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Abstract

Given a graph with non negative edge weights, there are various ways to in-
terpret the edge weights and induce a metric on the vertices of the graph. A few
examples are shortest-path, when interpreting the weights as length, and resistance
distance, when thinking of the graph as an electrical network and the weights are
the electrical resistances of the edges. Each of these metrics has its own prop-
erties and applications, for example for studying the structure of the underlying
graph, or for clustering the vertices. Another key tool to investigate the underlying
graph is flows, for example for finding minimum-st-cuts via the well known min-
cut/max-flow Theorem, which can be viewed as a metric by considering the inverse
of mincut.

It is known that the 3 abovementioned metrics can all be derived from flows,
when formalizing them as convex optimization problems. This key observation
led us to studying a family of metrics that are derived from flows, which we call
flow metrics, that gives a natural interpolation between the above metrics using a
parameter p.

We make the first steps in studying the flow metrics, and mainly focus on
two aspects: (a) understanding basic properties of the flow metrics, either as an
optimization problem (e.g. finding relations between the flow problem and the dual
potential problem) and as a metric function (e.g. understanding their structure and
geometry); and (b) considering methods for reducing the size of graphs, either by
removing vertices or edges while approximating the flow metrics, and thus attaining
a smaller instance that can be used to accelerate running time of algorithms and
reduce their storage requirements.

Our main result is a lower bound for the number of edges required for a resistance
sparsifier in the worst case. Furthermore, we present a method for reducing the
number of edges in a graph while approximating the flow metrics, by utilizing a
method of [CP15] for reducing the size of matrices. In addition, we show that the
flow metrics satisfy a stronger version of the triangle inequality, which gives some
information about their structure and geometry.
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Chapter 1

Introduction

Given a graph with non-negative edge weights, there are various ways to interpret the
weights and derive a metric on the vertices. Two famous examples are to interpret
the weights as lengths or as capacities, and the derived metric on the graph would be
the shortest-path metric or the inverse of minimum cut (known to be an ultrametric),
respectively. Another example is to think of the graph as an electrical network of resistors,
and interpret the weights as conductance (inverse resistance), which yields the effective
resistance (also called resistance distance).

It turns out that one can express all the above scenarios via flows. A flow on an
edge-weighted graph G = (V,E,w) is a real function f over the edges, such that at
each vertex, the incoming flow equals the outgoing flow, except for some set of boundary
vertices, usually referred to as sources and targets. We fix an arbitrary orientation for
the edges, and then the sign of f(e) determines the direction of the flow on the edge e
(so informally f(−e) = −f(e) by convention). Let us examine how the abovementioned
metrics are derived using flows.

Shortest Path. This is attained by considering a flow that ships one unit from a single
source s ∈ V to a single target t ∈ V , while using the edges with the minimum total
length. This is formulated as

d(s, t) = min

{∑
e∈E

|f(e)| · w(e) : f ships 1 unit of flow from s to t

}
. (1.1)

We remark that this is a generalization of the shortest path, as shipping flow through
multiple shortest paths is allowed.

Minimum st-Cuts. Using the well known mincut-maxflow theorem, the inverse of
minimum cut can be viewed as a problem of minimizing congestion (the maximum “load”
on an edge), formulated by

1

mincut(s, t)
= min

{
max
e∈E

|f(e)|
w(e)

: f ships 1 unit of flow from s to t

}
. (1.2)

Effective Resistance. There are a couple of equivalent ways to define effective resis-
tance, denoted Reff. One way to define it is as a flow that obeys some physical rules

5



(called an electrical flow). Another way is via energy minimization, as

Reff(s, t) = min

{∑
e∈E

|f(e)|2

w(e)
: f ships 1 unit of flow from s to t

}
. (1.3)

Essentially, each term |f(e)|2
w(e)

is the energy (heat dissipation) of an edge e with electrical

resistance 1
w(e)

, and we look for a flow that minimizes the total energy. The effective
resistance is known to capture a lot of properties of the underlying graph, such as commute
time and random spanning trees; it also has a strong connection to the Laplacian of the
graph.

Flow Metrics. A natural question that arises is how to generalize all the metrics seen
above. Can we define a metric derived from flows that captures all three cases, and
perhaps find more metrics in this family?

The definition we study, which we call the family of flow metrics, is the following.
Given a weighted graph G = (V,E,w), and a parameter 1 ≤ p < ∞, define the dp-
distance between s, t ∈ V to be

dp(s, t) = min


(∑
e∈E

∣∣∣∣ f(e)

w(e)

∣∣∣∣p
)1/p

: f ships 1 unit of flow from s to t

 . (1.4)

To define d∞, we take the limit as p→∞, or equivalently change the objective
(∑

e∈E

∣∣∣ f(e)
w(e)

∣∣∣p)1/p

in (1.4) to maxe∈E

∣∣∣ f(e)
w(e)

∣∣∣. Various works give almost linear time algorithms for computing

the dp-distance, both in the weighted and unweighted case, see e.g. [ABKS21; AS20]
where they refer to it as p-norm flows. It is immediate that this definition yields a metric
on V . Moreover, it is easy to see that the case p = 1 is in fact the ordinary shortest path
metric (on a graph with edge lengths 1

w(e)
), and limp→∞ dp(s, t) = 1

mincut(s,t)
. Moreover,

in the case p = 2, d2(s, t)2 is just the effective resistance between s and t in a graph G′

with squared edge weights.
Thus, the family of dp-metrics captures the shortest-path metric (p = 1), the effective

resistance (p = 2), and minimum cuts (p = ∞). Our goal is to better understand this
family and its properties, and we make the first steps in this direction.

Connection between different values of p. The two extreme cases d1 (shortest path)
and d∞ (minimum cuts), are informally, not so well behaved compared to the resistance
distance (p = 2), and one might be able to interpolate naturally between them by using
other values of p (e.g. see [LN04; CMSV17] for such applications).

Capturing properties of the underlying graphs. As mentioned earlier, the effective
resistance (p = 2) captures key properties of the underlying graph, and a natural direction
is to extend this characterizations to other values of p, or to find other properties of the
underlying graphs captured by them.

Understanding the geometry of the flow metrics. An important tool for under-
standing the structure of the dp-metrics is embeddings, i.e. mapping G into a normed
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space while preserving the dp metric - in which case the mapping is called an isometry,
or up to some error - in which case we say that the mapping has distortion > 1, see e.g.
[Mat02; Mat97; Mat13]. Some results are known regarding the three special cases, for
example shortest-path (d1) embeds isometrically into `∞; effective resistance (d2

2) embeds
isometrically into `2

2; and d∞ embeds isometrically into `1. We would like to find and
compute such embeddings for other values of p, and furthermore, we would like to find
the best trade-off between dimension and approximation of such embeddings (e.g. the
Johnson-Lindenstrauss Lemma [JL84]).

Small sketches. Once we understand which metric spaces the flow metrics embed
into, and reduce the dimension, we can easily design small sketches and exploit them to
improve running time and storage requirements of algorithms. Other examples for graph
problems that are naturally solved by such embedding techniques are multicommodity
flows problems, cut sparsifiers, as well as spectral sparsifiers.

Computing all-pairs distances. Another important line of research is to compute the
distance between all pairs of vertices simultaneously, or to construct a data structure that
given a query of a pair of vertices, returns the exact dp-distance (or an approximation to it)
between them. Such constructions are known for the three special cases, e.g. Gomory-Hu
tree [GH61] for p =∞; distance oracles [ABCP93; TZ05; Che15], All-Pairs Shortest-Path
[Cha10; Sei95], and spanners [PS89; ADDJS93] for p = 1; and [SS11; JS18] for p = 2,
and it is an interesting direction to extend these approaches for other values of p.

Reducing the size of the graph. Techniques for reducing the size of the graph while
preserving exactly or approximately a given metric, are an important tool that could
improve the running time and memory usage of algorithms. One such technique is the
well known Delta-Wye transform [Ken99], which removes a vertex of degree 3 from the
graph and forms a triangle from its neighbors. It is known that for each of the special
cases p = 1, 2,∞ (shortest path, effective resistance, and minimum cuts) there exists
such a transform that preserve dp and depends only on the 3 edges incident to the vertex
being removed (i.e. oblivious to the rest of the graph). Thus, it is interesting to examine
whether this could hold in general for other values of p.

Another method for reducing the size of the graph is via edge sparsification. This
topic is very well studied in the literature and has various applications and results. The
most noticeable ones are spanners [PS89; ADDJS93] (d1-sparsifiers), resistance sparsifiers
[DKW15; JS18; CGPSSW18] (d2-sparsifiers), and cut sparsifiers [Kar93; BK96] (d∞-
sparsifiers). There is also a stronger notion of spectral sparsifiers [ST04; SS11; BSS12],
which preserve the quadratic form of the Laplacian of the graph, and in particular preserve
both effective resistance and cuts. Hence, it is natural to try to achieve such results for
other values of p, as well as give lower bounds to this problem.

1.1 Results for Graph-Size Reduction

Lower Bound on Resistance Sparsifiers. For p = 1 and p = ∞ there are known
upper bounds and matching lower bounds, but for p = 2 there is only an upper bound and
no known lower bound. Our main result is the first lower bound for resistance sparsifiers
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(p = 2). Formally, an ε-resistance sparsifier of a graph G, is a graph G′ on the same
vertex set V such that

∀s, t ∈ V, Reff,G′(s, t) ∈ (1± ε) Reff,G(s, t). (1.5)

We remark that G′ does not have to be a subgraph of G, and moreover it can have edge
weights. Chu et al [CGPSSW18] show that every graph G with n vertices admits an

ε-resistance sparsifier with Õ(n/ε) edges. We conjecture that this is tight (up to the
polylog factors), and prove a weaker lower bound.

Conjecture 1.1. For every n ≥ 2 and every ε > 1
n

, there exists a graph G with n vertices,
such that every ε-resistance sparsifier of G has Ω (n/ε) edges.

Theorem 1.2. For every n ≥ 2 and every ε > 1
n

, there exists a graph G with n vertices,
such that every ε-resistance sparsifier of G has Ω (n/

√
ε) edges.

In fact, Theorem 1.2 is an easy consequence of the following bound regarding resistance
sparsifiers of the clique.

Lemma 1.3. Let G = (V,E,w) be a graph with |V | = n and |E| <
(
n
2

)
. Then,

maxx 6=y∈V Reff(x, y)

minx 6=y∈V Reff(x, y)
≥ 1 +

1

O(n2)
. (1.6)

Moreover, improving the bound in (1.6) to 1 + 1
O(n)

, would immediately prove Con-
jecture 1.1. Thus, we focus on studying sparsifiers for the clique. In some cases, we can
prove the stronger 1 + 1

O(n)
bound. One very interesting case is of regular graphs, even

when allowing arbitrary edge weights, including 0.

Theorem 1.4. Let G = (V,E,w) be a k-regular graph with |V | = n and k < n − 1.
Then,

maxx 6=y∈V Reff(x, y)

minx 6=y∈V Reff(x, y)
≥ 1 +

1

O(n)
. (1.7)

Intuitively, the graphs that seem the best fit for sparsifying the clique are regular
expanders, and these graphs are captured by Theorem 1.4. Thus, we believe that our
proof can be generalized to any non-complete graph (i.e. with at least one missing edge),
which would prove Conjecture 1.1. We discuss all these results in Section 3.1.

Flow-Metric Sparsifiers. Cohen and Peng [CP15] show that by sampling rows of a
matrix A via an importance sampling approach, one can preserve up to some error the
term ‖Ax‖p for every vector x, with high probability. We use this result to sparsify dense
graphs while preserving the flow metrics up to some error.

Theorem 1.5. Let G = (V,E,w) be a graph, fix p ∈
(

4
3
,∞
]

with Hölder conjugate q (i.e.
1
p

+ 1
q

= 1), and let ε > 0. Then there exists a graph G′ = (V,E ′, w′) that is a dp-sparsifier
of G, i.e.

∀s, t ∈ V, dp,G′(s, t) ∈ (1± ε) dp,G(s, t), (1.8)

and has |E ′| = f(n, ε, p) edges, where

f(n, ε, p) =


n− 1 if p = Ω (ε−1 log n) ,

Õ (nε−2) if 2 < p <∞,
Õ
(
nq/2ε−5

)
if 4

3
< p < 2.

(1.9)
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We discuss this result in section 3.2. Note that the case of p = 2 is in fact the case
of resistance sparsifiers, for which [CGPSSW18] show a better upper bound of Õ (nε−1)
edges. We remark that it is an open question to give lower bounds for this problem for
p 6= 2. In particular, our proof of Theorem 1.2 does not extend to other values of p.

Delta-Wye Transform for Flow Metrics. The well known Y −∆ transform [Ken99]
(or in general - Schur Complement [Hay68]) is an example for a transform that removes a
vertex of degree 3 from the graph in a way that preserves the effective resistance among
all other vertices. An important aspect of the Y -∆ transform is that it is “local”, namely,
its change to the graph depends only on the weights of the edges incident to the vertex
being removed, and is oblivious to the rest of the graph. It is known that such transforms
exist also for shortest-path and for minimum cuts. We show that such transforms do not
exist for the family of flow metric for other values of p, stated informally as follows. The
formal definitions are given in Section 3.3

Theorem 1.6. Let p ∈ [1,∞]. There exists a local transform that removes a vertex of
degree 3 and forms a triangle from its neighbors that preserves the dp metric among all
other vertices, if and only if p = 1, 2,∞.

In addition, we study the interesting case of p = ∞ (minimum cuts), and show that
such a transform does not exist for removing a vertex of degree strictly larger than 3,
even though there does exist one for shortest-path and effective resistance.

Theorem 1.7. For every k > 3, there does not exist a local transform that removes a
vertex of degree k and forms a k-clique from its neighbors that preserves d∞ among all
other vertices.

Similarly to the Y -∆ transform for effective resistance, there also exist local transforms
that remove a vertex of degree 2 or parallel edges, and preserve the effective resistance.
We show that this transforms extend naturally to other values of p. We discuss these
results in Section 3.3.

1.2 Additional Properties of the Flow Metrics

The Flow Metrics are p-strong. Towards understanding the geometry of the flow
metrics, we show that they are p-strong, i.e. satisfy a stronger version of the triangle
inequality.

Theorem 1.8. Let G be a graph, and let p ∈ [1,∞). Then,

∀s, t, v ∈ V, dp(s, t)
p ≤ dp(s, v)p + dp(v, t)

p. (1.10)

This is known to hold for the special cases of p = 1, 2, and also for p =∞, where (1.10)
becomes (in the limit after raising both sides to power 1/p) the ultrametric inequality.
We further show that (1.10) is tight, namely for all p′ > p, the metric dp is not always
p′-strong. We present it in Section 2.3.
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An Extension of Foster’s Theorem. Foster’s Theorem [Fos49; Fos61] states that for
every connected graph G = (V,E,w),∑

xy∈E

w(xy) Reff(x, y) = |V | − 1. (1.11)

Since d2
2 is the effective resistance in a graph with squared weights, it is immediate that∑

xy∈E w(xy)2d2(x, y)2 = |V | − 1. We extend this bound to all p > 1.

Proposition 1.9. Let G = (V,E,w) be a connected graph, and let p > 1. Then,

if p ≥ 2,
|V |
2
≤
∑
xy∈E

(w(xy)dp(x, y))
p
p−1 ≤ |V | − 1, (1.12)

if p ≤ 2, |V | − 1 ≤
∑
xy∈E

(w(xy)dp(x, y))
p
p−1 ≤ |E|. (1.13)

We remark that on trees, the above sum equals |V | − 1 = |E| for every p ∈ (1,∞],
including in the limit p→ 1. Furthermore, on unweighted cycles it holds that

lim
p→∞

∑
xy∈E

dp(x, y)
p
p−1 =

|V |
2
. (1.14)

Thus, all four bounds are existentially tight, and cannot be strengthened. We discuss
this in Section 2.2.

1.3 Related Work

The literature contains several variations of the flow metrics that have found applications.
One example is p-resistance, formulated as

Rp(s, t) = min

{∑
e∈E

1

w(e)
· |f(e)|p : f ships 1 unit of flow from s to t

}
. (1.15)

For fixed p, one can express dpp as Rp on a related graph G′ with p-powered weights.
However, as p → ∞, the effect of the weights on Rp becomes negligible; a phenomenon
that dp does not suffer from. We utilize the connection between Rp and dp to establish a
connection between dp and a dual problem of vertex potentials, as done in [AvL11] where
such a connection (between flow and potentials) is shown. [AvL11] also shows a transition
in the “behavior” of the p-resistance when moving from small values of p to large ones.
The same p-resistance is shown in [Her10] to satisfy a variation of the triangle inequality,
and we use their technique to show that the flow metrics satisfy a stronger version of the
triangle inequality as well. The p-resistance was later extended in [NM16] by adding some
penalty terms to the objective function, which help understanding the structure of the
underlying graph, both local and global properties of it, mainly for clustering purposes.

Another variant, called p-norm flow, was studied in [HJPW21; FWY20; AKPS19;
AS20; ABKS21]. Given a graph G = (V,E,w) with signed edge-vertex incidence matrix
B, and a demands vector d ∈ RV , the goal is to find a flow f ∈ RE that satisfies the
demands and minimizes some cost function. This is formulated as

min
BT f=d

cost(f) (1.16)
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The formal definitions are given in Section 1.4. They studied different options for the
cost function and for the constraints, such as ‖f‖pp (unweighted), gTf+‖W1f‖2

2 +‖W2f‖pp
(where g,W1 and W2 are some more variables of the problem that represent a gradient, 2-
norm weights, and p-norm weights respectively), or even allowing the constraint BTf ≤ d
or considering cases where B is some general matrix (i.e. regression problem). Their focus
is on fast computation of the p-norm flows with respect to the proposed cost function
and the constraints, either exactly or approximately, and use it to design fast algorithms
for approximating maximum flow (see e.g. [AS20]), as well as an applications for graph
clustering (see e.g. [FWY20]). Our focus is on objective cost(f) = ‖W−1f‖p and demand
vector d corresponding to a single source and a single target, i.e. has 1 in some entry
(the source vertex), −1 in another entry (the target vertex) and 0 everywhere else, the
formal definitions are given in Section 1.4.

1.4 Notations and Problem Definition

Unless stated otherwise, we assume that graphs are connected, and have non-negative
edge weights. For a weighted graph G = (V,E,w), we fix an arbitrary orientation to the
edges, i.e. for every edge, one of its endpoints is said to be the “head” of the edge and
the other is said to be its “tail”. Let Bm×n be a signed edge-vertex incidence matrix of

G with respect to the given orientation, namely Be,x =


1 if x is the head of e,

−1 if x is the tail of e,

0 o.w.;

. Let

Wm×m be a diagonal matrix where We,e = w(e). For every vertex x ∈ V we denote by
N(x) ⊆ V the set of neighbors of x. We also denote by χx ∈ RV the unit basis vector
with 1 in the entry corresponding to x and 0 everywhere else. In addition, we denote by
1 ∈ RV the all ones vector. A flow that ships one unit from a source vertex s ∈ V to a
target vertex t ∈ V is a function f : E → R such that BTf = χs − χt, where the sign of
f(e) represents the direction of the flow over the edge e (plus sign meaning the flow goes
from the head to the tail, and minus sign represent flow that goes from the tail to the
head). It is easy to verify that the condition BTf = χs−χt implies that for every vertex
other than s and t, the incoming flow equals the outgoing flow.

For fixed p ∈ [1,∞], the `p cost of a flow f ∈ RE is defined to be

∥∥W−1f
∥∥
p

=

(∑
e∈E

∣∣∣∣ f(e)

w(e)

∣∣∣∣p
)1/p

. (1.17)

Using this notation we can rewrite (1.4) as

dp,G(s, t) = min
{∥∥W−1f

∥∥
p

: BTf = χs − χt
}
. (1.18)

We will omit the subscript G when it is clear from the context. We say that q ∈ [1,∞] is
the Hölder conjugate of p ∈ [1,∞] if it is the (unique) parameter such that 1/p+1/q = 1,
namely q = p

p−1
, and by convention, 1 and ∞ are Hölder conjugates of each other.
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Chapter 2

Properties of the Flow Metrics

In this chapter we discuss some properties of the flow metrics. We begin by presenting in
Section 2.1 the dual problem of (1.18), and using it to derive equivalent definitions of dp
that will be useful in subsequent sections. Moreover, we present a closed-form solution
for dp, which can be viewed as a generalization of Ohm’s law and electrical flows.

In Section 2.2 we discuss some monotonicity properties of the flow metrics. Specif-
ically, we show that for fixed p, the dp distance is monotone in the edge weights, and
for fixed edge weights, it is monotone in p. Moreover, we show a stronger monotonicity
property of dp, which leads to a generalization of Foster’s Theorem (proving Proposition
1.9).

Finally, in Section 2.3 we show that for fixed p ∈ [1,∞), dp satisfies a stronger version
of the triangle inequality (proving Theorem 1.8), which gives some information about the
geometry of the flow metrics.

2.1 Basic Properties

In this section we show the dual problem of (1.18), and use it to provide characterizations
of the flow metrics, which will be useful in different contexts.

Dual Problem. It is well known that (1.18) has a dual problem, that asks to optimize
vertex potentials. Let G = (V,E,w) be a graph, and fix p ∈ [1,∞], having Hölder
conjugate q. For a vector ϕ ∈ RV , viewed as vertex potentials, define its `q cost to be

‖WBϕ‖q =

(∑
xy∈E

w(xy)q |ϕx − ϕy|q
)1/q

. (2.1)

Similarly to [AvL11], for every s 6= t ∈ V we can consider the optimization problem,

d̄p(s, t) = min
{
‖WBϕ‖q : (χs − χt)T ϕ = 1

}
. (2.2)

Proposition 4 in [AvL11] implies that the optimization problems (1.18) and (2.2) are
equivalent in the following sense.

Claim 2.1. Let p ∈ (1,∞). Let G = (V,E,w) be a weighted graph. Then,

∀s 6= t ∈ V, dp(s, t) =
(
d̄p(s, t)

)−1
. (2.3)

12



We show how it is derived formally in Appendix A.1. We remark that d̄p is strongly
related to mincut(s, t) because in the limit p→∞,

lim
p→∞

d̄p(s, t) = lim
p→∞

min
ϕs−ϕt=1

(∑
xy∈E

|ϕx − ϕy|1+ 1
p−1 w(xy)1+ 1

p−1

)1− 1
p

= min
ϕs−ϕt=1

∑
xy∈E

|ϕx − ϕy| · w(xy)

= mincut(s, t).

(2.4)

Moreover, this shows that Claim 2.1 extends to p =∞, because d∞(s, t) = (maxflow(s, t))−1.
Furthermore, by swapping the constraints and the objectives of problem (2.2), we get

the optimization problem,

d̃p(s, t) = max
{

(χs − χt)T ϕ : ‖WBϕ‖q = 1
}
, (2.5)

and establish another connection.

Claim 2.2. Let G = (V,E,w) be a graph, let p ∈ [1,∞]. Then,

∀s 6= t ∈ V, d̃p(s, t) =
(
d̄p(s, t)

)−1
. (2.6)

Proof. Indeed, let ϕ∗ be a solution to (2.2), and define ϕ̃ = ϕ∗

‖WBϕ∗‖q
. Thus,

d̃p(s, t) ≥ (χs − χt)T ϕ̃ = (χs − χt)T
ϕ∗

‖WBϕ∗‖q
=

1

‖WBϕ∗‖q
=
(
d̄p(s, t)

)−1
.

We can similarly show that d̃p(s, t) ≤
(
d̄p(s, t)

)−1
, and the claim follows.

Combining Claims 2.1 and 2.2 , we conclude that dp = d̃p. Next, we use this connection
to show another characterization of the flow metrics, which will be very useful in later
sections.

Claim 2.3. Let G = (V,E,w) be a graph, let p ∈ [1,∞], with Hölder conjugate q. Then,

∀s, t ∈ V, dp(s, t) = max

{
(χs − χt)T ϕ
‖WBϕ‖q

: ϕ ∈ RV , ϕ /∈ span
{
1
}}

. (2.7)

Proof. Since dp = d̃p, it suffices to show it for d̃p. Fix some s 6= t ∈ V . First, let φ∗ ∈
argmax
‖WBϕ‖q=1

(χs − χt)T ϕ, and since ‖WBφ∗‖q = 1, it holds that φ∗ /∈ span
{
1
}

(otherwise

the norm would have been 0 since kerB = span
{
1
}

) and (χs − χt)φ∗ = (χs−χt)φ∗
‖WBφ∗‖q

. Hence,

it is immediate that

d̃p(s, t) = (χs − χt)T φ∗ ≤ max
ϕ∈RV :ϕ/∈span{1}

(χs − χt)T ϕ
‖WBϕ‖q

. (2.8)

In the other direction, let ϕ∗ ∈ argmax
ϕ∈RV :ϕ/∈span{1}

(χs−χt)Tϕ
‖WBϕ‖q

, and define ϕ̃ = ϕ∗

‖WBϕ∗‖q
. It is

easy to see that ϕ̃ /∈ span
{
1
}

, ‖WBϕ̃‖q = 1, and moreover,

d̃p(s, t) ≥ (χs − χt)T ϕ̃ =
(χs − χt)T ϕ∗

‖WBϕ∗‖q
= max

ϕ∈RV :ϕ/∈span{1}
(χs − χt)T ϕ
‖WBϕ‖q

. (2.9)

13



Closed-Form Solution. We remark that via the KKT-conditions we can get a closed-
form solution for the flow metrics, which can be viewed as a generalization of Ohm’s law
and electrical flows, similarly to [HJPW21].

Fact 2.4 (KKT conditions for dp). Let G = (V,E,w) be a graph, let p ∈ (1,∞) with
Hölder conjugate q, let s, t ∈ V , and let f ∈ RE such that BTf = χs − χt. Then, f
is an optimal flow for dp(s, t), if and only if there exists a potentials vector ϕ ∈ RV

such that for every edge xy ∈ E, ϕx − ϕy = f(xy)|f(xy)|p−2

w(xy)p
, or equivalently, f(xy) =

w(xy)q (ϕx − ϕy) |ϕx − ϕy|q−2.

We remark that using Fact 2.4, we can deduce a connection between the flow metrics
and the p-Laplacian of the graph, as well as its second smallest eigenvalue (see [BH09]
for details about the graph p-Laplacian and its second smallest eigenvalue). We present
it in appendix A.2.

2.2 Monotonicity Properties

In this section we show that the flow metrics are “monotone” in two manners - in the edge
weights and in the parameter p. We begin by showing that for fixed p, as the weights
increase, the dp-distance decrease. We then show that as p increases, the dp-distance
decreases. Moreover, we show even stronger monotonicity in p, that as p increases even
dqp decreases, where q is the Hölder conjugate of p (and changes with p). We then use
these properties to show a generalization of Foster’s Theorem.

Monotonicity in the edge weights.

Claim 2.5. Let G = (V,E) be a graph and let w,w′ : E → R+ be two weight functions
on E, such that for every edge e ∈ E, w(e) ≤ w′(e). Fix p ∈ [1,∞], and let dp, d

′
p be the

corresponding flow metrics on G with weight functions w and w′ respectively. Then,

∀s, t ∈ V, dp(s, t) ≥ d′p(s, t). (2.10)

Proof. Fix some s 6= t ∈ V , and let f ∗ be some minimizing st flow with respect to the
weight function w, i.e. f ∗ ∈ argmin

BT f=χs−χt
‖W−1f‖p. Thus, we can see that

dp(s, t) =

(∑
e∈E

∣∣∣∣f ∗(e)w(e)

∣∣∣∣p
)1/p

(by definition of f ∗)

≥

(∑
e∈E

∣∣∣∣f ∗(e)w′(e)

∣∣∣∣p
)1/p

(by w′ ≥ w)

≥ d′p(s, t).

Monotonicity in p. We recall that for all 1 ≤ p ≤ p′ ≤ ∞, we have

∀x ∈ Rn, ‖x‖p′ ≤ ‖x‖p ≤ n1/p−1/p′ ‖x‖p′ . (2.11)

Using this bound, we get the following.

14



Claim 2.6. Let G = (V,E,w) be a graph. Let 1 ≤ p ≤ p′ ≤ ∞, and let s, t ∈ V . Then

dp′(s, t) ≤ dp(s, t) ≤ |E|1/p−1/p′ dp′(s, t). (2.12)

Proof. Let f ∗p ∈ argmin
BT f=χs−χt

‖W−1f‖p and f ∗p′ ∈ argmin
BT f=χs−χt

‖W−1f‖p′ . Then,

dp(s, t) ≤
∥∥W−1f ∗p′

∥∥
p

(by definition of dp)

≤ |E|1/p−1/p′
∥∥W−1f ∗p′

∥∥
p′

(by (2.11))

= |E|1/p−1/p′ dp′(s, t) (by definition of f ∗p′).

By similar calculations we conclude that dp′(s, t) ≤ dp(s, t).

The following corollary will come handy in Section 3.2, where we discuss flow metric
sparsifiers.

Corollary 2.7. Let G = (V,E,w) be a graph on n vertices, let 0 < ε < 1, and let
p ≥ 4ε−1 log n. Then,

∀s, t ∈ V, d∞(s, t) ≤ dp(s, t) ≤ (1 + ε)d∞(s, t). (2.13)

Proof. By Claim 2.6, we have

d∞ ≤ dp ≤ |E|1/pd∞. (2.14)

Hence, for p ≥ 4ε−1 log n we get,

|E|1/p = e
1
p

log |E| ≤ eε/2 ≤ 1 + ε. (2.15)

Thus, plugging this into (2.14) gives the desired result.

2.2.1 A Generalization of Foster’s Theorem

Next, we present another monotonicity property for the flow metrics, and use it to con-
clude lower and upper bounds on the sum

∑
xy∈E w(xy)qdp(x, y)q (proving Proposition

1.9). These bounds can be viewed as a generalization of Foster’s Theorem. We restate it
here for clarity.

Proposition 2.8. Let G = (V,E,w) be a connected graph, and fix p > 1 with Hölder
conjugate q. Then,

if p ≥ 2,
|V |
2
≤
∑
xy∈E

w(xy)qdp(x, y)q ≤ |V | − 1, (2.16)

if p ≤ 2, |V | − 1 ≤
∑
xy∈E

w(xy)qdp(x, y)q ≤ |E|. (2.17)

We remark that for defining the sum for p = 1, we take power 1/q on both sides and
take the limit p→ 1. Thus, (2.17) turns into maxxy∈E {w(xy)d1(x, y)} = 1. Proposition
2.8 is a consequence of the following lemma.
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Lemma 2.9. Let G = (V,E,w) be a graph (possibly with parallel edges), fix p, p′ ∈ (1,∞]
with Hölder conjugates q, q′ respectively. Define w′ = wq/q

′
, and denote G′ = (V,E,w′).

If p ≤ p′ then
∀s, t ∈ V, dp,G(s, t)q ≥ dp′,G′(s, t)

q′ . (2.18)

Otherwise, the inequality is reversed (by symmetry).

Proof. Let s 6= t ∈ V , and recall that by Claim 2.1

dp,G(s, t) =
(
d̄p,G(s, t)

)−1
=

 min
ϕs−ϕt=1

(∑
xy∈E

w(xy)q |ϕx − ϕy|q
)1/q

−1

.

Denote a minimizer ϕ by

ϕ∗ ∈ argmin
ϕs−ϕt=1

(∑
xy∈E

w′(xy)q
′ |ϕx − ϕy|q

′

)1/q′

.

Then,

dp′,G′(s, t)
−q′ =

∑
xy∈E

w′(xy)q
′ ∣∣ϕ∗x − ϕ∗y∣∣q′ (by definition of ϕ∗)

≥
∑
xy∈E

w′(xy)q
′ ∣∣ϕ∗x − ϕ∗y∣∣q (by q′ ≤ q and

∣∣ϕ∗x − ϕ∗y∣∣ ≤ 1)

=
∑
xy∈E

w(xy)q
∣∣ϕ∗x − ϕ∗y∣∣q (by wq = (w′)q

′
)

≥ dp,G(s, t)−q.

Lemma 2.9 implies two of the bounds in Proposition 2.8 as easy corollaries.

Corollary 2.10. Let G = (V,E,w) be a connected graph (possibly with parallel edges)
with |V | = n vertices. Fix p ∈ (1,∞] with Hölder conjugate q. Then,∑

xy∈E

w(xy)qdp(x, y)q ≤ n− 1 ⇐⇒ p ≥ 2. (2.19)

Proof. For p ≥ 2 with Hölder conjugate q, denote w′ = wq/2 and let d′2 is the corresponding
flow metric on G′ = (V,E,w′). By Lemma 2.9,∑

xy∈E

w(xy)qdp(x, y)q ≤
∑
xy∈E

w′(xy)2d′2(x, y)2 = n− 1. (2.20)

where the last equality is exactly Foster’s Theorem about effective resistance. For p ∈
(1, 2] we use the symmetric case of Lemma 2.9 and Foster’s Theorem again.

We remark that the bound in (2.19) is tight (for every p > 1), since on trees the sum
always equals to n− 1.

Next, we give tight upper and lower bounds for the remaining cases. We begin by
showing the following claim.
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Claim 2.11. For every graph G = (V,E,w), and every p > 1 with Hölder conjugate q,

∀uv ∈ E, w(uv)qdp(u, v)q ≤ 1, (2.21)

which implies the upper bound
∑

xy∈E w(xy)qdp(x, y)q ≤ |E|.
We remark that these bounds hold also when taking the limit p→ 1.

Proof. Consider first the case p > 1. Fix an edge uv ∈ E, and fix p > 1 with Hölder
conjugate q. Then,

w(uv)−qdp(u, v)−q = w(uv)−q · min
ϕu−ϕv=1

(∑
xy∈E

w(xy)q |ϕx − ϕy|q
)

= min
ϕu−ϕv=1

(∑
xy∈E

(
w(xy)

w(uv)

)q
|ϕx − ϕy|q

)

= min
ϕu−ϕv=1

1 +
∑

xy∈E\{uv}

(
w(xy)

w(uv)

)q
|ϕx − ϕy|q


≥ 1.

(2.22)

The case p = 1 follows by taking the limit.

In fact, we have something stronger for several graphs.

Claim 2.12. For every unweighted graph G = (V,E) with no parallel edges,

∀uv ∈ E, lim
p→1

dp(u, v)q = 1. (2.23)

and thus the upper bound
∑

xy∈E w(xy)qdp(x, y)q ≤ |E| is existentially tight in the limit
p→ 1.

Proof. Similarly to the proof of Claim 2.11, we have

dp(u, v)−q = min
ϕu−ϕv=1

1 +
∑

xy∈E\{uv}

|ϕx − ϕy|q
 . (2.24)

Define a potential function ϕ by ϕx =


1 if x = u,

0 if x = v,
1
2

o.w.;

. Plugging this into (2.24) we get

dp(u, v)−q ≤ 1 +
∑

xy∈E\{uv}

|ϕx − ϕy|q

= 1 +
∑

x∈N(u)\{v}

(
1

2

)q
+

∑
y∈N(v)\{u}

(
1

2

)q
≤ 1 +

2∆

2q
.

(2.25)

where ∆ = maxv∈V deg(v). Together with the bound from Claim 2.11, we have

1 ≤ dp(u, v)−q ≤ 1 +
2∆

2q
q→∞−−−→ 1.

and the claim follows.
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We conclude the case p ≤ 2 in Proposition 2.8, by using Corollary 2.10 and Claim
2.11. Moreover, these bounds are tight - the lower bound is tight for p = 2, and the
upper bound is tight for p → 1 (Claim 2.12). In particular, on trees the sum always
equals |V | − 1 = |E|.

Finally, we give a lower bound for the sum
∑

xy∈E w(xy)qdqp(x, y) when p > 2, which
will conclude Proposition 2.8. Due to Lemma 2.9, it suffices to give a lower bound for
the case p =∞. Indeed, we have the following bound.

Claim 2.13. Let G = (V,E,w) be a graph with |V | = n vertices. Then∑
xy∈E

w(xy)d∞(x, y) ≥ n

2
. (2.26)

Proof. For every vertex x ∈ V ,∑
y∈N(x)

w(xy)d∞(x, y) =
∑

y∈N(x)

w(xy)

mincut(x, y)

≥
∑

y∈N(x)

w(xy)

weighted-deg(x)

= 1.

By rearranging the sum over the edges into a sum over the vertices, we obtain∑
xy∈E

w(xy)d∞(x, y) =
1

2

∑
x∈V

∑
y∈N(x)

w(xy)d∞(x, y)

≥ n

2
.

We remark that the above lower bound is tight too, for example for an n-cycle the
sum is indeed n/2.

Using Claim 2.13, we conclude the case of p ≥ 2 in Proposition 2.8.

2.3 p-strong Triangle Inequality for Flow Metrics

In this section we show that the flow-metrics satisfy a stronger version of the triangle
inequality, and discuss some of its properties.

Definition 2.14 (p-strong metric). Let (X, d) be a metric space, and fix p ≥ 1. We say
that d is p-strong if it satisfies the p-strong triangle inequality,

∀x, y, z ∈ X, d(x, y)p ≤ d(x, z)p + d(z, y)p. (2.27)

To extend the definition to p = ∞, we take power 1/p of both side of the inequality
and let p→∞. Inequality (2.27) then turns to d(x, y) ≤ max {d(x, z), d(z, y)}.

Theorem 2.15. Let G = (V,E,w) be a graph, and fix p ∈ [1,∞). Then dp is p-strong.
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For p = 1, 2,∞ this was known to be true: For p = 1 it is trivial, as (2.27) is
just the regular triangle inequality. For p = ∞ this is known to be true since d∞ is
an ultrametric. For p = 2, since d2(s, t)2 is the effective resistance between s and t,
it is related to the commute time. Namely, if we denote w2(E) =

∑
e∈E w(e)2, then

commute(s, t) = 2w2(E)d2(s, t)2. It is easy to see that for every s, t, v it holds that
commute(s, t) ≤ commute(s, v) + commute(v, t), which leads to d2(s, t)2 ≤ d2(s, v)2 +
d2(v, t)2.

The proof of Theorem 2.15 uses the same technique as in [Her10], who showed a
variation of the triangle inequality for the family of p-resistance.

Proof. (of Theorem 2.15) Let s, t, v ∈ V , and define a new graph G̃ =
(
Ṽ , Ẽ, w̃

)
that

consists of two copies of G, and a single copy of v. Namely, a copy G1 = (V1, E1, w) and
another copy G2 = (V2, E2, w), where the two copies of v from V1 and V2 are identified
with the same vertex v. An illustration is given in figure 2.1.

s1 t1

v

t2s2

Figure 2.1: Illustration of the construction of the new graph

Given a flow f1 that ships 1 unit from s to v in the original graph G, and another
flow f2 that ships 1 unit from v to s (also in G), we can define a new flow f̃ from s1 to

t2 in G̃ that will be the same on the first copy of G as f1, and on the second copy of G
it will be the same as f2. This is a feasible flow that ships 1 unit from s1 to t2, and it
is easy to see that by taking f1 and f2 to be the minimizing flows that attain dp,G(s, v)p

and dp,G(v, t)p respectively, we get,

dp,G̃ (s1, t2)p ≤
∑
e∈E1

∣∣∣∣f1(e)

w(e)

∣∣∣∣p +
∑
e∈E2

∣∣∣∣f2(e)

w(e)

∣∣∣∣p = dp,G(s, v)p + dp,G(v, t)p. (2.28)

Thus, it suffices to prove that dp,G (s, t) ≤ dp,G̃ (s1, t2). By Claim 2.1 it is enough to prove
that

dp,G(s, t) ≥ dp,G̃ (s1, t2) . (2.29)

Let q be the Hölder conjugate of p. Denote by Wm×m, Bm×n the diagonal weight matrix

and the signed edge-vertex incident matrix of G, and denote by W̃ , B̃ the diagonal weight
matrix and the signed edge-vertex incident matrix of G̃.

To prove (2.29), let ϕ∗ ∈ argmin
ϕ∈RV :ϕs−ϕt=1

‖WBϕ‖q, be a minimizing potential function

on the old graph G, and we will use it to define a new potential function ϕ̃ on G̃ such
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that ‖WBϕ∗‖q ≥
∥∥∥W̃ B̃ϕ̃

∥∥∥
q
. This will give,

dp,G(s, t) = ‖WBϕ∗‖q ≥
∥∥∥W̃ B̃ϕ̃

∥∥∥
q
≥ dp,G̃ (s1, t2) , (2.30)

which will conclude the proof.
For every u1 ∈ V1, define ϕ̃ (u1) = max {ϕ∗(u), ϕ∗(v)} and for every u2 ∈ V2, define

ϕ̃ (u2) = min {ϕ∗(u), ϕ∗(v)} (note that ϕ̃(v) = ϕ∗(v)). This potential function is at least
ϕ∗(v) on the first copy of G, and at most ϕ∗(v) on the second copy of G. Note that in
particular, ϕ̃ (s1)− ϕ̃ (t2) = ϕ∗(s)− ϕ∗(t) = 1.

By translation of the potential, we may assume that ϕ∗(v) = 0. Fix some edge
uu′ ∈ E, and note that its contribution to ‖WBϕ∗‖qq is w(e)q · |ϕ∗(u)− ϕ∗(u′)|q, and the

contribution of its corresponding two edges in G̃ to
∥∥∥W̃ B̃ϕ̃

∥∥∥q
q

is

w (u1u
′
1)
q · |ϕ̃ (u1)− ϕ̃ (u′1)|q + w (u2u

′
2)
q · |ϕ̃ (u2)− ϕ̃ (u′2)|q . (2.31)

Next, let us examine (2.31) more carefully by separating into four cases.

• Case 1: ϕ∗(u), ϕ∗(u′) ≥ 0. In this case it holds that:

ϕ̃ (u1) = ϕ∗(u), ϕ̃ (u′1) = ϕ∗(u′),

ϕ̃ (u2) = ϕ̃ (u′2) = 0.

Thus, the contribution of the corresponding edges in (2.31) is the same as in
‖WBϕ∗‖qq (i.e. w(uu′)q · |ϕ∗(u)− ϕ∗(u′)|q).

• Case 2: ϕ∗(u), ϕ∗(u′) ≤ 0. This case is very similar to the previous case since now:

ϕ̃ (u1) = ϕ̃ (u′1) = 0,

ϕ̃ (u2) = ϕ∗(u), ϕ̃ (u′2) = ϕ∗(u′).

Thus, again, the contribution of the edges is w(uu′)q · |ϕ∗(u)− ϕ∗(u′)|q.

• Case 3: ϕ∗(u) ≥ 0 ≥ ϕ∗(u′). In this case we have:

ϕ̃ (u1) = ϕ∗(u), ϕ̃ (u′1) = 0,

ϕ̃ (u2) = 0, ϕ̃ (u′2) = ϕ∗(u′).

Hence, the contribution is:

w(uu′)q ·
(
|ϕ∗(u)− 0|q + |0− ϕ∗(u′)|q

)
≤ w(uu′)q · |ϕ∗(u)− ϕ∗(u′)|q .

where we used the fact that ϕ∗(u) and −ϕ∗(u′) are non-negative, which implies that
|ϕ∗(u)− ϕ∗(u′)| = |ϕ∗(u)|+ |−ϕ∗(u′)|, and thus we could apply the inequality

∀α ≥ 1, a, b ≥ 0, (a+ b)α ≥ aα + bα.

This inequality is proved below as Claim 2.17.

To conclude, we got that the contribution of the edges in this case is at most the
contribution of the corresponding edge in G.
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• Case 4: ϕ∗(u) ≤ 0 ≤ ϕ∗(u′). This case is analogous to the previous case, where
we use the fact that |a− b| = |b− a| for any a, b ∈ R, and then repeat the same
arguments as in the previous case in order to reach the same conclusion.

To summarize, we got that for every edge e = uu′ ∈ E, its contribution to ‖WBϕ∗‖qq is
larger than the sum of the contributions of the corresponding edges e1 = u1u

′
1 ∈ E1 and

e2 = u2u
′
2 ∈ E2 to

∥∥∥W̃ B̃ϕ̃
∥∥∥q
q
. Thus, it indeed holds that ‖WBϕ∗‖q ≥

∥∥∥W̃ B̃ϕ̃
∥∥∥
q
, which

concludes the proof.

Next, we present two simple properties of the p-strong triangle inequality.

The p-strong Triangle Inequality is Monotone in p. We show that if a metric is
p-strong for some p ≥ 1, then it is also p′-strong for all p′ ∈ [1, p].

Proposition 2.16. Let (X, d) be a metric space that is p-strong for some p ≥ 1. Then,
for every p′ ∈ [1, p], d is p′-strong as well.

In particular, this proves that for every p ∈ [1,∞), dp is a metric. In order to
prove Proposition 2.16, we will need the following simple claim, which we prove here for
completeness.

Claim 2.17. Let a1, . . . , an ≥ 0 and let p > 0, then:

if p ≤ 1,
n∑
i=1

api ≥

(
n∑
i=1

ai

)p

. (2.32)

if p ≥ 1,
n∑
i=1

api ≤

(
n∑
i=1

ai

)p

. (2.33)

Proof. (of Claim 2.17) Suppose p ≥ 1 (the other case is similar), let A =
∑n

i=1 ai, and
note that if A = 0 then the statement clearly holds, hence we may assume that A > 0.
By direct calculations,

n∑
i=1

api = Ap ·
n∑
i=1

(ai
A

)p
≤ Ap ·

n∑
i=1

ai
A

(by ai/A ≤ 1 and p ≥ 1)

= Ap.

Proof. (of Proposition 2.16) Let x, y, z ∈ X. Then,

d(x, y)p
′ ≤ (d(x, z)p + d(z, y)p)

p′
p (by p-strong)

≤ d(x, z)p
′
+ d(z, y)p

′
(by p′ ≤ p and Claim 2.17).
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The p-strong Triangle Inequality is Tight for dp. We have shown that dp is p-
strong, and thus in particular it is also p′-strong for 1 ≤ p′ ≤ p. Next, we present a
simple example that shows that in the general case, the power p cannot be strengthened.

Claim 2.18. There exists a graph G = (V,E) such that for every p ≥ 1 and every ε > 0,
the metric dp is not (p+ ε)-strong.

Proof. Let G = (V,E) be a 2-path, i.e. V = {s, t, v} and E = {{s, v} , {v, t}}. It
is easy to see that for every p ≥ 1, dp(s, v) = dp(v, t) = 1. Moreover, it holds that

dp(s, t) = (1p + 1p)1/p = 21/p. It is easy to verify that indeed the p-strong triangle
inequality holds, but for any ε > 0, we can see that

dp(s, t)
p+ε =

(
21/p

)p+ε
= 21+ε/p > 2 = 1p+ε + 1p+ε = dp(s, v)p+ε + dp(v, t)

p+ε, (2.34)

where we used the fact that 2a for a > 0 is greater than 1.
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Chapter 3

Graph-Size Reduction

In this chapter we discuss techniques for reducing the size of a graph while preserving its
flow metric up to some error. We begin by examining the method of edge sparsification.

Definition 3.1 (dp-sparsifier). Let G = (V,E,w) be a graph, let p ∈ [1,∞], and let ε > 0.
A dp-sparsifier of G is a graph G′ = (V,E ′, w′), such that

∀s, t ∈ V, dp,G′(s, t) ∈ (1± ε)dp,G(s, t). (3.1)

We remark that for the special cases of p = 1, 2,∞ there are known upper bounds: for
p = 1, the definition coincides with multiplicative spanners; for p = 2, it coincides with
resistance-sparsifiers; for p = ∞, there is the Gomory-Hu tree. We wish to generalize
these constructions to other values of p.

Moreover, there are matching lower bounds for p = 1,∞, but for p = 2 no non-trivial
lower bound is known. In section 3.1 we give the first lower bound for p = 2 (Theorem
1.2). It is essentially a lower bound for resistance sparsifiers of the clique (Lemma 1.3),
and we also discuss some special graph families (for the sparsifier) in which the lower
bound can be strengthened, including regular graphs (Theorem 1.4), which intuitively
should be the best fit for sparsifying the clique.

In Section 3.2 we present constructions of dp-sparsifiers for other values of p (Theorem
1.5), that follow easily from a Theorem by Cohen and Peng [CP15]. Furthermore, we
discuss the relation between the size of the sparsifier and the parameter p, as well as
the gaps between the known constructions for p = 1, 2,∞ and our construction for other
values of p.

In Section 3.3 we discuss a different method to reduce the size of graphs while pre-
serving exactly the dp-metric, known as the Delta-Wye transform, and its generalization
the k-star-mesh transform for effective resistance; the formal definitions are given in Sec-
tion 3.3. We examine for which values of p and k the dp metrics admit such transforms.
Specifically we show in Theorem 1.6 that for k = 3 there exists an analogue of the Delta-
Wye transform if and only if p = 1, 2,∞, and in Theorem 1.7 that for p =∞ there exists
an analogue of the k-star-mesh transform if and only if k ≤ 3.

3.1 Lower Bound on Resistance Sparsifiers

In this section we make partial progress towards proving Conjecture 1.1, which asserts
that in the worst case, an ε-resistance-sparsifier of a graph with n vertices requires at
least Ω(n/ε) edges. We begin by showing a weaker lower bound of Ω(n/

√
ε) edges, and

then discuss some special cases in which we achieve the stronger lower bound.
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Definition 3.2 (ε-resistance sparsifier [DKW15]). Let G = (V,E,w) be a graph. An
ε-resistance sparsifier of G is a graph G′ = (V,E ′, w′) such that

∀x, y ∈ V, Reff,G′(x, y) ∈ (1± ε) Reff,G(x, y). (3.2)

Conjecture 1.1 is inspired by the following open question.

Open Question 3.3. Chu et al [CGPSSW18] show that every graph with n vertices

admits an ε-resistance sparsifiers with Õ (n/ε) edges. Is this tight?

It is known that a clique over n vertices admits an ε-resistance sparsifier with O(n/ε)
edges. We present it formally in 3.1.2 for completeness. Thus, the best lower bound for
sparsifying the clique is of Ω(n/ε) edges (compared to Õ (n/ε) as stated in the question),
which leads the following question, where we think of G as a possible resistance sparsifier
of the clique.

Open Question 3.4. Let G = (V,E,w) be a graph with |V | = n and |E| <
(
n
2

)
. Is it

true that
maxx 6=y∈V Reff(x, y)

minx 6=y∈V Reff(x, y)
> 1 +

1

10n
?

We show a weaker bound than Question 3.4, that gives a lower bound of Ω (n/
√
ε)

edges for an ε-resistance sparsifier in the worst case (Theorem 1.2). This is in fact Lemma
1.3, which we restate here for clarity.

Lemma 3.5. For any graph G = (V,E,w) with |V | = n and |E| <
(
n
2

)
, it holds that

maxx 6=y∈V Reff(x, y)

minx 6=y∈V Reff(x, y)
> 1 +

1

O (n2)
.

Before presenting the proof of Lemma 3.5, we show how this proves Theorem 1.2,
which we restate here for clarity.

Theorem 3.6. For every n ≥ 2 and every ε > 1
n

, there exists a graph G with n vertices,
such that every ε-resistance sparsifier of G has Ω (n/

√
ε) edges.

Proof. (of Theorem 3.6) To see this, take Θ(n
√
ε) distinct cliques, each of size Θ

(
ε−1/2

)
;

removing even one edge will fail to achieve 1 + ε approximation. This graph has Θ (ε−1) ·
Θ (n
√
ε) = Θ (n/

√
ε) edges, which concludes the lower bound.

We remark that if Question 3.4 is true, it implies that every 1
10n

-resistance sparsifier
of the clique must have Ω (n2) edges, and by following a similar proof as in Theorem
3.6 we conclude that in the worst case, an ε-resistance sparsifier requires Ω (n/ε) edges
(Conjecture 1.1).

We proceed to present the proof of Lemma 3.5. Throughout the proof, as well as in
the next sections, we use the following equivalent definition of effective resistance for a
graph G = (V,E,w).

∀s 6= t ∈ V, Reff,G(s, t) =

(
min

ϕ∈RV :ϕs−ϕt=1

∑
xy∈E

w(xy) (ϕx − ϕy)2

)−1

. (3.3)

Moreover, we introduce the following notations. For a subset of edges F ⊆ E we denote
w(F ) =

∑
e∈F w(e), and for every vertex x we denote its weighted degree by degw(x) =∑

y∈V w(xy).
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Proof. (of Lemma 3.5) Without loss of generality, we may assume that |E| =
(
n
2

)
− 1

since a missing edge is an edge of weight 0. Let s, t ∈ V be the pair with a missing edge
between them, denote by A the set of all the edges that touch s or t, and by B denote
the set of the edges that do not touch them. Formally,

A = {{x, y} ∈ E : |{x, y} ∩ {s, t}| = 1} ,
B = {{x, y} ∈ E : |{x, y} ∩ {s, t}| = 0} .

Denote the average edge weight in each set by

ᾱ = E
xy∈A

[w(xy)] =
1

|A|
w(A),

β̄ = E
xy∈B

[w(xy)] =
1

|B|
w(B).

Note that |A| = 2(n − 2) and |B| =
(
n−2

2

)
. Now, by considering a potential function

ϕ ∈ RV given by ϕx =


1 x = s,

0 x = t,

1/2 x 6= s, t;

, we see that

Reff(s, t)−1 ≤
∑
xy∈A

w(xy)
1

4

=
|A| · ᾱ

4

=
n− 2

2
· ᾱ.

(3.4)

Similarly, for every x, y ∈ V \ {s, t}, by considering a potential function with values 0, 1
2
, 1

(similarly to the previous case), we get

Reff(x, y)−1 ≤ degw(x) + degw(y) + 2w(xy)

4
. (3.5)

Let us compute E
xy∈B

[degw(x) + degw(y) + 2w(xy)]. We will first compute the sum, and

then divide by |B|.∑
xy∈B

(degw(x) + degw(y) + 2w(xy)) = 2w(B) +
∑
xy∈B

(degw(x) + degw(y))

= 2w(B) +
∑

x∈V \{s,t}

(n− 3) degw(x)

= 2w(B) + (n− 3) · (2w(E)− degw(s)− degw(t))

= 2w(B) + (n− 3) · (2w(B) + w(A))

= 2(n− 2)w(B) + (n− 3)w(A).

(3.6)
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Thus,

E
xy∈B

[degw(x) + degw(y) + 2w(xy)] =
1

|B|
(2(n− 2)w(B) + (n− 3)w(A))

= 2(n− 2)β̄ +
n− 3(
n−2

2

)w(A)

= 2(n− 2)β̄ +
n− 3

(n−2)(n−3)
2

w(A)

= 2(n− 2)β̄ +
2

n− 2
w(A)

= 2(n− 2)β̄ + 4ᾱ.

(3.7)

We get that there exists uv ∈ B such that

Reff(u, v)−1 ≤ E
xy∈B

[
Reff(x, y)−1

]
≤ 2(n− 2)β̄ + 4ᾱ

4
=
n− 2

2
β̄ + ᾱ. (3.8)

where we used (3.5) and (3.7) in the second transition.
Moreover, note that for all τ ∈ [0, 1],

min
{

Reff(s, t)−1,Reff (u, v)−1} ≤ τ · Reff(s, t)−1 + (1− τ) · Reff (u, v)−1 . (3.9)

We set τ = 2
n−2

, thus 1− τ = n−4
n−2

, which combined with the bounds from (3.4) and (3.8),
yields

min
x6=y∈V

Reff(x, y)−1 ≤ 2

n− 2
· n− 2

2
ᾱ +

n− 4

n− 2
·
(
ᾱ +

n− 2

2
β̄

)
=

(
2− 2

n− 2

)
ᾱ +

n− 4

2
β̄

=

(
n− 3

(n− 2)2

)
· 2(n− 2)ᾱ +

n− 4

2
β̄

=

(
n− 3

(n− 2)2

)
· w(E)−

(
n− 3

(n− 2)2

)
·
(
n− 2

2

)
β̄ +

n− 4

2
β̄

=

(
n− 3

(n− 2)2

)
· w(E) +

(
−n

2 − 6n+ 9

2(n− 2)
+
n2 − 6n+ 8

2(n− 2)

)
β̄

<

(
n− 3

(n− 2)2

)
· w(E).

(3.10)

This gives us a lower bound on the maximum effective resistance in the graph.
In order to get an upper bound on the minimum effective resistance in the graph, let

us compute the expectation of the effective resistance of a random edge e ∈ E sampled
with probability w(e)

w(E)
. By Foster’s Theorem,

E
xy∈E

[Reff(x, y)] =

∑
xy∈E w(xy) Reff(x, y)

w(E)

=
n− 1

w(E)
.

(3.11)
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There exists an edge u′v′ ∈ E whose effective resistance is at most the expectation, i.e.

Reff(u′, v′) ≤ n− 1

w(E)
. (3.12)

Altogether, we see that

maxx 6=y∈V Reff(x, y)−1

minx 6=y∈V Reff(x, y)−1
>

w(E)
n−1(

n−3
(n−2)2

)
· w(E)

=
(n− 2)2

(n− 1)(n− 3)

=
n2 − 4n+ 4

n2 − 4n+ 3

= 1 +
1

n2 − 4n+ 3
.

(3.13)

3.1.1 Stronger Bound for Special Cases

In this section we present some special cases in which we can prove the stronger bound
from Question 3.4. We begin by showing a technical lemma stating that if some condition
holds, then the graph cannot guarantee better than (1 + 1/O(n))-approximation of the
clique. Later, we show that as a matter of fact, this condition holds in some interesting
special cases. One very interesting case is when the graph is regular and arbitrary edge
weights are allowed, including zero (Theorem 1.4).

Lemma 3.7. Let G = (V,E,w) be a graph with |V | = n vertices. Denote by Dw the

average weighted degree of the vertices, i.e. Dw = 1
n

∑
x∈V degw(x) = 2w(E)

n
. Suppose that

one of the following conditions holds.

1. There exists v ∈ V such that degw(v) ≤ Dw
2
·
(
1 + 1

2n

)
.

2. There exist s, t ∈ V such that degw(s) + degw(t) + 2w(st) ≤ 2Dw ·
(
1 + 1

2n

)
.

Then,
maxx 6=y∈V Reff(x, y)

minx 6=y∈V Reff(x, y)
≥ 1 +

1

O(n)
. (3.14)

We remark that the factor 2 in the denominator (in 1 + 1
2n

) is arbitrary, and in fact
this can be proved for any constant c > 1.

Proof. Observe that by Foster’s Theorem, we can calculate the expected effective resis-
tance of an edge when sampling an edge e with probability proportional to its weight
w(e), as follows.

E
xy∈E

[Reff(x, y)] =

∑
xy∈E w(xy) Reff(x, y)

w(E)

=
n− 1
nDw

2

=
2

Dw

(
1− 1

n

)
.

(3.15)
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In particular, there exists an edge uv ∈ E such that Reff(u, v) ≤ 2
Dw

(
1− 1

n

)
.

Next, if the first condition holds, then by considering a potential function ϕ such that

ϕx =

{
1 x = v,

0 o.w.;
, we can see that for any vertex u ∈ V \{v},

Reff(v, u)−1 ≤ degw(v) ≤ Dw

2
·
(

1 +
1

2n

)
. (3.16)

Similarly, if the second condition holds, then by considering a potential function ϕ such

that ϕx =


1 x = s,

0 x = t,
1
2

o.w.;

, we see that

Reff(s, t)−1 ≤ degw(s) + degw(t) + 2w(st)

4
≤ Dw

2
·
(

1 +
1

2n

)
. (3.17)

Hence, in either case it follows that,

maxx 6=y∈V Reff(x, y)

minx 6=y∈V Reff(x, y)
≥

2

Dw·(1+ 1
2n)

2
Dw

(
1− 1

n

)
≥
(

1 +
1

n− 1

)
·
(

1− 1

2n

)
= 1 +

1

n− 1
− 1

2n
− 1

2n(n− 1)

= 1 +
1

2(n− 1)
.

(3.18)

as desired.

Observe that Lemma 3.7 gives the following theorem as a corollary.

Theorem 3.8. Let G = (V,E,w) be a graph with |V | = n and |E| = m <
(
n
2

)
. For every

vertex x ∈ V , denote Nx = |N(x)| and degw(x) =
∑

y∈N(x) w(xy). Suppose that one of
the following conditions holds.

1. The graph is regular, i.e. there is a > 0 such that for every x ∈ V , Nx = a.

2. All the weighted degrees are the same, i.e. there is b > 0 such that for every x ∈ V ,
degw(x) = b.

3. All the edge weights are the same, i.e. there is c > 0 such that for every xy ∈ E,
w(xy) = c.

Then,
maxx6=y∈V Reff(x, y)

minx 6=y∈V Reff(x, y)
≥ 1 +

1

O(n)
. (3.19)

We remark that condition #1 in the above is in fact Theorem 1.4 presented in the
introduction.

28



Proof. We will show that if one of the conditions in the theorem holds, then there exists
a non-edge pair s, t ∈ V such that degw(s)+degw(t) ≤ 2Dw (i.e. condition #2 in Lemma
3.7 holds), which will give the desired result.

First, assume that ∑
x∈V

degw(x) ·Nx ≥
4m · w(E)

n
. (3.20)

We will show later that if one of the conditions in the theorem holds, then (3.20) holds
as well. Denote by F the set of all the missing edges in G, namely F = E (Kn) \E. Now,
we can see that when sampling a non-edge pair uniformly from F , the following holds.

E
st∈F

[degw(s) + degw(t)] =
1(

n
2

)
−m

(∑
x∈V

degw(x) (n− 1−Nx)

)

=
1(

n
2

)
−m

(
(n− 1) · 2w(E)−

∑
x∈V

degw(x) ·Nx

)

≤ 1(
n
2

)
−m

((
n

2

)
· 4w(E)

n
− 4m · w(E)

n

)
= 2Dw.

(3.21)

Hence, there exists a pair s, t ∈ V such that degw(s) + degw(t) ≤ 2Dw (since w(st) = 0).
Thus, condition #2 in Lemma 3.7 holds as claimed.

All we are left to show is that if one of the three conditions in the theorem holds, then
(3.20) holds as well. Indeed, this can be seen as follows.∑

x∈V

degw(x) ·Nx

?

≥ 4m · w(E)

n

⇐⇒
∑

x∈V degw(x) ·Nx

n

?

≥
∑

y∈V Ny

n
·
∑

z∈V degw(z)

n

⇐⇒ E
x∈V

[degw(x) ·Nx]
?

≥ E
y∈V

[degw(y)] · E
z∈V

[Nz]

⇐⇒ Cov (degw(x), Nx)
?

≥ 0

⇐⇒ E
x∈V

[(
degw(x)−Dw

) (
Nx − d

)] ?

≥ 0

where we denote by d the average number of neighbors of the vertices, i.e.

d =
1

n

∑
x∈V

Nx =
2m

n
.

Observe that in the first two cases, one of the random variables (degw(x) and Nx) is
constant, and thus

(
degw(x)−Dw

) (
Nx − d

)
= 0 for every vertex x. In the third case,

the two random variables are equal up to scaling by a constant, and we know E [Z2] ≥ 0.

Thus, we arrive at the desired result.

We remark that Theorem 3.8 does not say that any graph with maximal degree
(number of neighbors) ≤ (n − 2) cannot guarantee better than 1 + 1

O(n)
approximation,

as not every such graph can be “completed” to form an (n− 2)-regular graph. However,
it does immediately give the following corollary.
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Corollary 3.9. Let G = (V,E,w) be a graph with |V | = n where n is even and with
maximal degree ∆ < n

2
. Then,

maxx 6=y∈V Reff(x, y)

minx 6=y∈V Reff(x, y)
≥ 1 +

1

O(n)
(3.22)

Proof. Recall that by Dirac’s Theorem, every graph with minimal degree ≥ n
2
, must

be Hamiltonian. Thus, we may apply it on the complement of G, which leads to the
conclusion that there exists a complete matching (complete since n is even) that does not
belong to G. Hence, we can refer to G as an (n− 2)-regular graph, and by Theorem 3.8
we are done.

In addition, observe that in Theorem 3.8, we essentially showed that if (3.20) holds,

then the graph cannot guarantee better than
(

1 + 1
O(n)

)
-approximation of the clique.

Similarly, we can show the following.

Claim 3.10. Let G = (V,E,w) with |V | = n vertices and |E| = m edges. For every
vertex x ∈ V , denote Nx = |N(x)| and degw(x) =

∑
y∈N(x) w(xy). If∑

x∈V

degw(x) ·Nx ≤
4m · w(E)

n
− 2w(E), (3.23)

Then,
maxx 6=y∈V Reff(x, y)

minx 6=y∈V Reff(x, y)
≥ 1 +

1

O(n)
(3.24)

Proof. Similarly to the proof of Theorem 3.8, we will show that there exists an edge xy ∈
E such that degw(x) + degw(y) + 2w(xy) ≤ 2Dw (where Dw = 1

n

∑
x∈V degw(x) = 2w(E)

n
),

which by Lemma 3.7 will give the desired result.
By similar calculations as in Theorem 3.8 we can see that by sampling an edge uni-

formly the following holds.

E
xy∈E

[degw(x) + degw(y) + 2w(xy)] =
1

m

(
2w(E) +

∑
x∈V

degw(x) ·Nx

)

≤ 1

m
· 4m · w(E)

n
= 2Dw

(3.25)

Hence, again, by Lemma 3.7 we are done.

The Symmetric Case

If we further add the assumption that the graph is symmetric, in the sense that all the
edges that touch s and t (where st is the missing edge) have the same weight α, and the
rest of the edges have the same weight β, then we can prove the stronger bound from
Question 3.4. Formally,

Claim 3.11. Let G = (V,E,w) be a graph with |E| =
(
n
2

)
− 1. Let s, t ∈ V be the

pair with a missing edge between them, and suppose that for every edge e ∈ E, w(e) ={
α e touches s or t,

β o.w.;
where α, β ∈ R+. Then,

maxx 6=y∈V Reff(x, y)

minx 6=y∈V Reff(x, y)
> 1 +

1

10n
.
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We remark that this case is not necessarily contained within any other case which we
have presented so far.

We present here a proof via direct calculations. We give an additional proof via the
connection between effective resistance and commute time in Appendix B.1.

Proof. Again, denote by A the set of all the edges that touch s or t, and by B denote the
set of the edges that do not touch them. By symmetry, for every uv, u′v′ ∈ A it holds
that Reff(u, v) = Reff(u′, v′), and the same holds for every pair of edges in B. We will
denote by RA and RB the resistances of the edges from A and B respectively.

Let us compute the effective resistance for each pair according to the sets.

1. Reff(s, t): On the one hand we can suggest a flow that splits equally to the neighbors
of s, and then each of the neighbors ships the same amount of flow directly to t.

Reff(s, t) ≤ 1

(n− 2)2
·

 ∑
x∈N(s)

1

α
+
∑
y∈N(t)

1

α


=

2

(n− 2)α

(3.26)

On the other hand we can suggest a potential function ϕx =


1 , x = s

0 , x = t

1/2 , x 6= s, t

.

Reff(s, t)−1 ≤
∑
xy∈E

α (ϕx − ϕy)2

≤ 2(n− 2)α · 1

4

=
(n− 2)α

2

(3.27)

Thus we conclude that

Reff(s, t) =
2

(n− 2)α
(3.28)

2. RB: Take some vertices u, v ∈ V \{s, t}. On the one hand we can suggest a flow
that ships τ/2 amount of flow to each of s and t, and then ships the same amount
from s and t to v. In addition, the flow will send σ on the edge uv, and then split
the rest of the flow equally between every vertex x ∈ V \{s, t, v}. Thus,

RB ≤ min
τ,σ∈[0,1]: τ+σ≤1

(
2 · 2 ·

(
τ
2

)2

α
+
σ2

β
+ 2(n− 4)

(
1−τ−σ
n−4

)2

β

)

= min
τ,σ∈[0,1]: τ+σ≤1

(
τ 2

α
+
σ2

β
+

2

(n− 4)β
(1− τ − σ)2

) (3.29)

Let us denote the RHS by f(τ, σ), differentiate it with respect to σ, and compare
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to 0 in order to find a minimum.

∂f

∂σ
(τ, σ) = 0

⇐⇒ 2σ

β
− 4

(n− 4)β
(1− τ − σ) = 0

⇐⇒
(
n− 2

n− 4

)
σ =

2

n− 4
(1− τ)

⇐⇒ σ =
2

n− 2
(1− τ)

Denote σ0 = 2
n−2

(1− τ), and let fσ0(τ) = f (τ, σ0), thus,

fσ0(τ) =
τ 2

α
+

(
2

n−2
(1− τ)

)2

β
+

2

(n− 4)β

(
1− τ − 2

n− 2
(1− τ)

)2

=
τ 2

α
+

4

(n− 2)2β
(1− τ)2 +

2

(n− 4)β

(
(1− τ)

(
1− 2

n− 2

))2

=
τ 2

α
+

4

(n− 2)2β
(1− τ)2 +

2(n− 4)

(n− 2)2β
(1− τ)2

=
τ 2

α
+

2

(n− 2)2β
(1− τ)2 (2 + n− 4)

=
τ 2

α
+

2

(n− 2)β
(1− τ)2

(3.30)

Again, let us now differentiate fσ0 and compare to 0 in order to find a minimum.

f ′σ0
(τ) = 0

⇐⇒ 2

α
τ − 4

(n− 2)β
(1− τ) = 0

⇐⇒ τ

(
1

α
+

2

(n− 2)β

)
=

2

(n− 2)β

⇐⇒ τ =
1

1 + n−2
2
· β
α

(3.31)

Thus, we conclude that

RB ≤
1

α
·

(
1

1 + n−2
2
· β
α

)2

+
2

(n− 2)β

(
n−2

2
· β
α

1 + n−2
2
· β
α

)2

=
1
α

(
1 + n−2

2
· β
α

)(
1 + n−2

2
· β
α

)2

=
1

n−2
2
· β + α

(3.32)

32



On the other hand we can suggest a potential function ϕx =


1 , x = u

0 , x = v

1/2 , x 6= u, v

.

R−1
B ≤

∑
xy∈E

w(xy) (ϕx − ϕy)2

= β + 2 · 2 · α · 1

4
+ (2(n− 4))β · 1

4

=
1

2
· (2α + (n− 2)β)

(3.33)

and thus

RB =
1

α + n−2
2
β

(3.34)

3. RA: Recall that by Foster’s Theorem we have∑
xy∈E

w(xy) Reff(x, y) = n− 1 (3.35)

Thus,

n− 1 =
∑
xy∈A

αRA +
∑
x′y′∈B

βRB

= 2(n− 2)αRA +

(
n− 2

2

)
βRB

which leads to the conclusion that

RA =
(n− 1)−

(
n−2

2

)
βRB

2(n− 2)α

=
1

2α
·
(

1 +
1

n− 2
− (n− 3)

2
βRB

) (3.36)

Hence, by using (3.34) we get that

RA =
1

2α
·
(

1 +
1

n− 2
− (n− 3)β

2α + (n− 2)β

)
(3.37)

Assume towards contradiction that
maxx 6=y Reff(x,y)

minx 6=y Reff(x,y)
≤ 1 + 1

10n
. On the one hand, by com-

paring Reff(s, t) and RB we can see that(
1 +

1

10n

)
≥

2
(n−2)α

2
2α+(n−2)β

=
2

n− 2
+
β

α

=⇒ β

α
≤ 1 +

1

10n
− 2

n− 2
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On the other hand, by comparing RB and RA, we see that(
1 +

1

10n

)
≥

1
α+n−2

2
β

1
2α
·
(

1 + 1
n−2
− (n−3)β

2α+(n−2)β

)
=

4α
2α+(n−2)β

1 + 1
n−2
− (n−3)β

2α+(n−2)β

=
4α

2α + (n− 2)β + 2α+(n−2)β
n−2

− (n− 3)β

=
2

1 + 1
n−2

+ β
α

Thus,

β

α
+

1

n− 2
+ 1 ≥ 2

(
1− 1

10n+ 1

)
⇐⇒ β

α
≥ 1− 1

n− 2
− 2

10n+ 1

Hence, we conclude that

1− 1

n− 2
− 2

10n+ 1
≤ β

α
≤ 1− 2

n− 2
+

1

10n
(3.38)

Which is a contradiction.

Discussion.

We remark that (3.23) can be viewed as follows.∑
x∈V

degw(x) ·Nx ≤
4m · w(E)

n
− 2w(E)

⇐⇒
∑
x∈V

degw(x)

2w(E)
·Nx ≤

2m

n
− 1

⇐⇒ E
x∼degw(x)

[Nx] ≤ E
x∈V

[Nx]− 1

(3.39)

where by x ∼ degw(x) we mean that a vertex x ∈ V is sampled with probability propor-
tional to its weighted degree.

Recall that as we mentioned earlier, the proof of Theorem 3.8 essentially shows that
if (3.20) holds, then the lower bound of 1 + 1

O(n)
holds. Note that (3.20) can be viewed

as follows. ∑
x∈V

degw(x) ·Nx ≥
4m · w(E)

n

⇐⇒
∑
x∈V

degw(x)

2w(E)
·Nx ≥

2m

n

⇐⇒ E
x∼degw(x)

[Nx] ≥ E
x∈V

[Nx]

(3.40)

A summary of our results is presented in Table 3.1.
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Condition Lower Bound on max Reff

min Reff

All graphs except the clique 1 + 1
O(n2)

minx∈V degw(x) ≤ Dw
2

(
1 + 1

(1+O(1))n

)
1 + 1

O(n)

minx6=y∈V (degw(x) + degw(y) + 2w(xy)) ≤ 2Dw

(
1 + 1

(1+O(1))n

)
1 + 1

O(n)

E
x∼degw(x)

[Nx] ≥ E
x∈V

[Nx] 1 + 1
O(n)

E
x∼degw(x)

[Nx] ≤ E
x∈V

[Nx]− 1 1 + 1
O(n)

Symmetric case 1 + 1
O(n)

Table 3.1: Summary of lower bounds for resistance sparsifiers of the clique.

3.1.2 Upper Bound for Resistance Sparsifier of the Clique

In this subsection we complete the discussion about Question 3.3 by showing the upper
bound of O(n/ε) edges for resistance sparsifier of the clique, as observed in [DKW15].

Claim 3.12. The clique Kn admits an ε-resistance sparsifier with O (n/ε) edges.

Claim 3.12 follows from the fact that Reff(s, t) = 2
n

for all pairs of vertices in the clique
(Fact 3.14) and the following theorem presented in [vLRH14].

Theorem 3.13 (Proposition 5 in [vLRH14]). Let G = (V,E,w) be a graph. For every
vertex x ∈ V denote its weighted degree by degw(x) =

∑
y∈N(x) w(xy). Denote the min-

imum weighted degree by dmin and the maximal edge weight by wmax. Denote by λ2(G)
the second smallest eigenvalue of the normalized Laplacian of G. Then∣∣∣∣Reff(s, t)−

(
1

degw(s)
+

1

degw(t)

)∣∣∣∣ ≤ wmax
dmin

(
1

λ2(G)
+ 2

)(
1

degw(s)
+

1

degw(t)

)
(3.41)

Since for expanders λ2 = Ω(1), an Θ (ε−1)-regular expander with all edges having the
same weight Θ(ε · n) is an ε-resistance sparsifier for Kn.

Fact 3.14. Let G = Kn be a clique over n vertices. Then

∀s, t ∈ V, Reff(s, t) =
2

n
.

Proof. By symmetry and Foster’s theorem,

Reff(s, t) =

∑
xy∈E Reff(x, y)(

n
2

) =
n− 1(

n
2

) =
2

n
. (3.42)

3.2 Flow Metric Sparsifiers

In this section we show that for some values of p there exists a dp-sparsifier, where the
sparsity of the graph depends on p and some additional parameters of the problem. This
is in fact Theorem 1.5, which we restate here for clarity.
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Theorem 3.15. Let G = (V,E,w) be a graph, fix p ∈
(

4
3
,∞
]

having Hölder conjugate q,
and let ε > 0. Then there exists a graph G′ = (V,E ′, w′) that is a dp-sparsifier of G, i.e.

∀s, t ∈ V, dp,G′(s, t) ∈ (1± ε) dp,G(s, t), (3.43)

and has |E ′| = f(n, ε, p) edges, where

f(n, ε, p) =


n− 1 if p = Ω (ε−1 log n) ,

O
(
n log(n/ε) (log log(n/ε))2 ε−2

)
if 2 < p <∞,

O
(
nq/2 log(n) log(1/ε)ε−5

)
if 4

3
< p < 2.

(3.44)

We remark that in general, the last row of the table applies for all 1 < p < 2, but
for 1 < p ≤ 4

3
it gives trivial bounds since this implies that q > 4 and thus we have

nq/2 > n2. Moreover, we remark that as p tends to ∞, the dp metric tends to the inverse
of mincut(s, t) (ultra)metric, for which there exists cut sparsifiers [Kar93; BK96], that
preserve all of the cuts in the graph, and for which there exists a lower bound [CKST19]
of Ω(n/ε2) edges. However in our case, in order to preserve the d∞ metric, it suffices
to preserve only the minimum-st-cuts. In addition, note that the case p = 2 is the
special case where d2

2 is in fact the resistance distance, for which [CGPSSW18] showed

the existence of a resistance sparsifier with Õ (nε−1) edges.
We now turn to proving Theorem 3.15 which follows easily from a theorem of Cohen

and Peng [CP15].

Theorem 3.16 (Theorem 7.1 in [CP15]). Given a matrix A ∈ Rm×n and parameters
q ∈ (1,∞), ε > 0, there exists a set of scores {τi(A, q)}mi=1 summing up to at most n, such
that for any set of sampling values {σi}mi=1 satisfying

σi ≥ τi(A, q) · g(n, ε, q)

if we generate a matrix S with N =
∑m

i=1 σi rows, each chosen independently as 1

σ
1/q
i

· −→ei
with probability σi

N
(−→ei ∈ Rm is the ith basis vector), then with probability at least 1− 1

nΩ(1)

we have
∀ϕ ∈ Rn, ‖SAϕ‖q ∈ (1± ε) ‖Aϕ‖q

where

g(n, ε, q) =


log(n)ε−2 if q = 1,

log(n/ε) (log(log(n/ε)))2 ε−2 if 1 < q < 2,

n
q
2
−1 log(n) log(1/ε)ε−5 if 2 < q.

(3.45)

Note that for the proof of existence, we can set σi = τi(A, q) · g(n, ε, q) and thus
a sufficient number of rows in the matrix S will satisfy N =

∑m
i=1 τi(A, q)g(n, ε, q) ≤

n · g(n, ε, q). We are ready to present the proof of Theorem 3.15.

Proof. (of Theorem 3.15) We will first deal with the last two rows in the table of the
theorem (4

3
< p < ∞). Let A = WB where Wm×m is the diagonal weight matrix and

Bm×n is the signed edge-vertex incidence matrix of G. By Theorem 3.16, there exists
a matrix S with N rows (same N as defined in Theorem 3.16) where each row is a
reweighted basis vector, such that

∀ϕ ∈ Rn, ‖SWBϕ‖q ∈ (1± ε) ‖WBϕ‖q (3.46)
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with q being the Hölder conjugate of p. Note that q = p
p−1

, and thus the case 2 < p <∞
corresponds to the case 1 < q < 2, and the case 2 < q corresponds to the case 1 < p < 2.

Let W ′ =
(
STS

)1/2
W , and note that it is a diagonal matrix of dimensions m × m

where the entries on the diagonal are in fact the weights of the edges corresponding to
the entries in SW . Let G′ be the graph defined by the weights W ′, and let d′p be the flow
metric on G′. It is important to note that since S consists of N rows, then W ′ has at
most N non-zero entries, and moreover it is easy to see that for any ϕ ∈ Rn it holds that
‖W ′Bϕ‖q = ‖SWBϕ‖q.

Next, recall that by Claim 2.1

∀s 6= t ∈ V, dp(s, t) =

(
min

ϕs−ϕt=1
‖WBϕ‖q

)−1

. (3.47)

and similarly for d′p using W ′.
Now, we can see that

d′p(s, t)
−1 = min

ϕs−ϕt=1
‖W ′Bϕ‖q

≤ (1 + ε) min
ϕs−ϕt=1

‖WBϕ‖q

= (1 + ε)dp(s, t)
−1

(3.48)

where the inequalities follow because we can take a minimizer ϕ∗ of ‖WBϕ‖q, apply
(3.46) on it, and conclude an upper bound on the minimum of ‖W ′Bϕ‖q. The other
direction is similar, and thus we can conclude that G′ is a dp sparsifier of G that satisfies
the guarantee of (3.43).

Finally, recalling that N ≤ n · g(n, ε, q), gives the desired bound on the number of the
edges in G′.

Next, for the first row in the table (the case p = Ω (ε−1 log n)) we recall that by
Corollary 2.7,

∀s, t ∈ V, d∞(s, t) ≤ dp(s, t) ≤ (1 + ε)d∞(s, t). (3.49)

Thus, we choose G′ to be the Gomory-Hu tree of G, and clearly Corollary 2.7 and (3.49)
can be applied also to d′p. It is easy to see that this is indeed a dp sparsifier for G, since
we have

d′p(s, t) ≤ (1 + ε)d′∞(s, t) (by (3.49) on G′)

= (1 + ε)d∞(s, t) by GH guarantee

≤ (1 + ε)dp(s, t) (by (3.49) on G)

The other direction is similar, and this completes the proof of Theorem 3.15.

3.3 Transforms that Preserve the Flow Metrics, and

Those that do not Exist

In this section, we present transformations that reduce the number of edges/vertices in the
graph in some cases, while preserving the flow metrics on them. These transformations are
closely related to known transformations for effective resistance. We begin with reductions
of parallel edges and of sequential edges, that are natural extensions of corresponding
reductions for effective resistance. We then proceed to discuss the well known Y -∆
transform for effective resistance, as well as the more general k-star-mesh transform, and
examine for which values of k and p there exists an analogue of it for dp.
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3.3.1 Sequential Edges Reduction

Think of the case presented in figure 3.1, where a vertex x of degree 2 is connected with
an edge e1 of weight α to a vertex a, and with an edge e2 of weight β to another vertex
b 6= a. We wish to remove the vertex x and find a weight γ = γ(α, β) for a new edge that
will now connect a and b, and will preserve the flow metric of the graph.

a b
w(e1) = α w(e2) = β

a b

w(e′) = γ

x

Figure 3.1: Sequential edges to single edge transform.

Claim 3.17. Let p ∈ [1,∞]. Let G = (V,E,w) be a graph that contains a vertex x that
is incident to exactly 2 edges e1 = {x, a} and e2 = {x, b} of weights α and β respectively.
Let G′ = (V ′, E ′, w′) be a graph with V ′ = V \{x}, E ′ = E\{e1, e2} ∪ {{a, b}} and

w′(e) =


1

( 1
αp

+ 1
βp )

1/p if e = {a, b},

w(e) o.w.;

Then, for every s, t ∈ V ′, dp,G(s, t) = dp,G′(s, t).

Before we begin the proof, note that for p = 1, we have 1
γ

= 1
α

+ 1
β
, which is the desired

behavior since d1 coincides with the shortest-path metric in the graph with inverse edge
weights. Moreover, note that as p → ∞, it holds that γ → min {α, β}, which is the
desired behavior for the minimum cut in the graph.

Proof. Note that in the graph G, for every amount of flow τ that flows from a to x, the
contribution of the flow (without the 1/p power) over the edges that connect a to b in

this case is exactly
∣∣ τ
α

∣∣p +
∣∣∣ τβ ∣∣∣p = |τ |p ·

(
1
αp

+ 1
βp

)
, where in G′ it will be

∣∣∣ τγ ∣∣∣p. So setting

γ =
1(

1
αp

+ 1
βp

)1/p

indeed satisfies our demands, since it holds that 1
γp

= 1
αp

+ 1
βp

.

3.3.2 Parallel Edges Reduction

Think of the case presented in figure 3.2, where two vertices a and b are connected with
two edges e1 and e2 of some weight α and β respectively. Again, we wish to find a weight
γ = γ(α, β) that will replace the two edges and preserve the flow metric in the graph.
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a b

w(e1) = α

w(e2) = β

a b

w(e′) = γ

Figure 3.2: Parallel edges to single edge transform.

Claim 3.18. Let p ∈ [1,∞], and let q be the Hölder conjugate of p. Let G = (V,E,w) be
a graph that contains two parallel edges e1 and e2 of weights α and β respectively between
some vertices a and b. Let G′ = (V,E ′, w′) be a graph with with E ′ = E\{e1} and

w′(e) =

{
(αq + βq)1/q if e = e2,

w(e) o.w.;

Then, for every s, t ∈ V ′, dp,G(s, t) = dp,G′(s, t).

Let us examine what happens to γ as p → ∞. In this case, q → 1, and thus
γ

p→∞−−−→ α + β, which is the desired behavior for minimum cut. Moreover, note that as

p → 1 then q → ∞. Then γ
p→1−−→ max {α, β}, and hence 1

γ

p→1−−→ min
{

1
α
, 1
β

}
, which is

again the desired behavior since d1 coincides with the shortest-path metric in the graph
with inverse edge weights.

We present here a proof via the dual problem. We give an additional proof via flows
in Appendix B.2.1.

Proof. We consider the dual problem. Recall that dp(s, t) =
(
d̄p(s, t)

)−1
(Claim 2.1),

where
d̄p(s, t) = min

ϕs−ϕt=1
‖WBϕ‖q .

Thus, we can finish the proof by showing that the d̄p metric is preserved in the new graph
G′. Suppose we have potentials ϕa, ϕb, and we wish to find γ such that the potential
difference between a and b is preserved, i.e.

γq · |ϕa − ϕb|q = αq · |ϕa − ϕb|q + βq · |ϕa − ϕb|q = (αq + βq) · |ϕa − ϕb|q .

and thus it is easy to see that setting γ = (αq + βq)1/q will satisfy our requirement.

3.3.3 Non-Existence of Y-∆ Transform

Suppose that a graph has a vertex of degree 3, and we wish to remove it while preserving
the dp metric between the remaining vertices, thus obtaining a smaller equivalent instance
to work with. The way to do this for the resistance distance is via the well known Y-
∆ transform (as shown in figure 3.3), and we wish to generalize it to all flow metrics.
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It is known that such a transformation exists for p = 1 (shortest-path metric) and for
p = ∞ (specifically for the case where the middle vertex has degree 3 - see Theorem 1
in [CSWZ00], we elaborate on this in subsection 3.3.3). In addition, it is important to
note that the Y-∆ transform for effective resistance, depends solely on the weights of the
edges incident to the vertex of degree 3, i.e. it is a local transformation that does not
depend on the rest of the graph.

a

b

c ca

b

r
wa

wb

wc

α

β

γ

Figure 3.3: Transforming “Y” (or a 3-star) into a “∆” (a triangle) by deleting the middle vertex
r, and creating new edges while preserving the effective resistance on the graph. In the general
case, an n-star transforms into a clique Kn.

In the case of effective resistance, the transformation is as follows (the notations of
the weights are as presented in figure 3.3).

α =
wb · wc

wa + wb + wc
, β =

wa · wc
wa + wb + wc

, γ =
wa · wb

wa + wb + wc

Unfortunately, such a transformation does not exist when p 6= 1, 2,∞, as we show next.
We first define the transform for general k. Note that for general values of k, the

transform is called a k-star-mesh transform, where in this section we focus on the special
case of k = 3 (and we will continue to call it Y -∆-transform).

Definition 3.19 (k-star-mesh transform). A k-star-mesh transform is an operation that
given a graph G and a vertex r ∈ V (G) of degree k, removes r from G and replaces the
k-star formed by r and its neighbors with a (possibly weighted) clique on the neighbor set
N(r).

Definition 3.20 (local k -star-mesh transform). A k-star-mesh transform is called local
if the edge weights inside the clique N(r) in the transformed graph depend only on the
edge weights of the k-star in G (obliviously to the rest of the graph G).

Definition 3.21 (local k -star-mesh transform preserving dp). We say that a local k-star-
mesh transform preserves dp if for every graph G = (V,E,w) and a vertex r ∈ V of
degree k, applying the transform on G and r yields a graph G′ where

∀s, t ∈ V \{r}, dp,G′(s, t) = dp,G(s, t).

We can now state our main theorem of this section.

Theorem 3.22. For every p 6= 1, 2,∞, there is no local Y-∆ transform that preserves
the dp metric.

40



We prove this by showing two graphs that contain the same unweighted 3-star (“Y”)
as an induced subgraph, on which such a transformation, if one existed, must have acted
differently. Of course, this is not possible, since the transformation should be local and
thus the same in the two graphs. Before we present the claim formally, let us add
some notation. Denote by VT = {a, b, c} a set of 3 vertices we will call “terminals”,
denote VY = VT ∪ {r}, and denote by GY = (VY , EY ) the 3-star over the terminals, i.e.
EY = {{a, r}, {b, r}, {c, r}}. In addition, denote by G∆ = (VT , E∆) the triangle over the
terminals, i.e. E∆ = {{a, b}, {b, c}, {c, a}}.

Claim 3.23. Let p ∈ (1, 2) ∪ (2,∞). There exist graphs G1 = (V1, E1, w1) , G2 =
(V2, E2, w2), with VY ⊆ Vi, and Gi [VY ] = GY for i = 1, 2, that satisfy the following.
Suppose that we have graphs G′1 = (V ′1 , E

′
1, w

′
1) , G2 = (V ′2 , E

′
2, w

′
2) on which the “Y”

transformed into a “∆”, i.e. satisfying for i = 1, 2,

V ′i = Vi\{r} (3.50)

E (G′i [VT ]) = E∆ (3.51)

E ′i\E∆ = Ei\EY (3.52)

w′i |E′i\E∆
= wi |Ei\EY (3.53)

If in addition we have that

∀s, t ∈ VT , dp,G′i(s, t) = dp,Gi(s, t) (3.54)

for i = 1, 2, then there exists e ∈ E∆ such that w′1(e) 6= w′2(e).

Observe that Claim 3.23 immediately gives Theorem 3.22 as a corollary.

Proof. We will take G1 = GY (with unit weights), and G2 to be GY with the addition
of a new vertex and two edges as presented in figure 3.4 below. Formally, we define

a

b

c

w =∞

r

v

w =∞

Figure 3.4: Illustration of the graph G2.

V2 = VY ∪ {v}, E2 = EY ∪ {{v, b}, {v, c}}, and w2 ({v, b}) = w2 ({v, c}) = ∞, and the
rest of the edges are of unit weight.

Next, suppose that we have transformed the “Y” into “∆” in the two graphs, and
received G′1, G

′
2 that satisfy the conditions in the claim, and assume towards contradiction

that for all e ∈ E∆, w′1(e) = w′2(e). Denote the weights by w′i ({b, c}) = α,w′i ({a, c}) = β,
and w′i ({a, b}) = γ (as presented in figure 3.3).

We first focus on the case of G1, and examine the new weights in G′1. Note that in our
case, G′1 is simply the triangle over the terminals with some new weights. In addition,
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note that by symmetry, the new weights must satisfy α = β = γ. It is easy to see that
for any two pairs (s, t), (s′, t′) ∈ VT ×VT with s 6= t and s′ 6= t′, it holds that dp,G1 (s, t) =
dp,G1 (s′, t′). Thus, by our assumption, this also holds in G′1. In order for this to hold
in the triangle, it must hold that α = β = γ. Next, let us compute d̄p,G1(a, b) (recall

that dp =
(
d̄p
)−1

and thus preserving d̄p implies preserving dp and vice versa). Note that
by definition, d̄p,G1(a, b)q = min

ϕ∈RV1 :ϕa−ϕb=1
{|ϕa − ϕr|q + |ϕb − ϕr|q + |ϕc − ϕr|q}. Thus,

w.l.o.g we can set ϕa = 1, ϕb = 0, ϕr = x, ϕc = y for some x, y ∈ R and get that,

d̄p,G1(a, b)q = min
x,y∈R

{|1− x|q + |0− x|q + |y − x|q}

= min
x∈[0,1]

{(1− x)q + xq} (by setting y = x and x ∈ [0, 1])

Define f(x) = (1− x)q +xq, and we wish to find a minimum in the interval [0, 1]. Hence,

f ′(x) = 0

⇐⇒ − (1− x)q−1 + xq−1 = 0

⇐⇒ xq−1 = (1− x)q−1

⇐⇒ x =
1

2

Thus, we get that

d̄p,G1(a, b)q =

(
1− 1

2

)q
+

(
1

2
− 0

)q
= 2 ·

(
1

2

)q
= 21−q (3.55)

On the other hand, let us compute d̄p,G′1(a, b) in terms of α. Again, w.l.o.g. we can set
ϕa = 1, ϕb = 0, ϕc = x and see that

d̄p,G′1(a, b)q = min
x∈R
{αq · |1− 0|q + αq · |0− x|q + αq · |x− 1|q}

= min
x∈[0,1]

{αq + αq · xq + αq · (1− x)q}

Similarly, we can define g(x) = αq + αq · xq + αq · (1− x)q and find a minimum in the
interval [0, 1]. By similar computations as above, we deduce that the minimum is achieved
in x = 1

2
, and thus we get that

d̄p,G′1(a, b)q = αq
(

1 +

(
1

2

)q
+

(
1− 1

2

)q)
= αq

(
1 + 21−q) (3.56)

Thus, we can derive the value of the new weights α.

αq ·
(
1 + 21−q) = 21−q

=⇒ α =

(
21−q

1 + 21−q

)1/q (3.57)

Hence, by examining the dp metric on G1 and G′1, we deduce that the weights should be

α = (1 + 2q−1)
−1/q

.
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Next, let us focus on the case of G2, and we start by computing d̄p,G2(a, b). Note that
in order to not pay the extremely large weight of the edges connecting v to b and c, it
must hold that any minimizing potentials vector will satisfy ϕb = ϕc = ϕv. Thus, we get
that

d̄p,G2(a, b)q = min
ϕ∈RV2 :ϕa−ϕb=1,ϕb=ϕc=ϕv

{|ϕa − ϕr|q + |ϕb − ϕr|q + |ϕc − ϕr|q}

= min
x∈R
{|1− x|q + |0− x|q + |0− x|q} (ϕa = 1, ϕb = 0, ϕr = x)

= min
x∈[0,1]

{(1− x)q + 2xq}

Similarly to the previous case, we can define f(x) = (1− x)q + 2xq, and we wish to find
a minimum by considering the derivative of f and requiring it to be 0 (because again the
minimum is obtained when x ∈ [0, 1]).

f ′(x) = 0

⇐⇒ − (1− x)q−1 + 2xq−1 = 0

⇐⇒ 2xq−1 = (1− x)q−1

⇐⇒ 21/(q−1) · x = (1− x)

⇐⇒ x ·
(
21/(q−1) + 1

)
= 1

⇐⇒ x =
1

21/(q−1) + 1

Thus, we get that

d̄p,G2(a, c)q =

(
1− 1

21/(q−1) + 1

)q
+2·
(

1

21/(q−1) + 1

)q
=

2q/(q−1) + 2

(21/(q−1) + 1)
q = 2·

(
21/(q−1) + 1

)1−q

(3.58)
On the other hand, let us compute d̄p,G′2(a, b) in terms of α (note that by our assumption
all the weights of edges from E∆ must be equal). Note that again, we do not want to pay
the extremely large weight of the edges connecting v to b and c, and thus we must set
ϕb = ϕc = ϕv. Moreover, w.l.o.g we can choose ϕa = 1, ϕb = ϕc = 0 and get that,

d̄p,G′2(a, b)q = αq · |1|q + αq · |0|q + αq · |−1|q

= 2αq

Thus, we can derive the value of the new weights α.

2 · αq = 2 ·
(
21/(q−1) + 1

)1−q

α =
(
21/(q−1) + 1

) 1−q
q

Hence, in this case the new weights should be α =
(
21/(q−1) + 1

)−1/p
.

Thus, we got that according to the first case, the weights should be α = (1 + 2q−1)
−1/q

,

but on the other hand they should be α =
(
21/(q−1) + 1

)−1/p
. Thus we ask whether(

21/(q−1) + 1
)−1/p ?

=
(
1 + 2q−1

)−1/q
(3.59)
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It is easy to see that the two terms equal when p = q = 2. We will now show that they
are different when q 6= 2. First, note that (3.59) is equivalent to

21/(q−1) + 1
?
=
(
1 + 2q−1

)p−1
(3.60)

by taking power p.
Next, assume that p ≥ 2, and focus on the RHS. By applying f

(
a+b

2

)
≤ f(a)+f(b)

2
for

f(x) = xp−1 (since p ≥ 2 it is convex) we can see that,

(
1 + 2q−1

)p−1 ≤ 2p−1 ·

((
1

2

)p−1

+ 2(q−2)·(p−1)

)
= 1 + 2p−2(p−1)+(p−1)

= 3

Now, plugging this into (3.60) we get

21/(q−1) ≤ 2

⇐⇒ 1

q − 1
≤ 1

⇐⇒ 1 ≤ q − 1

⇐⇒ 2 ≤ q

⇐⇒ 2 ≥ p

(3.61)

Recall that we assumed that p ≥ 2 (in order to apply Jensen’s inequality) and reached
the conclusion that p ≤ 2, thus it is impossible that the two terms in (3.59) equal when
p > 2.

Next, we assume that p ≤ 2 (which implies that q ≥ 2), and note that (3.59) is
equivalent to (

21/(q−1) + 1
)q−1 ?

= 1 + 2q−1 (3.62)

by taking power q. This time we focus on the LHS and similarly to the previous case, we
apply Jensen’s inequality on it and get that

(
21/(q−1) + 1

)q−1 ≤ 2q−1 ·

(
2( 1

q−1
−1)·(q−1) +

(
1

2

)q−1
)

= 21−(q−1)+(q−1) + 1

= 3

Now, plugging this into (3.62) we get

2q−1 ≤ 2

⇐⇒ q − 1 ≤ 1

⇐⇒ q ≤ 2

⇐⇒ p ≥ 2

(3.63)

and again, recall that we assumed that p ≤ 2, and reached the conclusion that p ≥ 2,
which implies that the two terms in (3.59) equal if and only if p = q = 2. Thus, we have
reached a contradiction, and the claim follows.
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Note that a corresponding example will also contradict the other direction, i.e. that
there is no valid ∆− Y transform for any p 6= 2.

We see that our counter example does not contradict the case of p = q = 2, since it
holds that in both cases α = 1√

3
. As a matter of fact, in this case, there exists a proper

transform (similarly to the known transform for the effective resistance), and we show it
in Appendix B.2.2.

The Case of Minimum Cuts (p =∞)

In this subsection we elaborate on the case of p = ∞, i.e. minimum cuts. The general
case of the Y −∆-transform is called a k-star-mesh transform, in which a k-star (a root
vertex with k neighbors) is transformed into a clique (“mesh”) over k vertices, formally
defined as shown in Section 3.3.3.

By Theorem 1 from [CSWZ00], and also directly from basic principles, it is easy to
conclude that there exists such a transform for k = 3 and for k = 2 (which is essentially
the sequential edges reduction case). However, for every k > 3, using Lemma 4 from
[CSWZ00], we can deduce that there does not exist such a transform for removing a
vertex of degree k, stated as follows.

Theorem 3.24. For every k > 3, there does not exist a local k-star-mesh transform that
preserves d∞.

This is in fact a corollary from the following Lemma presented in [CSWZ00].

Lemma 3.25 (Lemma 4 in [CSWZ00]). There exists a k-terminal network for which
every mimicking network must have at least one non-terminal vertex (in addition to the
k terminals).

Its proof in [CSWZ00] actually shows the following Lemma (restated using our ter-
minology).

Lemma 3.26. Let k > 3, and let G = (V,E) be an unweighted star with a (root) vertex
r of degree k. Denote by G′ the graph obtained after applying a k-star-mesh transform
on G. Then, there must exist S ⊂ N(r) such that

mincutG′ (S,N(r)\(S)) 6= mincutG (S,N(r)\(S)) .

Note that it does not immediately imply Theorem 3.24, as in order to preserve the d∞
metric we only need to preserve all minimum st-cuts, rather than minimum cuts between
all subsets of N(r).

Proof. (of Theorem 3.24) Assume towards contradiction that there exists a local k-star-
mesh transform that preserves the d∞ metric. Let G = (V,E) be an unweighted k-star
graph, i.e. a root vertex r with k neighbors. Then, apply the transform on G in order to
obtain a clique G′. By Lemma 3.26, there is a subset S ⊂ N(r) such that

mincutG′ (S,N(r)\(S)) 6= mincutG (S,N(r)\(S)) . (3.64)

Next, consider the following graph GS. Add to G two vertices vS and uS, connect vS
to every vertex in S, and connect uS to every vertex in N(r)\S. In addition, define an
edge-weight function w given by

w(e) =

{
1 if e is incident to r;

∞ o.w.
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i.e. the weights of the star edges remain the same, and the weights of the newly added
edges are infinite. An illustration is presented in Figure 3.5.

vS

uS

S

r

N(r)\S

∞

∞ ∞

∞

∞

Figure 3.5: Illustration of the graph GS .

Observe that d∞,GS (vS, uS) = mincutG (S,N(r)\S). Next, apply the transform on
GS and denote the obtained graph by G′S. We assumed the transform preserves d∞, and
thus in particular d∞,G′S (vS, uS) = d∞,GS (vS, uS). But this implies that

mincutG′ (S,N(r)\(S)) = mincutG (S,N(r)\(S)) ,

in contradiction to (3.64).

Note that the proof in fact shows that there does not exist a local k-star-mesh trans-
form that preserves d∞ even for the family of planar graphs, as GS is planar. Moreover,
the construction of GS can be modified such that GS will be outer-planar, which will give
the same result even for outer-planar graphs. However, for trees there does exist such a
transform.
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Chapter 4

Conclusions and Open Questions

In this chapter we discuss questions that are left open from our work.

Regarding dp sparsifiers. In Section 3.1 we proved a general lower bound of Ω(n/
√
ε)

edges for an ε-resistance sparsifier, while there is an upper bound of O(n/ε) edges for a
resistance sparsifier for the clique. We proved this by showing that every non-complete

graph cannot achieve better than
(

1 + 1
O(n2)

)
-approximation of the resistance distance

in an n-clique. However, we showed the stronger bound of
(

1 + 1
O(n)

)
-approximation

for regular graphs, which intuitively, seem to be the best fit for this task. This result
suggests that the stronger bound should hold in general, which would prove Conjecture
1.1, stating that in the worst case, an ε-resistance sparsifier requires Ω(n/ε) edges.

Open Question 4.1. Is it true that for every non-complete graph,

maxx 6=y∈V Reff(x, y)

minx 6=y∈V Reff(x, y)
≥ 1 +

1

O(n)
? (4.1)

Another open question is to extend the lower bound on resistance sparsifiers to other
values of p (the solved cases are p = 1,∞ with matching upper and lower bounds), as
our lower bound for effective resistance does not extend to other values of p.

Additionally, in Section 3.2 we saw that for fixed p ∈ (4/3,∞] with Hölder conjugate
q, there exists dp-sparsifiers with |E ′| = f(n, ε, p) edges, where

f(n, ε, p) =


n− 1 if p = Ω (ε−1 log n) ,

Õ (nε−2) if 2 < p <∞,
Õ
(
nq/2ε−5

)
if 4

3
< p < 2.

(4.2)

One question is regarding the number of edges needed to preserve dp for p that is close
to 2. Recall that for d2 there is the construction of Chu et al [CGPSSW18] for resistance

sparsifiers with Õ(n/ε) edges. In (4.2) we see that in order to preserve the dp metric

for p > 2, then Õ (n · ε−2) edges suffice, i.e. we have a gap in the dependence on ε.

Additionally, for 3
4
< p < 2, we see that Õ

(
nq/2 · ε−5

)
edges suffice (where q/2 > 1), i.e.

there is a gap in both ε and n. Thus, it would be interesting to close these gaps from
both sides of p = 2.

Open Question 4.2. For p = 2 ± 0.01, does every graph G with n vertices admits a
dp-sparsifier that achieves 1 + ε approximation with Õ(n/ε) edges?
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In addition, as p tends to 1, the dp metric tends to the shortest-path metric, where
multiplicative spanners are in fact d1-sparsifiers [PS89; ADDJS93], for which there exists
a lower bound on the number of edges needed in order to preserve the shortest-path
distance. This leads to the question whether we can find a lower bound on the number
of edges needed to preserve the dp metric for values of p close to 1.

Open Question 4.3. For p = 1.1, can we prove that a dp-sparsifier requires n1+Ω(1)

edges in order to achieve 1.01 approximation?

Another interesting question is the gap in the number of needed edges for dp sparsifiers

for p ∈ (2,∞). For instance, for p = 2 there exists a resistance sparsifier with Õ (n · ε−1)
edges [CGPSSW18], for p = Ω(ε−1 log n) there exists a d∞-sparsifier with n − 1 edges,
which is clearly the best we can hope for, and yet for any value 2 < p < ε−1 log n the best
result we have so far requires Õ (n · ε−2) edges. An explanation for this phenomenon is
that essentially our proof for flow metric sparsifiers showed a generalization of spectral
sparsifiers, since the sparsifiers preserve the norm of ‖WBϕ‖q for every ϕ ∈ RV , which
is stronger than what we need.

Open Question 4.4. For 2 < p < ε−1 log n, there exists dp-sparsifier with Õ(n/ε2)
edges. Can we remove the poly(log n) factors? Can we reduce the dependency in ε to
(say) ε−1? Can we show that a tree with n− 1 edges is not sufficient?

Regarding Delta-Wye transform. It is known that for p = 1, 2 and every k ≥ 3,
there exists local k-star-mesh transforms that preserve dp. However, in Section 3.3 we
showed that for k = 3, local k-star-mesh-transform that preserves dp exists if and only
if p = 1, 2,∞. Moreover, we showed that for every k > 3, there is no local k-star-mesh-
transform that preserves d∞. What about transforms such that the weights of the new
edges may depend on the rest of the graph (i.e. not local)? For example in the nature of
Schur-Complements.

Open Question 4.5. Does there exist a k-star-mesh-transform that preserves dp for
k = 3 and p 6= 1, 2,∞? for k > 3 and p =∞?

Understanding the geometry of the flow metrics. An important tool for under-
standing the structure of the flow metrics is via metric embeddings, i.e. mapping a metric
space into another one (specifically in our case into a normed space) while preserving the
distances - in which case the mapping is called an isometry, or up to some error - in
which case we say that the mapping has distortion > 1, see e.g. [Mat02; Mat97; Mat13].
Towards this, in Section 2.3 we showed that the dp metrics are p-strong, which gives some
information about their structure. For example, for fixed p ≥ 2, in any embedding of dp
into `2, no 3 points can lie on the same line.

For the special cases of p = 1, 2,∞, it is known that dp embeds isometrically into `q
(with q being the Hölder conjugate of p). We conjecture that this should hold in general.

Conjecture 4.6. Fix p ∈ [1,∞] with Hölder conjugate q, and let G = (V,E,w) be a
graph. Then there exists a mapping Φ : V → `q such that

∀s, t ∈ V, dp(s, t) = ‖Φ(s)− Φ(t)‖q . (4.3)
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We remark that the p-strong triangle inequality alone is not enough in order to prove
the above, and thus there must be additional properties of the flow metrics that should
be used. We present it formally in Appendix C.1.

Furthermore, by using the connection between the resistance distance and the graph
Laplacian, it was shown that the resistance distance is isometrically embedded into `2

2

[SS11]. We suspect that this approach can be generalized by using the connection between
dp and the graph q-Laplacian (presented in Appendix A.2) in order to show that dpp can
be isometrically embedded into `2

2, which would give some more information about their
structure.

Conjecture 4.7. Fix p ∈ (1,∞), and let G = (V,E,w) be a graph. Then there exists a
mapping Ψ : V → `2

2 such that

∀s, t ∈ V, dp(s, t)
p = ‖Ψ(s)−Ψ(t)‖2

2 . (4.4)

Small sketches. Once we understand the geometry of the flow metrics, e.g. which met-
ric spaces they embed into, we would like to find the best trade-off between dimension and
approximation of such embeddings. One famous example is the Johnson-Lindenstrauss
Lemma [JL84] that states that every n points in `2, can be embedded with distortion
1 + ε (for every ε > 0) into a subspace of `2 of dimension O (ε−2 · log n). Once we reduce
the dimension, we can design natural small sketches and exploit them to improve run-
ning time and storage requirements of algorithms. In particular, Spielman and Srivastava
[SS11] utilized such an embedding of the resistance distance in order to construct a data
structure that given a query pair of vertices, returns an approximation of the effective
resistance between them. If Conjecture 4.7 is true, their approach can be generalized and
yield a small sketch for d

p/2
p , and thus also for dp.

Computing all-pairs distances. Another important line of research is to compute the
distance between all pairs of vertices simultaneously, or to construct a data structure that
given as query a pair of vertices, returns the exact dp distance (or an approximation to
it) between them. Such constructions are known for the three special cases. For p =∞,
there is the Gomory-Hu tree [GH61]; for p = 1, there are distance oracles [ABCP93;
TZ05; Che15], All-Pairs Shortest-Path algorithms [Cha10; Sei95], and spanners [PS89;
ADDJS93]; for p = 2, there are constructions by Spielman and Srivastava [SS11], and
later on by Jambulapati and Sidford [JS18] for approximating the effective resistance. It
would be interesting to design algorithms that solve this problem for other values of p,
as well as give lower bounds for this problem.

Capturing properties of the underlying graphs. As mentioned earlier, effective
resistance captures key properties of the underlying graph. For example, the effective
resistance between two vertices connected by a unit-weight edge, equals the probability
that this edge belongs to a uniformly random spanning tree of the graph, and moreover,
it also equals the commute time between them, up to scaling by a factor that depends
on the weights in the graph. A natural direction is to extend this characterizations of
the effective resistance (p = 2) to other values of p, or to find other properties of the
underlying graphs captured by them.
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report, ETH Zürich, 2013. Link.
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Appendix A

Omitted Proofs from Basic
Properties Section

A.1 Deriving the Connection to the Dual Problem

In this section we show how Claim 2.1 is derived from Proposition 4 in [AvL11], who consider
the following optimization problems for a graph G = (V,E,w) and fixed p ∈ (1,∞) with Hölder
conjugate q.

Flow problem.

Rp(s, t) = min

{∑
e∈E

|f(e)|p

w(e)
: BT f = χs − χt

}
. (A.1)

Potential problem.

Cp(s, t) = min

∑
xy∈E

w(xy)
q
p |ϕx − ϕy|q : ϕs − ϕt = 1

 . (A.2)

We remark that dpp is just Rp on a graph with wp as a weight function, and the same holds with
d̄qp and Cp. Moreover, [AvL11] show that Rp and Cp are related in the following manner.

Proposition A.1 (Proposition 41 in [AvL11]). Fix p > 1 with Hölder conjugate q, and let
G = (V,E,w) be a graph. Then,

∀s, t ∈ V, Rp(s, t) = (Cp(s, t))
− p
q . (A.3)

We can now show how Claim 2.1 is an easy consequence of Proposition A.1.

Proof. (Claim 2.1) Let G = (V,E,w) be a graph, and let Gp = (V,E,wp). Hence, we see that
for every s 6= t ∈ V ,

dp,G(s, t)p = Rp,Gp(s, t) = (Cp,Gp(s, t))
− p
q =

(
d̄p,G(s, t)q

)− p
q = d̄p,G(s, t)−p. (A.4)

1The original statement in [AvL11] is stated with power − q
p . However, in the supplementary material

they proved the version we presented.
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A.2 Connection to the Graph p-Laplacian

In this section we show how Fact 2.4 can be used to relate between the dp metric and the graph
p-Laplacian.

Given a graph G = (V,E,w), and fix p ∈ (1,∞) with Hölder conjugate q, denote the
q-Laplacian of G by Lq : RV → RV , given by

∀x ∈ V, (Lqϕ)x =
∑
y∈V

w(xy)q (ϕx − ϕy) |ϕx − ϕy|q−2 . (A.5)

This is a non-linear generalization of the ordinary Laplacian of the graph. Now, using Fact 2.4,
we can see that for a pair s, t ∈ V , and minimizing flow f∗ for dp(s, t), and a corresponding
potentials vector ϕ∗, it holds that

BT f∗ = Lqϕ
∗. (A.6)

In addition, note that Lq satisfies for any ϕ ∈ RV

〈ϕ,Lqϕ〉 =
∑
x∈V

∑
y∈V

w(xy)q (ϕx − ϕy) |ϕx − ϕy|q−2 · ϕx

=
∑
xy∈E

(
w(xy)q (ϕx − ϕy) |ϕx − ϕy|q−2 · ϕx + w(xy)q (ϕy − ϕx) |ϕy − ϕx|q−2 · ϕy

)
=
∑
xy∈V

w(xy)q |ϕx − ϕy|q

= ‖WBϕ‖qq .
(A.7)

and in particular, for connected graphs,

〈ϕ,Lqϕ〉 = 0 ⇐⇒ ϕ ∈ span{1}. (A.8)

This is also shown as Proposition 3.1 in [BH09]. This motivates the definition of the second
eigenvalue of the q-Laplacian.

Definition A.2. Let p ∈ (1,∞) with Hölder conjugate q, and let G = (V,E,w) be a connected

graph with q-Laplacian Lq. The second smallest eigenvalue of Lq, denoted by λ
(2)
q , is defined as

λ(2)
q = min

ϕ⊥1

〈ϕ,Lqϕ〉
‖ϕ‖22

. (A.9)

We remark that a consequence of (A.8) (and Proposition 3.1 in [BH09]) is that for connected

graphs, λ
(2)
q > 0. Next, we show that dp and λ

(2)
q are related as follows.

Claim A.3. Let p ∈ (1,∞) with Hölder conjugate q, and let G = (V,E,w) be a connected graph

with q-Laplacian Lq and second smallest eigenvalue λ
(2)
q . Then

∀s, t ∈ V, dp(s, t) ≤

(
2

λ
(2)
q

)1/q

. (A.10)

Note that the above claim is tight on the clique for p = q = 2, since λ
(2)
2 (Kn) = n (χs − χt

is a corresponding eigenvector for any s, t ∈ V ), which yields the exact d2-distance.
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Proof. Fix s 6= t ∈ V , and let ϕ∗ ∈ argmin
ϕs−ϕt=1

‖WBϕ‖q. By subtracting the average of the entries

of ϕ, we may assume that ϕ∗ ⊥ 1. Now, we can see that

1

dp(s, t)q
= ‖WBϕ∗‖qq

= 〈ϕ∗, Lqϕ∗〉
≥ λ(2)

q ‖ϕ∗‖
2
2 (by ϕ∗ ⊥ 1 and definition of λ(2)

q )

≥ λ(2)
q ·

∥∥∥∥( ϕ∗s
−ϕ∗t

)∥∥∥∥2

2

≥ λ(2)
q ·

∣∣∣∣〈( ϕ∗s
−ϕ∗t

)
,

(
1
1

)〉∣∣∣∣2∥∥∥∥( 1
1

)∥∥∥∥2

2

(by Cauchy-Schwartz)

=
λ

(2)
q

2
(by ϕ∗s − ϕ∗t = 1).
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Appendix B

Graph-Size Reductions Appendix

B.1 Lower Bound on Resistance Sparsifiers

Proof of Symmetric Case via Commute Time

Here we present another proof for Claim 3.11 by using the relation between effective resistance
and commute time.

First, recall that the hitting time h(u, v) is the expected number of steps of a random walk
starting at vertex u to reach vertex v at the fist time. i.e. h(u, v) = 1 + E

x∈N(u)
h(x, v). The

commute time C(u, v) is the expected time that a random walk starting at u will reach v and get
back to u, i.e. C(u, v) = h(u, v) + h(v, u). In addition, we know that C(u, v) = 2w(E) Reff(u, v)
where w(E) =

∑
e∈E w(e). Thus, instead of considering effective resistance, we can work with

commute time.

Proof. (of Claim 3.11) Let x 6= y ∈ V \{s, t}, and denote

H0 = h(s, t) = h(t, s), (B.1)

H1 = h(x, s) = h(x, t), (B.2)

H2 = h(s, x) = h(t, x), (B.3)

H3 = h(x, y). (B.4)

Note that by symmetry it does not matter which specific vertices x, y ∈ V \{s, t} we chose when
defining the Hi’s. Now, we can see that the relations between them are as follows.

H0 = 1 + E
z∈N(s)

h(z, t) = 1 +H1,

H1 = 1 + E
z∈N(x)

h(z, t)

= 1 +
α

2α+ (n− 3)β
H0 +

(n− 3)β

2α+ (n− 3)β
H1,

H2 = 1 + E
z∈N(s)

h(z, x)

= 1 +
(n− 3)α

(n− 2)α
H3,

H3 = 1 + E
z∈N(y)

h(z, y)

= 1 +
2α

2α+ (n− 3)β
H2 +

(n− 4)β

2α+ (n− 3)β
H3.
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Let us start with computing H0 and H1.

H1 = 1 +
α

2α+ (n− 3)β
(1 +H1) +

(n− 3)β

2α+ (n− 3)β
H1

= 1 +
α

2α+ (n− 3)β
+H1 ·

(
α+ (n− 3)β

2α+ (n− 3)β

)
=⇒ α

2α+ (n− 3)β
·H1 =

3α+ (n− 3)β

2α+ (n− 3)β

=⇒ H1 = 3 + (n− 3)
β

α
,

H0 = 4 + (n− 3)
β

α
.

Let us move on to H2 and H3.

H3 = 1 +
2α

2α+ (n− 3)β

(
1 +

(n− 3)

(n− 2)
H3

)
+

(n− 4)β

2α+ (n− 3)β
H3

= 1 +
2α

2α+ (n− 3)β
+H3

((
1− 1

n− 2

)
· 2α

2α+ (n− 3)β
+

(n− 4)β

2α+ (n− 3)β

)
=

4α+ (n− 3)β

2α+ (n− 3)β
+H3

(
2α+ (n− 4)β

2α+ (n− 3)β
− 2α

(n− 2)(2α+ (n− 3)β)

)
=

4α+ (n− 3)β

2α+ (n− 3)β
+H3

(
1−

β + 2α
n−2

2α+ (n− 3)β

)
.

Thus,

=⇒ H3 =
4α+ (n− 3)β

β + 2α
n−2

= (n− 2)

(
4 + (n− 3)βα
2 + (n− 2)βα

)
,

=⇒ H2 = 1 +
n− 3

n− 2

(
(n− 2)

(
4 + (n− 3)βα
2 + (n− 2)βα

))

= 1 + (n− 3)

(
4 + (n− 3)βα
2 + (n− 2)βα

)
.

Denoted γ = β
α , and now we conclude that,

C(s, t) = 2H0 = 2(4 + (n− 3)γ), (B.5)

C(x, y) = 2H3 =
2(n− 2)(4 + (n− 3)γ)

2 + (n− 2)γ
, (B.6)

C(s, x) = H1 +H2 = (4 + (n− 3)γ)

(
1 +

n− 3

2 + (n− 2)γ

)
(B.7)

=
(4 + (n− 3)γ)(n− 1 + (n− 2)γ)

2 + (n− 2)γ
. (B.8)

Assume towards contradiction that
maxx′ 6=y′∈V Reff(x′,y′)

minx′ 6=y′∈V Reff(x′,y′) < 1 + 1
10n , and note that in particular

this implies that for any u, v, u′, v′ ∈ V ,

C(u, v)

C(u′, v′)
=

2w(E) Reff(u, v)

2w(E) Reff(u′, v′)
< 1 +

1

10n
.

58



Let us compute the ratios.

C(s, t)

C(x, y)
= 2(4 + (n− 3)γ) · 2 + (n− 2)γ

2(n− 2)(4 + (n− 3)γ)

= γ +
2

n− 2
.

Thus

γ < 1− 2

n− 2
+

1

10n
.

But on the other hand we see that,

C(x, y)

C(s, x)
=

2(n− 2)(4 + (n− 3)γ)

2 + (n− 2)γ
· 2 + (n− 2)γ

(4 + (n− 3)γ)(n− 1 + (n− 2)γ)

=
2(n− 2)

n− 1 + (n− 2)γ

=
2

1 + 1
n−2 + γ

.

and thus,

2 <

(
1 +

1

n− 2

)
·
(

1 +
1

10n

)
+ γ

(
1 +

1

10n

)

=⇒ γ >
2−

(
1 + 1

n−2

)
·
(
1 + 1

10n

)
1 + 1

10n

= 2 ·
(

1− 1

10n+ 1

)
−
(

1 +
1

n− 2

)
= 1− 1

n− 2
− 2

10n+ 1
.

and thus we conclude that

1− 1

n− 2
− 2

10n+ 1
< γ < 1− 2

n− 2
+

1

10n
, (B.9)

which is a contradiction.

B.2 Transforms for the Flow Metrics

B.2.1 Another proof for the parallel edges reduction via flows

In this section we present an alternative proof for Claim 3.18 via flows.

Proof. (of Claim 3.18) Denote fp(x, t) =
(
x
α

)p
+
(
t−x
β

)p
. For any amount of flow 0 ≤ t ≤ 1 that

is shipped to a, it is the best to minimize fp(x, t) where 0 ≤ x ≤ t (with respect to x where t is
fixed), and thus choosing how much amount of flow to ship for the top edge and how much to
ship from the bottom edge. We will use it to compute the contribution of the discussed edges
to the norm of the minimizing flow, and then choose a proper weight γ which will preserve the
norm of the flow.
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Let us compute the derivative of fp(x, t) with respect to x and equalize it to 0 in order to
find the minimizing flow (in the interval x ∈ [0, t]).

d

dx
fp(x, t) =

p

α
·
(x
α

)p−1
− p

β
·
(
t− x
β

)p−1
want
= 0

⇒ xp−1

αp
=

(t− x)p−1

βp

⇒ xp−1 =

(
α

β

)p
· (t− x)p−1

⇒ x =

(
α

β

) p
p−1

· (t− x)

⇒

(
1 +

(
α

β

) p
p−1

)
· x = t ·

(
α

β

) p
p−1

⇒ x0 = t ·

(
α
β

) p
p−1

1 +
(
α
β

) p
p−1

= t · α
p
p−1

α
p
p−1 + β

p
p−1

= t ·

(
1− β

p
p−1

α
p
p−1 + β

p
p−1

)

⇒ min
x∈[0,t]

fp (x, t) =

(
t · α

1
p−1

α
p
p−1 + β

p
p−1

)p
+

(
t · β

1
p−1

α
p
p−1 + β

p
p−1

)p
.

Thus, we have found the contribution of the discussed edges to the minimizing flow in the graph
(between specific vertices), and we wish that the contribution of the new edge will be the same.

The contribution of the new edge is
∣∣∣ tγ ∣∣∣p, and hence setting

γ =
1((

α
1
p−1

α
p
p−1 +β

p
p−1

)p
+

(
β

1
p−1

α
p
p−1 +β

p
p−1

)p)1/p
=
(
α

p
p−1 + β

p
p−1

) p−1
p
.

will give us the desired outcome. In other words, if we take q = p
p−1 the Hölder conjugate of p,

we get the following rule:
γq = αq + βq.

which is the same conclusion as before.

B.2.2 Proof of Y-∆ transform for p=2

In this section we show the existence of a Y-∆ transform analogue for d2.

Claim B.1. There exists a local Y -∆ transform that preserves d2.

Consider the case presented in figure 3.3. Recall that in the case of effective resistance, the
rule is as follows:

α =
wb · wc

wa + wb + wc
,

β =
wa · wc

wa + wb + wc
,

γ =
wa · wb

wa + wb + wc
.

(B.10)
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But in our case, recall that d2 is in fact the squareroot of the resistance distance in the same
graph but with squared edge weights. Thus, we conclude that for p = 2 the rule should be

α =

√
w2
b · w2

c

w2
a + w2

b + w2
c

,

β =

√
w2
a · w2

c

w2
a + w2

b + w2
c

,

γ =

√
w2
a · w2

b

w2
a + w2

b + w2
c

.

Below are the algebraic computations that show that the numbers add up. Throughout the
proof we use the same notations as presented for the proof of Claim 3.23.

Proof. (of Claim B.1) We will show that this transform indeed holds for d2. In fact, we will
show that for any potential function ϕ over the terminals VT , the new weights satisfy

min
x∈R
{wa |ϕa − x|q + wb |ϕb − x|q + wc |ϕc − x|q} = γq |ϕa − ϕb|q + αq |ϕb − ϕc|q + βq |ϕc − ϕa|q .

(B.11)
In particular, this will hold for the minimizing potential function, and will lead to the desired
outcome.

Let us compute the LHS of (B.11), in the case where q = p = 2 to verify the rule. Note that
the minimizing x in the LHS of (B.11) is the weighted average of the potentials (weighted by
the weights of the edges that connect them to the center of the star). Define a random variable
X by

Pr (X = x) =


w2
a

w2
a+w2

b+w2
c

if x = ϕa,

w2
b

w2
a+w2

b+w2
c

if x = ϕb,

w2
c

w2
a+w2

b+w2
c

if x = ϕc;

and now we can can view the LHS of (B.11) as

min
x∈R

{
w2
a · |ϕa − x|

2 + w2
b · |ϕb − x|

2 + w2
c · |ϕc − x|

2
}

= min
x∈R

{(
w2
a + w2

b + w2
c

)
· E
[
|X − x|2

]}
.

The minimum of the RHS in the above is exactly the variance of X, and thus

x = E[X] =
w2
a

w2
a + w2

b + w2
c

· ϕa +
w2
b

w2
a + w2

b + w2
c

· ϕb +
w2
c

w2
a + w2

b + w2
c

· ϕc.
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Let us now plug this into the LHS of (B.11) and compute.

LHS(B.11) =

= w2
a ·
∣∣∣∣ϕa −

w2
a · ϕa + w2

b · ϕb + w2
c · ϕc

w2
a + w2

b + w2
c

∣∣∣∣2
+ w2

b ·
∣∣∣∣ϕb −

w2
a · ϕa + w2

b · ϕb + w2
c · ϕc

w2
a + w2

b + w2
c

∣∣∣∣2
+ w2

c ·
∣∣∣∣ϕc −

w2
a · ϕa + w2

b · ϕb + w2
c · ϕc

w2
a + w2

b + w2
c

∣∣∣∣2
=

(
wa

w2
a + w2

b + w2
c

)2

·
∣∣(w2

b + w2
c ) · ϕa − w2

b · ϕb − w2
c · ϕc

∣∣2
+

(
wb

w2
a + w2

b + w2
c

)2

·
∣∣(w2

a + w2
c ) · ϕb − w2

a · ϕa − w2
c · ϕc

∣∣2
+

(
wc

w2
a + w2

b + w2
c

)2

·
∣∣(w2

a + w2
b ) · ϕc − w2

a · ϕa − w2
b · ϕb

∣∣2
=

(
wa

w2
a + w2

b + w2
c

)2

·
∣∣w2

b · (ϕa − ϕb) + w2
c · (ϕa − ϕc)

∣∣2
+

(
wb

w2
a + w2

b + w2
c

)2

·
∣∣w2

a · (ϕb − ϕa) + w2
c · (ϕb − ϕc)

∣∣2
+

(
wc

w2
a + w2

b + w2
c

)2

·
∣∣w2

a · (ϕc − ϕa) + w2
b · (ϕc − ϕb)

∣∣2
=

(
wa

w2
a + w2

b + w2
c

)2

·
(
w4

b · (ϕa − ϕb)
2

+ 2 · w2
b · w2

c · (ϕa − ϕb) · (ϕa − ϕc) + w4
c · (ϕa − ϕc)

2
)

+

(
wb

w2
a + w2

b + w2
c

)2

·
(
w4

a · (ϕb − ϕa)
2

+ 2 · w2
a · w2

c · (ϕb − ϕa) · (ϕb − ϕc) + w4
c · (ϕb − ϕc)

2
)

+

(
wc

w2
a + w2

b + w2
c

)2

·
(
w4

a · (ϕc − ϕa)
2

+ 2 · w2
a · w2

b · (ϕc − ϕa) · (ϕc − ϕb) + w4
b · (ϕc − ϕb)

2
)

=
w2

a · w2
b ·
(
w2

a + w2
b

)
· (ϕa − ϕb)

2
+ w2

a · w2
c ·
(
w2

a + w2
c

)
· (ϕa − ϕc)

2
+ w2

b · w2
c ·
(
w2

b + w2
c

)
· (ϕb − ϕc)

2

(w2
a + w2

b + w2
c )

2

+ 2 · w2
a · w2

b · w2
c ·

(ϕa − ϕb) · (ϕa − ϕc) + (ϕb − ϕa) · (ϕb − ϕc) + (ϕc − ϕa) · (ϕc − ϕb)

(w2
a + w2

b + w2
c )

2

=
w2

a · w2
b ·
(
w2

a + w2
b

)
· (ϕa − ϕb)

2
+ w2

a · w2
c ·
(
w2

a + w2
c

)
· (ϕa − ϕc)

2
+ w2

b · w2
c ·
(
w2

b + w2
c

)
· (ϕb − ϕc)

2

(w2
a + w2

b + w2
c )

2

+ 2 · w2
a · w2

b · w2
c ·

ϕ2
a − ϕa · ϕc − ϕa · ϕb + ϕb · ϕc + ϕ2

b − ϕb · ϕc − ϕa · ϕb + ϕa · ϕc + ϕ2
c − ϕa · ϕc − ϕb · ϕc + ϕa · ϕb

(w2
a + w2

b + w2
c )

2

=
w2

a · w2
b ·
(
w2

a + w2
b

)
· (ϕa − ϕb)

2
+ w2

a · w2
c ·
(
w2

a + w2
c

)
· (ϕa − ϕc)

2
+ w2

b · w2
c ·
(
w2

b + w2
c

)
· (ϕb − ϕc)

2

(w2
a + w2

b + w2
c )

2

+ 2 · w2
a · w2

b · w2
c ·

ϕ2
a + ϕ2

b + ϕ2
c − ϕa · ϕc − ϕb · ϕc − ϕa · ϕb

(w2
a + w2

b + w2
c )

2 .
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Now let us compute the RHS of (B.11) when applying the rule.

RHS(B.11) =

=

(√
w2

a · w2
b

w2
a + w2

b + w2
c

)2

· |ϕa − ϕb|2 +

(√
w2

b · w2
c

w2
a + w2

b + w2
c

)2

· |ϕb − ϕc|2 +

(√
w2

a · w2
c

w2
a + w2

b + w2
c

)2

· |ϕc − ϕa|2

=
w2

a · w2
b

w2
a + w2

b + w2
c

· |ϕa − ϕb|2 +
w2

b · w2
c

w2
a + w2

b + w2
c

· |ϕb − ϕc|2 +
w2

a · w2
c

w2
a + w2

b + w2
c

· |ϕc − ϕa|2

=
w2

a · w2
b ·
(
w2

a + w2
b + w2

c

)
· |ϕa − ϕb|2 + w2

b · w2
c ·
(
w2

a + w2
b + w2

c

)
· |ϕb − ϕc|2 + w2

a · w2
c ·
(
w2

a + w2
b + w2

c

)
· |ϕc − ϕa|2

(w2
a + w2

b + w2
c )

2

=
w2

a · w2
b ·
(
w2

a + w2
b

)
· (ϕa − ϕb)

2
+ w2

a · w2
c ·
(
w2

a + w2
c

)
· (ϕa − ϕc)

2
+ w2

b · w2
c ·
(
w2

b + w2
c

)
· (ϕb − ϕc)

2

(w2
a + w2

b + w2
c )

2

+ w2
a · w2

b · w2
c ·

(ϕa − ϕb)
2

+ (ϕa − ϕc)
2

+ (ϕb − ϕc)
2

(w2
a + w2

b + w2
c )

2

=
w2

a · w2
b ·
(
w2

a + w2
b

)
· (ϕa − ϕb)

2
+ w2

a · w2
c ·
(
w2

a + w2
c

)
· (ϕa − ϕc)

2
+ w2

b · w2
c ·
(
w2

b + w2
c

)
· (ϕb − ϕc)

2

(w2
a + w2

b + w2
c )

2

+ w2
a · w2

b · w2
c ·

ϕ2
a − 2 · ϕa · ϕb + ϕ2

b + ϕ2
a − 2 · ϕa · ϕc + ϕ2

c + ϕ2
b − 2 · ϕb · ϕc + ϕ2

c

(w2
a + w2

b + w2
c )

2

=
w2

a · w2
b ·
(
w2

a + w2
b

)
· (ϕa − ϕb)

2
+ w2

a · w2
c ·
(
w2

a + w2
c

)
· (ϕa − ϕc)

2
+ w2

b · w2
c ·
(
w2

b + w2
c

)
· (ϕb − ϕc)

2

(w2
a + w2

b + w2
c )

2

+ 2 · w2
a · w2

b · w2
c ·

ϕ2
a + ϕ2

b + ϕ2
c − ϕa · ϕb − ϕa · ϕc − ϕb · ϕc

(w2
a + w2

b + w2
c )

2 .

Thus we got that both quantities are the same, and hence we have a proper Y −∆ transform
for d2.
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Appendix C

Embedding Conjecture Appendix

In Chapter 4, we discussed the geometry of the flow metrics, which we would like to better
understand. We mentioned Conjecture 4.6, which we restate here.

Conjecture C.1. Let p ∈ [1,∞] with Hölder conjugate q, and let G = (V,E,w) be a graph.
Then, there exists a mapping Φ : V → `q such that,

∀s, t ∈ V, dp(s, t) = ‖Φ(s)− Φ(t)‖q . (C.1)

We remark that for the special cases p = 1, 2,∞ it is known to hold.

Effective Resistance. Spielman and Srivastava [SS11] showed that the resistance distance
can be isometrically embedded into `22. Thus, since d2 is the squareroot of the effective resistance,
we conclude that d2 can be isometrically embedded into `2 as desired (since p = q = 2 in this
special case).

Shortest-path. Note that every finite metric space embeds isometrically into `∞ [Mat02],
and thus d1 does as well.

Minimum Cuts. We remark that d∞ is in fact an ultrametric, and thus it embeds isomet-
rically into `1.

C.1 The p-strong Triangle Inequality is not Enough

In this section we show that even though the flow metrics satisfy a stronger version of the
triangle inequality (Theorem 2.15), it is not enough in order to prove Conjecture C.1. We first
recall the relevant definitions.

Definition C.2. Let (X, dX) and (Y, dY ) be metric spaces, and let Φ : X → Y be a mapping
(which we call an embedding). The distortion of Φ is the minimum D ≥ 1 for which there exists
a scaling factor α > 0, such that

∀x, x′ ∈ X, dX(x, x′) ≤ α · dY (Φ(x),Φ(x′)) ≤ D · dX(x, x′). (C.2)

Definition C.3. Let (X, dX) and (Y, dY ) be metric spaces, and let D ≥ 1. We say that (X, dX)
D-embeds into (Y, dY ) if there exists an embedding of (X, dX) into (Y, dY ) with distortion D.

Our focus in this section is to show the following claim.
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Claim C.4. For all p ∈ [1,∞), q ∈ [1,∞), and n ≥ 2, there exists an n-point metric
space (X, d), that satisfies the p-strong triangle inequality, but D-embeds into `q only for D =

Ω
(

1
q · (log n)1/p

)
.

In other words, the above claim says that the fact that a metric space is p-strong isn’t
enough to guarantee isometric embedding into `q, for any q ∈ [1,∞). We remark that p and q
in the statement are not necessarily Hölder conjugates of each other. But, in the specific case

where they are, and p ∈ [2,∞), it holds that q ∈ [1, 2]. Thus, D = Ω
(

(log n)1/p
)

and as a

consequence, we will need to use additional properties of the family of the flow-metrics if we
desire to prove the Conjecture C.1.

Our proof of Claim C.4 relies on the following theorem, presented by Matoušek [Mat97].

Theorem C.5. There exists constants c1 > 0 and n0 ∈ N such that for any p ≥ 1 and any
n ≥ n0 there exists an n-point metric space which D-embeds into `p only for D ≥ c1

p · log n.

Proof. (Claim C.4) Theorem C.5 was proved via expanders - the metric space that is promised
to exist in the theorem arises from this family of graphs. Let G be an expander on n vertices,
and let (X, d) be the metric space that is derived from the shortest-path metric on G. Let
p ∈ (1,∞), and define d′ : X ×X → R+ by

∀x, y ∈ X, d′(x, y) = (d(x, y))1/p .

We would like to show the following.

1. d′ is a metric.

2. d′ is p-strong.

3. Embedding (X, d′) in `q requires large distortion (or at least larger than 1).

First, note that property 2 is immediate, since it simply says that

∀x, y, z ∈ X,
(
d′(x, y)

)p ≤ (d′(x, z))p +
(
d′(z, y)

)p
⇐⇒ d(x, y) ≤ d(x, z) + d(z, y).

where the last line is just the triangle inequality which is clearly satisfied since (X, d) is a metric
space.
For showing property 1, we recall Claim 2.17.

Claim C.6. Let a1, . . . , an ≥ 0 and let p > 0, then:

1. if p ≤ 1:
n∑
i=1

api ≥

(
n∑
i=1

ai

)p
.

2. if p ≥ 1:
n∑
i=1

api ≤

(
n∑
i=1

ai

)p
.

To prove property 1, let x, y, z ∈ X, and observe that

d′(x, y) = (d(x, y))
1
p

≤ (d(x, z) + d(z, y))
1
p (d is a metric)

≤ (d(x, z))
1
p + (d(z, y))

1
p (1 ≤ p and Claim 2.17)

= d′(x, z) + d′(z, y).
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We are ready to show that property 3 holds. Assume that Φ : (X, d′) → `q is a D-embedding.
Thus, there exists a scaling factor α > 0 such that,

∀x, y ∈ X, d′(x, y) ≤ α · ‖Φ(x)− Φ(y)‖q ≤ D · d
′(x, y).

Hence
∀x, y ∈ X, d(x, y)1/p ≤ α · ‖Φ(x)− Φ(y)‖q ≤ D · d(x, y)1/p (C.3)

Next, denote ρ = diam(G), and let us consider an embedding Ψ defined by

Ψ(x) = ρ
p−1
p · α · Φ(x).

Fix x, y ∈ X, thus

‖Ψ(x)−Ψ(y)‖q = ρ
p−1
p · α · ‖Φ(x)− Φ(y)‖q .

But now we can see that on the one hand

‖Ψ(x)−Ψ(y)‖q ≥ ρ
p−1
p · (d(x, y))1/p

≥
(
d(x, y)p−1 · d(x, y)

)1/p
= d(x, y),

(C.4)

and on the other hand, since d(x, y) ≥ 1,

‖Ψ(x)−Ψ(y)‖q ≤ ρ
p−1
p ·

(
D · (d(x, y))1/p

)
≤
(
D · ρ

p−1
p

)
· d(x, y).

(C.5)

Combining equations (C.4) and (C.5) together, we can conclude that Ψ is a
(
D · ρ

p−1
p

)
-

embedding of (X, d) (the original metric space) into `q. But according to Theorem C.5,

D · ρ
p−1
p ≥ c1

q · log n and ρ = diam(G) = O(log n), which implies that D = Ω
(

(log n)1/p /q
)

as

claimed.
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