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Abstract

A clique in a graph G = (V,E) is a subset of the vertices, every two of which are con-

nected by an edge. We study and analyze algorithms for finding large cliques in random

and semi-random graph models. Let G(n, p) denote the Erdős-Rényi random graphs

model, where graphs have n vertices, and every possible edge occurs independently

with probability p.

The first model we study is the well-known Hidden Clique problem, suggested inde-

pendently by Jerrum and by Kučera. In this problem, the input graph G is constructed

as follows. First, a random graph G′ is drawn from G(n, 1
2), and then a setK of k = k(n)

vertices of G′ is chosen uniformly at random, and the subgraph induced on K is made

into a clique. The goal is to find K in polynomial time. We study several variations of

this problem, where the hidden object is slightly different, or the algorithm has access

to additional information. In particular, we present the problem of finding a hidden

biclique in a random graph; we prove that this problem is at least as hard as the Hidden

Clique problem, and present a polynomial-time algorithm for finding a hidden biclique

of size k ≥ Ω(
√
n). In another variant we study, two cliques are planted in a random

graph, instead of just one, and the goal is to find at least one of the hidden cliques

in polynomial time. We then analyze the Hidden Clique problem in several models

of communication complexity. We present one-way protocols that use polylogarithmic

communication, and we also show a communication lower bound. Finally, we study the

Hidden Clique problem in a model of statistical queries, where the algorithm can make

queries on subsets of the vertices and obtain aggregate information that may help in

recovering the hidden clique.

The second model we study is semi-random graphs, where the input graph is con-

structed by a combination of random and adversarial decisions. We analyze a semi-

random model, where the input graph H is constructed as follows. First, a random

graph G is drawn from G(n, 1
2), and then an adversary either adds or removes edges

from E(G) (in a restricted manner). We present a polynomial-time algorithm for find-

ing, with high probability, the largest clique in such semi-random graph H whenever it

has a clique of size Ω(
√
n log n), and we also show an impossibility result.
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1 Introduction

Graphs are fundamental objects in theoretical computer science. They are generally used to
model relationships between pairs of objects, e.g., a friendship between members in a social
network. A clique in a graph G = (V,E) is a subset of the vertices, every two of which are
connected by an edge. Let ω(G) denote the maximum number of vertices in a clique of G.
The problems of computing or estimating ω(G) and of finding a clique of maximum size in an
input graph G are fundamental problems in theoretical computer science. In particular, the
problem of computing ω(G) exactly, called Maximum Clique, is well known to be NP-hard
[Kar72]. Furthermore, approximating ω(G) for a graph G on n vertices within a factor of n1−ε

is NP-hard, for every fixed ε > 0 [Hås96, Zuc06], and the best polynomial-time approximation
ratio known for ω(G) is O(n(log logn)2

(logn)3
) [Fei04]. These facts suggest that an efficient algorithm

for finding the largest clique in a general graph (i.e., worst-case instances) is unlikely to
exist. Therefore, it is natural to study the performance of algorithms for this problem on
average-case instances. A possible way to describe average-case instances is by probabilistic
models, that is, randomly generated graphs. One major motivation for studying random
graph models is that in real-life applications the input graphs often have certain random
properties.

Let G(n, p) denote the Erdős-Rényi random graphs model, where graphs have n vertices,
and every possible edge occurs independently with probability p. It is known that ω(G) in
a graph G drawn from G(n, 1

2
) is, almost surely (that is, with probability that approaches

1 as n tends to infinity), either r or r + 1, where r = r(n) ≈ 2 log2 n (see Section 4.5 in
[AS92]). There are a few polynomial-time algorithms that find in such random graph G (see,
e.g., [KS98]), with high probability, a clique of size (1 + o(1)) log2 n (i.e., roughly half the
size of the largest one). However, there is no known polynomial-time algorithm (not even a
randomized one) that finds, almost surely, a clique of size (1 + ε) log2 n, for any fixed ε > 0.
This is a long-standing open problem, suggested by Karp [Kar76].

Motivated by these facts, we study a few similar random models. The first model we have
studied is the well-known Hidden Clique (also known as Planted Clique) problem, suggested
independently by Jerrum [Jer92] and by Kučera [Kuč95]. In this problem, the input graph
G is constructed as follows. First, a random graph G′ is drawn from G(n, 1

2
), and then a set

K of k = k(n) � 2 log2 n vertices of G′ is chosen uniformly at random, and the subgraph
induced on K is made into a clique, by connecting every pair of vertices in K by an edge.
The goal is to find K in polynomial time. We denote by G(n, 1

2
, k) the distribution of G. We

actually study several variations of this problem, where the hidden object is slightly different,
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e.g., a biclique or two cliques, or the algorithm has access to additional information.
The second model we study is semi-random graphs, where the input graph is constructed

by a combination of random and adversarial decisions. A common variant of the semi-random
model, introduced by Blum and Spencer [BS95], is when a random graph is chosen first, and
then an adversary can modify this graph, but only in some bounded way, as otherwise he/she
can convert the graph into a worst-case instance. A major motivation for studying such mod-
els is that they capture better real-life applications, where the input instances often have some
non-random structures hidden inside, along with certain random properties. We analyze a
semi-random model, where the input graph H is constructed as follows. First, a random
graph G is drawn from G(n, 1

2
), and then an adversary either adds or removes edges from

E(G) (in a restricted manner). We present an efficient algorithm for finding, with high prob-
ability, a large clique in such semi-random graph H, and we also show an impossibility result.

Remark: Throughout, we use the notation ω(·) in two different contexts, as follows. For a
graph G, ω(G) denotes the maximum number of vertices in a clique of G, while for a function
f : N→ R≥0, ω(f(n)) denotes the family of functions that dominate f(n) asymptotically.

1.1 Variations of the Hidden Clique Problem

Let G be a graph drawn from G(n, 1
2
, k). It is known that for k = k(n)� 2 log2 n the hidden

clique K will almost surely be the largest clique in G.

Definition 1.1. (Solving the Hidden Clique problem). We say that algorithm A solves the
Hidden Clique problem for k = k(n)� 2 log2 n if the following holds:

1. A is a randomized polynomial-time algorithm.

2. A finds the hidden clique in a graph G drawn from G(n, 1
2
, k) with probability at least

q, where q > 0 is some constant. The probability is taken over the choice of the input
graph G and the randomness of the algorithm.

There are several polynomial-time algorithms that solve the Hidden Clique problem for all
k ≥ Ω(

√
n) [AKS98, FK00, McS01, FR10, AV11, DGP14, DM15a], but no such algorithm is

known for any k = o(
√
n). Moreover, it was shown that certain algorithmic approaches to the

problem fail when k = o(
√
n), see [Jer92] regarding the Metropolis process, [FK03] regarding

Lovász-Schrijver SDP hierarchies, and [DM15b, MPW15, HKP+16, BHK+16] regarding the
Sum-of-Squares hierarchy. Motivated by these facts, we study and analyze several variations
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of the Hidden Clique problem, in an attempt to shed more light on the hardness of the
problem (both in positive and negative directions).

1.1.1 The Hidden Biclique Problem

One natural variation of the Hidden Clique problem is planting (in a random graph) a k-
vertex graph, that is slightly sparser than a clique and has less structure. We focus on a
natural candidate for such a graph - a balanced biclique.

Definition 1.2. Let G = (V,E) be an undirected graph. Two disjoint sets of vertices
S1, S2 ⊆ V are called a biclique if {u, v} ∈ E for every u ∈ S1, v ∈ S2 (i.e., a complete
bipartite subgraph of G). The size of the biclique S1, S2 is defined as |S1|+ |S2|. It is called
balanced if |S1| = |S2|.

In the Hidden Biclique problem, the input graph G = (V,E) is constructed as follows.
First, a random graph G′ is drawn from G(n, 1

2
). Then, two disjoint sets of vertices S1, S2 ⊆ V

of the same size k/2 are chosen independently at random, and for every i ∈ S1, j ∈ S2, the
edge {i, j} is added to G′ (if not already there). The goal is to find the hidden biclique
S1 ∪ S2 in polynomial time (with high probability over the choice of G). We denote by
G(n, 1

2
, k/2, k/2) the distribution of G. In the Bipartite Hidden Biclique problem, the input

(bipartite) graph G = (V1 ∪ V2, E) is constructed as follows. First, a random bipartite graph
G′ is drawn from G(n, n, 1

2
) (the distribution over bipartite graphs that have n vertices on

each side, and every possible edge between the sides occurs independently with probability
1
2
). Then, two sets of vertices S1 ⊆ V1, S2 ⊆ V2 of the same size k = k(n) are chosen

independently at random, and for every i ∈ S1, j ∈ S2, the edge {i, j} is added to G′ (if not
already there). The goal is to find the hidden biclique S1 ∪S2 in polynomial time (with high
probability over the choice of G). We denote by G(n, n, 1

2
, k, k) the distribution of G.

We point out that the problem of finding a maximum-edge biclique in a bipartite graph
whenever it is unique was studied by Ames and Vavasis [AV11]. In particular, they present
a polynomial-time algorithm that finds, with high probability, a hidden biclique in a random
bipartite graph whenever each of the sides of the biclique is of size ≥ Ω(

√
n).

Our results. In Section 2 we compare the Hidden Clique problem and the Hidden Biclique
problems. In particular, we show, by presenting polynomial-time reductions, that the Hidden
Biclique problem is at least as hard as the Bipartite Hidden Biclique problem (with same k),
and that the latter problem is at least as hard as the Hidden Clique problem (with same k).
By combining the two results, we get that the Hidden Biclique problem is at least as hard
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as the Hidden Clique problem (with same k). We have tried to show also reductions in the
opposite direction, which would imply that the problems are computationally equivalent (up
to polynomial factors), but unfortunately we did not manage to make any progress on that.
We believe that this question is worth investigating further.

On the positive side, we present a linear-time algorithm that solves the Hidden Biclique
problem for k = Ω(

√
n), which we call algorithm FindBiclique. Formally, we prove the

following theorem in Section 2.3.

Theorem 1.3. For a sufficiently large constant c > 0, Algorithm FindBiclique finds, with
probability at least 2/3, the hidden biclique in a graph G drawn from G(n, 1

2
, k/2, k/2) for

k = c
√
n, and has running time O(n2).

We note that algorithm FindBiclique can be extended to work for an arbitrary constant
c > 0 using a standard technique presented in Section 2.3 of [AKS98], at the cost of a larger
(polynomial) running time.

1.1.2 Planting Two Cliques in a Random Graph

We study a variation of the Hidden Clique problem, in which two cliques are planted in a
random graph, instead of just one. Formally, the input graph G = (V,E) is constructed as
follows. First, a random graph G′ is drawn from G(n, 1

2
). Then, two disjoint sets of vertices

K1, K2 ⊆ V of the same size k = k(n) � 2 log2 n are chosen independently at random, and
each of them is made into a clique. We denote by G(n, 1

2
, k + k) the distribution of G. The

goal is to find at least one of the two hidden cliques in polynomial time (with high probability
over the choice of G).

We point out that there exists a polynomial-time algorithm that finds, with high proba-
bility, both hidden cliques in a graph G drawn from G(n, 1

2
, k+k) for all k ≥ Ω(

√
n) [McS01],

but no such algorithm is known for any k = o(
√
n).

Our results. In Section 3 we show that if there exists a polynomial-time algorithm that
finds, with high probability, at least one hidden clique in a graph G drawn from G(n, 1

2
, k+k),

then we can solve the Hidden Clique problem for the same k = k(n)� 2 log2 n, with proba-
bility at least 1/2− o(1) (which is not known how to be done for k = o(

√
n)). This basically

shows that planting two cliques instead of one just makes the problem harder. We have tried
to show also a reduction in the opposite direction, which would imply that the problems are
computationally equivalent (up to polynomial factors), but unfortunately we did not manage
to make any progress on that. We believe that this question is worth investigating further.
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1.1.3 The Hidden Clique Problem in a Communication Complexity Setting

We analyze and compare the communication complexity of the Hidden Clique problem in two
models. As usual, there are two parties, Alice and Bob, where Bob’s input is a graph G drawn
from G(n, 1

2
, k) for k = k(n)� 2 log2 n, whereas Alice will have a different input in each of the

models. The goal of Bob is to eventually recover the hidden clique in G. The communication
between the parties is restricted to be one-way (i.e., Alice sends a single message to Bob)
and the two parties have a shared randomness. We also note that unlike in the conventional
models of communication complexity, where both parties are computationally unbounded,
here only Alice is all-powerful, while Bob is polynomially bounded, as otherwise he could
recover the hidden clique by himself (in time nO(logn)).

In the first model, Alice’s input is the underlying random graph of G (i.e., before the clique
was planted). Observe that Alice does not know where is the hidden clique in Bob’s graph
(information-theoretically), and thus her unbounded computational power is not important
here. However, the difference between her graph and Bob’s graph may give a valuable
information that can help Bob to recover the hidden clique.

In the second model, Alice’s input is a graph obtained by randomly permuting the labels
of the vertices of G. Observe that Alice can find the hidden clique in her graph, as she is
computationally unbounded, and if the vertex labels were not permuted, she could send the
labels of the hidden clique vertices to Bob, using O(log2 n) bits of communication (as it is
enough to have 3 log2 n random vertices from the hidden clique to be able to recover it, by
Lemma 4.5).

We argue that in both models, Alice is able to send Bob a single and relatively short
message, consisting of a certain information about her input graph, which will enable Bob to
find the hidden clique in G in polynomial time.

Our results. In Section 4 we present two different protocols in the first model. The first
one is based on sums of degrees and uses O(log3 n) bits of communication, whereas the
second is based on `0-samplers and uses O(log5 n) bits of communication. Then, we present
a protocol in the second model, which is based on the degree sequences of neighbors and
uses O(log2 n) bits of communication. Finally, we show a lower bound of ω(log n) on the
communication complexity of protocols where Bob’s only input is a graph G drawn from
G(n, 1

2
, k) for k = k(n)� 2 log2 n, regardless of the input of Alice, assuming hardness of the

Hidden Clique problem for k = o(
√
n) (i.e., assuming that there is no algorithm that solves

the Hidden Clique problem for k = o(
√
n)).
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1.1.4 Finding a Hidden Clique Using Statistical Queries

We study the Hidden Clique problem in a model of statistical queries, where the algorithm
can make queries on subsets of the vertices and obtain aggregate information that may help in
recovering the hidden clique. The queries can be performed either on the underlying random
graph (i.e., before the clique was planted) or on the input graph itself. The motivation for
this model is to examine the following question: Can statistical information of a certain type
help to recover the hidden clique? And if so, how much such information do we need?

In Section 5 we study the following type of statistical queries. For an input graph G

drawn from G(n, 1
2
, k) for k = k(n)� 2 log2 n, an algorithm can choose a subset S ⊆ V , and

make a query for the sum of degrees of the vertices in S, in the underlying random graph G′

(i.e., before the clique was planted).

Our results. In Section 5 we show a lower bound of ω( logn
log k

) on the query complexity,
assuming hardness of the Hidden Clique problem for k = o(

√
n) (i.e., assuming that there

is no algorithm that solves the Hidden Clique problem for k = o(
√
n)). In addition, we

present a polynomial-time algorithm for finding the hidden clique, which has query complexity
O(log2 n).

1.2 Finding Large Cliques in Semi-Random Graphs

We focus on studying semi-random graphs that are constructed as follows. First, a random
graph G is drawn from G(n, 1

2
). Then, an adversary adds to it a certain amount of edges,

resulting in a semi-random graph we denote by H, in such a way that ω(G) � ω(H). Fur-
thermore, an additional limitation is enforced on the adversary: every vertex outside the
largest clique in H must have a degree that is smaller than the degree of any vertex inside
the largest clique in H, unless it was bigger initially (i.e., in G).

Our results. In Section 6 we show that if H is a semi-random graph (constructed as
above) with ω(H) ≥ c

√
n log n (for a sufficiently large constant c > 0), then we can find the

largest clique in H in polynomial time. In addition, we show that there is no polynomial-time
algorithm that approximates the largest clique in H within a factor of 2− ε, for every fixed
ε > 0, assuming hardness of the Hidden Clique problem for k = o(

√
n) (i.e., assuming that

there is no algorithm that solves the Hidden Clique problem for k = o(
√
n)).
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2 The Hidden Biclique Problem

In this section we study a variation of the Hidden Clique problem, in which instead of planting
a clique in a random graph, we plant a balanced biclique (recall Definition 1.2).

We start by pointing out that the problem of finding the maximum balanced biclique in
a graph, even a balanced bipartite one (i.e., a bipartite graph in which both parts, which are
given, are of the same size) is NP-hard [Joh87]. Furthermore, it was proven that approxi-
mating the maximum balanced biclique in a graph on n vertices within a factor of 2(logn)δ for
some δ > 0 is NP-hard, under the assumption that 3-SAT cannot be solved in time O(2n

3/4+ε
)

for some ε > 0 [FK04]. These facts suggest that an efficient algorithm for finding the largest
balanced biclique in a general graph is unlikely to exist, which gives an additional motiva-
tion to study the particular variations of the Hidden Clique problem, which are presented in
Section 1.1.1 - the Hidden Biclique and the Bipartite Hidden Biclique problems.

Previously, a similar problem was studied by Ames and Vavasis [AV11]. Specifically,
they analyze the problem of finding a maximum-edge biclique (i.e., a complete bipartite
subgraph Km,n that maximizes the product mn) in a bipartite graph whenever it is unique.
In particular, they present a polynomial-time algorithm that finds, with high probability,
a hidden biclique in a random bipartite graph (not necessarily balanced) whenever each of
the sides of the biclique is of size ≥ Ω(

√
n) (and they differ only by a constant factor).

Therefore, as a special case, their algorithm finds the hidden biclique in a graph G drawn
from G(n, n, 1

2
, k, k) for all k ≥ Ω(

√
n). The algorithm uses a convex relaxation that is based

on a minimization of the nuclear norm of a matrix.
It is well known that, with high probability, the size of the maximum clique in a graph G

drawn from G(n, 1
2
) is roughly 2 log2 n (i.e., ω(G) ≈ 2 log2 n), see Section 4.5 in [AS92]. It is

also known that, with high probability, the size of the maximum balanced biclique both in a
graph G drawn from G(n, n, 1

2
) and in a graph G drawn from G(n, 1

2
) is at most 4 log2 n (i.e.,

the number of vertices on each side is at most 2 log2 n), see [DKST01]. Thus, if we plant a
clique of size r = r(n) � 2 log2 n in a random graph G ∈ G(2n, 1

2
), then it can be shown

that, with high probability, it will be the unique maximum clique in the resulting graph.
Similarly, if we plant a biclique of size r + r with r = r(n)� 2 log2 n in a random bipartite
graph G ∈ G(n, n, 1

2
) or in a random graph G ∈ G(2n, 1

2
), then it can be shown that, with

high probability, it will be the unique maximum biclique in the resulting graphs.
In Section 2.1 we show, by presenting a polynomial-time reduction, that the Hidden

Biclique problem is at least as hard as the Bipartite Hidden Biclique problem (with same
k), and in Section 2.2 we show, by presenting a polynomial-time reduction, that the latter
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problem is at least as hard as the Hidden Clique problem (with same k). By combining
the two results, we get that the Hidden Biclique problem is at least as hard as the Hidden
Clique problem (with same k), which is formalized in Corollary 2.3. On the positive side, in
Section 2.3 we present a linear-time algorithm that solves the Hidden Biclique problem for
k = Ω(

√
n), which we call algorithm FindBiclique.

2.1 Hardness of the Hidden Biclique Problem

In this section, we present a polynomial-time reduction from the Bipartite Hidden Biclique
problem to the Hidden Biclique problem, with the same size of the planted biclique k = k(n).
Formally, we prove the following theorem.

Theorem 2.1. If there exists a randomized polynomial-time algorithm that finds, with high
probability, the hidden biclique in a graph G drawn from G(2n, 1

2
, k, k), then there exists a

randomized polynomial-time algorithm that finds, with high probability, the hidden biclique in
a (bipartite) graph H drawn from G(n, n, 1

2
, k, k), for all k = k(n)� 2 log2 n.

Proof: We assume that there exists a randomized polynomial-time algorithm, denoted by A,
that finds, with high probability, the hidden biclique in a graph G drawn from G(2n, 1

2
, k, k)

(we assume that if A fails to find the hidden biclique, then it returns an empty set), and
present a randomized polynomial-time algorithm that finds, with high probability, the hidden
biclique in a graph H drawn from G(n, n, 1

2
, k, k), which we call algorithm FindBC.

Algorithm 1 FindBC (H, k)

Input: A graph H = (V1 ∪ V2, E) drawn from G(n, n, 1
2
, k, k), with k = k(n)� 2 log2 n.

We assume that V1 = [n] and V2 = {n+ 1, . . . , 2n}.
Output: The hidden biclique in H (w.h.p.).

1. Set G = H.

2. For i ∈ {1, 2}, choose Hi ← G(n, 1
2
) and set G[Vi] = Hi (note that initially G[V1], G[V2]

have no edges).

3. Choose a random permutation σ : [2n] → [2n] (note that V1 ∪ V2 = [2n]), and rename
the vertices of G according to σ (formally, the set of edges of G will now be E ′(G) =
{{σ(i), σ(j)} | i, j ∈ [2n] ∧ {i, j} ∈ E(G)}).

4. Execute Q← A(G).

5. If Q 6= ∅, return Q; Else, return “FAIL”
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Analysis:

The core of the analysis will be to show that the distribution of the graph G, generated in
steps 1-3 by a series of random choices, is identical to the distribution G(2n, 1

2
, k, k). We

observe that a graph G′ drawn from G(2n, 1
2
, k, k) is basically generated in two phases:

1. Choosing G′′ ← G(2n, 1
2
), which is a series of independent choices for every pair of

vertices u 6= v, whether the edge {u, v} will occur or not (with equal probability).

2. Choosing two disjoint sets of vertices of size k from V (G′′) independently at random,
and making them into a biclique.

As the random choices made in each of the phases are independent of one another, they can be
done in any order, preserving the same distribution. Thus, we can generateG′ ∈ G(2n, 1

2
, k, k)

in a series of the following steps:

1. Start with an empty graph G′′ on the vertex set [2n].

2. Select two arbitrary disjoint sets of vertices of size k, and make them into a biclique.

3. For each pair of vertices u 6= v which is not an edge of the chosen biclique, make {u, v}
to be an edge with probability 1/2, independently of all other pairs.

4. Choose a random permutation σ : [2n]→ [2n], and rename the vertices of G′′ according
to σ.

5. Return the resulting graph, denoted by G′.

We note that renaming the vertices according to σ in step 3 is equivalent to choosing the
vertices of the hidden biclique randomly and independently (i.e., identical distributions),
as a random permutation σ provides that the labels of the vertices of the already chosen
(arbitrarily) hidden biclique are uniformly distributed over all the subsets of labels of size
2k from [2n]. Clearly, permuting the labels of the vertices does not change the distribution
of the randomly chosen edges. Thus, the distribution of G′ is identical to the distribution
G(2n, 1

2
, k, k).

Looking upon algorithm FindBC, we have that after step 2, all the edges (and non-edges)
of G apart from those of the hidden biclique (in H) were chosen at random. Thus, the first
three generation steps described above are completed. Finally, permuting the labels of the
vertices in step 3 completes the fourth generation step (we note that permuting the labels
of the vertices is essential, so that the vertices of the planted biclique in G will be uniformly
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distributed over all subsets of labels of size 2k from [2n]). Therefore, the distribution of
the graph G, produced by the algorithm, is identical to the distribution G(2n, 1

2
, k, k), and

thus, with high probability, algorithm A will output (in step 4) the hidden biclique in G. As
the vertices of the hidden biclique in G are the same vertices of the hidden biclique in H,
algorithm FindBC will output, with high probability, the hidden biclique in H.

We note that algorithm FindBC succeeds with high probability over the choice of the
input graph H, and also with high probability over its randomness. Thus, the total failure
probability is o(1), by a union bound.

Running time:

Let T (n) = poly(n) be the running time of algorithm A. Clearly, steps 1-3 take O(n2)

time, and step 4 takes T (n) time. Thus, the total running time of algorithm FindBC is
O(n2 + T (n)) = poly(n).
This completes the proof. �

2.2 Hardness of the Bipartite Hidden Biclique Problem

In this section, we present a polynomial-time reduction from the Hidden Clique problem
to the Bipartite Hidden Biclique problem, with the same size of the planted clique/biclique
k = k(n). Formally, we prove the following theorem.

Theorem 2.2. If there exists a randomized polynomial-time algorithm that finds, with high
probability, the hidden biclique in a (bipartite) graph G drawn from G(n, n, 1

2
, k, k), then there

exists a randomized polynomial-time algorithm that finds, with high probability, the hidden
clique in a graph H drawn from G(2n, 1

2
, 2k), for all k = k(n)� 2 log2 n.

Proof: As there exist polynomial-time algorithms that find, with high probability, a hidden
clique of size k ≥ Ω(

√
n) in a graph G drawn from G(2n, 1

2
), we can assume that 2 log2 n�

k = k(n) = o(
√
n).

We assume that there exists a randomized polynomial-time algorithm, denoted by A, that
finds, with high probability, the hidden biclique in a graph G drawn from G(n, n, 1

2
, k, k) (we

assume that if A fails to find the hidden biclique, then it returns an empty set), and present
a randomized polynomial-time algorithm that finds, with high probability, the hidden clique
in a graph H drawn from G(2n, 1

2
, 2k), which we call algorithm FindClique.
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Algorithm 2 FindClique (H, k)

Input: A graph H = (V,E) drawn from G(2n, 1
2
, 2k), with 2 log2 n� k = k(n) = o(

√
n).

Output: The hidden clique in H (w.h.p.).

1. Set G = H.

2. Repeat the following b
√
nc times (independently):

2.1. Choose a random subset of vertices S ⊆ V (G) of size n, and let T = V (G)\S (i.e.,
(S, T ) is a random equipartition of the vertices of G).

2.2. Remove all edges with both endpoints either in S or in T , resulting in a (balanced)
bipartite graph (on the same vertex set).

2.3. Execute Q← A(G).

2.4. If Q 6= ∅, return Q.

3. return “FAIL”.

Analysis:

Let K ⊆ V be the set of vertices of the planted clique in H. We denote K1 = S ∩ K and
K2 = T ∩K. Clearly, the induced subgraph G[K1 ∪K2] is a biclique in G (not necessarily
balanced). We observe that the random variables |Ki| for i = 1, 2 have a hypergeometric
distribution with parameters HG(2n, 2k, n). Thus, we have that E[|Ki|] = k and σ(|Ki|) ≤√
k/2 for i = 1, 2. We now show a lower bound on the probability of having a balanced

biclique in G of size 2k (i.e., |K1| = |K2| = k). We have that:

Pr[|K1| = k] = Pr[|K2| = k] =

(
2k
k

)(
2n−2k
n−k

)(
2n
n

) =

(
2k
k

)(
2(n−k)
n−k

)(
2n
n

) .

Using Stirling’s approximation formula, m! ∼
√

2πm
(
m
e

)m, we get the following approxima-
tion for the largest binomial coefficient:(

m

m/2

)
= Θ(2m/

√
m). (1)

Applying equation (1), we have that:

Pr[|K1| = k] = Pr[|K2| = k] =

(
2k
k

)(
2(n−k)
n−k

)(
2n
n

) ≥ c ·
√
n√

k
√
n− k

≥ c√
k
,

where c > 0 is some constant.
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Therefore, with probability at least c/
√
k we succeed to produce (in steps 2.1-2.2) a graph

G with a balanced biclique of size 2k. We observe that in such case, G is a random bipartite
graph with a randomly planted balanced biclique of size 2k. This is true, as the choice of the
equipartition (S, T ) is independent of the choice of the edges (of H, and thus of G). We can
think of it as if it was chosen before the edges of H, and now examine the edges of G. We
observe that all the edges (and non-edges) of G (which are between S and T ) with at least
one endpoint outside K were chosen uniformly at random (in H, and thus in G), and also
that the vertices of the planted biclique are uniformly distributed on each side, as the choice
of the vertices of the planted clique in H was uniform, and so is the choice of the random
equipartition. To conclude, in each iteration, with probability at least c/

√
k we produce a

graph G whose distribution is identical to the distribution G(n, n, 1
2
, k, k) (where the K1, K2

is the hidden biclique). Thus, we have that:

Pr[alg. FindClique fails in all iterations] ≤
(

1− c√
k

)√n
≤

k=o(
√
n)

(
1− c

n1/4

)√n ≤ e−cn
1/4

= o(1).

Therefore, with high probability, algorithm FindClique will succeed to produce a graph G

which is distributed according to G(n, n, 1
2
, k, k), and thus, with high probability, algorithm

A will output (in step 2.3) the hidden biclique in G. As the vertices of the hidden biclique
in G are the same vertices of the hidden clique in H, algorithm FindClique will output, with
high probability, the hidden clique in H.

We note that algorithm FindClique succeeds with high probability over the choice of the
input graph H, and also with high probability over its randomness. Thus, the total failure
probability is o(1), by a union bound.

Running time:

Let T (n) = poly(n) be the running time of algorithm A. Clearly, steps 2.1-2.2 take O(n2)

time, and step 2.3 takes T (n) time. Thus, the total running time of algorithm FindClique is
O(
√
n · (n2 + T (n))) = poly(n).

This completes the proof. �

Corollary 2.3. If there exists a randomized polynomial-time algorithm that finds, with high
probability, the hidden biclique in a graph G drawn from G(2n, 1

2
, k, k), then there exists a

randomized polynomial-time algorithm that finds, with high probability, the hidden clique in
a graph H drawn from G(2n, 1

2
, 2k), for all k = k(n)� 2 log2 n.

Proof: Follows from combining Theorem 2.1 and Theorem 2.2. �
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2.3 Finding a Hidden Biclique in a Random Graph

In this section we present a linear-time algorithm for finding, with high probability, a hidden
biclique of size k ≥ c

√
n (for a sufficiently large constant c > 0) in a random graph drawn from

G(n, 1
2
), which we call algorithm FindBiclique. This algorithm is a modification of the LDR

(Low Degree Removal) algorithm of Feige and Ron [FR10], which finds a hidden clique of size
k ≥ c

√
n (for a sufficiently large constant c > 0) in a random graph drawn from G(n, 1

2
). Our

modification of the LDR algorithm does not directly address the fact that we are trying to
find a hidden biclique, but rather performs a logic that is purely based on the degrees of the
vertices, exploiting the fact that the degree of every vertex of the hidden biclique increases
roughly by k/4 when the biclique is planted. We also observe that for k ≥ c

√
n log n (for a

sufficiently large constant c > 0), the vertices of the hidden biclique would almost surely be
the ones with the largest degrees in the graph (as the standard deviation of a degree of a
vertex is O(

√
n)), and hence it is easy to find them efficiently, without using our algorithm

(similar observation was presented by Kučera [Kuč95] regarding the Hidden Clique problem).
We point out that a polynomial-time algorithm that finds a hidden biclique of size k ≥

c
√
n in a random bipartite graph was presented by Ames and Vavasis [AV11]. However, our

algorithm finds a hidden biclique of size k ≥ c
√
n in a general random graph, which can be

only a harder problem (see Theorem 2.1).

Theorem 2.4. (Theorem 1.3 restated). For a sufficiently large constant c > 0, Algorithm
FindBiclique finds, with probability at least 2/3, the hidden biclique in a graph G drawn from
G(n, 1

2
, k/2, k/2) for k = c

√
n, where the probability is taken over the choice of the input

graph G. The running time of the algorithm is O(n2).

Remark: Algorithm FindBiclique can be extended to work for an arbitrary constant c′ > 0

using a standard technique presented in Section 2.3 of [AKS98], as follows. Let c > 0 be a
constant from Theorem 2.4. In order to find a hidden biclique of size k = c′

√
n in a graph G

drawn from G(n, 1
2
, k/2, k/2), guess a set T of t ≈ log2(c/c′) vertices from the hidden biclique

by exhaustive search, and denote by S the set of their common neighbors. Then, execute
algorithm FindBiclique on G[S], getting an output Q, and return Q∪ T (if it is a biclique of
size k = c′

√
n). The total running time is nO(log(c/c′)).

2.3.1 The FindBiclique Algorithm

We now present the FindBiclique algorithm, which works in two phases.
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Algorithm 3 FindBiclique (G, k)

Input: A graph G = (V,E) drawn from G(n, 1
2
, k/2, k/2), with k = c

√
n (c > 0 is a

sufficiently large constant).
Output: The hidden biclique in G (w.h.p.).

The removal phase.

1. Set r = 0 and G0 = G.

2. while (|V (Gr)| > 4k/5) do

2.1. Remove from Gr the vertex of lowest degree (breaking ties in favor of vertex

with lower index). Call the remaining graph Gr+1.

2.2. Increment r.

The inclusion phase.

3. Rename those vertices of G that are not in the output Gr of the removal phase

to vr, . . . , v1. Set t = r and let Qr be the set of vertices of Gr.

4. while (t > 0) do

4.1. If vt is connected (in G) to at least 21k/40 vertices of Qr, then Qt−1 = Qt ∪ {vt};

Else, Qt−1 = Qt.

4.2. Decrement t.

5. return Q0.

Remark: Given the set of vertices of the hidden biclique (outputted by algorithm Find-
Biclique), denoted by Q, one can find their bipartition efficiently by simply computing the
connected components of the graph G[Q] (i.e., the complement graph of the induced sub-
graph G[Q]). With high probability, there are exactly two connected components (of the
same size), and they are the two parts of the hidden biclique.

2.3.2 Analysis of the Algorithm

Here we prove Theorem 2.4. We will use the following notation (similar to the one used
for the LDR algorithm). Let S1 ∪ S2 ⊆ V be the set of vertices of the hidden biclique; let
nr = n− r denote the number of vertices in Gr; let Kr denote the set of vertices from S1∪S2
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in Gr, and let kr denote their number; let Fr denote the set of other vertices in Gr, and let
fr = nr − kr denote their number. Lastly, we use F = F0 to denote the set of vertices which
are not part of the hidden biclique (in G).

In addition, we note that all probabilities are taken over the choice of G (the algorithm
is deterministic).

Proposition 2.5. Let c0 > 0 be a sufficiently large constant, and let i ∈ {1, 2}. Then, with
high probability, for every vertex v ∈ V , its degree into Si in G′ (the underlying random
graph) is in the range [k/4− c0

√
k log n, k/4 + c0

√
k log n].

Proof: Standard combination of Chernoff-Hoeffding bounds and union bound. �

Corollary 2.6. Let c′0 > 0 be a sufficiently large constant. Then, with high probability, for
every vertex v ∈ V , its degree into S1 ∪ S2 in G′ (the underlying random graph) is in the
range [k/2− c′0

√
k log n, k/2 + c′0

√
k log n].

Lemma 2.7. Let c1 > 0 be a sufficiently large constant. Then, with high probability, at every
step r in which fr ≥

√
n, the vertex of lowest degree in Gr has degree at most nr/2 + c1

√
n.

Proof: An equivalent method for generating G is by choosing the sets S1 ⊆ V1, S2 ⊆ V2 first
(randomly and independently), making then into a biclique, and then every remaining pair
of vertices u 6= v ∈ V (i.e., (u, v) /∈ (S1 × S2) ∪ (S2 × S1)) are connected by an edge inde-
pendently with probability 1/2. Consider the situation after choosing S1, S2. For arbitrary
values fr in the range

√
n ≤ fr ≤ n − k and kr in the range 0 ≤ kr ≤ k, pick an arbitrary

set of fr vertices from F and an arbitrary set of kr vertices from S1 ∪ S2. Now, the expected
number of endpoints of edges touching Fr is exactly fr(nr − 1)/2, the standard deviation is
O(
√
frnr), and the probability of deviating from the expectation by more than α

√
n
√
frnr

is at most 2−2n, by Chernoff-Hoeffding bounds (when α > 0 is a sufficiently large constant).
To compute the average degree in Fr, one needs to divide the number of endpoints by fr,
and hence, with probability at least 1 − 2−2n, there is some vertex in Fr of degree at most
(nr − 1)/2 + α

√
n
√
nr/fr ≤ nr/2 + α

√
(c+ 1)n (we use here the fact that fr ≥

√
n and

kr ≤ c
√
n). Taking a union bound over all permissible values of fr and kr, and then over all

possible sets Fr and Kr (regardless of whether they actually appear in the algorithm), the
above holds simultaneously for all such choices, with probability at least 1 − 2−n. Setting
c1 ≥ α

√
c+ 1, completes the proof of the lemma. �
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For the next lemma, we will use the following definitions. Consider an arbitrary vertex
v ∈ S1 ∪ S2. Let xr be a random variable indicating whether in step r of the removal
phase, the vertex removed was from Fr. Let yj be the random variable indicating whether
in the first step r at which

∑r
i=1 xi = j, the vertex removed (that must be from Fr since

xr = 1 at this point) is a neighbor of v in G′ (and hence in G). Let rv denote the step in
which v itself was removed (or the last step of the removal phase if v was not removed).
Let sp(v) =

∑p
j=1 yj − p/2 denote the surplus of neighbors of v removed compared to non-

neighbors up to the point at which p vertices from F were removed (defined only for values
of p for which p ≤

∑rv
i=1 xi).

Lemma 2.8. Let c2 > 0 be a sufficiently large constant. Then, for every v ∈ S1 ∪ S2,

Pr[ max
p≤

∑rv
i=1 xi

sp(v) ≥ c2

√
n] ≤ 1/100.

In other words, for every v ∈ S1 ∪ S2, the surplus for v is unlikely to ever exceed O(
√
n).

Proof: Let v ∈ S1 ∪ S2. Switch the order in which the random events that generate G
are revealed to the algorithm. First, pick all edges of G′ at random (i.e., with probability
1/2) except those edges connected to v. Then, pick two disjoint sets of vertices S1 and
S2 (of size k/2 each) independently at random, such that one of them will include v (with
equal probability), and denote by i the index of the part which was chosen to include v.
Complete S1, S2 into a biclique. Now, generate a tentative run of the removal phase, without
yet knowing which vertices of F and Si are neighbors of v, and not allowing v to be removed
during the tentative run. For the tentative run, one will need to know whether v is a neighbor
of vertices (of F and Si) that are candidates for removal. Only at the point in which the
need arises, we will decide at random whether the candidate vertex u is a neighbor of v or
not. At that point we say that {u, v} is exposed (either as being an edge or not). Hence, the
tentative run proceeds as follows.

1. If |V (Gr)| ≤ 4k/5, then for every vertex u 6= v from Gr, if {u, v} was not previously
exposed, then expose it. After finishing this procedure, stop.

2. Else, pick the vertex u 6= v from Gr that has lowest degree (counting edges to v only in
cases that they were already exposed, and breaking ties in favor of the vertex of lower
index). Now, in order to make the tentative run consistent with the true run, there are
several cases to consider:
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2.1. If {u, v} was previously exposed (one such case is when u ∈ S3−i, and then we
know that {u, v} is an edge), remove u.

2.2. If {u, v} was not previously exposed, then expose it. If after that u remains of
lowest degree (in particular, this must happen when {u, v} is not an edge), remove
u. Otherwise, go to step 1.

When the tentative run stops, all edges to v have been exposed. Hence, now one is in a
position to perform a true run of the removal phase. If v is not removed in the true run, then
the true run is identical to the tentative run (this is a consequence of using a fixed rule for
breaking ties, in particular, the rule of breaking them in favor of the vertex of lower index).
If v is removed in the true run, then the true run and the tentative run are identical up to
the point in which v is removed. Beyond that point, we no longer care about either of these
two runs (for the analysis of the surplus).

Now, consider the development of the surplus of v with respect to the tentative run, up to
step rv (up to that point, the tentative run and true run are identical, and the lemma is not
concerned with the surplus after point rv). Vertices in S3−i do not contribute to the surplus
(by definition). As for vertices u ∈ F , up to step r we exposed the status of {u, v} for many
candidates, but not all of them have been removed. Note, however, that each exposed {u, v}
has probability exactly 1/2 of being an edge (independent of all other events) and all those
exposed and not removed have {u, v} as an edge. It follows that the process of building up
surplus is stochastically dominated by a random sequence of ±1. Moreover, the length of
this sequence is at most n. By standard bounds (that follow from the Optional Stopping
Theorem for Martingales), the probability that a random sequence ever builds up a surplus
of c2

√
n (for sufficiently large c2 > 0) is at most 1/100. �

Corollary 2.9. With probability at least 9/10, there are at most k/10 vertices from S1 ∪ S2

that ever reach a surplus of c2

√
n during the removal phase of the algorithm.

Proof: For w ∈ S1∪S2, let Xw be an indicator random variable for the event that w reaches
a surplus of c2

√
n, and let X =

∑
w∈S1∪S2

Xw. By Lemma 2.8 and using Markov’s inequality,
we get that:

Pr[X ≥ k/10] ≤ E[X]

k/10
≤ k/100

k/10
=

1

10
. �

We note that Corollary 2.9, with its simple proof that only uses Markov’s inequality, is
the reason why in Theorem 2.4 the probability is a fixed constant. Possibly, the statement
of Corollary 2.9 can be strengthened.
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Lemma 2.10. Let U ⊆ S1 ∪ S2 be an arbitrary set of vertices of size 4k/5. Then, with high
probability, for every vertex v ∈ V , the degree of v into U in G is at least 21k/40 if and only
if v ∈ S1 ∪ S2.

Proof: We denote U1 = S1 ∩ U and U2 = S2 ∩ U . As |U | = 4k/5, we have that 3k/10 ≤
|U1|, |U2| ≤ k/2. Let s ∈ [3k/10, k/2] such that |U1| = s, and so |U2| = 4k/5−s, and let v ∈ V .
First, if v /∈ S1∪S2, then, with high probability, its degree into U is at most k/2+c′0

√
k log n,

by Corollary 2.6 (as U ⊆ S1 ∪ S2), which is (strictly) less than 21k/40, for large enough n.
Second, without loss of generality we can assume that v ∈ S1 (due to symmetry between S1

and S2). Then, its degree into U is at least |U2| = 4k/5 − s plus its degree into U1, which
we denote by x. By Proposition 2.5, with high probability, the degree of v into S1 is at least
k/4 − c0

√
k log n. Thus, at least k/4 − c0

√
k log n − |S1\U1| = s − k/4 − c0

√
k log n of v’s

neighbors from S1 are in U1, and so x ≥ s− k/4− c0

√
k log n. Therefore, the degree of v into

U is at least 22k/40− c0

√
k log n� 21k/40, for large enough n. The lemma follows. �

We can now prove Theorem 2.4.
Proof of Theorem 2.4: Follow the (probable) evolution of the removal phase until step r̂
satisfying fr̂ =

√
n (as we will see, the removal phase cannot possibly end before fr =

√
n,

but with a small probability). Let us analyze the value of kr̂, by upper bounding the number
of vertices from S1 ∪ S2 that are not in Kr̂. Recall that k = c

√
n, for some sufficiently large

constant c (larger than all other constants appearing in the proof, to be chosen later). In
our proof we shall assume that all events that happen with high probability actually happen
(this assumption can be made, as we shall only consider a constant number of such events).

Let L be the set of vertices from S1∪S2 that in G′ have degree not more than n/2−c3

√
n

(where c3 > 0 is a sufficiently large constant). The expected number of such vertices is at
most k/100 (e.g., by Chebyshev’s inequality), and hence, with probability at least 9/10, there
are at most k/10 such vertices (by Markov’s inequality). We do not assume that any of the
vertices of L get to reach Kr̂.

By Proposition 2.5, the degree of every vertex of S1 ∪ S2 increased by at least k/4 −
c0

√
k log n when S1 ∪ S2 was made into a biclique. For sufficiently large n we have that

k/4 � c0

√
k log n, and for simplicity of notation (and with only negligible effect on the

bounds) we shall assume that the increase in degree is k/4. Hence, all vertices of (S1∪S2)\L
have degree at least n/2 + (c/4 − c3)

√
n in G. Let T be the set of vertices of S1 ∪ S2 that

“suffered” a surplus of c2

√
n or more in the removal phase. By Corollary 2.9, with probability

at least 9/10 we have that |T | ≤ k/10. We do not assume that any of the vertices of T get
to reach Kr̂.
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For all vertices of (S1∪S2)\(L∪T ), their initial degree in G was at least n/2+(c/4−c3)
√
n,

their surplus is at most c2

√
n, and hence at every step r their degree in Gr is at least

nr/2 + (c/4− c2 − c3 − c/5)
√
n (where the term (c/5)

√
n = k/5 = k/10 + k/10 is an upper

bound on the effect of L and T not reaching Kr̂). If this degree is at least nr/2 + c1

√
n, then

these vertices cannot be removed (at every step r in which fr ≥
√
n, the vertex removed from

Gr has degree at most nr/2 + c1

√
n, by Lemma 2.7). It follows that if c/20 ≥ c1 + c2 + c3,

then kr̂ ≥ 4k/5. Recall that Lemma 2.7 required that c1 ≥ α
√
c+ 1. Hence, if c is large

enough so as to satisfy c ≥ 20(α
√
c+ 1 + c2 + c3), all required relations between the various

parameters can be made to hold. As the removal phase stops only when |V (Gr)| ≤ 4k/5,
this shows that the it cannot possibly end before fr =

√
n, but with a small probability, as

was claimed above.
Let us now analyze what happens in the removal phase after step r̂. At this point, all

vertices of Kr have degree at least 21k/40� k/2 (follows from Lemma 2.10, taking U = Kr̂

and v ∈ U). All vertices of Fr have degree at most fr + k/2 + c′0
√
k log n (by Corollary 2.6),

which is smaller than 21k/40 (when c is sufficiently large, using also the fact that fr ≤
√
n).

Hence, no vertex of Kr̂ will be removed (from now on), and all vertices of Fr̂ will be removed.
This establishes that the removal phase ends with 4k/5 vertices from S1 ∪ S2 and no vertex
from F .

As to the inclusion phase, the fact that kr = 4k/5 together with Lemma 2.10 and the
check at step 4.1, imply that no vertex of F will be included. On the other hand, all vertices
of (S1 ∪S2)\Kr will be included, and hence the output of algorithm FindBiclique will be the
hidden biclique S1 ∪ S2.

The probability that the assumptions of the analysis fail to hold is (by a union bound)
at most 1/10 + 1/10 + o(1) < 1/3.

Running time of the algorithm:

We assume an adjacency matrix representation of the input graph G, and analyze the running
time of the removal and inclusion phases. We observe that for each vertex of G, its degree
can be determined in time O(n) by scanning the corresponding row/column in the matrix.
Hence, we can create a vector of all vertex degrees. Finding the minimum degree can then be
done in time O(n). When removing the vertex of minimum degree, updating the degrees of
all other vertices takes time O(n) (subtracting one from each neighbor of the removed vertex,
and marking the removed vertex). Since less than n vertices are removed, the whole removal
phase takes time O(n2). Regarding the inclusion phase, it is clear that the check in step 4.1
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takes O(n) time, and we perform it O(n) times. Thus, the whole inclusion phase takes time
O(n2). Overall, the running time of the algorithm is O(n2), which is linear in the size of the
adjacency matrix of G.
This completes the proof of Theorem 2.4. �

Corollary 2.11. For a sufficiently large constant c > 0, there exists a randomized polynomial-
time algorithm that finds, with probability at least 2/3, the hidden biclique in a graph G drawn
from G(n/2, n/2, 1

2
, k/2, k/2) for k = c

√
n, where the probability is taken over the choice of

the input graph G and the randomness of the algorithm.

Proof: Follows from Theorem 2.1 and Theorem 2.4. �

Remark: An algorithm for finding a hidden biclique of size k ≥ c
√
n in a random bipartite

graph, that has the same performance as in Corollary 2.11, was presented by Ames and
Vavasis [AV11].

3 Planting Two Cliques in a Random Graph

In this section we study a variation of the Hidden Clique problem, in which two cliques are
planted in a random graph, instead of just one. Formally, the input graph G = (V,E) is
constructed as follows. First, a random graph G′ is drawn from G(n, 1

2
). Then, two disjoint

sets of vertices K1, K2 ⊆ V of the same size k = k(n)� 2 log2 n are chosen independently at
random, and each of them is made into a clique. We denote by G(n, 1

2
, k+k) the distribution

of G. The goal is to find at least one of the two hidden cliques in polynomial time (with high
probability over the choice of G).

We start by pointing out that there exists a polynomial-time algorithm, which is based on
spectral graph partitioning, that finds, with high probability, both hidden cliques in a graph
G drawn from G(n, 1

2
, k + k) for all k ≥ Ω(

√
n) [McS01], but no such algorithm is known for

any k = o(
√
n). Moreover, the algorithm presented in [McS01]can find any number t ≥ 1 of

hidden cliques, each of varying size, as long as all of them are of size ≥ Ω(
√
n).

We present a simple polynomial-time reduction from the standard planted clique problem
to the version with two planted cliques, showing that the latter problem is at least as hard
as the former.

Proposition 3.1. For all k = k(n)� 2 log2 n, if there exists a randomized polynomial-time
algorithm that finds, with high probability, at least one hidden clique in a graph drawn from
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G(n, 1
2
, k + k), then there exists an algorithm that solves the Hidden Clique problem with the

same k = k(n).

Proof: As there exist algorithms that solve the Hidden Clique problem for all k ≥ Ω(
√
n), it

remains to prove the proposition for all k = o(
√
n). Let A be a randomized polynomial-time

algorithm that finds, with high probability, at least one hidden clique in a graph G drawn
from G(n, 1

2
, k + k) (we assume that if A fails to find a hidden clique, then it returns an

empty set). We present an algorithm that solves the Hidden Clique problem for the same k,
which we call algorithm FindHC.

Algorithm 4 FindHC (H, k)

Input: A graph G = (V,E) drawn from G(n, 1
2
, k), with 2 log2 n� k = k(n) = o(

√
n).

Output: The hidden clique in G (w.h.p.).

1. Choose a random set of vertices T ⊆ V of size k and make it into a clique, denoting
the resulting graph by H.

2. Execute Q1, Q2 ← A(H), and let Q = (Q1 ∪Q2)\T .

3. If (Q 6= ∅), return Q.

4. return “FAIL”.

Analysis:

Denote by S the hidden clique in G. Clearly, if the algorithm succeeds to choose a set T (in
step 1) such that T ∩S = ∅, then the graph H is distributed according to G(n, 1

2
, k+k). The

probability to fail in choosing such a T is, by a union bound:

Pr[T ∩ S 6= ∅] ≤
k−1∑
i=0

k

n− i
≤ k2

n− k
= o(1).

We now compute the probability that algorithm A will return the true hidden clique S
when executed on the graph H (assuming that T ∩ S = ∅). We look upon the generation of
the graph H as the following process: First, a random graph H ′ is drawn from G(n, 1

2
). Then,

two disjoint sets of vertices K1, K2 ⊆ V (H ′) of the same size k are chosen independently at
random, and each of them is made into a clique. We observe that for a given graph H as
above, with two planted cliques K1, K2, the probability that K1 is the true planted clique S is
exactly 1/2 of the probability for H to be drawn (by symmetry). As algorithm A succeeds in
recovering at least one of the hidden cliques with probability 1− o(1), it will return the true
hidden clique with probability at least 1/2− o(1), over the choice of G and its randomness.

25



Clearly, the running time of the algorithm is polynomial in n. �

Remark: We note that if a constant number r > 2 cliques are planted, then the same reduc-
tion works (with straightforward modifications), and our algorithm will succeed to recover
the hidden clique with probability at least 1/r − o(1).

4 The Hidden Clique Problem in a Communication Com-

plexity Setting

In this section we analyze the communication complexity of the Hidden Clique problem in
two models, which are defined in Section 1.1.3. The motivation for studying such protocols
is to examine the following question: what is the minimum amount of information Bob needs
about the underlying random graph of G, or about G itself but with a random permutation
of the vertices, so that he could recover the hidden clique in G in polynomial time? In
addition, we would like to compare between the two models, by analyzing and comparing
the communication complexity of protocols in each of them. This may suggest which input
for Alice contains more helpful information for recovering the hidden clique. Moreover, we
would like to compare different protocols in the same model.

4.1 A Protocol Based on Sums of Degrees

In this section we present a protocol in the first model, that is based on sums of degrees and
has a polylogarithmic communication complexity. We start by constructing a protocol that
has communication complexity O(k · polylog(n)) (where k is the size of the hidden clique),
and then refine it to have a polylogarithmic communication complexity. The first protocol is
defined as follows.

Protocol FindClique1

Alice’s Input: A graph G′ = (V,E ′) drawn from G(n, 1
2
); k = k(n)� 2 log2 n.

Bob’s Input: A graph G = (V,E), constructed by choosing, uniformly at random, a set K
of k = k(n)� 2 log2 n vertices in G′, and making them into a clique; k = k(n)� 2 log2 n.
Shared/public randomness: A random string r of polynomial (in n) size.

1. Alice initializes an empty string T .
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2. Then, Alice repeats the following m = 10k log2 n times (independently):

2.1. She samples a set S ⊆ V by including each v ∈ V independently with probability
1/k.

2.2. She then computes the sum of degrees of the vertices of S in the graph G′, and
concatenates it to T .

3. Alice sends the string T to Bob.

4. As Alice and Bob have a shared randomness, Bob knows exactly which sets of vertices
Alice had sampled (and their order). For each such set S ⊆ V , Bob does the following:

4.1. He computes the sum of degrees of the vertices of S in the graph G.

4.2. Then, he compares it to the corresponding value in T . If the two values are equal,
he marks all the vertices of S as not belonging to the hidden clique.

5. Bob counts the number of vertices that were not marked. If their number is exactly k,
he returns them; Otherwise, he returns “FAIL”.

Theorem 4.1. With high probability, the output of Bob in the protocol FindClique1 will be
the vertices of the hidden clique in the graph G, and the protocol uses O(k log2 n) bits of
communication.

We start by proving the following lemmas.

Lemma 4.2. Let v ∈ V be some fixed vertex. Then, the probability that v was not sampled
(by Alice) into S in all iterations is ≤ n−10.

Proof: Let v ∈ V be some fixed vertex. In each iteration, we have that

Pr[v was not sampled to S] = 1− 1/k.

Thus, due to independence between the iterations, we have that

Pr[v was not sampled in all iterations] = (1− 1/k)10k log2 n ≤ e−10 log2 n ≤ n−10. �

Lemma 4.3. Let v ∈ V be some fixed vertex, and assume that v /∈ K. Then, the probability
that v was sampled (by Alice) only into sets S, where some vertex from K was also sampled
is ≤ n−Ω(k).
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Proof: Let v ∈ V be some fixed vertex, and assume that v /∈ K. In each iteration, as S
includes each vertex independently, we have that

Pr[S ⊆ V \K | v ∈ S ∧ v /∈ K] = Pr[S ⊆ V \K] = (1− 1/k)k ≥ 1/4. (2)

Thus, due to independence between the iterations, we have that the probability that S *
V \K in all iterations is at most

(1− 1/4)10k log2 n ≤ e−k log2 n ≤ n−k. (3)

�

We can now prove Theorem 4.1.
Proof: By Lemma 4.2 and Lemma 4.3, we get that the probability that some fixed vertex
v ∈ V (assuming that v /∈ K) was sampled into a set S, to which no vertex from K was
sampled is at least 1 − 2n−10. Thus, applying a union bound over all the vertices in V , we
get that with high probability, every v ∈ V \K will be a sampled into a set S such that the
sums of degrees of its vertices in G′ and in G are the same (as only the degrees of the vertices
in K change). Therefore, Bob will eventually mark all the vertices which are not in K, and
thus the vertices of the hidden clique will be returned. Clearly, Bob runs in polynomial time.
The communication complexity is the length of the string T , which is O(k log2 n) bits. �

Remark: We note that protocol FindClique1 can be extended to a simultaneous protocol
(with the same communication complexity), where the referee does not have an access to the
inputs of the parties but does have an access to the shared randomness, as follows. Alice will
send to the referee the same message she sends to Bob in the original protocol. And, Bob
will send to the referee a message consisting of the values he computed in step 4.1 (for every
set S). Clearly, the referee has now all the required information to perform the computation
that Bob does in steps 4.2 and 5. As the message that Bob sends to the referee is of size
O(k log2 n), we have that the communication complexity is O(k log2 n).

We now refine protocol FindClique1, in order to reduce the communication complexity,
as follows.

Protocol FindClique2
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Alice’s Input: A graph G′ = (V,E ′) drawn from G(n, 1
2
); k = k(n)� 2 log2 n.

Bob’s Input: A graph G = (V,E), constructed by choosing, uniformly at random, a set K
of k = k(n)� 2 log2 n vertices in G′, and making them into a clique; k = k(n)� 2 log2 n.
Shared/public randomness: A random string r of polynomial (in n) size.

1. Alice samples a set A ⊆ V by including each v ∈ V independently with probability
10 log2 n

k
.

2. Set k′ = 10 log2 n and m′ = 10k′ log2 n = 100 log2
2 n.

3. Execute protocol FindClique1 on the induced subgraphs G′[A] (Alice) and G[A] (Bob),
using the values k′,m′ instead of k,m (both parties know the same set A as they have
a shared randomness).

4. If the execution failed, return “FAIL”; Otherwise, denote by Q the set of vertices that
Bob got from the execution of protocol FindClique1.

5. Bob computes the set of all common neighbors of the vertices in Q (in the graph G),
denoted by T , and returns Q ∪ T .

Theorem 4.4. With high probability, the output of Bob in the protocol FindClique2 will
be the vertices of the hidden clique in the graph G, and the protocol uses O(log3 n) bits of
communication.

We start by proving the following lemma.

Lemma 4.5. Let G be a graph drawn from G(n, 1
2
, k) for k = k(n)� 2 log2 n, let K be the

set of vertices of the hidden clique in G, and let C be a random subset of K of size 3 log2 n.
Then, with high probability, the common neighbors of C are exactly the remaining vertices of
K.

Proof: We observe that over the choice of G← G(n, 1
2
, k), a random subset C of the hidden

clique is basically a random subset of V (G). Let C be a random subset of the vertices of
G of size 3 log2 n and let v ∈ V \C. The probability that v is a common neighbor of all the
vertices in C in the underlying random graph of G is 2−3 log2 n = n−3. Taking a union bound
over all the vertices, we get that the probability that all the vertices in C have a common
neighbor (in the underlying random graph) is o(1). Therefore, with high probability, all
common neighbors of a random subset of size 3 log2 n of the hidden clique are exactly the
rest of the vertices of the hidden clique. �
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We can now prove Theorem 4.4.
Proof: We observe that the induced subgraph G′[A] in step 3 is a random graph on roughly
n′ = 10n log2 n

k
vertices (by Chernoff-Hoeffding bounds). We further observe that the induced

subgraph G[A] in step 3 is the random graph G′[A], with a (randomly) planted clique of size
roughly k′ = 10 log2 n (by Chernoff-Hoeffding bounds). Moreover, clearly the planted clique
in G[A] is a random subset of K (of size roughly k′ = 10 log2 n). Due to the fact that the
size of the planted clique K ′ in G[A] is k̂ = ck′ = Θ(k′) and not exactly k′ (for some constant
c > 0), we need to show that protocol FindClique1 will still recover the hidden clique, with
high probability, when executed on G′[A], G[A] (with k′,m′). It is easy to see that the proof
of Lemma 4.2 is still valid, as it has nothing to do with the size of the planted clique. As for
Lemma 4.3, we change equation (2), as follows:

Pr[S ⊆ V (G[A])\K ′ | v ∈ S∧v /∈ K ′] = Pr[S ⊆ V (G[A])\K ′] = (1−1/k′)k̂ = (1−1/k′)ck
′ ≥ (1/4)c.

This results in the following changes in equation (3):

(1− 1/4c)10k′ log2 n ≤ e−(10/4c)k′ log2 n ≤ n−Ω(k′) = n−Ω(k̂) = nΩ(logn).

Thus, this lemma also holds, and so does Theorem 4.1. Therefore, the execution of pro-
tocol FindClique1 will still recover the hidden clique (in G[A]), with high probability. In
addition, by Lemma 4.5, Bob succeeds to recover the whole hidden clique in step 5, with
high probability. Clearly, Bob runs in polynomial time. The communication complexity is
O(k′ log2 n) = O(log3 n) bits (due to the execution of protocol FindClique1). �

4.2 A Protocol Based on `0-samplers

In this section we present a protocol in the first model, that is based on `0-samplers and has
a polylogarithmic communication complexity.

We start by defining `0-sampling, as follows. The support of a vector x ∈ Rn, supp(x),
is defined by supp(x)

def
= {i ∈ [n] | xi 6= 0}. Consider an input vector x ∈ Rn, given in a

streaming fashion, where at each step an update (increment or decrement) to coordinate xi
is given. The goal is to sample a coordinate from supp(x), uniformly at random. We refer
to such an algorithm as an `0-sampler.

Theorem 4.6. (`0-sampler [[CF14], Corollary 1]). There is an `0-sampler that uses O(log4 n)

bits, succeeds with probability at least 1 − n−c, and, conditioned on a successful recovery,
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outputs a coordinate i with non-zero xi with probability 1
|supp(x)| ± n−c for arbitrarily large

constant c.

We note that the construction of an `0-sampler that is presented in [CF14] is a linear
sketch (i.e., for two vectors x,y ∈ Rn we have that sk(x + y) = sk(x) + sk(y), using the
same random coins).

We now describe the protocol.

Protocol FindClique3

Alice’s Input: A graph G′ = (V,E ′) drawn from G(n, 1
2
) (we assume that V = [n]).

Bob’s Input: A graph G = (V,E), constructed by choosing, uniformly at random, a set K
of k = k(n)� log2

2 n vertices in G′, and making them into a clique.
Shared/public randomness: A random string r of polynomial (in n) size.

1. Alice initializes m = 10 log2 n independent copies of an `0-sampler.

2. Let x ∈ Rn be the degree vector of the graph G′. Alice feeds each of the (independent)
`0-samplers with the vector x as incremental input.

3. Alice sends to Bob the “memory state” of all the `0-samplers.

4. Let y ∈ Rn be the degree vector of the graph G. Bobs feeds each of the `0-samplers he
received with the vector −y as incremental input.

5. Bob samples a coordinate from each of the `0-samplers, and gets a set of vertices,
denoted by Q.

6. If all the m = 10 log2 n vertices in Q are distinct, then Bob computes the set of all
common neighbors of the vertices in Q, denoted by T , and returns Q∪ T ; Otherwise,
he returns “FAIL”.

Theorem 4.7. With high probability, the output of Bob in the protocol FindClique3 will
be the vertices of the hidden clique in the graph G, and the protocol uses O(log5 n) bits of
communication.

Proof: We observe that the support of the vector x − y consists exactly of the vertices of
the hidden clique (with high probability over the choice of G), as they are the only ones
whose degree is not the same in the graphs G′ and G. We also observe that Bob can
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continue feeding the `0-samplers in step 4, as they are linear sketches. Due to the fact that
k � log2

2 n, the probability that two of the m = O(log n) `0-samplers will return the same
vertex is o(1), by the Birthday Paradox (as all the `0-samplers are mutually independent, and
output a uniformly random vertex from the hidden clique (by Theorem 4.6)). In addition,
the probability that a given `0-sampler fails is ≤ 1/n (by Theorem 4.6), and thus, by a union
bound, the probability that at least one of them fails is o(1). Since Q is a random subset
of K (except for the events just mentioned), by Lemma 4.5, Bob succeeds to recover the
whole hidden in step 6, with high probability. Therefore, the total probability of failure is
o(1). Clearly, Bob runs in polynomial time. The communication complexity is basically the
storage required for the `0-samplers, which is m · O(log4 n) = O(log5 n) bits (by Theorem
4.6). �

4.3 A Protocol Based on the Degree Sequences of Neighbors

In this section we present a protocol in the second model, that is based on the degree se-
quences of neighbors of vertices, and has communication complexity O(log2 n) bits. The
protocol is defined as follows.

Protocol FindClique4

Alice’s Input: A graph G = (V,E) drawn from G(n, 1
2
, k), with 2 log2 n � k = k(n) =

o(
√
n).

Bob’s Input: A graph H = (V,E ′), obtained from G by randomly permuting the labels of
the vertices.
Shared/public randomness: A random string r of polynomial (in n) size.

1. Alice finds the vertices of the hidden clique in G, denoted by K, by exhaustive search.

2. Alice picks, uniformly at random, a hash function h : [2n log2 n]→ [n3] from a universal
hash functions family H.

3. Alice picks a random set S of m = 10 log2 n vertices from K.

4. For each vertex v ∈ S, Alice performs the following steps:

4.1. She initializes (with the value 0) an array of size n, denoted by Dv.

4.2. She then computes the degrees of all the neighbors of v, sorts them in ascending
order, and fills in Dv with the values of the degrees (from smallest to largest).
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5. Alice computes the hash values {hv = h(Dv)}v∈S (note that the length of each Dv is
n log2 n bits), and sends them to Bob.

6. For each vertex u ∈ V , Bob performs the following steps:

6.1. He initializes (with the value 0) an array of size n, denoted by D′u.

6.2. He then computes the degrees of all the neighbors of u, sorts them in ascending
order, and fills in D′u with the values of the degrees (from smallest to largest).

7. Bob computes the hash values {h′u = h(D′u)}u∈V (for the same h, using shared random-
ness).

8. If all the hash values sent by Alice are distinct and appear exactly once among those
that Bob computed, then Bob denotes by Q the set of vertices that correspond to
those hash values, computes the set of all their common neighbors, denoted by T , and
returns Q ∪ T ; Otherwise, he returns “FAIL”.

Theorem 4.8. With high probability, the output of Bob in the protocol FindClique4 will
be the vertices of the hidden clique in the graph H, and the protocol uses O(log2 n) bits of
communication.

We start by proving the following lemmas.

Lemma 4.9. Let c > 0 be some constant, and let X ∼ Bin(cn, 1
2
). Then, Pr[X = k] ≤ O( 1√

n
)

for all k.

Proof: Let k be some value. We have that Pr[X = k] =
(
cn
k

)
2−cn ≤

(
cn
cn/2

)
2−cn ≤

Stirling

O(2cn√
n

) · 2−cn = O( 1√
n
). �

Lemma 4.10. Let c > 0 be some constant, let X ∼ Bin(cn, 1
2
), and Z be some discrete

random variable, independent of X. Then, Pr[X = Z + k] ≤ O( 1√
n
) for all k.

Proof: By the law of total probability,

Pr[X = Z + k] =
∑
z

Pr[Z = z] Pr[X = Z + k | Z = z]

=
indep.

∑
z

Pr[Z = z] Pr[X = z + k]

≤
Lemma 4.9

O(
1√
n

)
∑
z

Pr[Z = z]

= O(
1√
n

).
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�

Lemma 4.11. Let G = (V,E) be a graph drawn from G(n, 1
2
, k) for 2 log2 n � k = k(n) =

o(
√
n). For every v ∈ V , denote by Dv the list of degrees of its neighbors, sorted in ascending

order (as in the protocol). Then, the probability that there exist u 6= v ∈ V such that Du = Dv

is o(1).

Proof: Let u, v ∈ V be some fixed vertices, and let K denote the set of vertices of the
planted clique in G. We start by exposing the edges inside K, the neighbors of u and the
neighbors of v. By a standard combination of Chernoff-Hoeffding bounds and union bound,
we have that with high probability, for all a 6= b ∈ V , the number of neighbors of a which
are not neighbors of b is in the range [n/5, n/3]. Let u1, . . . , ur be the neighbors of u which
are not neighbors of v, and let v1, . . . , vr be the neighbors of v which are not neighbors of
u (we can condition on their amount being the same, as otherwise clearly Du 6= Dv). Let
Q = K ∪ {ui, vi}i∈[r] ∪ {u, v} and Q = V \Q. For all i ∈ [r], we can express the degree of
ui (and vi) in G as its degree into Q plus its degree into Q. Let the random variable Ui
denote the degree of ui into Q, and let the random variable Ui denote its degree into Q.
Similarly, let the random variable Vi denote the degree of vi into Q, and let the random
variable Vi denote its degree into Q. We denote the degree of vertex ui by U∗i = Ui + Ui,
and the degree of vertex vi by V ∗i = Vi + Vi. We have that for all i 6= j ∈ [r], Ui and Uj

are independent, and same goes for Vi and Vj. This is because all the vertices of the hidden
clique are in Q (and so are ui, uj), and hence the edges to Q are “still” random (i.e., occur
independently with probability 1

2
). As r ≤ n/3, we have that |Q| ≤ o(

√
n)+2n/3+2 < 5n/6,

and thus |Q| > n/6. Therefore, Ui, Vi ∼ Bin(cn, 1
2
) for some constant c > 0, and they

are independent of each other (even after exposing some edges as described above). We
want to estimate the probability that the multisets {U∗i }i and {V ∗j }j are equal. We now
expose only U∗1 , ..., U

∗
r−5 and V ∗1 , . . . , V

∗
r . Clearly, if {U∗1 , ..., U∗r−5} * {V ∗1 , . . . , V ∗r }, then

Pr[{U∗1 , ..., U∗r } = {V ∗1 , . . . , V ∗r }] = 0. However, if {U∗1 , ..., U∗r−5} ⊆ {V ∗1 , . . . , V ∗r }, then there
is still a chance that the multisets are equal. In this case, we basically have at most 5 values
among the V ∗’s, denoted by v∗1, . . . , v∗5, that appear in {V ∗1 , . . . , V ∗r }\{U∗1 , ..., U∗r−5}, and so
when we will expose {U∗r−4, ..., U

∗
r }, there is a chance that their values will be equal to the

ones we need in order to have an equality. We point out that v∗1, . . . , v∗5 are random variables,
which are independent of {Ur−4, . . . , Ur}. By the law of total probability, we have that:
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Pr[{U∗i }i = {V ∗j }j] = Pr[{U∗i }i = {V ∗j }j | {U∗i }i∈[r−5] * {V ∗j }j∈[r]]Pr[{U∗i }i∈[r−5] * {V ∗j }j∈[r]]

+Pr[{U∗i }i = {V ∗j }j | {U∗i }i∈[r−5] ⊆ {V ∗j }j∈[r]]Pr[{U∗i }i∈[r−5] ⊆ {V ∗j }j∈[r]]

≤ Pr[{U∗i }i = {V ∗j }j | {U∗i }i∈[r−5] ⊆ {V ∗j }j∈[r]]

= Pr[{U∗r−4, ..., U
∗
r } = {v∗1, . . . , v∗5} | v∗1, . . . , v∗5].

Denote Z = {v∗1, . . . , v∗5} ∪ {Ur−4, . . . , Ur}. We observe that conditioning on Z, the random
variables Ur−4, . . . , Ur are still mutually independent. In addition, we have that for all r−4 ≤
i ≤ r and for all j ∈ [5],

Pr[U∗i = v∗j | v∗1, . . . , v∗5] = Pr[Ui = v∗j − Ui | Z] ≤
Lemma 4.10

O(
1√
n

). (4)

Thus, continuing the calculation from above, we get that:

Pr[{U∗r−4, ..., U
∗
r } = {v∗1, . . . , v∗5} | v∗1, . . . , v∗5] =

∑
σ∈S5

Pr[∧i∈[5](Ur−i+1 = v∗σ(i) − Ur−i+1) | Z]

=
indep.

∑
σ∈S5

∏
i∈[5]

Pr[Ur−i+1 = v∗σ(i) − Ur−i+1 | Z]

≤
(4)

5! ·O(n−2.5)

= O(n−2.5).

Therefore, we conclude that Pr[Du = Dv] ≤ O(n−2.5). Finally, taking a union bound over all
pairs of vertices u, v ∈ V , we get that Pr[∃u 6= v.(Du = Dv)] ≤ O( 1√

n
) = o(1). �

We can now prove Theorem 4.8.
Proof: We start by noting that initializing the arrays with zeros is plausible, as the proba-
bility that some vertex would have degree 0 is o(1). Now, by Lemma 4.11, the arrays of all
the vertices are distinct. In addition, as the hash function h is chosen from a universal hash
functions family, we have that for all Du 6= Dv, Pr[h(Du) = h(Dv)] ≤ 1/n3. Taking a union
bound over all pairs of vertices u, v ∈ V , we get that Pr[∀u, v.(h(Du) = h(Dv))] ≤ 1/n = o(1).
Therefore, with high probability, in step 8 Bob will acquire the new labels of m = 10 log2 n

random vertices from the hidden clique, and, by Lemma 4.5, he will succeed to recover from
them the whole hidden clique (in step 8), with high probability. Therefore, the total probabil-
ity of failure is o(1). Clearly, Bob runs in polynomial time. The communication complexity
is basically the O(log n) hash values that Alice sends, and thus is O(log2 n) bits overall. �
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4.4 A Lower Bound on the Communication Complexity

In this section we show a lower bound on the communication complexity of the Hidden
Clique problem, assuming that there is no algorithm that solves the Hidden Clique problem
for k = o(

√
n). The lower bound holds for any protocol where Bob’s only input is a graph G

drawn from G(n, 1
2
, k) for k = k(n)� 2 log2 n, regardless of the input of Alice. Formally, we

prove the following proposition.

Proposition 4.12. Let k = k(n)� 2 log2 n. Assume that no algorithm can solve the Hidden
Clique problem for k = k(n). Then, every protocol for the Hidden Clique problem where Bob’s
only input is a graph H drawn from G(n, 1

2
, k), requires ω(log n) bits of communication.

Proof: Assume to the contrary that there is a protocol P for the Hidden Clique problem
as stated above, that requires O(log n) bits of communication, which we denote by S. We
define the following algorithm B′ for finding, with high probability, the hidden clique in a
graph G drawn from G(n, 1

2
, k). On input G← G(n, 1

2
, k), B′ will choose a random string r of

polynomial (in n) size, and then will simulate the algorithm executed by Bob in the protocol
P on every possible value of the string S (communicated by Alice in P ), with G being Bob’s
input and r being the (shared) randomness of the protocol. It will return the vertices of the
largest clique found by Bob in these simulations (we can verify/check efficiently whether a
set of vertices is a clique). If no clique was found in all simulations, it will return “FAIL”.

We now prove the correctness of algorithm B′. Due to the fact that algorithm B′ executes
Bob’s algorithm (in P ) on every possible value of S, one of them will be identical to the bits
communicated by Alice in some execution of the protocol, and thus we will have a realization
of Bob’s computation in the protocol. Therefore, the success probability of B′ in recovering
the hidden clique is the same as of Bob in the protocol, which is 1− o(1) (when the case that
the planted clique will not be the maximum clique in G, which happens with probability
o(1), is included in Bob’s failure probability). In addition, clearly B′ runs in polynomial
time, as by the assumption, we have that |S| ≤ c log n for some constant c > 0, and thus the
number of possible strings S is O(nc). Combining it with the fact that Bob’s running time
(in the protocol) is poly(n), we get that B′ is indeed a polynomial-time algorithm. This is a
contradiction to the assumption, and thus completes the proof. �

Remark: If we make a stronger hardness assumption that solving the Hidden Clique prob-
lem requires nΩ(logn) time, then we derive, by the same proof, a stronger lower bound on
the communication complexity, which is Ω(log2 n) bits of communication (as the number of

36



possible strings S of size c log2 n is nc logn). The motivation for making such stronger hardness
assumption is that the best algorithm known for the Hidden Clique problem with k = o(

√
n)

runs in time nO(logn) (see Section 1 of [FR10]).

5 Finding a Hidden Clique Using Statistical Queries

In this section we discuss algorithms for the Hidden Clique problem, which are allowed to
perform statistical queries either on the underlying random graph (i.e., before the clique was
planted) or on the input graph itself. More specifically, the algorithm can make a query on
any subset of the vertices, to obtain some aggregate statistic of this subset. The goal is to
find the hidden clique using few such queries and in polynomial time. We shall consider
only statistics that are not known to be computed in polynomial-time (or even information-
theoretically), as otherwise the algorithm could have computed the required information by
itself in polynomial time (without any queries).

We study the following type of statistical queries. For an input graph G = (V,E) drawn
from G(n, 1

2
, k) for k = k(n) � 2 log2 n, the algorithm can query for the sum of degrees of

the vertices in any subset S ⊆ V , in the underlying random graph G′ (i.e., before the clique
was planted). Observe that n queries suffice, as one can query all the vertex degrees in G′,
and then identify the vertices of the planted clique as the ones whose degree has increased.

We first show a lower bound on the query complexity, assuming that there is no algorithm
that solves the Hidden Clique problem for k = o(

√
n), and then present an algorithm (with

queries as described above) for finding the hidden clique.

Proposition 5.1. Let k = k(n) � 2 log2 n. Assume that no algorithm solves the Hidden
Clique problem for k = k(n). Then, every algorithm that can make queries as described
above, and solves the Hidden Clique problem for all k = k(n), has query complexity ω( logn

log k
).

Proof: Let k = k(n)� 2 log2 n. Assume to the contrary that there is an algorithm, denoted
by B, with query access as above, that solves the Hidden Clique problem for k = k(n), and
has query complexity t = O( logn

log k
). We define the following algorithm A, that solves the

Hidden Clique problem for k = k(n). On input G ← G(n, 1
2
, k), algorithm A will simulate

algorithm B on the input G, step by step. Once algorithm B has to make a query on some
subset S ⊆ V (G), it will instead compute the sum of degrees (in G, not in G′) of the vertices
in S, denoting it by xS, and then iterate over all the values x− j for j ∈ {0, 1, . . . , k2}, trying
each of them as an answer to that query (note that this can be done in parallel). Each time it
finishes an execution of algorithm B (on some series of values as the answers to the queries),
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it will check whether the output of B is a k-clique. If in any of the iterations it obtains a
k-clique, then it will return its vertices. Otherwise, it returns “FAIL”.

We now prove the correctness of algorithm A. For a subset S ⊆ V (G), denote by xS the
sum of degrees of its vertices in G. It holds that the sum of degrees of the vertices of S in
the underlying random graph G′ is in the range {xS − k2, . . . , xS}, as only the degrees of the
k vertices of the hidden clique increase (and at most by k each). Thus, an answer to every
query made by algorithm B is in that range. Therefore, as algorithm A tries every possible
answer for every query, one of these trials will have the correct answers for all the queries,
and so will thus realize algorithm B. Therefore, it will find the hidden clique in G, with high
probability. Denoting the running time of algorithm B by T (n) = poly(n), we get that the
running time of algorithm A is T (n) ·O((k2)t) = T (n) ·O(kO(t)) = poly(n). This contradicts
the assumption, and thus completes the proof. �

Remark: We point out that the smaller k is, the better lower bound is achieved. In ad-
dition, if we make a stronger hardness assumption that solving the Hidden Clique problem
requires nΩ(logn) time, then we derive, by the same proof, a stronger lower bound of query
complexity Ω( log2 n

log k
), simply because the running time of algorithm A is poly(n)·O(kO(t)). The

motivation for making such stronger hardness assumption is that the best algorithm known
for the Hidden Clique problem with k = o(

√
n) runs in time nO(logn) (see Section 1 of [FR10]).

Theorem 5.2. There exists an algorithm that makes O(log2 n) queries as described above,
and solves the Hidden Clique problem for all k = k(n)� 2 log2 n.

Proof: We start with the description of an algorithm, as follows.
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Algorithm 5 FindCliqueQueries (G, k)

Input: A graph G = (V,E) drawn from G(n, 1
2
, k), with k = k(n)� 2 log2 n.

Output: The hidden clique in G (w.h.p.).

1. Initialize T = ∅, i = 0, G0 = G.

2. while (|T | < 10 log2 n) do

2.1. Sample a set S ⊆ V [Gi] by including each v ∈ V [Gi] independently with proba-
bility log2 n

k
.

2.2. Compute the sum of degrees of the vertices of S in the graph G, and denote it by
xS.

2.3. Make a query on S and get the result yS.

2.4. If yS = xS, return “FAIL”;

2.5. Else, repeat the following steps:

2.5.1. If |S| = 1, then update T = T ∪S, i = i+ 1, Gi = Gi−1\S, and go to step 2.1.
2.5.2. Partition S into two sets of equal size S1, S2, at random.
2.5.3. Compute the sum of degrees of the vertices of S1 and S2 in the graph G, and

denote them by wS1 and wS2 , respectively.
2.5.4. Make queries on S1 and S2, and get the results zS1 , zS2 , respectively.
2.5.5. If (wS1 > zS1 and wS2 > zS2), then choose j ∈ {1, 2} at random and set

S = Sj; Otherwise, if wS1 > zS2 , then set S = S1; Else, set S = S2.
2.5.6. Go to step 2.5.1.

3. Compute the set of all common neighbors of the vertices in T , and denote it by Q.

4. return T ∪Q.

Analysis:

We observe that the number of vertices in the graph Gi is n− i (for all i), as in step 2.5.1 we
remove a single vertex from the previous graph. Due to the fact that the number of iterations
of the main loop is O(log n), we get that the number of vertices from the hidden clique in
each Gi is at least k−O(log n) = (1− o(1))k (as k � 2 log2 n). Let Xi be a random variable
that denotes the number of vertices from the hidden clique that were sampled in step 2.1 in
iteration i. We have that

Pr[Xi = 0] ≤
(

1− log2 n
k

)k−O(logn)

=
k�2 log2 n

(
1− log2 n

k

)(1−o(1))k

≤ e−(1−o(1)) log2 n ≤ n−1/2.
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Thus, by a union bound, the probability that at least in one iteration we will not sample a
vertex from the hidden clique in step 2.1 is o(1). Therefore, with high probability, we will
not fail in step 2.4 in any of the iterations. Thus, in step 2.4 we have a set S which contains
at least one vertex of the hidden clique, and therefore we will certainly find it at the end
of the binary-search-type procedure in steps 2.5.1-2.5.6, using the answers of the queries.
Therefore, at the end of the main loop, the set T will contain 10 log2 n vertices of the hidden
clique. We claim that T is a random subset of the hidden clique (of said size). To see this,
observe that every vertex of the hidden clique is equally likely to be sampled into the set S in
step 2.1 (in every iteration). We then observe that every vertex from the hidden clique that
was sampled to S is equally likely to “survive” to the next iteration of the inner loop in step
2.5 (due to steps 2.5.2 and 2.5.5). Therefore, we conclude that T is indeed a random subset
of the hidden clique. Hence, by Lemma 4.5, in step 3 we will recover the whole hidden clique
(with high probability).

Clearly, the running time of the algorithm is polynomial in n. As for the query complexity,
we observe that in each iteration of the main loop, we perform one query in step 2.3, and
O(log n) queries during steps 2.5.1-2.5.6, as we reduce the size of the set S by half each time.
Thus, the total query complexity is O(log2 n). �

6 Finding Large Cliques in Semi-Random Graphs

We analyze semi-random graphs that are constructed as follows. First, a random graph G
is drawn from G(n, 1

2
). Then, an adversary adds to it a certain amount of edges, resulting

in a semi-random graph we denote by H, in such a way that ω(G) < ω(H). That is,
the adversary must enlarge the size of the maximum clique in G. We further assume that
ω(H) ≥ (2 + ε) log2 n, for some fixed ε > 0 (i.e., the growth is at least by a multiplicative
factor with respect to ω(G) ≈ 2 log2 n). Furthermore, we enforce the following additional
limitation on the adversary: every vertex outside the largest clique in H must have a degree
that is smaller than the degree of any vertex inside the largest clique in H, unless it was
bigger initially (i.e., in G).

We first show an algorithm that finds the largest clique in a semi-random graph H (con-
structed as above) whenever ω(H) ≥ c

√
n log n (for a sufficiently large constant c > 0), and

then we show that we cannot approximate the largest clique in H within a factor of 2−ε, for
every fixed ε > 0, assuming that there is no algorithm that solves the Hidden Clique problem
for k = o(

√
n).
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Proposition 6.1. Let H be a semi-random graph constructed as above. If ω(H) ≥ c
√
n log n

for a sufficiently large constant c > 0, then the vertices of the largest clique in H would,
almost surely, be the ones with the largest degrees in H, and so can be found in polynomial
time.1

Proof: Using a standard combination of Chernoff-Hoeffding bounds and union bound, we
get that with high probability, the degrees of all the vertices in G are in the range [n/2 −
√
n log n, n/2 +

√
n log n]. Let us look at the largest clique in H, which we denote by C. By

the assumption, we have that |C| ≥ c
√
n log n (for a sufficiently large constant c > 0). As

the induced subgraph G[C] is a truly random graph on |C| vertices, we have that with high
probability, the degree of every vertex of G[C] is in the range [|C|/2−

√
|C| log |C|, |C|/2 +√

|C| log |C|]. However, the degree of each vertex in the induced subgraphH[C] is |C|−1, as it
is a clique in H. Thus, with high probability, the edges added by the adversary have increased
the degree of every vertex in C by at least δ|C|, for some constant δ > 0. Therefore, with
high probability, the degree (in H) of every v ∈ C is at least n/2−

√
n log n+ δc

√
n log n >

n/2 +
√
n log n (for large enough c). By the additional limitation we have enforced on the

adversary, the degree (in H) of every vertex u ∈ V (H)\C is smaller than the degree of every
vertex in C, unless it was bigger initially (i.e., in G), which occurs with probability o(1).
Therefore, almost surely, the vertices of the largest clique in H would be the ones with the
largest degrees in H, and so can be found in polynomial time. �

Proposition 6.2. If there exists a polynomial-time algorithm that approximates the largest
clique in a semi-random graph H (constructed as above) within a factor of 2 − ε, for some
fixed ε > 0, then there exists an algorithm that solves the Hidden Clique problem for all
6 log2 n� k = k(n) = o(

√
n).

Proof: Let A be a polynomial-time algorithm that approximates the largest clique in a
semi-random graph H within a factor of 2− ε, for some fixed ε > 0. We define the following
algorithm B, that solves the Hidden Clique problem for 6 log2 n � k = k(n) = o(

√
n). On

input G ← G(n, 1
2
, k), algorithm B will execute A on the graph G, and get an output Q.

It will then compute the set of all common neighbors of the vertices in Q, denoted T , and
return Q ∪ T .

We now prove the correctness of algorithm B. We first observe that G is a legal input for
algorithm A, as an adversary is allowed, in particular, to plant a k-clique in the random graph
it gets, as long as k � 2 log2 n. Let K denote the vertices of the hidden clique in G, and let

1Similar observation was presented by Kučera [Kuč95] regarding the Hidden Clique problem.
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D denote the set of vertices of the clique, returned by algorithm A when executed on G. By
our assumption, |D| ≥ k/(2− ε)� 3 log2 n (as k � 6 log2 n), and thus, with high probabil-
ity, D is contained in the hidden clique K. By standard combination of Chernoff-Hoeffding
bounds and union bound, we have that with high probability, for every v ∈ V (G)\K, its
degree into K in G′ (the underlying random graph of G) is at most k/2 + O(

√
k log n). As

|D| ≥ k/(2 − ε), we have that all its common neighbors are the remaining vertices of the
hidden clique (with high probability). Thus, algorithm B succeeds to recover the hidden
clique, with high probability. Clearly, B runs in polynomial time. �

Remark: As mentioned in Section 1, there are a few polynomial-time algorithms that
approximate the largest clique in a random graph G drawn from G(n, 1

2
) within a factor of

2, but no polynomial-time algorithm is known to achieve an approximation ratio of 2 − ε,
for some fixed ε > 0. However, it was not yet proven that such an algorithm does not exist
(based on some hardness assumption). Proposition 6.2 proves this claim for semi-random
graphs, which include the class of random graphs.
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