ , w̄

)
. Similarly, for each realization wi of Wi, we have ∆j

(
W̄ −Wi, w̄ + wi

)
= ∆j

(
W̄ , w̄

)
.

Proof. Assume without loss of generality that at state
(
W̄ , w̄

)
a policy tests ej and reveals its

realization wj . Assume towards contradiction that ∆i

(
W̄ −Wj , w̄ + wj

)
6= ∆i

(
W̄ , w̄

)
. Recall

that by Corollary 3.19, if ei /∈ T stop
(
W̄ , w̄

)
then ∆i

(
W̄ , w̄

)
= E

[(
Wi − E

[
Wsub(i)

(
W̄ , w̄

)])+]− c,
and otherwise ∆i

(
W̄ , w̄

)
= E

[(
E
[
Wsub(i)

(
W̄ , w̄

)]
−Wi

)+] − c, and that by Lemma 3.18, the

only change that can happen to the MST is that ej and its substituting edge esub(j)
(
W̄ , w̄

)
swap.

Therefore, the only cases where testing ej can affect ∆i are:

1. If the substituting edge of ei does not change, but the value E
[
Wsub(i)

(
W̄ , w̄

)]
6= wsub(i)

(
W̄ −Wj , w̄ + wj

)
,

which implies that esub(i)
(
W̄ , w̄

)
= ej ;

2. Else if the tree T stop changes such that if ei /∈ T stop
(
W̄ , w̄

)
then ei ∈ T stop

(
W̄ −Wj , w̄ + wj

)
or the other way around, which implies that ei = esub(j)

(
W̄ , w̄

)
; or

3. Otherwise, if the substituting edge of ei changes such that esub(i)
(
W̄ , w̄

)
6= esub(i)

(
W̄ −Wj , w̄ + wj

)
.

For case 1, assume towards contradiction that ej = esub(i)
(
W̄ , w̄

)
. Then ei and ej are on

the same cycle, one of them is in the tree and the other is out of the tree. Assume first that

ei ∈ T stop
(
W̄ , w̄

)
, which implies that ej /∈ T stop

(
W̄ , w̄

)
. Then by Corollary 3.19, ∆i

(
W̄ , w̄

)
=

E
[
(µ−Wi)

+] − c. Since ej is outside the tree with expected weight µ, then every edge in

Cyclej \{ej} must have weight greater or equal to µ, specifically E[Wsub(j)] ≥ µ. On the other

hand, the substituting edge is by Definition 3.15 the smallest edge in the Cyclej \{ej}, which con-

tains ei. Therefore, E[Wsub(j)] ≤ µ, and hence E[Wsub(j)] = µ. So the myopic gain of edge ej is
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∆j

(
W̄ , w̄

)
= E

[
(Wj − µ)+] − c. Using the fact that Wi and Wj are independent and identically

distributed and a simple variation on Equation (4), ∆i

(
W̄ , w̄

)
= ∆j

(
W̄ , w̄

)
, in contradiction to

our assumption. Now assume that ei /∈ T stop
(
W̄ , w̄

)
, which implies that ej ∈ T stop

(
W̄ , w̄

)
. Then

by Corollary 3.19, ∆i

(
W̄ , w̄

)
= E

[
(Wi − µ)+] − c. Since ej is in the tree with expected weight

µ, then esub(j)
(
W̄ , w̄

)
/∈ T stop

(
W̄ , w̄

)
and it is the minimal such edge that closes a cycle with

ej . By similar reasons as before it must be that E[Wsub(j)] = µ. So the myopic gain of edge ej

is ∆j

(
W̄ , w̄

)
= E

[
(µ−Wj)

+] − c. Similarly, ∆i

(
W̄ , w̄

)
= ∆j

(
W̄ , w̄

)
, in contradiction to our

assumption.

Case 2 is symmetric to case 1, and thus also leads to contradiction.

For case 3, since ej is the edge whose weight changes, then either esub(i)
(
W̄ , w̄

)
= ej or

esub(i)
(
W̄ −Wj , w̄ + wj

)
= ej . The former case was covered by case 1, so it remains to prove the

latter. Assume towards contradiction that esub(i)
(
W̄ −Wj , w̄ + wj

)
= ej . First consider the case

ei /∈ T stop
(
W̄ , w̄

)
. Edge esub(i)

(
W̄ , w̄

)
∈ T stop

(
W̄ , w̄

)
is the minimal edge in Cyclei

(
W̄ , w̄

)
\ {ei},

so ei can only replace it as substituting edge if wj < E[Wsub(i)

(
W̄ , w̄

)
]. However, for ej to enter the

tree instead of esub(j)
(
W̄ , w̄

)
, then E

[
Wsub(j)

(
W̄ , w̄

)]
< wj . Together we get E

[
Wsub(j)

(
W̄ , w̄

)]
<

E[Wsub(i)

(
W̄ , w̄

)
], in contradiction to the minimality of esub(i)

(
W̄ , w̄

)
. Now consider the case

ei ∈ T stop
(
W̄ , w̄

)
. In this case, assume towards contradiction that esub(i)

(
W̄ −Wj , w̄ + wj

)
=

ej . This implies that adding ej to the tree T stop
(
W̄ −Wj , w̄ + wj

)
will close a cycle with ei.

Since E[Wsub(i)

(
W̄ , w̄

)
] 6= E

[
Wsub(j)

(
W̄ , w̄

)]
, then the edges esub(j)

(
W̄ , w̄

)
/∈ T stop

(
W̄ , w̄

)
and

esub(i)
(
W̄ , w̄

)
/∈ T stop

(
W̄ , w̄

)
cannot form the same cycle with the tree (if they did then only the

heavier of them would have been the substituting edge for both ej and ei). However, this implies

that the tree T stop
(
W̄ , w̄

)
had a cycle containing ej and ei, in contraction to it being a tree.

In conclusion, testing ej cannot have any affect on ∆i.

Proof of Theorem 3.17. Proceed by induction on N , the number of untested edges. For N = 1,

the base case, the myopic policy is trivially an optimal policy. For the inductive step, consider N > 1

untested edges. Assume by the inductive hypothesis that for any subset of W̄ of size less or equal

to N − 1, an optimal policy tests according to descending myopic gains. We shall show that it is

also optimal for N untested edges. Order the untested edges such that ∆1

(
W̄ , w̄

)
≥ ∆2

(
W̄ , w̄

)
≥

... ≥ ∆N

(
W̄ , w̄

)
. Denote by Πopt an optimal policy. Clearly if Πopt stops then our policy does

the same by Theorem 3.11 and the proof follows. Also, if there exists a single edge with positive

myopic gain, then this edge is clearly e1 and Πopt tests it, so the optimal policy tests in descending

order of non-negative myopic gains (because it is the only order for one edge), which completes

the proof. Thus, assume there is more than one edge with positive myopic gain. Let ei be the
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first edge that Πopt tests. Clearly, if Πopt tests ei such that ∆i

(
W̄ , w̄

)
= ∆1

(
W̄ , w̄

)
, then by the

induction hypothesis, the rest of the testing order of the optimal policy is in descending order of

myopic gains and the proof follows. We remain with the case that Πopt tests some edge ei such

that ∆1

(
W̄ , w̄

)
> ∆i

(
W̄ , w̄

)
≥ 0. In policy Πopt, testing ei will possibly lead to some change

in the optimal tree, but by Lemma 3.20 and Corollary 3.9, no matter what this change is, the

myopic gain ∆1 will remain the highest non-negative myopic gain. Hence, an edge obtaining a

myopic gain that equals ∆1 has to be tested next by the induction hypothesis. Without loss of

generality, assume it is e1. Denote by Πmy a myopic policy that tests according to descending

myopic gains, and tests e1 first. Assume towards contradiction that Πmy is strictly suboptimal, i.e.,

Jopt
(
W̄ , w̄

)
> Jmy

(
W̄ , w̄

)
.

We define a suboptimal policy Πsub that tests e1 first, ei second, and then mimics the optimal

policy. Clearly, Jmy
(
W̄ , w̄

)
≥ J sub

(
W̄ , w̄

)
because they perform the same first test and, according

to the induction hypothesis, Πmy performs optimally after the first test.

By Lemma 3.20, testing ei does not influence ∆1 and vice versa. Since both myopic gains

are non-negative, both policies Πsub and Πopt always test both edges e1 and ei. After conducting

both tests the sample path will be the same for both policies by the induction hypothesis. Hence,

J sub
(
W̄ , w̄

)
= Jopt

(
W̄ , w̄

)
, which concludes the proof. �

3.6 An Optimal Testing Rule for Symmetric LOPTs

In this section, we study another class of LOPTs for which a myopic policy, i.e., a policy composed

of both a myopic stopping rule and a myopic testing-order rule, obtains optimal expected profit.

Specifically, we study LOPT problems that are symmetric, i.e., where the polymatroid Pf is in-

variant to permutations of the decision variables, and in which there is a partial order between the

untested coefficients known as a convex order. This case is different from the MST problem which

in general is a-symmetric (as will be shown below), and more general than the MST in the sense

that the objective coefficients are in convex order and need not be identically distributed.

We start in Section 3.6.1 by defining symmetric problems, and discuss the symmetry of the

selection problem and the a-symmetry of the MST problem. In Section 3.6.2 we define the convex

order, and present some of its properties. Finally, in Section 3.6.3 we define the myopic policy and

show that it is optimal for the class of symmetric LOPTs where untested coefficients satisfy convex

order.

3.6.1 Symmetric LOPTs

Intuitively, we say that an optimization problem is symmetric if the only defining characteristic

of an unknown parameter is its value. For example, the selection problem presented in Section 2
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is symmetric, as we can permute the value of parameters and obtain an equivalent problem. In

contrast, the MST problem is not symmetric, because every parameter is associated with an edge

on a graph, and permuting the parameters values can result in a considerably different optimal

value. Before proving these statements, we start with a definition of symmetric LOPTs:

Definition 3.21. An LOPT is symmetric if the associated polymatroid Pf is invariant to permu-

tations of the decision variables x1, . . . , xN .

This definition leads to the following symmetry property of LOPTs.

Corollary 3.22. An LOPT is symmetric if the associated function ϕ(w) of equation (19) is a

symmetric function for all w.

Proof. By definition 3.21, the constraint polytope Pf of ϕ(w) is invariant to permutations of the

decision variables and by equation (19) the objective is linear, therefore swapping two coefficients

does not change the optimization.

The next lemma characterizes an interesting family of symmetric problems. It includes the

Selection problem discussed in Section 2.

Lemma 3.23. Every LOPT that is defined by a submodular function f(S) that only depends on

the cardinality of the set S defines a symmetric LOPT problem.

Proof. Let P denote an LOP with objective coefficients w̄, and let Pr denote an identical LOP

with a permutation w̄r over the coefficients. We need to show that for every permutation w̄r of

the coefficients w̄, the resulting value of the optimal solution for the two LOPs is identical, that is

ϕ(w̄) = ϕ(w̄r). We do this in two steps:

1. Show that the feasible region of the two problems is identical, and that every permutation x̄r

of a solution x̄ is also feasible;

2. Show that for every solution x̄ to P , there exists a permutation x̄r that achieves the same

objective value for the problem Pr.

To see (1), we look at all the constraints associated with some set cardinality l, which can be

written as:

∀U ⊆ S s.t. |U | = l :
∑
i∈U

xi ≤ f(l).

These constraints are symmetric with respect to the order of the permutation, for every value of l.

Therefore for every solution x̄, and a permutation r, the solution x̄r is also feasible.
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Figure 3.4: A non-symmetric MST.

To see why (2) holds, observe that for every permutation r, the following holds:

w̄Tr x̄r = w̄T x̄.

Corollary 3.24. The K-Selection problem is a symmetric LOPT.

Lemma 3.25. There exists an MST that is a non-symmetric LOPT.

Proof. Figure 3.4 illustrates a non-symmetric MST. We see that for the same graph (an LOP

instance) there are different optimal solution values for different permutations of edge weights

(objective coefficients). In Figure 3.4A the value of the MST is equal to 21, whereas in Figure 3.4B

the value of the MST is equal to 30.

3.6.2 The Convex Order

We now review the definition and main properties of the convex order. In particular, we describe

the mean preserving local spread and show its relation to the convex order. These concepts and

properties are key to the analysis in Section 3.6.3.

The convex order is a mathematical relation between probability distributions, that is often

used to model difference in risk profiles (see Müller and Stoyan (2002)). Intuitively, distributions

that are higher in convex order are more variable or spread around their mean values. Formally,

we say that X ≤cx Y (X is smaller in convex order than Y), if the expected value of any convex

function u on the two random variables results in a lower value for X, that is

X ≤cx Y ⇔ E[u(X)] ≤ E[u(Y )], for any convex function u for which expectations exist.

Figure 3.5 illustrates the convex order in discrete and continuous distributions. In the left side of

Figure 3.5 is an example of the convex order relation in discrete distributions. In the figure are three

discrete distributions that have the same mean value, but are different otherwise. In particular,
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Figure 3.5: Examples of discrete (left) and continuous (right) distributions in convex order.

the two-point distribution is higher in convex order than the uniform distribution, which is higher

in convex order than the binomial distribution. The right side of Figure 3.5 depicts three normally

distributed random variables with equal means and different variance. These distributions are

monotonically increasing in the convex order where a higher variance corresponds to a higher

convex order (e.g., the distribution denoted by 3 is higher both in variance and convex order than

the distributions denoted by 1 and 2). This is not a coincidence as variance is a convex function,

hence convex order implies monotonicity in variance.

The Mean Preserving Local Spread

Perhaps the simplest type of convex order is the mean preserving local spread as given by the

following definition:

Definition 3.26. (Müller and Stoyan (2002)) Let F and G be distribution functions of discrete

distribution whose common support is a finite set of points x1 < x2 < ... < xn with probability

mass function f and g respectively. Then G is said to differ from F by a local spread, if there exists

some i ∈ 2, 3, ..., n− 1 such that 0 = g(xi) ≤ f(xi), g(xi−1) ≥ f(xi−1), g(xi+1) ≥ f(xi+1), and

g(xj) = f(xj) for all j /∈ i− 1, i, i+ 1. A local spread is said to be mean preserving if F and G

have the same mean. Write F ≤LS G if G is a mean preserving local spread of F.

Intuitively, if distribution G can be obtained from a distribution F by shifting some of the

probability mass in one point of the support (which we call the focal point) to two adjacent points

while preserving the mean, then G is a mean preserving local spread of F . Figure 3.6 illustrates

two distributions F and G defined over the support {1, 2, ..., 7}. Observe that the conditions for

the local spread are satisfied:

• for i ∈ 1, 5, 6, 7 : gi = fi
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Figure 3.6: An example of the mean preserving local spread.

• g2 = f2 + ε1

• g3 = 0, f3 = ε1 + ε2 (i = 3 is the focal point)

• g4 = f4 + ε2

We argue that comparing random variables that are ordered in local spread is significantly

simpler than analyzing arbitrary distributions that are in convex order. For example, comparing

the expected values of some function of two random variables that are in local spread is easier than

comparing the expected values of arbitrary distributions, because many of the terms cancel out.

It is easy to show that local spread implies a convex order between distributions. Interestingly,

the reverse direction holds as well. That is, if two distributions are in convex order, then there

exists a series of distributions leading from one distribution to another, where every two consecutive

distributions are in local spread. This will be critical to the analysis where we essentially reduce the

model with general convex order relations to a model where there is only one pair of distributions

that are in local spread. Formally:

Theorem 3.27. (Müller and Stoyan (2002)) Let F and G be distribution functions of discrete

distribution with finite support. Then F ≤cx G holds if and only if there is a finite sequence

F1, ..., Fk with F1 = F and Fk = G, such that Fi ≤LS Fi+1 for i = 1, ..., k − 1.

3.6.3 A Simple Optimal Policy for Symmetric LOPTs under Convex Order

Similarly to Section 3.5, we define the myopic policy as the policy that stops when all myopic gains

are non-positive, and otherwise tests the coefficient that achieves the highest myopic gain. We
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prove that this policy is in fact optimal in determining not only in deciding when to stop testing

(Theorem 3.11), but also and in deciding on which coefficient to test.

Formally, let i∗(W̄ , w̄) denote the index of the untested coefficient that obtains the highest

myopic gain at state (W̄ , w̄) (in case of a tie we choose the highest index):

i∗(W̄ , w̄) = argmaxi∈[K]∆i(W̄ , w̄).

We define the myopic policy as follows:

Definition 3.28. At any state (W̄ , w̄) the myopic policy tests coefficient i∗(W̄ , w̄) if ∆∗i > 0, and

otherwise stops.

Observe that the myopic policy stops testing according to the myopic stopping rule (Defini-

tion 3.10), which means that the decision to stop testing is optimal for any LOPT with coefficients

that have the same mean value (Theorem 3.11).

Another interesting property of the myopic policy is that for symmetric LOPTs, when the

untested coefficients are in convex order, the myopic policy may only choose to test the coefficient

of the highest order:

Lemma 3.29. For symmetric LOPTs with untested coefficients that are in convex order W1 ≤cx
W2... ≤cx Wk, testing coefficient Wk obtains the highest myopic gain:

k = argmaxi∈[K]∆i(W̄ , w̄), for all states (W̄ , w̄).

Proof. Using Definition 3.6:

∆k

(
W̄ , w̄

)
= Jmy

k

(
W̄ , w̄

)
− J stop

(
W̄ , w̄

)
≥ Jmy

i

(
W̄ , w̄

)
− J stop

(
W̄ , w̄

)
= ∆i

(
W̄ , w̄

)
where the inequality follows from the definition of the convex order and the fact that Jmy

i

(
W̄ , w̄

)
can be written as the expectation of the following expression:

−c+ ϕ
(
E
[
W̄ −Wi

]
, w̄ +Wi

)
,

which is convex function of Wi (Lemma 3.2).

We are now ready to present the main result of this section, which is that for symmetric LOPTs

with coefficients that are in convex order, the myopic policy is optimal. Intuitively, this tells us

that when the only distinguishing factor between two untested parameters is their distributions (as

is the case in symmetric problems), we should favor testing the coefficient that is “more variable”

than others (e.g., the parameter that is highest in convex order). This is the parameter that gives

us most information, and is more likely to improve the optimization outcome. As an extreme
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example, consider the constant µ which is a trivial distribution that is smaller in convex order than

any other distribution with mean µ. Testing this distribution benefits less than testing any other

distribution (and in fact, it is never optimal to test it). Note that in the absence of symmetry (such

as in MSTs), the specific structure of the problem must also be taken into account when deciding

on which parameter to test, in addition to uncertainty reduction.

Theorem 3.30. For symmetric LOPTs with untested coefficients that are in convex order W1 ≤cx
W2... ≤cx Wk, the myopic policy is optimal.

Proof. We prove the theorem by induction on k. When k = 1 there is a single yet-untested

coefficient and the theorem trivially holds. For the case k > 1, recall that the myopic gain from

testing coefficient k is the highest (Lemma 3.29). This implies that if ∆k ≤ 0, then for every j the

myopic gain is non-positive (∆j ≤ 0). According to Theorem 3.11 stopping is optimal, in which

case, the myopic policy is also optimal. We therefore only need to consider the case where ∆k > 0,

in which testing is optimal. We show that there exists an optimal policy that tests coefficient k.

Assume by contradiction that at some state testing coefficient k is not optimal, and that there

exists an optimal policy that tests coefficient j. Let
(
W̄ ′ +Wj +Wk, w̄

)
denote any state that has

two or more untested coefficients, where W̄ ′ is the set of untested coefficients that are neither Wk

nor Wj (W̄ ′ could be the empty set). Moreover, let πj denote the optimal policy that starts by

testing coefficient j. We construct a policy πk which starts by testing coefficient k, and show that

the value function under policy πk is equal to or higher than the value function under policy πj .

That is, we show that the following holds:

Jπj
(
W̄ ′ +Wj +Wk, w̄

)
− Jπk

(
W̄ ′ +Wj +Wk, w̄

)
≤ 0. (36)

Before proving Equation (36), we briefly outline the remainder of the proof:

1. We define a sub-optimal policy denoted as policy Y.

2. We reformulate Equation (36) by adding and subtracting the term EJY
(
W̄ ′ +Wk, w̄ +Wk

)
(where JY denotes the value function under policy Y). This simplifies the analysis by allowing

us to compare expressions that are more similar to each other. The new expression is given

by Equation (37).

3. We then use the mean preserving local spread (Theorem 3.27) to create an upper bound for

Equation (37) using a sum of a telescopic series. Proving that every term in the telescopic

series is non-positive is a sufficient condition for the proof to hold. This essentially reduces

the problem from arbitrary convex orders to a mean preserving local spread. This term is

given by Equation (39).
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4. We explicitly write Equation (39). Since this term rather complex, we divide it to two parts

denoted by ’L’ and ’R’. First we derive the term ’L’, then derive the term ’R’, and then sum

the two. We present this summation using a function we denote by φ, and argue that in order

to complete the proof it is sufficient to show that the function φ is convex.

5. We establish the convexity of the function φ.

Step 1: Policy “Y”.

We start by defining policy Y as follows:

Definition 3.31. At any state
(
W̄ ′ + Y, w̄

)
(with Y denoting any untested coefficient, such as Wj,

Wk, or possibly a different random variable), policy Y tests coefficient Y at state
(
W̄ ′ + Y, w̄

)
, if the

optimal policy tests at state
(
W̄ ′ +Wk, w̄

)
, and otherwise stops. If policy Y tests, it later imitates

the optimal policy.

We make the following observations about policy Y:

1. Policy Y is defined with respect to the untested coefficients in W̄ ′.

2. Using the induction hypothesis, at state
(
W̄ ′ +Wk, w̄

)
the optimal policy may test only Wk

as it highest in convex order.

3. Under policy Y the same control is selected at states:
(
W̄ ′ + Y1, w̄

)
and

(
W̄ ′ + Y2, w̄

)
(where

Y1 and Y2 correspond to two different random variables). At both states the policy either

stops, or tests coefficients Y1 and Y2, respectively. This means that when testing, the two

states transition to states
(
W̄ ′, w̄ + Y1

)
and

(
W̄ ′, w̄ + Y2

)
, respectively.

4. At state
(
W̄ ′ +Wk, w̄

)
policy Y is in fact the optimal policy.

We next use policy Y to reformulate the sufficient condition for the optimality of policy πk given

by Equation (36).
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Step 2: Reformulating Equation (36).

Using the DP formulation of Equation (26), we can write Equation (36) as follows:

Jπj
(
W̄ ′ +Wj +Wk, w̄

)
− Jπk

(
W̄ ′ +Wj +Wk, w̄

)
= −c+ EJ

(
W̄ ′ +Wk, w̄ +Wj

)
−
(
−c+ EJ

(
W̄ ′ +Wj , w̄ +Wk

))
= EJ

(
W̄ ′ +Wk, w̄ +Wj

)
− EJ

(
W̄ ′ +Wj , w̄ +Wk

)
= EJ

(
W̄ ′ +Wk, w̄ +Wj

)
− EJ

(
W̄ ′ +Wj , w̄ +Wk

)
−
(
EJY

(
W̄ ′ +Wk, w̄ +Wk

)
− EJY

(
W̄ ′ +Wk, w̄ +Wk

))
= EJ

(
W̄ ′ +Wk, w̄ +Wj

)
− EJY

(
W̄ ′ +Wk, w̄ +Wk

)
+EJY

(
W̄ ′ +Wk, w̄ +Wk

)
− EJ

(
W̄ ′ +Wj , w̄ +Wk

)
, (37)

where the first equality follow directly from Equation (26), and in the second equality we cancel

the common term c. In the third equality we introduce two terms that sum to zero, where the

subscript Y denotes that the value function is computed under policy Y. By rearranging the terms

we obtain the last equality.

Observe that unlike Equation (36) in which we subtract the value function of two states that

are different in both untested and tested coefficients, in Equation (37) we subtract terms that

share either the same tested or untested coefficients (corresponding to the lower and upper rows in

Equation (37)).

Step 3: Bounding Equation (37) by a sum of a telescopic series.

Using Theorem 3.27 and the convex order Wj ≤cx Wk, there exists a series of random variables

Y1, ..., Ym such that: (1) Y1 ≤LS ... ≤LS Ym; (2) Y1
d
= Wj ; and (3) Ym

d
= Wk. We can then express

51



Equation (37) using the series Y1, ..., Ym:

EJ
(
W̄ ′ +Wk, w̄ +Wj

)
− EJY

(
W̄ ′ +Wk, w̄ +Wk

)
+EJY

(
W̄ ′ +Wk, w̄ +Wk

)
− EJ

(
W̄ ′ +Wj , w̄ +Wk

)
= EJ

(
W̄ ′ +Wk, w̄ + Y1

)
− EJY

(
W̄ ′ +Wk, w̄ + Ym

)
+EJY

(
W̄ ′ + Ym, w̄ +Wk

)
− EJ

(
W̄ ′ + Y1, w̄ +Wk

)
= EJ

(
W̄ ′ +Wk, w̄ + Y1

)
− EJ

(
W̄ ′ +Wk, w̄ + Ym

)
+EJY

(
W̄ ′ + Ym, w̄ +Wk

)
− EJ

(
W̄ ′ + Y1, w̄ +Wk

)
≤ EJ

(
W̄ ′ +Wk, w̄ + Y1

)
− EJ

(
W̄ ′ +Wk, w̄ + Ym

)
+EJY

(
W̄ ′ + Ym, w̄ +Wk

)
− EJY

(
W̄ ′ + Y1, w̄ +Wk

)
=

m−1∑
l=1

(
EJ
(
W̄ ′ +Wk, w̄ + Yl

)
− EJ

(
W̄ ′ +Wk, w̄ + Yl+1

))
+
m−1∑
l=1

(
EJY

(
W̄ ′ + Yl+1, w̄ +Wk

)
− EJY

(
W̄ ′ + Yl, w̄ +Wk

))
, (38)

where in the first equality we substitute Wj and Wk with Y1 and Ym, respectively. In the second

equality, we remove the subscript Y because policy Y and πj coincide (by definition of policy Y).

In the first inequality, we use the fact that policy Y is sub-optimal, which we then rewrite as a sum

of a telescopic series to obtain Equation (38).

Therefore, a sufficient condition for equations 36 and (37) to hold is that every term in the

telescopic series given by Equation 38 is non-positive. That is, for everyWj ≤cx Yl ≤LS Yl+1 ≤cx Wk

the following inequality holds:

EJ
(
W̄ ′ +Wk, w̄ + Yl

)
− EJ

(
W̄ ′ +Wk, w̄ + Yl+1

)︸ ︷︷ ︸
L

+EJY
(
W̄ ′ + Yl+1, w̄ +Wk

)
− EJY

(
W̄ ′ + Yl, w̄ +Wk

)︸ ︷︷ ︸
R

≤ 0, (39)

where L denotes the summation in the upper row, and R denotes the summation in the lower row.

Step 4: Using local spread to simplify Equation (39).

We now delve into Equation (39) and explicitly write the expectations using probability distribu-

tions. We use the fact that the random variables Yl and Yl+1 are in local spread, which means that

their distributions is identical in all but three points in the support of their distributions. Specifi-

cally, by Definition 3.26, there exists a support y1 < y2 < ... < yz, a focal point s (1 < s < z), and

probabilities ε1 and ε2, which satisfy:
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• Prob(Yl+1 = ys−1) = Prob(Yl = ys−1) + ε1

• Prob(Yl+1 = ys+1) = Prob(Yl = ys+1) + ε2

• Prob(Yl+1 = ys) = Prob(Yl = ys)− ε1 − ε2=0

• Prob(Yl+1 = yi) = Prob(Yl = yi), for i /∈ {s− 1, s, s+ 1}

• ε1(ys − ys−1) = ε2(ys+1 − ys), or equivalently:

ys =
ε1

(ε1 + ε2)
ys−1 +

ε2
(ε1 + ε2)

ys+1, (40)

The reader is referred to Figure 3.6 for an intuitive illustration. In addition, we use vm to denote

values from the support of the random variables Wk.

We can now express the expressions L and R using the support and probabilities of the distri-

butions Yl and Yl+1.

Step 4.1: The term L.

The term L represents the difference in the expected value function of two states that have the

same untested coefficients and all but one different tested coefficient. Using the definition of local

spread, we can write the difference in expectations as follows:

L = EJ
(
W̄ ′ +Wk, w̄ + Yl

)
− EJ

(
W̄ ′ +Wk, w̄ + Yl+1

)
=

z∑
m=1

Prob(Yl = ym)J
(
W̄ ′ +Wk, w̄ + ym

)
−

z∑
m=1

Prob(Yl+1 = ym)J
(
W̄ ′ +Wk, w̄ + ym

)
=

z∑
m=1

(Prob(Yl = ym)− Prob(Yl+1 = ym)) J
(
W̄ ′ +Wk, w̄ + ym

)
= −ε1J

(
W̄ ′ +Wk, w̄ + ys−1

)
+(ε1 + ε2)J

(
W̄ ′ +Wk, w̄ + ys

)
−ε2J

(
W̄ ′ +Wk, w̄ + ys+1

)
, (41)

where the first equality is the definition of L, and in the second equality we explicitly write

expectations. The third equality follows from simple arithmetics, and in the fourth equality,

we eliminate identical terms using the local spread and the fact that for i /∈ {s − 1, s, s + 1}:
Prob(Yl = yi) = Prob(Yl+1 = yi), and for i ∈ {s− 1, s, s+ 1}, we can express the difference in the

probability mass function using ε1 and ε2.
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Step 4.2: The term R.

The term R is the difference of the value functions under policy Y applied to two very similar

states that share the same tested coefficients, and are different only by a single untested coefficient.

Under policy Y, at both states, the same control is chosen according to what policy πj does at

state
(
W̄ ′ +Wk, w̄ +Wk

)
. We therefore divide the support of the random variable Wk into two

sets based on whether policy πj stops (the set S1) or tests (the set S2) at state
(
W̄ ′ +Wk, w̄ +Wk

)
:

S1 =
{
m : Jπj

(
W̄ ′ +Wk, w̄ + vm

)
= ϕP

(
W̄ ′ +Wk, w̄ + vm

)}
,

and

S2 =
{
m : Jπj

(
W̄ ′ +Wk, w̄ + vm

)
= −c+ Ek

[
Jπj
(
W̄ ′ +Wk, w̄ + vm

)]}
.

We can then rewrite the term R as follows:

R = EJY
(
W̄ ′ + Yl+1, w̄ +Wk

)
− EJY

(
W̄ ′ + Yl, w̄ +Wk

)
=
(1)

∑
m

Prob(Wk = vm)
(
JY
(
W̄ ′ + Yl+1, w̄ + vm

)
− JY

(
W̄ ′ + Yl, w̄ + vm

))
=
(2)

∑
m∈S1

Prob(Wk = vm)
(
JY
(
W̄ ′ + Yl+1, w̄ + vm

)
− JY

(
W̄ ′ + Yl, w̄ + vm

))
+
∑
m∈S2

Prob(Wk = vm)
(
JY
(
W̄ ′ + Yl+1, w̄ + vm

)
− JY

(
W̄ ′ + Yl, w̄ + vm

))
=
(3)

∑
m∈S1

Prob(Wk = vm)
(
ϕ
(
E[W̄ ′ + Yl+1], w̄ + vm

)
− ϕ

(
E[W̄ ′ + Yl], w̄ + vm

))
+
∑
m∈S2

Prob(Wk = vm)
(
JY
(
W̄ ′ + Yl+1, w̄ + vm

)
− JY

(
W̄ ′ + Yl, w̄ + vm

))
=
(4)

∑
m∈S1

Prob(Wk = vm) (0)

+
∑
m∈S2

Prob(Wk = vm)
(
JY
(
W̄ ′ + Yl+1, w̄ + vm

)
− JY

(
W̄ ′ + Yl, w̄ + vm

))
=
(5)

∑
m∈S2

Prob(Wk = vm)
(
−c+ EJ

(
W̄ ′, w̄ + vm + Yl+1

))
+
∑
m∈S2

−Prob(Wk = vm)
(
−c+ EJ

(
W̄ ′, w̄ + vm + Yl

))
=
(6)

∑
m∈S2

Prob(Wk = vm)
(
EJ
(
W̄ ′, w̄ + vm + Yl+1

)
− EJ

(
W̄ ′, w̄ + vm + Yl

))
=
(7)

∑
m∈S2

Prob(Wk = vm)ε1J
(
W̄ ′, w̄ + vm + ys−1

)
−
∑
m∈S2

Prob(Wk = vm) (ε1 + ε2) J
(
W̄ ′, w̄ + vm + ys

)
+
∑
m∈S2

Prob(Wk = vm)ε2J
(
W̄ ′, w̄ + vm + ys+1

)
(42)
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where in equality (1) we explicitly write the expectation with respect to Wk, and in equality (2)

we divide the support to the sets S1, and S2. By the definition of the set S1, policy Y stops

when vm ∈ S1, which allows us to replace the value function JY with the stopping cost ϕ, and

obtain equality (3). Using the symmetry of the function ϕ, and the convex order which implies

that E[Yl] = E[Yl+1], we obtain that the difference in the summation of over the set S1 is equal to

zero, which brings us to equality (4). In equality (5), we use the fact that when vm ∈ S2 testing

is optimal, which we simplify to obtain equality (6). Finally, and similarly to the derivation of the

term L, we can write the expectations using probability mass functions, and cancel identical terms

using the similarity of the distributions of Yl and Yl+1.

Now that we derived the terms for L and R, we can sum them to obtain Equation (39) which

we try to prove is non-positive.

Step 4.3: The term L+R.

We can sum the derived terms for L and R (equations 41 and 42, respectively):

L+R = −ε1J
(
W̄ ′ +Wk, w̄ + ys−1

)
+ (ε1 + ε2)J

(
W̄ ′ +Wk, w̄ + ys

)
−ε2J

(
W̄ ′ +Wk, w̄ + ys+1

)
+
∑
m∈S2

Prob(Wk = vm)ε1J
(
W̄ ′, w̄ + vm + ys−1

)
−
∑
m∈S2

Prob(Wk = vm) (ε1 + ε2) J
(
W̄ ′, w̄ + vm + ys

)
+
∑
m∈S2

Prob(Wk = vm)ε2J
(
W̄ ′, w̄ + vm + ys+1

)
= (ε1 + ε2)

J (W̄ ′ +Wk, w̄ + ys
)
−
∑
m∈S2

Prob(Wk = vm)J
(
W̄ ′, w̄ + vm + ys

)
−ε1

J (W̄ ′ +Wk, w̄ + ys−1

)
−
∑
m∈S2

Prob(Wk = vm)J
(
W̄ ′, w̄ + vm + ys−1

)
−ε2

J (W̄ ′ +Wk, w̄ + ys+1

)
−
∑
m∈S3

Prob(Wk = vm)J
(
W̄ ′, w̄ + vm + ys+1

)
= (ε1 + ε2)φ(ys)− ε1φ(ys−1)− ε2φ(ys+1)

= (ε1 + ε2)

(
φ(ys)−

ε1
ε1 + ε2

φ(ys−1)− ε2
ε1 + ε2

φ(ys+1)

)
(43)

where the function φ(y) is defined as follows:

φ(y) = J
(
W̄ ′ +Wk, w̄ + y

)
−
∑
m∈S2

Prob(Wk = vm)J
(
W̄ ′, w̄ + vm + y

)
.
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This implies that the sufficient condition for the optimality of policy πk (Equation (39)), can be

written as follows:

φ(ys)−
ε1

ε1 + ε2
φ(ys−1)− ε2

ε1 + ε2
φ(ys+1) ≤ 0. (44)

By the definition of local spread and Equation 40, ys is a convex combination of the points ys−1

and ys+1:

ys =
ε1

(ε1 + ε2)
ys−1 +

ε2
(ε1 + ε2)

ys+1,

and therefore to prove that Equation 44 holds, it is sufficient to show that the function φ(y) is

convex in y. Observe that the convexity of φ(y) does not trivially holds since as it is the difference

of two convex functions.

We next show that the function φ(y) is indeed convex and complete our proof.

Step 5: Establishing the convexity of the function φ(y).

To prove that the function φ(y) is convex, we calculate the derivative of φ(y) in the three consecutive

intervals, denoted as intervals 1, 2, and 3. We show that the function φ(y) is continuous, piecewise

linear, whose derivative is piecewise constant and increasing, and therefore the function φ(y) is

convex.

We start by defining the three intervals. Corollary 3.12 implies that there are three possible

ranges of values for y:

1. y < v1 : it is optimal to stop at state (W̄ ′ +Wk, w̄ + y)

2. v1 ≤ y ≤ v2 : it is optimal to test at state (W̄ ′ +Wk, w̄ + y)

3. v2 < y : it is optimal to stop at state (W̄ ′ +Wk, w̄ + y)

Recall that the set S1 is defined to be the values of the support y1, ..., yz at which stopping is

optimal, and therefore S1 is equal to the union of intervals 1 and 3. Similarly, the set S2 is the

equal to interval 2.

We now calculate the derivative in each of the intervals.

Interval 1. By definition of interval 1, it is optimal to stop at state (W̄ ′ + Wk, w̄ + y), which

implies that it is also optimal to stop at any state (W̄ ′, w̄ + y + vm) (Corollary 3.13). We can

therefore write the function φ in interval 1 as follows:

φ1(y) = JStop
(
W̄ ′ +Wk, w̄ + y

)
−
∑
m∈S2

Prob(Wk = vm)JStop
(
W̄ ′, w̄ + vm + y

)
. (45)
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We are interested in φ′1(y) in the range y < v1:

φ′1(y) =
d

dy

JStop (W̄ ′ +Wk, w̄ + y
)
−
∑
m∈S2

Prob(Wk = vm)JStop
(
W̄ ′, w̄ + vm + y

)
(1)
=

d

dy

ϕ (E[W̄ ′ +Wk], w̄ + y
)
−
∑
m∈S2

Prob(Wk = vm)ϕ
(
E[W̄ ′], w̄ + vm + y

)
(2)
=

d

dy

ϕ (E[W̄ ′], w̄ + y + µ
)
−
∑
m∈S2

Prob(Wk = vm)ϕ
(
E[W̄ ′], w̄ + vm + y

)
(3)
=

d

dy

ϕ (E[W̄ ′], w̄ + y + v1

)
−
∑
m∈S2

Prob(Wk = vm)ϕ
(
E[W̄ ′], w̄ + v1 + y

)
(4)
=

d

dy

ϕ (E[W̄ ′], w̄ + v1 + y
)1−

∑
m∈S2

Prob(Wk = vm)


(5)
=

d

dy
ϕ
(
E[W̄ ′], w̄ + v1 + y

)∑
m∈S1

Prob(Wk = vm)


(6)
=

d

dy
ϕ
(
E[W̄ ′], w̄ + v1 + y

) ∑
m:vm<v1

Prob(Wk = vm)

+
d

dy
ϕ
(
E[W̄ ′], w̄ + v1 + y

) ∑
m:vm>v2

Prob(Wk = vm)

(7)
=

d

dy
ϕ
(
E[W̄ ′], w̄ + v1 + y

) ∑
m:vm<v1

Prob(Wk = vm)

+
d

dy
ϕ
(
E[W̄ ′], w̄ + v2 + y

) ∑
m:vm>v2

Prob(Wk = vm) (46)

where the first transition we use DP formulation (Equation 26), and in transition (2) we use

symmetry. In transition (3) we use the fact that ϕ is solved by the greedy algorithm, and that in

the resulting solution, the value of the variable corresponding to coefficient y, is not affected by

changes in coefficients with higher values. Since that in interval 1 y < v1, changing any coefficient

that is larger or equal to v1 to v1 does not change the value of the variable corresponding to y,

and therefore does not affect the derivative of ϕ with respect to y. This allows us to replace µ by

v1. Similarly, we may replace any coefficient vm in the set S2 (which values are greater than v1, by

definition) with v1.

With simple arithmetic we obtain transitions (4) and (5). In transition (6) we split the values

of vm in the set S1 to values that are smaller than v1, and to values that are higher than v2. Finally

with similar arguments to transition (3) we obtain transition (7).
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Interval 2. In this interval, it is optimal to perform a test while being at state (W̄ ′+Wk, w̄+y).

We can write the derivative of φ(y) in this interval as follows:

φ′2(y)

(1)
=

d

dy

JTest (W̄ ′ +Wk, w̄ + y
)
−
∑
m∈S2

Prob(Wk = vm)J
(
W̄ ′, w̄ + vm + y

)
(2)
=

d

dy

−c+
∑

m∈S1∪S2

Prob(Wk = vm)J
(
W̄ ′, w̄ + vm + y

)
−
∑
m∈S2

Prob(Wk = vm)J
(
W̄ ′, w̄ + vm + y

)
(3)
=

d

dy

∑
m∈S1

Prob(Wk = vm)J
(
W̄ ′, w̄ + vm + y

)
(4)
=

d

dy

∑
m∈S1

Prob(Wk = vm)JStop
(
W̄ ′, w̄ + vm + y

)
(5)
=

d

dy

∑
m∈S1

Prob(Wk = vm)ϕ
(
E[W̄ ′], w̄ + vm + y

)
(6)
=

d

dy

( ∑
m:vm<v1

Prob(Wk = vm)ϕ
(
E[W̄ ′], w̄ + vm + y

))

+
d

dy

( ∑
m:vm>v2

Prob(Wk = vm)ϕ
(
E[W̄ ′], w̄ + vm + y

))
(7)
=

d

dy

( ∑
m:vm<v1

Prob(Wk = vm)ϕ
(
E[W̄ ′], w̄ + v1 + y

))

+
d

dy

( ∑
m:vm>v2

Prob(Wk = vm)ϕ
(
E[W̄ ′], w̄ + v2 + y

))
(8)
=

d

dy
ϕ
(
E[W̄ ′], w̄ + v1 + y

) ∑
m:vm<v1

Prob(Wk = vm)

+
d

dy
ϕ
(
E[W̄ ′], w̄ + v2 + y

) ∑
m:vm>v2

Prob(Wk = vm) (47)

where equality (1) follows from the definition of interval 2. In (2) we use the definition of expecta-

tion, and in (3) we eliminate similar terms and the constant c which does not affect the derivative.

In (4) we use the fact that when vm ∈ S1 it is optimal to stop at state (W̄ ′ +Wk, w̄ + vm), which

implies that it is also optimal to stop at state (W̄ ′, w̄ + y + vm) (Corollary 3.13). We can then

rewrite the last expression using the function ϕ (transition (5)). In (6) we split the summation to

two, and in (7) we use Lemma 3.2 and the fact that y is in interval 2 which allows us to change

any coefficients that are outside of interval 2, that is, the values of vm. In (8) we simply rearrange
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the terms.

Interval 3. Similarly to to interval 1, it is optimal to stop at states (W̄ ′ + Wk, w̄ + y) and

(W̄ ′, w̄+ y+ vm) when y > v2, and we can write the derivative of the function φ(y) in this interval

as follows:

φ′3(y) =
d

dy

JStop (E[W̄ ′ +Wk], w̄ + y
)
−
∑
m∈S2

Prob(Wk = vm)JStop
(
E[W̄ ′], w̄ + vm + y

)
=

d

dy

ϕ (E[W̄ ′ +Wk], w̄ + y
)
−
∑
m∈S2

Prob(Wk = vm)ϕ
(
E[W̄ ′], w̄ + vm + y

)
=

d

dy

ϕ (E[W̄ ′], w̄ + y + µ
)
−
∑
m∈S2

Prob(Wk = vm)ϕ
(
E[W̄ ′], w̄ + vm + y

)
=

d

dy

ϕ (E[W̄ ′], w̄ + y + v1

)
−
∑
m∈S2

Prob(Wk = vm)ϕ
(
E[W̄ ′], w̄ + v1 + y

)
=

d

dy

ϕ (E[W̄ ′], w̄ + y + v1

)1−
∑
m∈S2

Prob(Wk = vm)


=

d

dy
ϕ
(
E[W̄ ′], w̄ + v1 + y

)∑
m∈S1

Prob(Wk = vm)


=

d

dy
ϕ
(
E[W̄ ′], w̄ + v1 + y

) ∑
m:vm<v1

Prob(Wk = vm)

+
d

dy
ϕ
(
E[W̄ ′], w̄ + v2 + y

) ∑
m:vm>v2

Prob(Wk = vm), (48)

where all the transitions follows for similar arguments as in interval 1.

We see that the derivative of φ(y) is the same in all three intervals (equations 46, 47, and 48 are

identical). Moreover, this is the derivative of a non-decreasing piecewise linear and convex function

(Lemma 3.2), which means that φ′(y) is piecewise constant and non-decreasing. The continuity of

φ(y), and the fact that its derivative is piecewise constant, and non-decreasing, implies that φ(y)

is convex in y.

The convexity of φ(y), implies that the inequalities in equations 44, 39, and 36 hold, and

therefore policy πk is optimal, which contradicts the suboptimality of policy πk.
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4 A General Testing Problem

In Section 3, we proved that a stopping rule that is based on myopic gains is optimal for certain

LOPTs. In this section, we prove that the same stopping rule is optimal for a more general class of

problems. Starting with the general problem formulation (Section 4.1), we then provide a sufficient

condition under which a myopic stopping rule is optimal (Section 4.2).

4.1 Problem Formulation

Consider an optimization problem P that depends on a vector of parameters w̄ (more generally, it

can be a matrix or a tensor, but we describe it as a vector for simplicity). For example, w̄ can be

the matrix and cost coefficients of a linear program, or the weights of edges in a set cover problem,

or perhaps the cost parameters of an inventory control problem. For every vector w̄, there is an

optimal policy that achieves the objective value which we denote by ϕP (w̄).

In a General Testing Problem (GTP), the untested parameters are mutually independent ran-

dom variables, denoted by a vector W̄ . Moreover, the realization of these random variables can be

observed by testing at the cost c > 0. At any point of time, we can either test one of the parameters,

or to stop testing and return a feasible solution with respect to tested values and expected values

of the untested parameters. Our goal is to find an optimal policy to decide adaptively on which

parameters to test and when to stop.

As the testing problem evolves, more parameters are tested. Let W̄ denote the set of untested

parameters and w̄ the set of tested (or realized) parameters. We can then describe the system state

using the tuple (W̄ , w̄).

Assumption 4.1. The vector of variables that solves the expected maximization problem P is the

same as the vector of variables that solves the maximization problem P over the expectations of

coefficients, i.e.,

x = arg maxE
[
ϕP
(
W̄ , w̄

)]
= arg maxϕP

(
E
[
W̄
]
, w̄
)
.

Notice that except for the case of a linear objective we encountered in the Section 3, there

are many other functions for which Assumption 4.1 holds when the untested coefficients in W̄ are

mutually independent.

Using Assumption 4.1, the general testing problem can be written as the following Dynamic

Programming problem:

Jopt
(
W̄ , w̄

)
= max

ϕ(E[W̄ ], w̄) optimize

−c+ EWi

[
Jopt

(
W̄ −Wi, w̄ +Wi

)]
testi

(49)
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where Jopt denotes the value function of the optimal policy at state
(
W̄ , w̄

)
. We use ’-’ and ’+’ to

denote exclusion and inclusion of elements from a set (W̄−Wi ≡ W̄ \{Wi} and w̄+Wi ≡ w̄∪{Wi}).
Testing implies that the algorithm continues to learn and update the unknown parameters.

Optimizing, on the other hand, implies that the algorithm stops learning and solves the optimization

problem using the expected values of the remaining untested parameters. Optimizing problems

using expectations is a common practice and often is optimal (as is the case for the problems

reviewed in Section 3).

Connection to Optimal Stopping Problems

There is a similarity between problems in optimal stopping theory and GTPs. In both types of

problems, the goal is to choose a stopping rule that maximizes the expected reward. However, in

GTPs, the policy can also define the order in which tests are made. So, in this sense, GTPs are

generalizations of optimal stopping problems in cases where the testing order does not matter. In

other words, if the parameters are identically distributed and the function ϕ is symmetric, then the

corresponding GTP becomes an optimal stopping time problem.

4.2 An Optimal Stopping Rule for GTPs

Observe that under Assumption 4.1, the definitions in Section 3.3 hold for the general case as well.

Assumption 4.2. At every state
(
W̄ , w̄

)
, for every untested parameter Wi ∈ W̄ and for every

tested parameter wt ∈ w̄, the function ∆i

(
W̄ , w̄

)
is maximized at wt = E[Wt].

Theorem 4.3. (Myopic Stopping Rule) Under assumptions 4.1 and 4.2, stopping is optimal, if

and only if, stopping is at least as good as every myopic testing policy, i.e.,

Jopt
(
W̄ , w̄

)
= J stop

(
W̄ , w̄

)
⇔ ∀Wi ∈ W̄ , Jmy

i

(
W̄ , w̄

)
≤ J stop

(
W̄ , w̄

)
. (50)

Proof. Proceed by induction on the number of untested parameter k. When k = 1 myopic testing

is the same as testing, so the lemma clearly holds.

When k > 1, assume that there exists a coefficientWi′ ∈ W̄ such that Jmy
i′
(
W̄ , w̄

)
> J stop

(
W̄ , w̄

)
.

Then it is suboptimal to stop, and therefore Jopt
(
W̄ , w̄

)
> J stop

(
W̄ , w̄

)
.

Now for the opposite direction, assume

∀Wi ∈ W̄ ,∆i

(
W̄ , w̄

)
= Jmy

i

(
W̄ , w̄

)
− J stop

(
W̄ , w̄

)
≤ 0. (51)

We need to show that J stop
(
W̄ , w̄

)
≥ J test

i

(
W̄ , w̄

)
for all Wi ∈ W̄ . To do that, it suffices to show

that is not optimal to test more than once, i.e., J test
i

(
W̄ , w̄

)
= Jmy

i

(
W̄ , w̄

)
. Let us test once.
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Suppose we test coefficient Wt ∈ W̄ and get the realization wt, moving to state
(
W̄ −Wt, w̄ + wt

)
.

By Remark 3.7 and equation (51),

∀Wi ∈
{
W̄ −Wt

}
,∆i

(
W̄ −Wt, w̄ + E[Wt]

)
= ∆i

(
W̄ , w̄

)
≤ 0. (52)

By assumption 4.2, and equation (52), for all wt ∈ R+

∀Wi ∈
{
W̄ −Wt

}
,∆i

(
W̄ −Wt, w̄ + wt

)
≤ ∆i

(
W̄ −Wt, w̄ + E[Wt]

)
≤ 0. (53)

Using the induction hypothesis, if we test any yet untested parameter, it is optimal to stop in the

next iteration. This implies that J test
i

(
W̄ , w̄

)
= Jmy

i

(
W̄ , w̄

)
for all Wi ∈ W̄ . Along with equation

(51), this implies

∀Wi ∈ W̄ , J test
i

(
W̄ , w̄

)
≤ J stop

(
W̄ , w̄

)
.

Therefore, stopping is better than testing any edge, which implies stopping is optimal

Jopt
(
W̄ , w̄

)
= J stop

(
W̄ , w̄

)
.

Assumption 4.2 states that the myopic gain is monotonically decreasing with testing regardless

of our choice for the tested parameters and the realizations of the tested parameters. This implies

that once myopically it is not beneficial to test, it will remain so in the future. This explains why

Theorem 4.3 holds and why the myopic stopping rule is optimal.
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5 Concluding Remarks and Future Work

For many interesting cases of stochastic combinatorial optimization problems with testing that have

real-world applications, we obtained an optimal policy that is described using myopic rules. We

assumed throughout that the testing cost c > 0 is uniform and fixed, that the random coefficients

W1, . . . ,WN are mutually independent, and that they have equal finite means E[Wi] = µ.

These results suggest several directions for future work. First, it may be interesting to examine

the problems mentioned in this thesis with less restrictive assumptions. For example, by examining

non-uniform testing cost, i.e., each coefficient has a different testing cost, or even a case with

random testing costs. In particular, relaxing the equal-means assumption for selection with testing

would be especially intriguing, because it can lead to progress on other interesting problems, such

as shortest path with testing.

For general optimization problems with testing, we found sufficient conditions under which a

myopic stopping rule is optimal. It remains open to find sufficient conditions under which a myopic

testing-order rule is optimal. One may also wonder about necessary conditions for the existence of

a myopic policy that obtains optimal profit. We conjecture that a necessary condition for a myopic

policy to obtain optimal for a testing problem is that the deterministic version of the problem can

be solved efficiently by a greedy algorithm. Notice that this condition holds for all problems that

were considered in this thesis.

So far we considered only solutions that achieve the optimum exactly. It may be interesting

to consider also myopic policies that lead to approximately optimal solutions for problems whose

deterministic version is NP-hard. A first step in this direction may be to examine NP-hard problems

that are approximated well by a greedy algorithm, such as set cover (or more generally, problems

that fall under the formulation of Wolsey (1982)).
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