

Thesis for the degree

Master of Science

By

Dmitry Kogan

Advisor:
Prof. Robert Krauthgamer

November 2014

Submitted to the Scientific Council of the
Weizmann Institute of Science

Rehovot, Israel

 חתכים בגרפים והיפרגרפים תמצות
Sketching Cuts in Graphs and Hypergraphs

 עבודת גמר)תזה(לתואר

 מוסמך למדעים

 מאת

 דמיטרי קוגן

 התשע"ה חשוון

למועצה המדעית של תמוגש
 מכון ויצמן למדע
 רחובות, ישראל

:המנח
 פרופ' רוברט קראוטגמר

Abstract

The emergence of massive datasets has led to the rise of new computational paradigms where
computation is limited. In the streaming model the input graph is presented to the algorithm as a
stream of edges which is prohibitively large to be stored in its entirety (i.e., the algorithm’s space
complexity must be small relative to the stream size). After reading the stream, the algorithm
should report a solution to a predetermined problem on the graph. In the sketching model, the
input graph is summarized into a so-called sketch, which is short yet suffices for further processing
without access to the original input.

Cuts in graphs is a classical topic of both theoretical and practical interest, studied extensively
for more than half a century. A graph cut is a partition of the vertices to two disjoint sets, and the
value of the cut is the number of edges (or their total weight in case the graph is weighted) with one
endpoint in each part of the partition. This definition can be extended to r-uniform hypergraphs,
in which case hyperedges are sets of r vertices, and a hyperedge belongs to the cut if it intersects
both parts of the vertex bipartition.

We first address a natural question, whether the the value of the maximum cut in a graph admits
approximation strictly better than factor 1/2 by streaming algorithms that use space sublinear in
the number of vertices n. We show that any streaming algorithm achieving a (1−ε)-approximation
must use n1−O(ε) space; moreover, beating 4/5-approximation requires polynomial space.

Second, we study sketching of cuts in hypergraphs. A cut sketch is a succinct representation of
a hypergraph, that can be used to estimate the value of any cut up to a (1 + ε)-approximation.
Cut sparsifiers are a particularly strong form of sketches, that do not only retain the value of every
cut, but are actually subhypergraphs, rather than arbitrary data structures. We show that every
r-uniform hypergraph admits a (1+ε)-cut-sparsifier with O(ε−2n(r+log n)) edges. Along the way,
we establish new bounds on the number of approximately minimum cuts in hypergraphs. These
two results (about cut-sparsification and cut-counting) generalize known results for graphs (r = 2)
by Benczúr and Karger [STOC ’96].

Finally, as a step towards understanding the sketching complexity of a wider range of Constraint
Satisfaction Problems, we show that k-SAT instances on n variables admit a sketch of size Õ(kn/ε2)
that can be used to (1 + ε)-approximate the value of all truth assignments.

1

Acknowledgements

First and foremost, I would like to express my gratitude and appreciation to my advisor, Robert
Krauthgamer. His patient guidance has shaped my research experience over the past two years.
I especially thank him for finding the delicate balance of allowing me to pursue my interests and
follow my hunches and research directions, while gently guiding me to the right path.

I would also like to thank Itai Benjamini, for his support and encouragement, and for many
inspiring discussions.

Finally, I would like to thank the Faculty of Mathematics & Computer Science in the Weizmann
Institute of Science for providing its students with an incredible scientific environment.

3

Contents

1 Introduction 7
1.1 Our Results . 8
1.2 Related Work . 9

2 Sketching Max-Cut 11
2.1 Proof of Theorem 2.1 . 11
2.2 Reporting a Vertex-Bipartition (rather than a value) 13
2.3 2/3-Approximation of Max-Cut in the Two Party Model 14

3 Sketching Cuts in Hypergraphs 15
3.1 Counting Near-Minimum Cuts in Hypergraphs . 16

3.1.1 A Randomized Contraction Algorithm . 16
3.1.2 Proof of Lemma 3.7 . 18
3.1.3 Lower Bound . 20

3.2 Proof Of Theorem 3.1 . 20
3.3 SAT Sparsification . 22

4 Future Directions 23

Bibliography 25

5

Chapter 1

Introduction1

The emergence of massive datasets has turned many algorithms impractical, because the standard
assumption of having (fast) random access to the input is no longer valid. One example is when
data is too large to fit in the main memory (or even on disk) of one machine; another is when the
input can be accessed only as a stream, e.g., because its creation rate is so high, that it cannot
even be stored in full for further processing. Luckily, the nature of the problems has evolved too,
and we may often settle on approximate, rather than exact, solutions.

These situations have led to the rise of new computational paradigms. In the streaming model
(aka data-stream), the input can be accessed only as a stream (i.e., a single pass of sequential
access), and the algorithm’s space complexity (storage requirement) must be small relative to the
stream size. In the sketching model, the input is summarized (compressed) into a so-called sketch,
which is short yet suffices for further processing without access to the original input. The two
models are related – sketches are often useful in the design of streaming algorithms, and vice versa.
In particular, lower bounds for sketch-size often imply lower bounds on the space complexity of
streaming algorithms.

Graph problems. Recently, the streaming model has seen many exciting developments on graph
problems, where an input graph G = (V,E) is represented by a stream of edges. The algorithm
reads the stream and should then report a solution to a predetermined problem on G, such as graph
connectivity or maximum matching; see e.g. the surveys [Zha10, McG14]. Throughout it will be
convenient to denote n = |V |, and to assume edges have weights, given by w : E → R+. While
initial efforts focused on polylogarithmic-space algorithms, various intractability results have shifted
the attention to what is called the semi-streaming model, where the algorithm’s space complexity
is Õ(n).2 In general, this storage is not sufficient to record the entire edge-set.

Cuts in graphs is a classical topic that has been studied extensively for more than half a century,
and the last two decades have seen a surge of attention turning to the question of their succinct
representation. The pioneering work of Benczúr and Karger [BK96] introduced the notion of cut
sparsifiers: given an undirected graph G = (V,E,w), a (1 + ε)-sparsifier is a (sparse) weighted
subgraph G′ = (V,E′, w′) that preserves the value of every cut up to a multiplicative factor 1 + ε.

1This thesis is based on a paper accepted for publication at ITCS 2015 [KK15].
2We use Õ(f) to denote O(f polylog f), which suppresses logarithmic terms.

7

Formally, this is written as

∀S ⊂ V, 1 ≤ w′(S, S̄)

w(S, S̄)
≤ 1 + ε; (1.1)

where w(S, S̄) =
∑

e∈E:|e∩S|=1we is used to denote the value of the cut. It is sometimes convenient

to replace the left-hand side of (1.1) with 1 − ε or 1
1+ε , which affects ε ≤ 1

2 by only a constant
factor. In addition to their role in saving storage, sparsifiers are important because they can speed-
up graph algorithms whose running time depends on the number of edges. Observe that sparsifiers
are a particularly strong form of graph-sketches since on top of retaining the value of all cuts, they
hold the additional property of being subgraphs, rather than arbitrary data structures.

Ahn and Guha [AG09] built upon the machinery of cut sparsifiers to present an Õ(n/ε2)-space
streaming algorithm that can produce a (1 + ε)-approximation to all cuts in a graph. Further
improvements handle also edge deletions [AGM12a, AGM12b, GKP12], or the stronger notion of
spectral sparsification (see [KLM+14] and references therein). These results are nearly optimal, due
to a space lower bound of Ω(n/ε2) bits for sketching all cuts in a graph [AKW14] (which improves
an earlier bound of [AG09]).

Recent Directions. These advances on sketching and streaming of graph cuts inspired new
questions. One direction is to seek space-efficient streaming algorithms for specific cut problems,
such as approximating Max-Cut, rather than all cuts. A second direction concerns hypergraphs,
asking whether cut sparsification, sketching and streaming can be generalized to hypergraphs.
Finally, viewing cuts in graphs and hypergraphs as special cases of constraint satisfaction problems
(CSPs), we ask whether also other CSPs admit sketches. Currently, there is a growing interest
in generalizing graph cut problems to broader settings, such as sparsifying general set systems
using small weighted samples [NR13], high-dimensional expander theory [KKL14], sparsest-cuts in
hypergraphs [LM14, Lou14], and applications of hypergraph cuts in networking [YOTI14].

1.1 Our Results

We first address a natural question raised in [IMNO11, Question 10], whether the well-known
Max-Cut problem admits approximation strictly better than factor 1/2 by streaming algorithms
that use space sublinear in n. Here, Max-Cut denotes the problem of computing the value of a
maximum cut in the input graph G (and not the cut itself), since reporting a cut requires space Ω(n)
(see Section 2.2 for a short proof). We prove that for every fixed ε ∈ (0, 1

5), streaming algorithms

achieving (1 − ε)-approximation for Max-Cut must use n1−O(ε) space. In fact, even beating
4/5-approximation requires polynomial space. Our result is actually stronger and holds also in a
certain sketching model. Previously, it was known that streaming computation of Max-Cut exactly
requires Ω(n2) bits [Zel11]. Our proof is by reduction from the Boolean Hidden Hypermatching
problem, and captures the difficulty of distinguishing, under limited communication, whether the
graph is a vertex-disjoint union of even-length cycles (in which case the graph is bipartite) or of
odd-length cycles (in which case we can bound the maximum cut value). See Chapter 2 for details.

Second, we study sparsification of cuts in hypergraphs, and prove that every r-uniform hyper-
graph admits a sparsifier (weighted subhypergraph) of size Õ(rn/ε2) that approximates all cuts
within factor 1± ε. This result immediately implies sketching and streaming algorithms (following
[AG09]). Here, the weight of cut (S, S̄) in a hypergraph H = (V,E,w) is the total weight of all

8

hyperedges e ∈ E that intersect both S and S̄.3 This question was raised by de Carli Silva, Harvey
and Sato [dCHS11, Corollary 8], who show that every r-uniform hypergraph has a sparsifier of size
O(n) that approximates all cuts within factor Θ(r2). Along the way, we establish interesting, if not
surprising, bounds on the number of approximately minimum cuts in hypergraphs. Technically,
this is our most substantial contribution, see Chapter 3 for details.

Finally, as a step towards understanding the sketching complexity of a wider range of CSPs, we
show that every k-SAT instance on n variables admits a sketch of size Õ(kn/ε2) that can be used
to (1 + ε)-approximate the value of all truth assignments. We prove this result in Section 3.3 by re-
ducing it to hypergraph sparsification. We remark that sketching of CNF formulae was studied in a
different setting, where some computational-complexity assumptions were used in [DvM10] to pre-
clude a significant size-reduction that preserves the satisfiability of the formula. Our sparsification
result differs in that it approximately preserves the value of every assignment.

1.2 Related Work

Independently of our work, Kapralov, Khanna and Sudan [KKS15] study the same problem of
approximating Max-Cut in the streaming model. They first prove that for every fixed ε > 0,
streaming algorithms achieving (1−ε)-approximation for Max-Cut must use n1−O(ε) space. (This
is similar to our Theorem 2.1.) They then make significant further progress, and show that achieving
an approximation ratio strictly better than (the trivial) 1/2 requires Ω̃(

√
n) space. In fact, this

result holds even if the edges of the graph are presented in a random (rather than adversarial)
order.

Hypergraph sparsifiers of sizeO(n2/ε2) are implied by a result of Newman and Rabinovich [NR13]
for the following problem of approximating measures on set systems. Let F be a set system over a
finite set X, let µ be a measure on X (which naturally extends to a measure on F) and let ε ∈ (0, 1).
The goal is to construct a measure µ∗, supported on a small subset of X, such that the extensions of
µ and of µ∗ to F approximate each other, i.e., ∀S ∈ F , µ∗(S) ∈ (1±ε)µ(S). They show a construc-
tion in which the support size of µ∗ can be bounded by a structural parameter of F called triangular
rank and denoted trk(F). Specifically, in their construction | supp(µ∗)| = O(trk(F) · log |F|/ε2).
They also define splitting set systems – a special class of set systems in which X,F ⊂ 2V are two
families of subsets of some underlying set V . For splitting systems they prove [NR13, Claim 4.1]
that trk(F) ≤ |V |− 1. The archetype of splitting set systems is in fact graph and hypergraph cuts,
where V is the set of vertices, X is the set of hyperedges, and F is the set of cuts. Therefore their
construction implies hypergraph sparsifiers of size O(n2/ε2).4

More broadly, the general theme of graph compression – succinctly representing a graph while
preserving some of its combinatorial properties – is studied extensively in the literature, with many
examples of various flavors. A classical example is a Gomory-Hu tree [GH61] which is a weighted
tree that represents the minimum s − t cut values for all pairs of vertices in an input graph.
Another notable example is the notion of graph spanners (defined by Peleg and Schäffer [PS89]) –

3Another possible definition, see [dCHS11, Corollary 7], is
∑
e∈E we · |e ∩ S| · |e ∩ S̄|. The latter definition seems

technically easier for sparsification, although both generalize the case of ordinary graphs (r = 2).
4Their argument does not imply a bound stronger than O(n2/ε2) even for r-uniform hypergraphs. They show

that trk(F) ≥ VCdim(F) where VCdim(F) is the Vapnik-Chervonenkis dimension of the set system. Even when F
is the family of cuts of a (2-uniform) graph, it holds VCdim(F) ≥ n− 1, which follows, for example, from considering
a path on n vertices, and observing that the set of n− 1 edges is shattered by the set of cuts.

9

spar subgraphs that approximately preserve the shortest path distances between all pairs of vertices
in the graph. The related notion of distance oracles (introduced by Thorup and Zwick [TZ05]) deals
with arbitrary data structures, rather than subgraphs, that can approximate the distances between
all pairs of vertices, with emphasis on achieving low space and very fast query time. Other models
aim to preserve the combinatorial property of interest only with respect to some predetermined
(small) subset of the vertices, called terminals. For example, Moitra [Moi09] introduced the notion
of vertex sparsifiers – graphs (not necessarily subgraphs) that approximately preserve the values
of minimum cuts separating any partition of the terminals. In a subsequent work, Leighton and
Moitra [LM10] extended this definition and introduced flow sparsifiers – graphs that approximately
preserve the congestion of every multicommodity flow with endpoints supported on the set of
terminals.

10

Chapter 2

Sketching Max-Cut

The classical Max-Cut problem is perhaps the simplest Max-CSP problem. Therefore, it has
been studied extensively, leading to fundamental results both in approximation algorithms [GW95]
and in hardness of approximation [KKMO07]. It is thus natural to study Max-Cut also in the
streaming model. As mentioned above, preserving the values of all cuts in a graph requires linear
space even if only approximate values are required [AG09, AKW14], which raises the question
whether smaller space suffices to approximate only the Max-Cut value (as mentioned above, it is
natural to require the algorithm to report only the value of the cut as opposed to the cut itself, see
Section 2.2).

Sketching all cuts in a graph clearly preserves also the maximum-cut value, and thus an Õ
(
n
ε2

)
space streaming algorithm for (1−ε)-approximation of Max-Cut follows immediately from [AG09].
Yet since the maximum cut value is always Ω(m), where m is the total number (or weight) of all
edges, a similar result can be obtained more easily by uniform sampling (achieving εm additive
approximation for all cuts) [Zel09, Theorem 21]. The latter approach has the additional advantage
that it immediately extends to hypergraphs.

It turns out that this relatively straightforward approach is not far from optimal, as we prove
that streaming algorithms for (1− ε)-approximation of Max-Cut require n1−O(ε) space.

Theorem 2.1. Fix a constant ε ∈ (0, 1
5). Every (randomized) streaming algorithm that computes

a (1 − ε)-approximation of the Max-Cut value in n-vertex graphs requires space Ω(n1−1/t) for
t = b 1

2ε −
1
2c, which in particular means space n1−O(ε).

To prove this result, we consider the somewhat stronger one-way two-party communication
model, where instead of arriving as a stream, the set of edges of a graph is split between two parties,
who engage in a communication protocol to compute (approximately) the graph’s maximum-cut
value. Since a lower bound in this model immediately translates to the original streaming model,
the theorem above follows immediately from Theorem 2.3 below.

2.1 Proof of Theorem 2.1

Definition 2.2 (Max-Cutε). Let G = (V,EA ∪ EB) be an input graph on |V | = n vertices with
maximum cut value1 c∗, and ε > 0 some small constant. Max-Cutε is a two-player communication

1For the proof of the lower bound it suffices to restrict our attention to unweighted graphs, with all edges having
unit weight.

11

game where Alice and Bob receive the edges EA and EB respectively and need to output a value c′

such that with high probability (1− ε)c∗ ≤ c′ ≤ c∗.

Theorem 2.3. Fix a constant ε ∈ (0, 1
5). Then the randomized one-way communication complexity

of Max-Cutε is Ω(n1−1/t) for t = b 1
2ε −

1
2c.

The proof is by a reduction from the following communication problem studied in [YV11].

Definition 2.4 (BHHt
n). The Boolean Hidden Hypermatching problem is a communication

complexity problem where

• Alice gets a boolean vector x ∈ {0, 1}n where n = 2kt for some integer k,

• Bob gets a perfect hypermatching M on n vertices where each edge has t vertices and a boolean
vector w of length n/t.

Let Mx denote the length-n/t boolean vector (
⊕

1≤i≤t xM1,i , . . . ,
⊕

1≤i≤t xMn/t,i
) where (M1,1, . . . ,M1,t)

, . . . ,(Mn/t,1, . . . ,Mn/t,t) are the edges of M. It is promised that either Mx⊕w = 1n/t or Mx⊕w =

0n/t. The problem is to return 1 in the former case, and to return 0 in the latter.

Lemma 2.5 ([YV11, Theorem 2.1]). The randomized one-way communication complexity of BHHt
n

where n = 2kt for some integer k ≥ 1 is Ω(n1−1/t).

Proof of Theorem 2.3. We show a reduction from BHHt
n to Max-Cutε. Consider an instance

(x,M,w) of the BHHt
n problem: Alice gets x ∈ {0, 1}n, and Bob gets a perfect hypermatching M

and a vector w ∈ {0, 1}n/t.
We construct a graph G for the Max-Cutε problem as follows (see Figure 2.1 for an example):

• The vertices of G are V = {vi}2ni=1 ∪ {ui}2ni=1 ∪ {wi}
2n/t
i=1 .

• The edges EA given to Alice are: for every i ∈ [n], if xi = 0, Alice is given two “parallel” edges
(u2i−1, v2i−1), (u2i, v2i); if xi = 1, Alice is given two “cross” edges (u2i−1, v2i), (u2i, v2i−1).

• The edges EB given to Bob are: for each hyperedge Mj = (i1, i2, . . . , it) ∈ M (where the
order is fixed arbitrarily):

– For k = 1, 2, . . . , t− 1, Bob is given (u2ik−1, v2ik+1−1) and (u2ik , v2ik+1
)

– For k = t, Bob is given (u2it , w2j) and (v2it−1, w2j−1);

– If wj = 0 Bob is given two “parallel” edges (w2j , v2i1) and (w2j−1, v2i1−1); if wj = 1, Bob
is given two “cross” edges (w2j , v2i1−1) and (w2j−1, v2i1)

By definition, for each j ∈ [n/t], if Mj = (i1, i2, . . . , it) ∈ M and (Mx)j ⊕ wj = 0 we have∑t
k=1 xik ⊕ wj = 0. Since the number of 1 bits in the latter sum is even, when we start traversing

from u2i1 we go through an even number of “cross” edges and complete a cycle of length 2t + 1.
Similarly when starting our traversal at u2i1−1 we complete a different cycle of the same length.
Therefore if (x,M,w) is a 0-instance the graph consists of 2n

t paths of (odd) length 2t + 1 each.
Therefore the maximum cut value is c∗0 = 2t · 2n

t = 4n.
On the other hand if (Mx)j ⊕wj = 1, starting our traversal at u2i1−1, we pass an odd number

of cross edges and end up at u2i1 , from where we once again pass an odd number of cross edges, to
complete a cycle of total length 2 · (2t+1) = 4t+2 that ends back in u2i1−1. Therefore, if (x,M,w)

12

u1 u2

v1 v2

u3

v3

u4

v4

u5

v5

u6

v6

w1 w2

Figure 2.1: An example of a gadget constructed in the proof of Theorem 2.3 for t = 3, a matching
M that contains the hyperedge M1 = (1, 2, 3), x1 = 1, x2 = 0, x3 = 1 and w1 = 0. The result is
two paths of length 7. Alice’s and Bob’s edges are shown as solid and dashed lines respectively.

is a 1-instance the graph consists of n/t paths of (even) length 4t+2 each. The maximum cut value
in this case is c∗1 = 4n+ 2nt .

Observing that c∗0/c
∗
1 = 4n

4n+2n/t = 2t
2t+1 < 1 − ε, we conclude that a randomized one-way

protocol for Max-Cutε (on input size n′ = 4n+n/t = O(n)) gives a randomized one-way protocol
for BHHt

n. By Lemma 2.5 the Theorem follows.

Proof of Theorem 2.3. Any streaming algorithm for Max-Cutε leads to a one-way communication
protocol in the two party setting. Moreover the communication complexity of this protocol is
exactly the space complexity of the streaming algorithm. Hence by Theorem 2.3 the streaming
space complexity is at least as high as the one way randomized communication complexity.

2.2 Reporting a Vertex-Bipartition (rather than a value)

We show a simple Ω(n) space lower bound for reporting a vertex-bipartition that gives an approx-
imate maximum cut.

Proposition 2.6. Let ε ∈ (0, 1
2) be some small constant. Suppose sk is a polynomial time sketching

algorithm that outputs at most s = s(n, ε) bits, and est is an estimation algorithm, such that
together, for every n-vertex graph G, (with high probability) they output a vertex-bipartition that
gives an approximately maximum cut; i.e., est(sk(G)) = S such that w(S, S̄) ≥ (1− ε)w̃ where w̃
is the maximum cut in G. Then s ≥ Ωε(n).

Proof. Let C ⊂ {0, 1}n be a binary error-correcting code of size |C| = 2Ω(n) with relative distance ε.
We may assume w.l.o.g. that for every x ∈ C the hamming weight |x| is exactly n/2 (for instance
by taking C′ = {xx̄ : x ∈ C} where x̄ denotes the bitwise negation of x), and that there are no

13

x, y ∈ C such that |x− ȳ| ≤ ε
2n (since for every x ∈ C there could be at most one “bad” y, and we

can discard one codeword out of every such pair).
Fix a codeword x ∈ {0, 1}n and consider the complete bipartite graph Gx = (V,E) where

V = [n] and E = {(i, j) : xi = 0 ∧ xj = 1}. The maximum cut value in Gx is obviously w̃ = n2/4.
Let y ∈ {0, 1}n such that 1

2εn ≤ |x− y| ≤
n
2 . Identifying x, y with subsets Sx, Sy ⊆ [n], and using

the fact that |Sx4Sy| = |x− y| ≥ 1
2εn, the value of the cut (Sy, S̄y) in Gx is

|E(Sy, S̄y)| =
n2

4
− |Sx \ Sy|

(n
2
− |Sy \ Sx|

)
− |Sy \ Sx|

(n
2
− |Sx \ Sy|

)
< (1− Ω(ε))

n2

4
.

Let sk(Gx) be the sketch of Gx, and let est(sk(Gx)) = S be the output of the estimation
algorithm on the sketch of Gx. Therefore if the sketch succeeds (which by our assumption happens
with high probability) and the cut (S, S̄) has value at least (1 − Ω(ε))w̃, then by the preceding
argument the corresponding vector xS is of relative hamming distance smaller than ε

2 from x and
then one can decode x from S.2 By standard arguments from information theory, the size s of a
sketch that succeeds with high probability must be at least Ω(log |C|) = Ωε(n).

2.3 2/3-Approximation of Max-Cut in the Two Party Model

While [KKS15] have recently shown that a polynomial number of bits is necessary for any non-trivial
(i.e., strictly better than 1/2) approximation of Max-Cut in the streaming model, we remark that
a 2/3-approximation communication protocol that uses only a logarithmic number of bits exists in
the one-way two-party model. In the latter model, the problem of giving a (1 − ε)-approximation
of the maximum cut exhibits an exponential gap in the communication complexity between the
case of ε = 1/5, where we have shown that a polynomial number of bits is necessary, and the case
ε = 1/3, for which logarithmically many bits suffice, as follows from the following simple protocol.

Proposition 2.7. Let G = (V,EA ·∪ EB) be an input graph on |V | = n vertices. Let wA and wB
be the maximum cut values in GA = (V,EA) and GB = (V,EB) respectively. Then the maximum
cut value w in G satisfies

2
3(wA + wB) ≤ w ≤ wA + wB.

Proof. Consider cuts CA, CB : V → {0, 1} such that w(CA) = wA and w(CB) = wB. Let
C : V → {0, 1} be a cut chosen uniformly at random from {CA, CB, CA ⊕ CB} where we define
(CA ⊕ CB)(v) = CA(v) + CB(v) (mod 2) for every v ∈ V . For an edge e = (u, v) ∈ CA, either
CB(u) ⊕ CB(v) = 1 or (CA ⊕ CB)(u) + (CA ⊕ CB)(v) = (CA(u) + CA(v)) + (CB(u) + CB(v)) =
1 + 0 = 1. Either way PrC∈R{CA,CB ,CA⊕CB}[e ∈ C] = 2

3 . Similarly the same holds for an edge
e ∈ CB. Therefore by linearity of expectation a random cut in {CA, CB, CA ⊕ CB} has value at
least 2

3(wA + wB). The second inequality is trivial.

Corollary 2.8. The one-way communication complexity of Max-Cut1/3 is O(log n).

Proof. Alice uses her input to compute the value wA and sends it to Bob. Bob uses his input to
compute the value wB and outputs 2

3(wA + wB).

2Since the cuts (S̄, S) has the same value as (S, S̄), the vector xS can actually be ε-close to x̄, but by taking our
code to have no codeword being close to the negation of another codeword we can always try decoding both xS and
x̄S .

14

Chapter 3

Sketching Cuts in Hypergraphs

In their celebrated work, Benczúr and Karger [BK96] (with further improvements and simplifica-
tions in [Kar98, Kar99, BK02]) showed an effective method to sketch the values of all the cuts of
an undirected (weighted) graph G = (V,E,w) by constructing a cut-sparsifier, which is a subgraph
with different edge weights, that contains only Õ

(
n/ε2

)
edges, and approximates the weight of

every cut in G up to multiplicative factor 1 ± ε. We generalize the ideas of Benczúr and Karger
to obtain cut-sparsifiers of hypergraphs, as stated below. Such sparsifiers (and sketches) can be
computed by streaming algorithms that use Õ(rn) space for r-uniform hypergraphs using known
techniques (of [AG09] and subsequent work). Throughout this work we allow r-uniform hyper-
graphs to contain also hyperedges with less than r endpoints (for instance by allowing duplicate
vertices in the same hyperedge).

Theorem 3.1. For every r-uniform hypergraph H = (V,E,w) and an error parameter ε ∈ (0, 1),
there is a subhypergraph Hε (with different edge weights) such that:

• Hε has O
(
n(r + log n)/ε2

)
hyperedges.

• The weight of every cut in Hε is within 1± ε times the weight of the corresponding cut in H.

Furthermore, H can be constructed in O(mn2) time where m = |E| is the number of hyperedges in
the original hypergraph.

A key combinatorial property exploited in the Benczúr-Karger analysis is an upper bound on
the number of cuts of near-minimum weight [Kar93]. It asserts that the number of minimum-weight
cuts in an n-vertex graph is at most n2 (which had been previously shown by [LP72] and [DKL76]),
and more generally, there are at most n2α cuts whose weight is at most α ≥ 1 times the minimum
(more refined bounds for α = 4/3 and α = 3/2 appear in [NNI97] and [HW96] respectively).
These bounds are known to be tight (e.g., for an n-cycle). Correctly generalizing this property to
r-uniform hypergraphs appears to be a nontrivial question. A fairly simple analysis generalizes the
latter bound to nrα, but using new ideas, we manage to obtain the following tighter bound.

Theorem 3.2. Let H = (V,E,w) be a weighted r-uniform hypergraph with n vertices and minimum
cut value ŵ. Then for every half-integer α ≥ 1, the number of cuts in H of weight at most αŵ is
at most O(2αrn2α).

We prove this “cut-counting” bound in Section 3.1. With this bound at hand, we prove Theo-
rem 3.1 similarly to the original proof of [BK96] for graphs, as outlined in Section 3.2.

15

Cuts in hypergraphs are perhaps one of the simplest examples of CSPs, which we now formally
define.

Definition 3.3. A Constraint Satisfaction Problem is a quintuple (Σ, X, P,C,w) where:

• Σ is a finite alphabet,

• X = {x1, . . . , xn} is a set of variables taking their values from Σ,

• P = {P1, . . . , Pk} is set of r-ary predicates,

• C = {C1, . . . , Cm} is a set of constraints, where each constraint Ci consists of one of the
predicates Pj and a sequence of variables (xij)

r
j=1 from X,

• w : C → R+ is a weight function on the set of constraints.

For example, in the case of cuts in hypergraphs, the vertices are variables over the binary al-
phabet, and the hyperedges are constraints defined by the predicate Not-All-Equal. A natural
question is whether general CSPs admit sketches as well, where a sketch should provide an approx-
imation to the value of every assignment to the CSP (as usual, the value of an assignment is the
total weight of constraints it satisfies). Specifically we think of both Σ and P as being of constant
size, and are interested in the dependence on n and r. Although we are still far from answering
this question in full generality, we prove that for the well-known SAT problem, sketching is indeed
possible.

Theorem 3.4. For every error parameter ε ∈ (0, 1), there is a polynomial time sketching algorithm
that produces from an r-CNF formula Φ on n variables a sketch of size Õ(rn/ε2), that can be used
to (1± ε)-approximate the value of every assignment to Φ.

3.1 Counting Near-Minimum Cuts in Hypergraphs

In this subsection we prove our upper bound on the number of near-minimum cuts (Theorem
3.2). We generalize Karger’s min-cut algorithm [Kar93] to hypergraphs, and then show that its
probability to output any individual cut is not small (Theorem 3.6), which immediately yields a
bound on the number of distinct cuts. Finally, we show that the exponential dependence on r in
Theorem 3.2 is necessary (Section 3.1.3).

3.1.1 A Randomized Contraction Algorithm

Consider the following generalization of Karger’s contraction algorithm [Kar93] to hypergraphs.

Algorithm 3.5 ContractHypergraph

Input: an r-uniform weighted hypergraph H = (V,E,w)
a parameter α > 1

Output: a cut C = (S, V \ S)
1: H ′ ← H
2: while |V (H ′)| > αr do
3: e← random hyperedge in H ′ with probability proportional to its weight
4: contract e by merging all its endpoints and removing self-loops1

5: C ′ ← random cut in H ′ (bipartition of V (H ′))
6: return the cut C in H induced2by the cut C ′

16

Theorem 3.6. Let H = (V,E,w) be a weighted r-uniform hypergraph with minimum cut value ŵ,
let n = |V |, and let α ≥ 1 be some half-integer. Fix C = (S, V \ S) to be some cut in H of weight

at most αŵ. Then Algorithm 3.5 outputs the cut C with probability at least
Qn,r,α

2αr−1−1
for

Qn,r,α =
2α+ 1

(r + 1)

(
n− α(r − 2)

2α

)−1

if αr < n and Qn,r,α = 1 otherwise.

Since Theorem 3.6 gives a lower bound on the probability to output a specific cut (of certain
weight), and different cuts correspond to disjoint events, the theorem implies that the number of
cuts of weight at most αŵ is at most

2αr−1 − 1

Qn,r,α
≤
(
2αr−1 − 1

)
(r + 1)

2α+ 1

(
n

2α

)
= O

(
2αrn2α

)
,

proving Theorem 3.2.

Proof. Fix C = (S, V \S) to be some cut of weight αŵ in H. For t ∈ [n], denote by It the iteration
of the algorithm where H ′ contains t vertices. Since a contraction of a hyperedge may reduce the
number of vertices by anywhere between 1 and r − 1, in a specific execution of the algorithm, not
necessarily all the {It}nt=1 occur. Similarly, let the random variable Et be the edge contracted in
iteration t.

We say that an iteration It is bad if Et ∈ C (i.e., the hyperedge contains vertices from both
S and V \ S). Otherwise, we say it is good (including iterations that do not occur in the specific
execution such as I1, . . . , Iαr). For any fixed en, . . . , et+1 ∈ E define

qt(en, . . . , et+1) = Pr [It, It−1, . . . , I1 are good|En = en, . . . , Et+1 = et+1]

Note that qn is simply the probability that all iterations of the algorithm are good i.e., no edge of
the cut C is contracted. When that happens, in step 5 of the algorithm, there exists a cut C ′ in
H ′ that corresponds to the cut C in H. Since at that stage, there are at most αr vertices in H ′,
the probability of choosing C ′ is at least 1

2αr−1−1
. Hence the overall probability of outputting cut

C is at least qn · 1
2αr−1−1

. We thus need to give a lower bound on qn. To this end we prove below
the following lemma.

Lemma 3.7. qt(en, . . . , et+1) ≥ Qt,r,α for every t ∈ [n], and every en, . . . , et+1 ∈ E \ C.

Using the lemma for t = n bounds the overall probability of outputting cut C and proves
Theorem 3.6.

1Self-loops refers to hyperedges that contain only a single vertex. Note also that the cardinality of an edge can
only decrease as a result of contractions.

2Since after the sequence of contractions, each vertex in V (H) corresponds to exactly one vertex in V (H ′), a
vertex bipartition in H ′ naturally induces a vertex bipartition in H.

17

3.1.2 Proof of Lemma 3.7

We prove the lemma by (complete) induction on t. For the base case, note that qt(en, . . . , et+1) = 1
for 1 ≤ t ≤ αr since no contractions take place in those iterations.

For the general case, fix an iteration It and from now on, condition on some set of values
En = en, . . . , Et+1 = et+1. All probabilities henceforth are thus conditioned, and for brevity we omit
it from our notation. Observe that depending on the cardinality of Et, the next iteration (after iter-
ation It) may be one of It−1, . . . , It−r+1. Let pi = Pr[|Et| = i] and let yi = Pr [|Et| = i ∧ Et ∈ C].3,4

We can now write a recurrence relation:

qt(en, . . . , et+1) = Pr[It, . . . , I1 are good|En = en, . . . , Et+1 = et+1]

=
r∑
i=2

Pr [|Et| = i ∧ Et /∈ C] · Pr[It−i+1, . . . , I1 are good||Et| = i, Et /∈ C]

=

r∑
i=2

(pi − yi)EEt [qt−i+1(en, . . . , et+1, Et)||Et| = i ∧ Et /∈ C]

≥
r∑
i=2

(pi − yi)Qt−i+1,r,α

For i = 2, . . . , r let Wi =
∑

e′∈H′:|e′|=iw(e′) be the total weight of hyperedges in H ′ of cardinality

i (at iteration t) and let W =
∑r

i=2Wi be the total weight in H ′.
Observe that pi = Wi

W since Et is chosen with probability proportional to the hyperedge’s weight,
and

∑
v∈V ′ deg(v) =

∑r
i=2 i·Wi since a hyperedge of cardinality i is counted i times on the left-hand

side. By averaging, there exists a vertex v ∈ V (H ′) such that deg(v) ≤ 1
t

∑r
i=2 i ·Wi, and since it

induces a cut in H whose weight is exactly deg(v), we obtain that ŵ ≤ deg(v) ≤ 1
t

∑r
i=2 i ·Wi.

Next note that
r∑
i=2

yi = Pr[Et ∈ C] ≤ αŵ

W
≤ α

t

r∑
i=2

i · Wi

W
= α

t

r∑
i=2

i · pi

where the first inequality uses the conditioning on all previous iterations being good, which means
that all hyperedges in C have survived in H ′, and thus wH(C) = wH′(C).

Altogether, to prove the lemma it suffices to show that the value of the following linear program
is at least Qt,r,α. From now on we omit the subscripts r and α, denoting Qt = Qt,r,α.

minimize
r∑
i=2

(pi − yi)Qt−i+1

subject to 0 ≤ yi ≤ pi ∀i = 2, . . . , r
r∑
i=2

pi = 1

r∑
i=2

yi ≤ α
t

r∑
i=2

i · pi.

3Since not all iterations occur in all executions, it might be the case that no edge is contracted in iteration t. In
that case iteration t is good, and hence by the induction hypothesis the claim holds.

4Note that |e| refers to the edge’s cardinality, whereas w(ei) refers to its weight.

18

First observe that the last constraint implies
r∑
i=2

yi ≤ α
t

r∑
i=2

i · pi ≤ α
t

r∑
i=2

r · pi = αr
t

r∑
i=2

pi <

r∑
i=2

pi, (3.1)

which means that in every feasible solution there is always some yi < pi. This implies that in every
optimal solution, the last constraint is tight, since otherwise increasing such a yi will decrease the
value of the solution, without violating any of the other constraints.

It is easy to see that this linear program is both feasible and bounded, and therefore has an
optimal solution that is basic (i.e., a vertex of the polytope). The dimension of the linear program
(i.e., the number of variables) is 2r− 2, and thus in a basic feasible solution (at least) 2r− 2 of the
2r constrains must be tight. Therefore there are at most 2 loose (i.e., not tight) constraints among
the 2r − 2 constraints 0 ≤ yi ≤ pi, meaning there are at most 2 indices i, j such that pi 6= 0. We
proceed by analyzing the four possible cases:

• 0 < yi = pi and 0 < yj = pj . This case is not possible, since that would have implied∑r
i=2 yi =

∑r
i=2 pi, contradicting (3.1).

• 0 = yi < pi and 0 = yj < pj . This case is also not possible since that would have implied∑r
i=2 yi = 0, contradicting the tightness of the last constraint in an optimal solution.

• 0 = yi < pi and 0 < yj = pj . Since all other p` = 0, the other LP constraints become

pi + pj = 1

0 + pj = yi + yj = α
t (ipi + jpj).

Solving the two equations we obtain:

LP =
(

1− αi
t+αi−αj

)
Qt−i+1 ≥

(
1− αi

t+αi−αr

)
Qt−i+1 = t−αr

t+αi−αrQt−i+1. (3.2)

To use the induction hypothesis, we distinguish between two cases:

1. t− i+ 1 ≥ αr, in which case it is thus sufficient to prove the following claim.

Claim 3.8. For every half-integer α ≥ 1 and integers r ≥ i ≥ 2 and t ≥ αr + i − 1, it
holds

Qt−i+1,r,α

Qt,r,α
≥ t+αi−αr

t−αr .

Proof. Recall that Qt = 2α+1
(r+1)

(
t−α(r−2)

2α

)−1
and denote t′ = t− αr. Then

Qt−i+1,r,α

Qt,r,α
=

2α+1
(r+1)

(
t′+2α

2α

)
2α+1
(r+1)

(
t′−i+2α+1

2α

)
=

(t′ + 2α) · · · (t′ + 1)

(t′ + 2α− i+ 1) · · · (t′ + 1− i+ 1)
=

(t′ + 2α) · · · (t′ + 2α− i+ 2)

t′ · · · (t′ − i+ 2)

=

(
1 +

2α

t′

)
· · ·
(

1 +
2α

t′ − i+ 2

)
≥
(

1 +
2α

t′

)i−1

≥ 1 +
2α(i− 1)

t′
≥ 1 +

αi

t′

=
t+ αi− αr
t− αr

.

19

2. t− i+ 1 < αr, in which case Qt−i+1 = 1. Here we get

LP ≥ 1− αi
t−αr+αi ≥ 1− αi

αi+1 = 1
αi+1 ≥

1
αr+1 ≥

2α+1

(r+1)(t−α(r−2)
2α)

= Qt,

where the last inequality follows from the fact that t−α(r−2) ≥ αr+1−α(r−2) ≥ 2α+1.

• 0 < yi < pi and 0 = yj = pj . In this case pi = 1, yi = αi
t , and therefore

LP =
(
1− αi

t

)
Qt−i+1 ≥

(
1− αi

t−α(r−i)

)
Qt−i+1,

which is exactly as in (3.2) in the previous case.

Having bounded the value of the linear program, this completes the proof of Lemma 3.7.

3.1.3 Lower Bound

For completeness, we remark that at least for α > 1, the exponential dependence on r in Theorem
3.2 is indeed necessary. Consider a “sunflower” hypergraph on n = rm−m+1 vertices that consists
of m hyperedges of size r, intersecting at a single vertex, supplemented with m two-uniform cliques
of size r each – one for each of the hyperedges. Each of the cardinality-r hyperedges is given weight
1 and each of the cardinality-two edges is given weight α−1

2r . The minimum cut value in this graph
is 1, since every cut contains at least one of the r-hyperedges. However, all Ω(m · 2r) cuts given by
the 2r bipartitions of a single r-hyperedge, are of weight at most α.

3.2 Proof Of Theorem 3.1

We prove Theorem 3.1 by closely following the proof in the original setting of graphs in [BK96], and
thus we refrain from repeating the full details. Instead, we present an outline of the proof (following
the presentation in [BK02]) while emphasizing the reasons it translates to the hypergraph setting
and handling the differences that require a separate treatment.

The main tool used by Benczúr and Karger is random sampling: each edge e is included in the
sparsifier with probability pe, and given weight we/pe if it is included. It is immediate that every
cut in the sparsifier preserves its weight in expectation. The main task is thus to carefully select
the sampling probabilities pe in order to both obtain the required number of edges in the sparsifier,
and guarantee the required concentration bounds.

As a rough sketch, to guarantee concentration, one needs to apply a Chernoff bound to estimate
the probability that the weight of a specific cut (which is a sum of the independent samples of the
edges it contains) deviates from its expectation. Subsequently, a union bound over all cuts is used
to show the concentration of all cuts. A priori it is unclear whether the Chernoff bound is strong
enough to handle the exponentially many different cuts in the union bound. The remedy comes
from Theorem 3.2 that counts the number of cuts of each weight. It is still unclear how should the
random sampling be tuned to handle both the small and large cuts simultaneously. If we are to
chose the sampling probability to be small enough to handle the exponentially many large cuts, we
run into trouble of small cuts having large variance. On the other hand, increasing the sampling
probability imposes a risk of ending up with too many edges in the sparsifier.

Following Benczúr and Karger, we now show that when no edge carries a large portion of the
weight in any of the cuts, the cut-counting theorem is sufficient to obtain concentration.

20

Theorem 3.9. Let H = (V,E,w) be a r-uniform hypergraph on n vertices, let ε > 0 be an error
parameter, and fix d ≥ 1. If H ′ = (V,E′, w′) is a random subhypergraph of H where the weights
w′ are independent random variables distributed arbitrarily (and not necessarily identically) in the
interval [0, 1], and the expected weight of every cut in H ′ exceeds ρε = 3

ε2
(r + (d+ 2) lnn), then

with probability at least 1− n−d, every cut in H ′ has weight within 1± ε of its expectation.

One can verify that the proof of the analogous theorem for graphs, as appears in [Kar99],
easily extends to the hypergraph setting. Indeed, for the sake of this proof, a cut is merely a sum of
independently sampled edges/hyperedges. The lower bound on the weight of the minimum expected
cut ŵ allows one to show that probability of a cut of weight αŵ to deviate from its expectation
is at most n−α(d+2) · e−αr which trades-off nicely with the bound on the number of cuts given by
Theorem 3.2.

Informally, Theorem 3.9 implies that in order to obtain the desired concentration bound in the
general case, the sampling probability of an edge must be inversely proportional to the size of the
largest cut that contains that edge. This motivates the following definitions, and the theorem that
follows them.

Definition 3.10. A hypergraph H is k-connected if the weight of each cut in H is at least k.

Definition 3.11. A k-strong component of H is a maximal k-connected vertex-induced subhyper-
graph of H.

Definition 3.12. The strong connectivity of hyperedge e, denoted ke, is the maximum value of k
such that a k-strong component contains (all endpoints of) e.

Note that one can compute the strong connectivities of all hyperedges in a hypergraph in
polynomial time as follows. Compute the global minimum cut, and then proceed recursively into
each of the two subhypergraphs induced by the minimum cut. The strong connectivity of an edge
would then be the maximum among the minimum cuts of all the subhypergraphs it has been a
part of throughout the recursion. The minimum cut in a hypergraph was shown by [KW96] to
be computable in O(n2 log n + mn) time. Note that since the total number of subhypergraphs
considered throughout the recursion is at most n, there are at most n different strong-connectivity
values in any hypergraph.

Theorem 3.13. Let H be an r-uniform hypergraph, and let ε > 0 be an error parameter. Consider
the hypergraph Hε obtained by sampling each hyperedge e in H independently with probability pe =
3(r+(d+2) lnn)

keε2
, giving it weight we/pe if it is included. Then with probability at least 1−O(n−d)

1. The hypergraph Hε has O
(
n
ε2

(r + log n)
)

edges.

2. Every cut in Hε has weight between (1− ε) and (1 + ε) times its weight in H.

The proof of the theorem is again identical to the proof of [BK02, Theorem 2.6] for the graph
setting. This includes a bound on the total number of edges in Hε that follows from the property
that

∑
e∈E we/ke ≤ n − 1 (see [BK02, Lemma 2.7]). The only thing that needs verifying is that

strong-connectivity induces a recursive partitioning of the vertices of the hypergraph, just as it does
when dealing with graphs. This is in fact the case, mainly because the components considered in
the definitions are vertex-induced, and therefore the cardinality of the hyperedges plays no part.
One can then decompose the hyperedges of the hypergraph to “layers”, based on their strong-
connectivity, and apply Theorem 3.9 to each layer separately.

21

As to the running time, it is dominated by the time required to compute the strong connec-
tivities of all the edges in the hypergraph, which as mentioned above, can be done by running the
O(n2 log n+mn) min-cut algorithm at most n times. Therefore, the total running time required
to compute Hε is O(n3 log n + mn2). Since we may assume that m = Ω(n log n) (as there is no
point to construct the sparsifier otherwise), the second term dominates and thus the running time
is simply O(mn2).

To complete our discussion we bring the reader’s attention to a couple of places where the
cardinality of the hyperedges has played part:

• The modified parameter pe = 3(r+(d+3) lnn)
keε2

counters the number of cuts from Theorem 3.2

(at most O(2αrn2α) cuts of weight αŵ) and the number of distinct edge-connectivity values,
which is at most n.5

• The number of edges in the sparsifier is (with high probability) O
(
n
ε2

(r + log n)
)

since the
sampling probability is also linear in r.

3.3 SAT Sparsification

Lemma 3.14. For every r-CNF formula Φ with n variables and m clauses, there exists an (r+ 1)-
uniform hypergraph H with 2n+ 1 vertices, and a mapping Π : {0, 1}n → {0, 1}2n+1 (from assign-
ments to Φ, to cuts in H), such that for every assignment ϕ, it holds that valΦ(ϕ) = valH(Π(ϕ)).

Proof. Consider an r-CNF formula Φ with variables {xi}i∈[n]. We construct the weighted hyper-
graph H whose vertices are {xi,¬xi}i∈[n] and a special vertex F . For each clause `i1 ∨ `i2 ∨ · · ·∨ `ir ,
we add a hyperedge {`i1 , `i2 , . . . , `ir , F}. Moreover, let Π be the mapping that maps an assignment
to Φ to the cut in H obtained by placing all vertices corresponding to true literals on one side, and
the F vertex together with all vertices corresponding to false literals on the other side.

For an assignment ϕ to Φ, it is clear that a hyperedge is contained in the cut Π(ϕ) if and only
if at least one of the vertices it contains is on the opposite side of F . Therefore the weight of Φ(ϕ)
is exactly the value of ϕ.

Theorem 3.4 follows from Lemma 3.14 and Theorem 3.1. The running time for constructing
the sketch of the CNF formula is dominated by the running time of constructing the hypergraph
sparsifier, which is O(mn2), where m is the number of clauses in the original CNF formula.

5In their analysis [BK02] take a union bound over n2 distinct edge-connectivity values. For hypergraphs using
the stronger linear bound (instead of the trivial nr) is crucial.

22

Chapter 4

Future Directions

Our results raise several questions that deserve further work.

Sketching Max-Cut. Our results and the results of [KKS15] make progress on the streaming
complexity of approximating Max-Cut, showing polynomial space lower bounds. To fully resolve
this problem, one still needs to determine whether Ω(n) space is necessary for any non-trivial
approximation (i.e., strictly better than 1/2), or whether there is a sublinear-space streaming
algorithm that beats the 1/2-approximation barrier.

Also of interest is the communication complexity of approximating Max-Cut in the multi-round
two-party model, and even a multi-round analogue of Boolean Hidden Hypermatching.

Sketching Cuts in Hypergraphs. Can one improve over the linear dependence on r in hyper-
graph sparsification (Theorem 3.1)? Or perhaps prove a matching lower bound? Such a refinement
could be especially significant when the hyperedge cardinality is unbounded, in which case the
known upper bound is O(n2/ε2).

General CSPs. Do all CSPs admit sketches of size (in bits or in machine words) o(nr), or even
Õ(n), that preserve the values of all assignments? From the direction of lower bounds, we may
even restrict ourselves to sketches that are sub-instances, and ask whether there exist CSPs where
such sketches require size Ω(nr) or even nΩ(r)?

23

Bibliography

[AG09] K. J. Ahn and S. Guha. Graph sparsification in the semi-streaming model. In 36th International
Colloquium on Automata, Languages and Programming: Part II, ICALP ’09, pages 328–338.
Springer-Verlag, 2009. arXiv:0902.0140, doi:10.1007/978-3-642-02930-1_27.

[AGM12a] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear measurements. In
Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’12, pages 459–467. SIAM, 2012. doi:10.1137/1.9781611973099.40.

[AGM12b] K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: Sparsification, spanners, and subgraphs.
In Proceedings of the 31st Symposium on Principles of Database Systems, PODS ’12, pages 5–14,
New York, NY, USA, 2012. ACM. doi:10.1145/2213556.2213560.

[AKW14] A. Andoni, R. Krauthgamer, and D. P. Woodruff. The sketching complexity of graph cuts.
CoRR, abs/1403.7058, 2014. arXiv:1403.7058.

[BK96] A. A. Benczúr and D. R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In Proceedings
of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pages 47–55,
New York, NY, USA, 1996. ACM. doi:10.1145/237814.237827.

[BK02] A. A. Benczúr and D. R. Karger. Randomized approximation schemes for cuts and flows in
capacitated graphs. CoRR, cs.DS/0207078, 2002. arXiv:cs/0207078.

[dCHS11] M. K. de Carli Silva, N. J. A. Harvey, and C. M. Sato. Sparse sums of positive semidefinite
matrices. CoRR, abs/1107.0088, 2011. arXiv:1107.0088.

[DKL76] E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov. On the structure of the system of minimum
edge cuts in a graph. Issledovaniya po Diskretnoi Optimizatsii, pages 290–306, 1976. Available
from: http://alexander-karzanov.net/ScannedOld/76_cactus_transl.pdf.

[DvM10] H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. In Proceedings of the Forty-second ACM Symposium
on Theory of Computing, STOC ’10, pages 251–260, New York, NY, USA, 2010. ACM.
doi:10.1145/1806689.1806725.

[GH61] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial
and Applied Mathematics, 9:551–570, 1961. doi:10.1137/0109047.

[GKP12] A. Goel, M. Kapralov, and I. Post. Single pass sparsification in the streaming model with edge
deletions. CoRR, abs/1203.4900, 2012. arXiv:1203.4900.

[GW95] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, November
1995. doi:10.1145/227683.227684.

[HW96] M. Henzinger and D. P. Williamson. On the number of small cuts in a graph. Information
Processing Letters, 59(1):41 – 44, 1996. doi:10.1016/0020-0190(96)00079-8.

25

http://arxiv.org/abs/0902.0140
http://dx.doi.org/10.1007/978-3-642-02930-1_27
http://dx.doi.org/10.1137/1.9781611973099.40
http://dx.doi.org/10.1145/2213556.2213560
http://arxiv.org/abs/1403.7058
http://dx.doi.org/10.1145/237814.237827
http://arxiv.org/abs/cs/0207078
http://arxiv.org/abs/1107.0088
http://alexander-karzanov.net/ScannedOld/76_cactus_transl.pdf
http://dx.doi.org/10.1145/1806689.1806725
http://dx.doi.org/10.1137/0109047
http://arxiv.org/abs/1203.4900
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1016/0020-0190(96)00079-8

[IMNO11] P. Indyk, A. McGregor, I. Newman, and K. Onak. Open questions in data streams, property test-
ing, and related topics. http://people.cs.umass.edu/~mcgregor/papers/11-openproblems.
pdf, 2011. See also http://sublinear.info/45.

[Kar93] D. R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm.
In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’93, pages 21–30, Philadelphia, PA, USA, 1993. Society for Industrial and Applied Mathematics.
Available from: http://dl.acm.org/citation.cfm?id=313559.313605.

[Kar98] D. R. Karger. Better random sampling algorithms for flows in undirected graphs. In Proceedings
of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’98, pages 490–499,
Philadelphia, PA, USA, 1998. Society for Industrial and Applied Mathematics. Available from:
http://dl.acm.org/citation.cfm?id=314613.314833.

[Kar99] D. R. Karger. Random sampling in cut, flow, and network design problems. Mathematics of
Operations Research, 24(2):383–413, 1999. doi:10.1287/moor.24.2.383.

[KK15] D. Kogan and R. Krauthgamer. Sketching cuts in graphs and hypergraphs. In Proceedings of
the 6th conference on Innovations in theoretical computer science, ITCS ’15, 2015. To Appear.
arXiv:1409.2391.

[KKL14] T. Kaufman, D. Kazhdan, and A. Lubotzky. Ramanujan complexes and bounded degree topolog-
ical expanders. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer
Science, 2014. arXiv:1409.1397.

[KKMO07] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for MAX-
CUT and other 2-variable CSPs? SIAM Journal on Computing, 37(1):319–357, 2007. doi:

10.1137/S0097539705447372.

[KKS15] M. Kapralov, S. Khanna, and M. Sudan. Streaming lower bounds for approximating MAX-CUT.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
2015. To Appear. arXiv:1409.2138.

[KLM+14] M. Kapralov, Y. T. Lee, C. Musco, C. Musco, and A. Sidford. Single pass spectral sparsification
in dynamic streams. In Proceedings of the 55th Annual IEEE Symposium on Foundations of
Computer Science, 2014. arXiv:1407.1289.

[KW96] R. Klimmek and F. Wagner. A simple hypergraph min cut algorithm. Techni-
cal Report B 96-02, Freie Universität Berlin, Fachbereich Mathematik, 1996. Avail-
able from: http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_

derivate_000000000297/1996_02.pdf.

[LM10] F. T. Leighton and A. Moitra. Extensions and limits to vertex sparsification. In 42nd ACM
symposium on Theory of computing, STOC, pages 47–56. ACM, 2010. doi:10.1145/1806689.
1806698.

[LM14] A. Louis and Y. Makarychev. Approximation algorithms for hypergraph small set expansion and
small set vertex expansion. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2014), volume 28, pages 339–355, 2014. doi:
10.4230/LIPIcs.APPROX-RANDOM.2014.339.

[Lou14] A. Louis. Hypergraph Markov operators, eigenvalues and approximation algorithms. CoRR,
abs/1408.2425, 2014. arXiv:1408.2425.

[LP72] M. V. Lomonosov and V. Polesskii. Lower bound of network reliability. Problemy
Peredachi Informatsii, 8(2):47–53, 1972. Available from: http://www.mathnet.ru/links/

36bd620cb75111781cef454d72f0d773/ppi824.pdf.

26

http://people.cs.umass.edu/~mcgregor/papers/11-openproblems.pdf
http://people.cs.umass.edu/~mcgregor/papers/11-openproblems.pdf
http://sublinear.info/45
http://dl.acm.org/citation.cfm?id=313559.313605
http://dl.acm.org/citation.cfm?id=314613.314833
http://dx.doi.org/10.1287/moor.24.2.383
http://arxiv.org/abs/1409.2391
http://arxiv.org/abs/1409.1397
http://dx.doi.org/10.1137/S0097539705447372
http://dx.doi.org/10.1137/S0097539705447372
http://arxiv.org/abs/1409.2138
http://arxiv.org/abs/1407.1289
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000000297/1996_02.pdf
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000000297/1996_02.pdf
http://dx.doi.org/10.1145/1806689.1806698
http://dx.doi.org/10.1145/1806689.1806698
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.339
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.339
http://arxiv.org/abs/1408.2425
http://www.mathnet.ru/links/36bd620cb75111781cef454d72f0d773/ppi824.pdf
http://www.mathnet.ru/links/36bd620cb75111781cef454d72f0d773/ppi824.pdf

[McG14] A. McGregor. Graph stream algorithms: A survey. SIGMOD Rec., 43(1):9–20, May 2014.
doi:10.1145/2627692.2627694.

[Moi09] A. Moitra. Approximation algorithms for multicommodity-type problems with guarantees in-
dependent of the graph size. In 50th Annual Symposium on Foundations of Computer Science,
FOCS, pages 3–12. IEEE, 2009. doi:10.1109/FOCS.2009.28.

[NNI97] H. Nagamochi, K. Nishimura, and T. Ibaraki. Computing all small cuts in an undirected
network. SIAM Journal on Discrete Mathematics, 10(3):469–481, 1997. doi:10.1137/

S0895480194271323.

[NR13] I. Newman and Y. Rabinovich. On multiplicative λ-approximations and some geometric appli-
cations. SIAM Journal on Computing, 42(3):855–883, 2013. doi:10.1137/100801809.

[PS89] D. Peleg and A. A. Schäffer. Graph spanners. J. Graph Theory, 13(1):99–116, 1989. doi:

10.1002/jgt.3190130114.

[TZ05] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005. doi:

10.1145/1044731.1044732.

[YOTI14] Y. Yamaguchi, A. Ogawa, A. Takeda, and S. Iwata. Cyber security analysis of power networks by
hypergraph cut algorithms. In Proceedings of the Fifth Annual IEEE International Conference
on Smart Grid Communications, 2014. To appear. Available from: http://www.keisu.t.

u-tokyo.ac.jp/research/techrep/data/2014/METR14-12.pdf.

[YV11] W. Yu and E. Verbin. The streaming complexity of cycle counting, sorting by reversals, and other
problems. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 11–25, 2011. doi:10.1137/1.9781611973082.2.

[Zel09] M. Zelke. Algorithms for Streaming Graphs. PhD thesis, Mathematisch-Naturwissenschaftliche
Fakultät II, Humboldt-Universität zu Berlin, 2009. Published at Südwestdeutscher Verlag für
Hochschulschriften. Available from: http://www.tks.informatik.uni-frankfurt.de/data/

doc/diss.pdf.

[Zel11] M. Zelke. Intractability of min- and max-cut in streaming graphs. Inf. Process. Lett., 111(3):145–
150, January 2011. doi:10.1016/j.ipl.2010.10.017.

[Zha10] J. Zhang. A survey on streaming algorithms for massive graphs. In C. C. Aggarwal and H. Wang,
editors, Managing and Mining Graph Data, volume 40 of Advances in Database Systems, pages
393–420. Springer, 2010. doi:10.1007/978-1-4419-6045-0_13.

27

http://dx.doi.org/10.1145/2627692.2627694
http://dx.doi.org/10.1109/FOCS.2009.28
http://dx.doi.org/10.1137/S0895480194271323
http://dx.doi.org/10.1137/S0895480194271323
http://dx.doi.org/10.1137/100801809
http://dx.doi.org/10.1002/jgt.3190130114
http://dx.doi.org/10.1002/jgt.3190130114
http://dx.doi.org/10.1145/1044731.1044732
http://dx.doi.org/10.1145/1044731.1044732
http://www.keisu.t.u-tokyo.ac.jp/research/techrep/data/2014/METR14-12.pdf
http://www.keisu.t.u-tokyo.ac.jp/research/techrep/data/2014/METR14-12.pdf
http://dx.doi.org/10.1137/1.9781611973082.2
http://www.tks.informatik.uni-frankfurt.de/data/doc/diss.pdf
http://www.tks.informatik.uni-frankfurt.de/data/doc/diss.pdf
http://dx.doi.org/10.1016/j.ipl.2010.10.017
http://dx.doi.org/10.1007/978-1-4419-6045-0_13

	IntroductionThis thesis is based on a paper accepted for publication at ITCS 2015 KK15.
	Our Results
	Related Work

	Sketching Max-Cut
	Proof of Theorem 2.1
	Reporting a Vertex-Bipartition (rather than a value)
	2/3-Approximation of Max-Cut in the Two Party Model

	Sketching Cuts in Hypergraphs
	Counting Near-Minimum Cuts in Hypergraphs
	A Randomized Contraction Algorithm
	Proof of Lemma 3.7
	Lower Bound

	Proof Of Theorem 3.1
	SAT Sparsification

	Future Directions
	Bibliography

