
Thesis for the degree
Master of Science

By
Yotam Kenneth

Advisor:
Prof. Robert Krauthgamer

September 2023

Submitted to the Scientific Council of the
Weizmann Institute of Science

Rehovot, Israel

דילול חתכים וייצוג תמציתי של היפגרפים סאבמודולריים
Cut Sparsification and Succinct Representation of

Submodular Hypergraphs

עבודת גמר)תזה(לתואר
מוסמך למדעים

מאת
יותם קנת

אלול ה’תשפ"ג

מוגשת למועצה המדעית של
מכון ויצמן למדע
רחובות, ישראל

ה:מנח
פרופ’ רוברט קראוטגמר

Abstract

Modern data analysis requires sifting through ever-increasing amounts of observations, this
increases the computational and storage cost of analyzing the data. One solution to this chal-
lenge is sparsification, constructing a smaller data structure that preserves some desired property
of the original data. The main challenge in sparsification is constructing efficient algorithms that
minimize the size of the resulting data structure.

In cut sparsification, all cuts of a hypergraph H = (V,E,w) are approximated within 1± ϵ
factor by a small hypergraph H ′. This widely applied method was generalized recently to a
setting where the cost of cutting each e ∈ E is provided by a splitting function, ge : 2e →
R+. This generalization is called a submodular hypergraph when the functions {ge}e∈E are
submodular, and it arises in machine learning, combinatorial optimization, and algorithmic
game theory. Previous work focused on the setting where H ′ is a reweighted sub-hypergraph of
H, and measured size by the number of hyperedges in H ′. We study such sparsification, and
also a more general notion of representing H succinctly, where size is measured in bits.

In the sparsification setting, where size is the number of hyperedges, we present three re-
sults: (i) all submodular hypergraphs admit sparsifiers of size polynomial in n = |V |; (ii)
monotone-submodular hypergraphs admit sparsifiers of size O(ϵ−2n3); and (iii) we propose a
new parameter, called spread, to obtain even smaller sparsifiers in some cases.

In the succinct-representation setting, we show that a natural family of splitting functions
admits a succinct representation of much smaller size than via reweighted subgraphs (almost
by factor n). This large gap is surprising because for graphs, the most succinct representation
is attained by reweighted subgraphs. Along the way, we introduce the notion of deformation,
where ge is decomposed into a sum of functions of small description, and we provide upper and
lower bounds for deformation of common splitting functions.

Acknowledgements

First, I would like to thank Prof. Robert Krauthgammer, my advisor, for his support throughout
the research process. His insights on algorithms, theory and (just as important) the research process
were invaluable and allowed me to create a thesis that I am proud of. Furthermore, his focus on
clear and concise writing helped me make my research more accessible.

I was also fortunate to be in the company of my fellow students, especially Shay Sapir. Life
allotted me only a few months of full time research at the institute but they made it feel like home.

I would also like to thank my family for supporting me through the highs and lows of the
research. In particular, my partner Shay who was always there for me. Finally, a special thank
you to my grandfather, Nino Levy, I would not be here if he did not insist on me memorizing that
7× 8 = 56.

1 Introduction

A powerful tool for many graph problems is sparsification, where one constructs from an input graph
a much smaller graph that preserves (perhaps approximately) certain properties, for example the
input graph’s cuts [BK96] or its spectrum [ST11]. Algorithms for downstream applications can
then be executed on the small graph, which improves the overall running time, and the small
graph can also be stored (or sent to another site) instead of the input graph, which improves the
memory (or communication) requirements. The extensive research on cut sparsification has started
with the seminal work of Benczúr and Karger on cuts in graphs [BK96], and was later extended
to hypergraphs [KK15, BST19, CKN20] and to directed hypergraphs [SY19, CCPS21, KKTY21,
OST23]. We focus on sparsifying hypergraphs, and in fact more general objects, while preserving
all their cuts.

In recent years, the notion of cuts in a weighted hypergraph H = (V,E,w) has been generalized
even further, to a setting where each hyperedge e ∈ E has a splitting function ge : 2e → R+, and
the value of a cut S ⊆ V is defined as

cutH(S) :=
∑
e∈E

ge(S ∩ e). (1)

Associating every e ∈ E with the all-or-nothing splitting function, given by gaone : S 7→ we ·1{S ̸=∅,e},
clearly models an ordinary hypergraph H = (V,E,w), where the value of a cut is the total weight of
hyperedges that intersect both sides; in fact, a simple extension can model a directed hypergraph.
Such a generalized hypergraph H = (V,E, g), where g = {ge}e∈E , is called a submodular hypergraph
if all its splitting functions ge are submodular. Recall that a set function g : 2e → R+ is submodular
if

∀S, T ⊆ e, g(S ∪ T) + g(S ∩ T) ≤ g(S) + g(T).

Submodular hypergraphs are useful in clustering data with higher-order relations that are not cap-
tured by ordinary hyperedges [LM17, LM18, VBK20, LVS+21, VBK21, ZLS22]. For example, the
small-side splitting function, given by gsml

e : S 7→ min(|S|, |S̄|), is employed when unbalanced cuts
are preferable. Cut functions of submodular hypergraphs were studied also under a different name
of decomposable submodular functions. A submodular function f : 2V → R+ is called decomposable
if it can be written as f =

∑
i fi, where each fi : 2

V → R+ is submodular. This notion is widely
applied in data summarization [GK10, LB11, TIWB14], where each fi is a submodular similarity
function, and the task of summarizing the data under a given budget k is modeled by maximizing
f(S) over all S ⊂ V of size |S| ≤ k. Decomposable submodular functions arise also in welfare
maximization, where each agent has a submodular utility function, for instance in approximation
algorithms [Fei09, FV06] and in truthful mechanisms [DS06, AS20].

We study how to succinctly represent all the cuts of a submodular hypergraph H up to 1 ± ϵ
factor. We examine two complementary approaches: (1) sparsification, which reduces the number
of hyperedges, i.e., H is represented using a sparse H ′; and (2) deformation, which replaces large
hyperedges or complicated splitting functions by new ones of low space complexity, i.e., H is
represented using H ′ whose hyperedges can be stored succinctly. These approaches can yield
(separately and/or together) a sparsifier H ′ that can be encoded using a small number of bits.
More generally, we may consider a general encoding that does not rely on a sparsifier H ′, e.g., an
explicit list of all the 2|V | cut values.

Let us introduce some basic notation to make the discussion more precise. Throughout, let
n := |V |; we write Õ(t) or Ω̃(t) to suppress a polylogarithmic factor in t, and Oα(t) or Ωα(t) to
hide a factor that depends only on α.

1

Definition 1.1 (Sparsifier). A cut sparsifier of quality 1 + ϵ for H = (V,E, g), or in short a
(1 + ϵ)-sparsifier, is a submodular hypergraph H ′ = (V,E′, g′) such that

∀S ⊆ V, cutH′(S) ∈ (1± ϵ) · cutH(S). (2)

The size of the sparsifier is |E′|, the cardinality of its hyperedge set. We call H ′ a reweighted
subgraph of H if E′ ⊆ E and each function g′e for e ∈ E′ is a scaling of ge (i.e., g′e = sege for some
se > 0).

Question 1.2 (Sparsification). Do all submodular hypergraphs admit a reweighted-subgraph spar-
sifier with few hyperedges, say poly(ϵ−1n)? And which families of splitting functions admit even
smaller sparsifiers, like Õϵ(n

2) or even Õϵ(n)?

The first part (i.e., the general question) is known for several families of splitting functions
(see Section 1.1 for a detailed account). But despite this significant progress, the general question
was left open in [RY22], where the bound on the sparsifier size depends on g and is exponential
in n in the worst case. We answer the first part positively by proving that every submodular
hypergraph admits a polynomial-size sparsifier. We address also the second part by showing that
several families of splitting functions admit even smaller sparsifiers.

We further ask about a more general notion, of a data structure that approximates the cuts of
H, which can potentially be more succinct than a sparsifier.

Question 1.3 (Succinct Representation). What is the smallest data structure (in bits of space)
that stores a submodular hypergraph H so as to report (1+ ϵ)-approximation to every cut value? In
particular, what is the smallest number of bits s = s(ϵ, n) that suffices to store a sparsifier for H?

For simplicity, we ask above only about the existence of a sparsifier or a data structure, but we
are of course interested also in fast algorithms to build them. Fortunately, an algorithmic solution
follows from the existential ones because our proofs are constructive. Furthermore, running times
are polynomial under the assumption of integral weights and minS⊆e ge(S) ≤ poly(n)1.

1.1 Sparsification: All Submodular Hypergraphs

We start by addressing Question 1.2. Our first result (proved in Section 2) shows that all sub-
modular hypergraphs admit a sparsifier of polynomial size (in ϵ−1n). This is the first polynomial
bound for all submodular splitting functions, and the previously known bound, due to [RY22], was
Oϵ(n

2BH), where BH := maxe∈E |B(ge)| and B(ge) is the set of extreme points in the polytope of
ge.

2 In general, BH can be exponential in n, for example small-side splitting gsml
e has Be = 2Θ(|e|).

Theorem 1.4. Every submodular hypergraph admits a (1 + ϵ)-sparsifier of size O(ϵ−2n5).

The existing literature shows that several families of splitting functions admit even smaller
sparsifiers than the above bound. For example, sparsifiers of size Õϵ(n) are known for all-or-nothing

splitting gaone [CKN20] (see also [Qua22]) and for product splitting, given by gprde : S 7→ |S| · |S̄|
[dCSHS16]. In contrast, for the splitting that models cuts in a directed hypergraph, the known
construction has size Õϵ(n

2) [OST23], which is near-tight with an Ω(n2/ϵ) lower bound [OST23];

1The running times of Theorem 1.4, Theorem 1.5, and Theorem 1.10 are polynomial in general. Theorem 1.7 is
polynomial under the stated assumption.

2A recent manuscript [KZ23] claims that the proof in [RY22] has a flaw and holds only for monotone submodular
hypergraphs.

2

this function, called directed all-or-nothing splitting, is given by gd-aone : S 7→ 1{eT∩S ̸=∅ ∧ eH ̸⊆S},
where eH , eT ⊆ e are the hyperedge’s head and tail, respectively.

Very recently, it was shown that the entire family of symmetric splitting functions admits
sparsifiers of size Õϵ(n) [JLLS23]. We show (in Section 2) that another large family, of monotone
splitting functions (defined as those where ge(S) ≤ ge(T) for all S ⊆ T), admits an improved
sparsifier. Monotone functions arise naturally in many applications, however no sparsification
bound was previously known for any function in this family.3

Theorem 1.5. Every hypergraph with monotone splitting functions admits a (1 + ϵ)-sparsifier of
size O(ϵ−2n3).

Related Work. Previous work on sparsification focused mostly on specific splitting functions.
The study of this problem began with sparsifiers for undirected graph cut; the current size bound is
O(ϵ−2n) edges [BSS14], which improves over [BK96] and is known to be tight [ACK+16, CKST19].
Later work on undirected hypergraphs has matched this size bound up to O(log n) factor [KK15,
BST19, CKN20, Qua22]. In the directed case, graphs have a trivial upper bound of O(n2) edges
which is tight (regardless of ϵ). Recent work on hypergraphs has culminated with (1+ ϵ)-sparsifiers
with Õϵ(n

2) hyperedges [SY19, CCPS21, KKTY21, OST23], which is near-tight with an Ω(n2/ϵ)
lower bound [OST23]. Finally, several symmetric functions were known to admit polynomial
or near-linear sparsifiers even before the recent result for the entire family of symmetric func-
tions [JLLS23]; these include the aforementioned small-side splitting [AGK14, ADK+16] and prod-
uct splitting [dCSHS16]. Figure 1 depicts several families of splitting functions and the sparsification
bounds known for them, including our results from above and from Section 1.2.

Techniques. Our sparsification method follows the importance-sampling approach, which has
been used extensively in the literature, including in [RY22] for submodular hypergraphs, which
uses a straightforward calculation of the importance of a hyperedge, based on all its possible cuts.
We devise a more sophisticated approximation of the importance of a hyperedge, based on the
minimum directed cut between all pairs u, v ∈ e, given by gu→v

min := minS⊆V :v∈S,u̸∈S ge(S). The
resulting sampling probabilities produce a much smaller sparsifier, because now each importance is
bounded using only O(n2) directed cuts instead of all the extreme points of its polytope, and the
number of relevant terms (directed cuts or extreme points) eventually propagates into the sparsifier
size. We then prove that our probabilities suffice to approximate all the cuts by showing that the
sum of these directed cuts provide an upper bound on the maximum cut of ge by an analogy to
directed flow in graphs. The proof for the family of all monotone functions is similar, but the
monotone structure allows us to calculate the importance based only on singletons, i.e., cuts of the
form cutH({v}), which results in an n2 improvement in size over the general case.

1.2 Sparsification: Parameterized by Spread

We already know that submodular splitting functions can have very different optimal sparsifica-
tion bounds, see e.g. the bounds Θ̃ϵ(n) and Θ̃ϵ(n

2) mentioned above. However, there are too
many submodular functions to analyze each one separately, and we thus seek a parameter that
can control the sparsifier size. Our approach is inspired by the notion of imbalance in a di-
rected graph G = (V,E,w), defined as the worst ratio between antiparallel edge weights, i.e.,
βG := max{w(i, j)/w(j, i) : i, j ∈ V }. This parameter can be used to show that every directed

3The running time of [RY22] was improved in [KZ23], where a sparsifier of size O(Bn2) for monotone functions
with low curvature is constructed in polynomial time.

3

finite-spread submodular
|E′| = min(n5, µn, n2B)

symmetric
|E′| = n

hypergraph cuts

cardinality based
|E′| = min(n2, µn)

monotone
|E′| = min(n3, µn, n2B)

graph cuts

submodular functions
|E′| = min(n5, µn, n2B)

matroid rank
|E′| = min(µn,n2)

directed hypergraphs
|E′| = n2

Figure 1: Sparsification bounds for various families of submodular functions, omitting for simplicity
poly(ϵ−1 log n) factors.

graph admits a sparsifier of size Õϵ(βGn).
4 For submodular hypergraphs, we propose an analogous

parameter, which is basically the ratio between the maximum and minimum values of the splitting
function, excluding certain trivial cuts.

Definition 1.6 (Spread). The spread of a hyperedge e ∈ E with a splitting function ge is

µe :=
maxT⊆e ge(T)

minS⊆e:S/∈W ge(S)
, (3)

where W := {∅}, unless ge(e) = 0 in which case W := {∅, e}.

Our third result (proved in Section 3) constructs a sparsifier whose size depends on the spread
of the input H, defined as µH := maxe∈E µe. By convention, the spread µe is called finite if it is
well-defined (the denominator in (3) is non-zero), and similarly µH is called finite if it is well-defined
(all the terms µe are finite).

Theorem 1.7 (Sparsifier Parameterized by Spread). Every submodular hypergraph H = (V,E, g)
with finite spread admits a (1 + ϵ)-sparsifier of size Õ(ϵ−2µHn).

Many natural submodular functions have finite spread, and in many common cases even µH ≤ n.
This can be seen, for example, in an easy application of Theorem 1.7 to approximation of coverage
functions, see Appendix B for details. Another example is the sparsification of the capped version
of small-side splitting, given by ge : S 7→ min(|S|, |S̄|,K) for K > 0, which clearly has spread
µe ≤ K. This function is part of a much larger family, cardinality-based splitting functions, a
notion formalized in [VBK22] as follows: A submodular function ge : 2

e → R+ is called cardinality-
based if there exists a function fe : [|e|] → R+ such that ge : S 7→ fe(|S|). Cardinality-based
functions, which are commonly used in submodular hypergraph clustering, all have spread µe ≤ n,
which is an easy consequence of the symmetry and subadditivity of ge. By Theorem 1.7, these
splitting function admit a (1+ϵ)-sparsifier of size Õ(ϵ−2n2), which is the first bound for this family.

4As a side comment, this condition can be relaxed significantly to βG := max{cutG(S)/cutG(S̄) : S ⊂ V }, and
the same sparsification bound still holds [CCPS21].

4

It is easily verified that for monotone splitting functions, the spread is approximately equal to the
imbalance, when we generalize the imbalance from above to hyperedges by βe := max{ge(S)/ge(S̄) :
S ⊂ V }.5 Hence, we immediately obtain the following.

Corollary 1.8. Every finite-spread monotone splitting function admits a (1 + ϵ)-sparsisfier of size
Õ(ϵ−2βHn).

Two other examples of commonly used monotone functions with finite spread are set-coverage
functions (defined in Appendix B) and the matroid-rank functions,6 which have µe = r where r is
the rank of the matroid.

We remark that spread does not fully characterize the sparsifier size. Indeed, symmetric func-
tions can have a large spread µe but still admit Õϵ(n) sparsifier due to [JLLS23], consider e.g.

product splitting gprde which has µe = O(n). Furthermore, directed all-or-nothing splitting gd-aone

does not have finite spread, and nevertheless admits a sparsifier of size Õϵ(n
2) [OST23]. Figure 1

depicts different families of splitting functions including that of finite spread, and the sparsification
bounds known for them.

Techniques. Our technique is based on approximate H as an undirected hypergraph and use
the sampling probabilities of [CKN20] but amplified by µe for each hyperedge. This is a known
technique in generalizing sampling mechanisms. Our main contribution is to identify the spread
as a relevant and useful parameter. We remark that the generalization of balance, which is known
to control the size of sparsifier in directed graphs, to submodular hypergraphs does not suffice for
sparsification. Furthermore, we prove that the spread also characterizes other traits of splitting
function, such as the deformation lower bound.

1.3 Succinct Representation

We provide the first example of submodular splitting functions for which sparsifiers that are not
subgraphs are provably (much) more succinct than sparsifiers that are reweighted subgraphs.7

To be more precise, we exhibit a natural family of splitting functions, where the former (1 + ϵ)-
sparsifiers take only Õϵ(n) bits (Corollary 1.11), while the latter (1 + ϵ)-sparsifiers require Ω̃ϵ(n

2)
bits (Theorem 1.12). It follows that a reweighted subgraph need not be the smallest data structure
that stores a (1 + ϵ)-approximation of the cuts values, and by a wide margin!

Our plan for constructing a succinct representation has two stages. The first stage creates a
(1 + ϵ)-sparsifier H ′, by deforming each e ∈ E into multiple small hyperedges. The second stage
computes for this H ′ a (1+ ϵ)-sparsifier H ′′ that is a reweighted subgraph. It then follows that H ′′

is a (1 + ϵ)2-sparsifier, and has a few hyperedges that are all small.

Definition 1.9. A splitting function ge : 2e → R+ on hyperedge e is called (1 + ϵ)-approximable
with support size p if there are submodular functions gei : 2ei → R+ for i = 1, . . . , r, each on a
hyperedge ei ⊆ e of size |ei| ≤ p, such that

∀S ⊆ e,

r∑
i=1

gei(S ∩ ei) ∈ (1± ϵ)ge(S).

5For a monotone ge, the spread is µe = ge(V)/minv∈V ge({v}) and the imbalance is βe = maxv∈V ge(V \
{v})/ge({v}), and they differ by at most a constant factor by the subadditivity of ge.

6For a matroid with ground set e and independent sets I, the rank function is given by ge : S 7→ maxT⊆S:T∈I |T |.
This rank function is submodular and monotone.

7Previously, a non-subgraph sparsifier was shown in [ADK+16] for small-side splitting, however it optimizes the
number of hyperedges and not the encoding size.

5

(We use the term support size to avoid confusion with sparsifier size.)

Our example is the family of additive splitting functions, defined as functions ge that can be
written as either ge : S 7→ min(|S|,K) or ge : S 7→ min(|S|, |S̄|,K) for some K > 0. The next
theorem (proved in Section 4) achieves the first stage in our plan above; it shows that additive
functions can be (1 + ϵ)-approximated by creating several copies of e and sampling the vertices.

Theorem 1.10 (Deformation of Additive Functions). Let ge be an additive splitting function on
hyperedge e. Then ge can be (1 + ϵ)-approximated with support size O(ϵ−2(|e|/K) log |e|).

Following our plan, suppose that given an input H, we first apply Theorem 1.10 to obtain a
sparsifier H ′ with small support size. The construction of H ′ also implies that it has small spread,
µH′ ≤ O(ϵ−2 log n). Applying Theorem 1.7 on H ′ we obtain a succinct representation H ′′. A
straightforward encoding of H ′′ then proves the following corollary (see Section 4).

Corollary 1.11 (Additive Functions admit Small Representation). Let H = (V,E, {ge}) be a
submodular hypergraph such that every ge is additive with parameter Ke > 0, and let K̂ :=
mine∈E Ke/|e| be a normalized bound on Ke over all hyperedges. Then H admits a (1+ϵ)-sparsifier
with encoding size O(ϵ−6K̂−1n log4 n) bits.

The next theorem (proved in Section 5) shows that reweighted-subgraph sparsifiers of additive
functions require Ω(n2) bits in the worst-case. Putting this together with our succinct repre-
sentation from Corollary 1.11, we conclude that relaxing the (natural) restriction to reweighted
subgraphs improves the space complexity by a factor of Ω̃ϵ(nK̂), observe that this can be Ω̃ϵ(n)
when K̂ ∈ Ω(1).

Theorem 1.12 (Reweighted Sparsifiers Require Ω(n2) Bits). There exists a family H of hy-
pergraphs with additive splitting functions with parameter 1 ≤ K ≤ n/3, such that encoding a
reweighted-subgraph (1 + ϵ)-sparsifier for an input H ∈ H requires Ω(n2) bits.

This lower bound is surprising because in the case of undirected graphs, the best encoding size
is achieved by a reweighted-subgraph sparsifier [BSS14, ACK+16, CKST19]. Our proof is based on
a technical lemma that can be applied to many cardinality-based splitting functions. Furthermore,
Theorem 1.12 can be extended to the directed all-or-nothing splitting function gd-aone , to show a
lower bound of Ω(n3/ϵ) bits. For details see Section 5.

Finally, we can also prove a space lower bound for an arbitrary encoding of cuts in a directed
hypergraph (arbitrary means that it need not represent a reweighted-subgraph sparsifier, see Sec-
tion 5 for details). This proof provides an ϵ−1 factor improvement over the trivial lower bound
of Ω

(
n2
)
bits. The proof combines the techniques from Theorem 1.12 with a lower bound from

[OST23] on the number of edges in a reweighted-subgraph sparsifier.

Theorem 1.13. There exists a family of directed hypergraphs H such that encoding a (1 + ϵ)-
approximation of their cuts requires Ω(n2/ϵ) bits.

Techniques. Our lower bound for the encoding size of reweighted-subgraph sparsifiers (The-
orem 1.12) boils down to a counting argument on a large family of hypergraphs H, that have
sufficiently different cut values and thus require distinct encodings. We construct hypergraphs in
this family H by partitioning the vertices into three parts V,U,W , and adding hyperedges that
contain vertices from all three parts. We first create hyperedges consisting of a large random subset
of vertices from V ; this adds entropy that will differentiate between hypergraphs in H. We then
augment each hyperedge with vertices from U , where each hyperedge is defined by a word in the

6

Function Family Example Support Size

additive functions ge(S) = min(|S|,K) Ω (n/K) Lemma 1.14

polynomial ge(S) = |S|α for constant α ∈ (0, 1) Ω (n) Corollary 6.3

logarithmic ge(S) = log(|S|+ 1) Ω (n) Corollary 6.4

cardinality based ge(S) = f (|S|) for concave f Ω
(
n/µ1.5

e

)
Corollary 6.5

unweighted ge(v) = 1 for all v ∈ V Ω
(
n/µ3

e

)
Corollary 6.6

Table 1: Our lower bounds on the support size for several families of splitting functions. They
are all obtained by applying Lemma 6.1, stated for simplicity for sufficiently small fixed ϵ > 0 and
|e| = n.

Hadamard code. We use the structure of this code to show that by making cut queries to a hy-
pergraph H ∈ H, one can recover the random bits encoded in the adjacency matrix of H induced
on V . We use W to create an unsparsifiable hypergraph, i.e., one where removing any hyperedge
will violate the approximation guarantee. Finally, every hyperedge on V ∪ U is combined with a
hyperedge on W .

1.4 Deformation Lower Bounds

Our success in finding a small succinct representation for additive functions motivates searching
for deformations of other splitting functions.

A similar problem, of approximating a submodular function by functions of small support but
over the uniform distribution (i.e., in average-case rather than worst-case), has received significant
attention [FKV13, CKKL12, GHRU13, FK14, FV16], and it is known that every submodular func-
tion f : 2V → [0, 1] can be approximated within additive error ϵ using support size O(ϵ−2 log ϵ−1)
[FV16]. We show (see Section 6) that a similar result is unfortunately not possible in our setting
(multiplicative error for worst-case approximation).

Theorem 1.14 (Approximation Requires Large Support Size). Let ge be an additive splitting
function on a hyperedge e. Then every 1.1-approximation of ge must have support size p ≥ Ω(|e|/K).

Techniques. The proof of Theorem 1.14 is based on Lemma 6.1, a technical result that can be
applied to many splitting functions. The main idea is to examine a certain quantity δt, which is
related the notion of curvature (of a submodular function). The curvature is often used to pa-
rameterize approximation guarantees in maximization of submodular optimization [CC84, Von10].
Intuitively, both the curvature and δt characterize the locality of the function, i.e., how much error
is introduced by decomposing the function into smaller parts and summing them. The main dif-
ference between the two quantities is that the curvature looks at the marginal contributions and δt
characterizes the curvature of the union of two sets of size t. Furthermore, in the approximation
setting, a low worst-case curvature is desirable while for our proof it suffices that δt is high for
many sets of size t. Specifically, we show that if a constant fraction of pairs of subsets of size t have
constant positive δt, then ge cannot be approximated with support size smaller than O(δ2t n/t).

By applying Lemma 6.1, we obtain lower bounds on the support size required to approximate
several natural splitting functions, as presented in Table 1.

1.5 Related Work

Submodular functions appear in many applications, and have been studied extensively in the lit-
erature. In particular, the problem of finding a simple representation for submodular functions

7

has been studied in several works. An O(
√
n log n)-approximation for monotone submodular func-

tions by functions of the form f(S) =
√∑

v∈S cv, where cv > 0 are weights for all v ∈ V , was
obtained in [GHIM09]. A later result [DDS+13] showed the same approximation using coverage
and budget-additive functions. The same paper also provided a lower bound of Ω(n1/3 log−2 n) for
approximating monotone submodular functions by coverage and budget additive. Approximating
the all-or-nothing splitting function on n vertices using hyperedges with the all-or-nothing function
and with support size r must incur approximation factor Ω(n/r) [Pog17, Section 2.3].

It was previously shown that every symmetric cardinality-based splitting functions can be de-
formed into a sum of |e|/2 hyperedges with capped small-side splitting function, while preserving
the value of ge exactly [VBK22]. Subsequent work by the same authors [VBK21], achieves a similar
deformation but with (1 + ϵ)-approximation and using only O(ϵ−1 log |e|) hyperedges. Notice the
difference from our work, which focuses on an approximation with small support size.

1.6 Concluding Remarks

Our work provides several promising directions for future work. We prove that all submodular
hypergraph admit sparsifiers of polynomial size (Theorem 1.4) and provide smaller sparsifiers for
several families (monotone and finite-spread), however characterizing the optimal sparsifier size for
each family remains open. In the succinct-representation setting, we found a useful deformation
only for additive splitting functions (Theorem 1.10), and it would be desirable to find deformations
for more families.

Another interesting avenue is to find applications or connections to other problems. For example,
we know that Theorem 1.7 can be used to approximate a set-coverage function using a small
ground set, see Appendix B for details. Another potential application is constructing succinct
representations for terminal-cut functions, see Appendix C.

2 Polynomial Sparsifiers for Submodular Hypergraphs

This section proves Theorems 1.4 and 1.5. Both proofs are based on importance sampling similarly
to the method employed in [RY22], where the main idea is to sample hyperedges proportionally to
their maximum contribution to any cut. Our proof differs in the way that sampling probabilities
are assigned to the hyperedges. In the proof of [RY22], the sampling probabilities are proportional
to

ρe := max
S⊆e

ge(S ∩ e)∑
e∈E ge(S ∩ e)

,

and thus the size of the sparsifier is proportional to the total importance
∑

e∈E ρe. The exponential
bound results from bounding each ρe by a sum over all the extreme points of the polytope of ge. We
show that it is sufficient to consider only a small subset of the cuts, namely the minimum directed
cuts between all pairs of vertices in e. Formally, the minimum directed cut between (u, v) ∈ e× e
is defined as

gv→u
e := min

S⊆e:v∈S,u̸∈S
ge(S), (4)

where by convention gv→u
e := 0 whenever the minimization is not defined (e.g., v /∈ e or u = v).

Our sampling probabilities are proportional to

ρe := max
(u,v)∈e×e

gv→u
e∑

f∈E gv→u
f

,

8

which can be easily bounded by replacing the maximum by a sum over all O(n2) pairs. The main
technical difficulty is in showing that these ρe suffice for the sampling to approximate all the cuts
of H. We do that by showing that the maximum cut of each hyperedge e is at most n2 times the
largest minimum directed cut in e, which is proved by analogy to directed flows in graphs.

Finally, the directed cuts gv→u
e can be computed in polynomial time using standard submodular

minimization techniques [McC05]. This improves on the exponential running time required by
[RY22] because maximizing the ratio of two submodular functions is NP-hard. In the case of
monotone splitting functions, a polynomial running time is achievable by approximating the ratio
up to factor

√
n, which increases the size of the sparsifier by the same factor [RY22]. This was

recently improved by [KZ23] to allow polynomial running time without increasing the sparsifier
size for the case of monotone functions with low curvature.8

Proof of Theorem 1.4. Our construction of a quality (1 + ϵ)-sparsifier for H uses the importance
sampling method, where each hyperedge is sampled independently with some probability pe, and
the splitting functions of the sampled hyperedges are then scaled by factor 1/pe. We begin by
describing our method for assigning sampling probabilities to the hyperedges of H. Recall that
the minimum directed cut on the hyperedge e between (u, v) ∈ e× e is given by (4), but it is 0 in
exceptional cases. Note that the cost to separate v from u may be strictly positive even if u ̸∈ e,
for example in monotone functions. Let P e

v→u ⊆ e be a set that attains the minimum for gv→u
e .

We denote S̄ = e \ S when e is clear from context. Throughout the proof we will use the
following claim to bound cuts of H by minimum directed cuts.

Claim 2.1. For every e ∈ E and S ⊂ e,

ge(S ∩ e) ≤
∑
v∈S

∑
u∈S̄

gv→u
e .

The proof of Claim 2.1 appears later. Intuitively, it is similar to bounding the capacity of a cut
in a graph by the sum of all pairwise flows between S, S̄. We now proceed assuming this claim.

Denote the set of all pairs whose minimum directed cut on e is strictly positive by Ve :=
{(u, v) ∈ e× e : gv→u

e > 0}. For every hyperedge e ∈ E, set (for M > 0 that will be chosen later)

pe :=

M ·max
(

ge(e)∑
f∈E gf (f)

,max(v,u)∈Ve

gv→u
e∑

f∈E gv→u
f

)
if gf (f) > 0 for some f ∈ E;

M ·max(v,u)∈Ve

gv→u
e∑

f∈E gv→u
f

otherwise.

Now sample every hyperedge e independently with probability p̃e = min(pe, 1) and rescale the
splitting functions of every sampled hyperedge by factor 1/p̃e. To prove the theorem, we need to
show that the resulting H ′ accurately approximates all cuts of H, and that it contains at most
O(ϵ−2n5) hyperedges.

We first prove that the number of hyperedges in the sparsifier H ′ is at most O(M · n2). Let Ie
be an indicator for the event that the hyperedge e is sampled into H ′. The expected number of

8The curvature of ge is defined as cge := 1−minS⊆e,v∈e\S
(
ge(S ∪ {v})− ge(S ∩ e)

)
/
(
ge({v})− ge(∅)

)
.

9

sampled hyperedges is

E

[∑
e∈E

Ie

]
=
∑
e∈E

pe = M
∑
e∈E

max

{
ge(e)∑

f∈E gf (f)
, max
(v,u)∈Ve

gv→u
e∑

f∈E gv→u
f

}

≤ M

∑
e∈E ge(e)∑
f∈E gf (f)

+M
∑
e∈E

∑
(v,u)∈Ve

gv→u
e∑

f∈E gv→u
f

= M +M
∑

(v,u)∈
⋃

e∈E Ve

∑
e∈E gv→u

e∑
f∈E gv→u

f

≤ Mn2,

where the first inequality is by replacing maximums with sums and the last by
∣∣⋃

e∈E Ve

∣∣ ≤ |V 2| =
n2. Therefore, by Markov’s inequality, with high constant probability the sparsifier has at most
O(Mn2) hyperedges; this satisfies the size requirement as we later set M = O

(
ϵ−2n3

)
.

Let us prove that the sparsifier H ′ indeed approximates the cuts of H. Fix some S ⊆ V and
note that

E [cutH′(S)] = E

[∑
e∈E

Ie ·
1

pe
ge(S ∩ e)

]
=
∑
e∈E

E
[
Ie ·

1

pe
ge(S ∩ e)

]
=
∑
e∈E

ge(S ∩ e) = cutH(S).

Hence, the cut is preserved in expectation. We shall now prove that the value of the cut is con-
centrated around its expectation. Let QS = {e ∈ E : pe ∈ (0, 1) ∧ ge(S ∩ e) > 0} be the set of all
relevant hyperedges except those sampled with probability 1. Furthermore, denote the maximum
contribution of any hyperedge to the cut by b := maxe∈QS

1
pe
ge(S ∩ e). By the Chernoff bound for

bounded variables (Lemma A.2),

Pr [cutH′(S) ̸∈ (1± ϵ) · cutH(S)] ≤ 2 · exp
(
−ϵ2 · cutH(S)

b

)
. (5)

We first analyze the special case when S = V . Observe that if cutH(V) = 0 then the cut is

preserved trivially. Otherwise, note that pe ≥ Mge(e)∑
f∈E gf (f)

and hence

b = max
e∈QV

ge(e)

pe
≤ max

e∈QV

ge(e)

∑
f∈E gf (f)

Mge(e)
=

cutH(V)

M
.

Plugging this back into Equation (5), we find Pr [cutH′(V) ̸∈ (1± ϵ) · cutH(V)] ≤ 2 · exp
(
−ϵ2M

)
.

Now turning to the general case S ⊂ V , we bound b by

b = max
e∈QS

{
ge(S ∩ e)

pe

}
= max

e∈QS

{
1

M
· min
(v,u)∈Ve

ge(S ∩ e) ·
∑

f∈E gv→u
f

gv→u
e

· cutH(S)

cutH(S)

}

≤ max
e∈QS

{
cutH(S)

M
· min
(v,u)∈Ve:v∈S,u/∈S

ge(S ∩ e)

gv→u
e

∑
f∈E gv→u

f∑
f∈E gf (S ∩ f)

}
, (6)

where in the first equality we multiply and divide by cutH(S); the second inequality is from re-
stricting the set over which the minimum is evaluated and substituting cutH(S) =

∑
f∈E gf (S∩f).

Note that we do not lose any hyperedges by the restriction since by Claim 2.1, if ge(S ∩ e) > 0 then
there exists some v ∈ S, u ∈ e \ S that satisfy gv→u

e > 0.
We now show that b is bounded for every e ∈ QS . Fix some e, and observe that is sufficient to

bound b using a specific pair v∗ ∈ S, u∗ ∈ S̄. Let v∗ ∈ S, u∗ ∈ S̄ be a pair of vertices that maximize

10

gv
∗→u∗

e (the minimum directed cut over e). Since gv
∗→u∗

f minimizes over subsets of f that contain v∗

and not u∗, we have gf (S ∩ f) ≥ gv
∗→u∗

f for all f ∈ E. Therefore,
∑

f∈E gf (S ∩ f) ≥
∑

f∈E gv
∗→u∗

f ,

which we use to bound one of the quotients in (6); and it remains to bound ge(S ∩ e)/gv
∗→u∗

e . By
Claim 2.1, we have ge(S ∩ e) ≤

∑
v∈S

∑
u∈S̄ gv→u

e ≤ |S||S̄|gv∗→u∗
e , where the last inequality is since

gv
∗→u∗

e is maximal. Therefore, ge(S ∩ e)/gv
∗→u∗

e < n2. Plugging these two bounds into (6) we find
that b < n2cutH(S)/M , and then back into the concentration bound we get

Pr [cutH′(S) ̸∈ (1± ϵ) · cutH(S)] ≤ 2 · exp
(
−ϵ2M

n2

)
Note that this is much smaller than the probability for S = V , and therefore we assume that both
cases have the same probability. Choosing M := c · ϵ−2n3 for large enough but fixed c > 0, we
get that H ′ approximates the cut S up to 1 + ϵ factor with probability at least 1 − 2 exp(−cn).
Using a union bound over all S ⊆ V we get that the sparsifier approximates all cuts simultaneously
with probability at least 1 − 2 exp(−cn) · 2n ≥ 1 − 2 exp(−n). This completes the construction of
a sparsifier with O(ϵ−2n5) hyperedges that approximates H with quality 1 + ϵ.

We now turn back to prove Claim 2.1.

Proof of Claim 2.1. Fix some S ⊂ V and e ∈ E. We show that∑
v∈S

∑
u∈S̄

gv→u
e =

∑
v∈S

∑
u∈S̄

ge(P
e
v→u) ≥ ge(S ∩ e).

Let v ∈ S, u1, u2 ∈ S̄, and observe that since ge is submodular

ge(P
e
v→u1

) + ge(P
e
v→u2

) ≥ ge(P
e
v→u1

∩ P e
v→u2

) + ge(P
e
v→u1

∪ P e
v→u2

) ≥ ge(P
e
v→u1

∩ P e
v→u2

),

where the last inequality is from ge(P
e
v→u1

∪ P e
v→u2

) ≥ 0. Summing over all v ∈ S, u ∈ S̄, we get

∑
v∈S

∑
u∈S̄

ge(P
e
v→u) ≥ ge

⋃
v∈S

⋂
u∈S̄

P e
v→u

 .

Notice that for every v ∈ S, we must have v ∈
⋂

u∈S̄ P e
v→u, hence S ⊆

⋃
v∈S

⋂
u∈S̄ P e

v→u. In
addition, every

⋂
u∈S̄ P e

v→u ⊆ S, therefore S =
⋃

v∈S
⋂

u∈S̄ P e
v→u. We conclude that∑

v∈S

∑
u∈S̄

ge(P
e
v→u) ≥ ge(S ∩ e).

This completes the proof of Theorem 1.4.

2.1 Sparsification of Monotone Hypergraphs (Theorem 1.5)

The proof for the monotone case is similar to the general case. However, since monotone splitting
functions are more structured it suffices to examine the importance of all the singleton cuts for
each hyperedge. This results in smaller sampling probabilities and a better bound on the number
of hyperedges in the sparsifier. The proof utilizes the following well known property of submodular
functions.

Claim 2.2. Let ge : 2e → R+ be a splitting function. Fix S ⊆ e and let v∗ ∈ S be a vertex that
maximizes ge({v∗}). Then

ge(S ∩ e) ≤ |S| · ge({v∗}).

11

Proof. Denote S =
{
v1, . . . , v|S|

}
. By the choice of v∗, we have

∑|S|
i=1 ge({vi}) ≤

∑|S|
i=1 ge({v∗}) =

|S| · ge({v∗}). To conclude, observe that by the subadditivity of ge, ge(S ∩ e) ≤
∑|S|

i=1 ge({vi}).
Combining the two we find |S| · ge({v∗}) ≥ ge(S ∩ e).

Proof of Theorem 1.5. Again we start by describing the sampling probabilities for every hyperedge.
For every hyperedge, set (for some M > 0 that will be chosen later)

pe := M ·max
v∈V

ge({v})∑
f∈E gf ({v} ∩ f)

.

To construct the sparsifier H ′, sample each hyperedge with probability p̃e = min(pe, 1), and reweigh
every sampled vertex by factor 1

p̃e
. We prove that this sparsifier accurately approximates cuts of

H and that it has at most O(n
3

ϵ2
) hyperedges.

We first prove that the number of hyperedges in the sparsifier is at most O(M ·n). Let Ie be an
indicator for the event that the hyperedge e is picked. The expected number of sampled hyperedges
is

E

[∑
e∈E

Ie

]
=
∑
e∈E

pe =
∑
e∈E

M ·max
v∈e

ge({v})∑
f∈E gf ({v} ∩ f)

≤ M ·
∑
e∈E

∑
v∈e

ge({v})∑
f∈E gf ({v} ∩ f)

= M ·
∑
v∈V

∑
e∈E ge({v} ∩ e)∑
f∈E gf ({v} ∩ f)

= M ·
∑
v∈V

1 ≤ Mn,

where the inequality is by replacing a maximum with a sum. Therefore, by Markov’s inequality,
with high constant probability the sparsifier has at most O(Mn) hyperedges. We later show that

M = O
(
n2

ϵ2

)
and hence the sparsifier has O(ϵ−2n3) hyperedges with high constant probability.

We now prove that the sparsifier indeed approximates the terminal cuts of G. Fix some S ⊆ V
and note that

E [cutH′(S)] = E

[∑
e∈E

Ie ·
1

pe
ge(S ∩ e)

]
=
∑
e∈E

E
[
Ie ·

1

pe
ge(S ∩ e)

]
=
∑
e∈E

ge(S ∩ e) = cutH(S).

Hence, the cut is preserved in expectation. We now prove that the value of the cut is concentrated
around its expectation. Let QS = {e ∈ E : pe < 1, ge(S) > 0} and b = maxe∈QS

1
pe
ge(S ∩ e). Then

by Chernoff’s bound we find

Pr [cutH′(S) ̸∈ (1± ϵ) · cutH(S)] ≤ 2 · exp
(
−ϵ2 · cutH(S)

b

)
Now note that

b = max
e∈QS

{
1

pe
ge(S ∩ e)

}
= max

e∈QS

{
1

M
min
v∈e

∑
f∈E gf ({v} ∩ f)

ge({v})
ge(S ∩ e)

}

= max
e∈QS

 1

M
·min
v∈e

∑
f∈E gf ({v} ∩ f)

ge({v})
ge(S ∩ e)∑

f∈E gf (S ∩ f)

∑
f∈E

gf (S ∩ f)

 . (7)

We now bound the maximum value of b. Let v∗ ∈ S ⊆ V be a vertex that maximizes ge({v∗}) over
S. Since g is monotone for all S ⊆ V and f ∈ E, we find

∑
f∈E gf (S ∩ f) ≥

∑
f∈E gf ({v∗} ∩ f).

12

Furthermore, by Claim 2.2 we have ge(S ∩ e) ≤ |S|ge({v∗}) ≤ nge({v∗}). Combining the two we
find ∑

f∈E gf ({v∗} ∩ f)

ge({v∗})
· ge(S ∩ e)∑

f∈E gf (S ∩ f)
≤ n

and therefore b ≤ n/M ·
∑

f∈E gf (S∩f) = n·cutH(S)/M . Plugging this back into the concentration
bound we find

Pr [cutH′(S) ̸∈ (1± ϵ) · cutH(S)] ≤ 2 · exp
(
−ϵ2M

n

)
.

Choosing M = c · n2

ϵ2
, we get that the event is satisfied with probability at least 1 − 2 exp(−cn).

Using union bound over all S ⊆ V and choosing some large enough but constant c > 0 we get that
the sparsifier approximates all cuts with probability at least 1 − 2 exp(−cn) · 2n ≥ 1 − 2 exp(−n).
This completes the construction of a sparsifier for monotone-submodular hypergraphs with at most
O
(
ϵ−2n3

)
hyperedges.

3 Sparsifiers for Finite-Spread Splitting Functions

This section provides a construction of sparsifiers for finite-spread splitting functions (Theorem 1.7).
Our construction is based on the method presented in [CKN20] for constructing cut sparsifiers for
the all-or-nothing splitting function. The main argument is that by approximating every hyperedge
up to a factor of µH as the all-or-nothing splitting function, we can follow the algorithm and proof
of [CKN20]. This approximation only holds when the functions ge have finite spread. The main
difference is that we need to account for hyperedges contributing different amounts to different
cuts. We show that by oversampling hyperedges at a rate higher by a µH factor, we can adjust
the Chernoff bounds, and then the rest of the proof follows using the all-or-nothing approximation.
Throughout the proof we assume that minS⊆e:ge(S)̸=0 ge(S) = 1 for all e ∈ E. We can make this
assumption by recalling that we limited our discussion to splitting functions with integral values,
and observing that a splitting function ge with a higher minimal value can be divided into multiple
functions with minimal value 1 without affecting the cuts of H.

We begin by presenting the relevant definitions and results from the existing literature.

Definition 3.1. Let G = (V, F,w) be a weighted graph. A k-strong component in G is a maximal
vertex induced subgraph such that the minimum cut in the component is k.

Lemma 3.2 ([BK96]). Given a weighted graph G = (V, F,w) and some k > 0, the k-strong
components of G partition V . For every k′ > k the k′-strong components are a refinement of the
k-strong components.

Definition 3.3. In a weighted graph G = (V, F,w), the strength of an edge f ∈ F , denoted by kf ,
is the maximal k > 0 such that f is contained in a k-strong component.

Claim 3.4 (Corollary 4.9 in [BK15]). In every weighted graph G on n vertices, there are at most
n− 1 distinct values of edge strengths.

Following the proof in [CKN20], the sampling probabilities of the hyperedges of H = (V,E, g)
are determined by an auxiliary weighted graph G, where every hyperedge e ∈ E is represented by a
weighted clique Fe in G (with perhaps some weights being zero). Observe that G may have many
parallel edges between the same pair of vertices, each induced by a different hyperedge. Denote the
set of edges with positive weight in Fe by F+

e . The precise construction of the auxiliary graph G is
described in [CKN20]. Define the hyperedge strengths as κe := minf∈Fe kf and κmax

e := maxf∈F+
e
kf .

13

Theorem 3.5 (Theorem 3 in [CKN20]). Let H = (V,E, g) be a hypergraph with a finite-spread
splitting function g : 2V → R+. For every integer γ ≥ 2 there exists an assignment of weights to
the edges of Fe such that in the resulting G

�

∑
f∈Fe

w(f) = 1;

�

κmax
e
κe

≤ γ.

We now turn to proving Theorem 1.7. Throughout the proof we will partition the hyperedges
into two sets, those with ge(e) = 0 and those with ge(e) > 0. We sparsify each subgraph indepen-
dently and then the union of the two sparsifiers to obtain the sparsifier for H. Note that if each
sparsifier approximates its hyperedges with quality 1+ ϵ, then their union (1+ ϵ)-approximates all
the cuts of H by the additivity of the cuts; this increases the size of the sparsifier by at most a
factor of 2. The sampling process for both sets is identical and hence from now on we assume that
either all the hyperedges of H have ge(e) = 0 or all have ge(e) > 0.

Start by applying Theorem 3.5 with γ = 2 to obtain the auxiliary graph G and define the
strengths of the hyperedges of H accordingly. Let H ′ be a sparsifier constructed by sampling every
hyperedge e ∈ E with probability pe = min {1, ρ/κe}, for ρ = ϵ−2tµHγ2 log n with constant t > 0
to be determined later. For each sampled edge we assign a rescaled splitting function g′e = p−1

e ge.
By Claim 6 in [CKN20] the size of the sparsifier resulting from this sampling method is at most

O (ργn) = O
(
ϵ−2ntµHγ3 log n

)
.

Hence, it remains to show that H ′ approximates the cuts of H. The proof is based on parti-
tioning the hyperedges of G based on their strength, κe, and showing that the additive error for
each set of hyperedges is small. Define the following sets. Let E≥i =

{
e ∈ E : κe ≥ ρ2i

}
be the set

of all hyperedges in H with strength at least ρ2i, and let the set of all hyperedges with strength in[
ρ2i, ρ2i+1

)
be Ei = E≥i \ E≥i+1. Similarly, let F≥i =

{
f ∈ F+ : kf ≥ ρ2i

}
be the set of all edges

in G of strength at least ρ2i. Finally, let Emax
≥i =

{
e ∈ E : κmax

e ≥ ρ2i
}
be the set of all hyperedges

with maximum strength at least ρ2i.

Let Y ⊆ E be a subset of the hyperedges of H and let β ∈ R|Y |
+ . Denote by H [βY] the sub-

hypergraph with the hyperedges in Y , where for each e ∈ Y the splitting function ge is scaled by

βe. Similarly, for Y ⊆ F , and β ∈ R|Y |
+ , let G [βY] be the subgraph of G with the edges in Y and

the weight of each f ∈ Y scaled by βf .
We now define certain subsets that will be used to bound the error. For every i ∈ N, define

a relative weighting function βi ∈ RE
+ where βi

e = 2i−j for all hyperedges e ∈ E (or similarly for
edges in G) with strength in

[
ρ2j , ρ2j+1

)
. Observe that this function modifies the weight of each

hyperedge (or edge) according to its strength. Finally, let the random vector β̂i ∈ REi
+ be the

scaling obtained from the sampling process limited to Ei; i.e. β̂
i
e = p−1

e if e is sampled into H ′ and

β̂i
e = 0 otherwise. Observe that H ′ = H

[⋃
i β̂

iEi

]
.

Our main technical lemma bounds the additive error between the value of every cut S on β̂iEi

and its expectation. Note that the lemma does not immediately imply that H ′ is a quality q = 1+ϵ
sparsifier for H as the error bound might be larger than ϵ · cutH[Ei](S). However, we will show that
the sum of all these error bounds is small compared to the value of the cut.

Lemma 3.6. Fix an integer i > 0. Then with probability at least 1− 8n−2,

∀S ⊆ V,
∣∣∣cutH[β̂iEi]

(S)− cutH[Ei] (S)
∣∣∣ ≤ ϵ

γ
cutH[βiEmax

≥i] (S) . (8)

14

We first show that Lemma 3.6 implies Theorem 1.7.

Proof of Theorem 1.7. Sample the hyperedges of H into H ′ using the sampling method described
above. Using the union bound, we bound the probability that the event in Equation (8) holds for
all values of i whose corresponding hyperedge set Ei is non-empty. By Claim 3.4 there are at most
n− 1 such values. Hence, with probability at least 1− 8n−1 Equation (8) holds for all such i.

We now show that if Equation (8) holds for all such i, then the sparsifier has quality q = 1+ ϵ.
Observe that for every S ⊆ V ,∣∣∣cutH[β̂iEi]

(S)− cutH[Ei] (S)
∣∣∣ ≤ ϵ

γ
cutH[βiEmax

≥i] (S)

≤ ϵ

γ

∑
j≥i−log γ

cutH[βiEj] (S) =
ϵ

γ

∑
j≥i−log γ

2i−j · cutH[Ej] (S) ,

where the second inequality is since Emax
≥i ⊆ E≥i−log γ (this holds since κmax

e
κe

≤ γ). Summing over
all i,

|cutH′ (S)− cutH (S)| =
∑
i≥0

∣∣∣cutH[β̂iEi]
(S)− cutH[Ei] (S)

∣∣∣
≤ ϵ

γ

∑
i≥0

∑
j≥i−log γ

2i−j · cutH[Ej] (S)

=
ϵ

γ

∑
j≥0

cutH[Ej] (S)
∑

i≤j+log γ

2i−j ≤ 2ϵ
∑
j≥0

cutH[Ej] (S) = 2ϵcutH (S) ,

where the second inequality is by
∑

i≤j+log γ 2
i−j ≤ 2γ. Hence, with probability 1− 8n−1 we have

that H ′ is a cut sparsifier of quality q = 1 + ϵ for H.

To conclude the proof, we still need to show Lemma 3.6.

3.1 Proof of Lemma 3.6

To prove the lemma, we first provide several definitions and claims. Define the sample set of level
i to be Êi = β̂iEi + βiE≥i+1. Since the contribution of each hyperedge to a cut is additive,

cutH[Êi]
(S)− cutH[βiE≥i] (S) = cutH[β̂iEi]

(S)− cutH[Ei] (S) ,

notice that in the last term we omitted βi as for every e ∈ Ei we have βi
e = 20. Hence, showing∣∣∣cutH[Êi]

(S)− cutH[βiE≥i] (S)
∣∣∣ ≤ ϵ

γ
cutH[βiEmax

≥i] (S) (9)

would suffice to prove the lemma. The following claims outline useful properties of G [F≥i].

Claim 3.7 (Claim 8 from [CKN20]). For any e ∈ E≥i, the entire vertex set Fe belongs to the same
connected component in G [F≥i].

Claim 3.8 (Claim 9 from [CKN20]). Let AG be a connected component in G [F≥i]. Then the
minimum cut size of AG is at least ρ2i.

Our proof will also use the following cut-counting lemma.

15

Lemma 3.9 (Corollary 8.2 in [Kar93]). Given a weighted graph G = (V, F,w) with minimum cut
size c > 0, for all integers α ≥ 1, the number of cuts of the graph of weight at most αc is at most
|V |2α.

To use the cut counting lemma, we show that the cuts of H
[
βiEmax

≥i

]
are bounded from below

by the cuts of G
[
βiF≥i

]
. To do that, we use the following from [CKN20].

Claim 3.10 (Claim 7 from [CKN20]). Let H̄ = (V,E, ḡ) be a hypergraph with the same vertices
and hyperedges as H, but with ḡe : 2

e → R+ being the all-or-nothing splitting function, i.e.,

ḡe(S) =

{
0, if |S ∩ e| = 0 or |S ∩ e| = |e|;
1, otherwise.

Then for all i ≥ 0,
∀S ⊆ V, cut

H̄
[
βiEmax

≥i

] (S) ≥ cutG[βiF≥i] (S) .

We then obtain the desired lower bound as an immediate corollary. This corollary is where we
use our assumption that ge has finite spread, otherwise the cuts of H are not bounded by the cuts
of G, and we cannot use the cut counting lemma (Lemma 3.9).

Corollary 3.11. For all i ≥ 0,

∀S ⊆ V, cut
H
[
βiEmax

≥i

] (S) ≥ cutG[βiF≥i] (S) .

Furthermore, if ge(e) > 0 for all e ∈ E then for every connected component AG ⊆ V of G
[
βiF≥i

]
,

the cut AG on H
[
βiEmax

≥i

]
is at least the minimum cut of G

[
βiF≥i

]
in the component AG. Formally,

cut
H
[
βiEmax

≥i

] (AG) ≥ min
T⊂AG,T ̸=∅

cutG[βiF≥i] (T) .

Proof. We begin by showing the first part of the corollary. Observe that since ge has finite spread,
whenever |e| > |S∩e| ≥ 1 we have ge(S∩e) ≥ 1 = ḡe(S∩e). In addition, ge(e) ≥ 0 = ḡe(e). Hence,
for all e ∈ E and S ⊆ e, ge(S ∩ e) ≥ ḡe(S ∩ e). Therefore, for every cut S ⊆ V ,

cut
H
[
βiEmax

≥i

] (S) ≥ cut
H̄
[
βiEmax

≥i

] (S) ≥ cutG[βiF≥i] (S) .

We now turn to the second part of the corollary. Fix some connected component AG ofG
[
βiF≥i

]
and denote some set achieving the minimum cut over AG by T ∗ ⊂ AG, T

∗ ̸= ∅. Note that the value
of the cut T ∗ is strictly positive since AG is a connected component. Notice that for all S such that
S ∩ e ̸= ∅ we have ge(S ∩ e) ≥ 1 ≥ ḡe(S ∩ e) by our assumption. Hence,

cut
H
[
βiEmax

≥i

](AG) =
∑

e∈Emax
≥i

βi
ege(AG ∩ e) ≥

∑
e∈Emax

≥i

βi
e1{AG∩e ̸=∅} ≥

∑
e∈Emax

≥i

βi
e1{T ∗∩e̸=∅}

≥
∑

e∈Emax
≥i

βi
eḡe(T

∗) = cut
H̄
[
βiEmax

≥i

](T ∗) ≥ cutG[βiF≥i](T
∗),

where the second inequality is since T ∗ ⊆ AG, the third is by the definition of the all-or-nothing
splitting function, and the last one is by Claim 3.10.

16

To prove Lemma 3.6, we bound the error of each connected component of H [E≥i] separately.
For each connected component, we bound the error by a term proportional to cut

H
[
βiEmax

≥i

] (S),
which by Corollary 3.11 bounds the cut in G

[
βiF≥i

]
from above. This allows us to utilize the

cut-counting-lemma (Lemma 3.9) to bound the number of small cuts.

Proof of Lemma 3.6. Fix some i ≥ 0 and let AG = (VAG
, FAG

) be some connected component
in the subgraph G [F≥i]. Note that if for all e ∈ E we have ge(e) = 0 then the error for the cut
S = VAG

is 0. By Claim 3.7 the hypergraph induced by the vertices VAG
is a proper sub-hypergraph

of H[E≥i], as every hyperedge in E≥i is incident only to the vertices in VAG
. Denote this connected

component by HAG
. Note, that every cut with value 0 is preserved trivially by the sparsifier.

Fix some cut S ⊆ VAG
such that cutHAG

(S) > 0. We will start by bounding the probability of

HAG
[Êi] creating a large error,∣∣∣cutHAG

[Êi]
(S)− cutHAG

[βiE≥i] (S)
∣∣∣ ≥ ϵ

γ
cutHAG

[βiEmax
≥i] (S) . (10)

Notice that,

E
[
cutHAG

[Êi]
(S)
]
= cutHAG

[βiE≥i] (S) .

Denote

θ :=
cutHAG

[βiEmax
≥i] (S)

cutHAG
[βiE≥i] (S)

≥ 1.

Observe that by the Chernoff bound when θϵ/γ ≥ 1 the probability of large deviation is at the
most the probability of large deviation in the case θϵ/γ ≤ 1. Hence, we assume henceforth that
θϵ/γ ≤ 1. By the Chernoff bound (Lemma A.2),

Pr

[∣∣∣cutHAG
[Êi]

(S)− cutHAG
[βiE≥i] (S)

∣∣∣ ≥ ϵ

γ
cutHAG

[βiEmax
≥i] (S)

]
= Pr

[∣∣∣cutHAG
[Êi]

(S)− cutHAG
[βiE≥i] (S)

∣∣∣ ≥ θ
ϵ

γ
cutHAG

[βiE≥i] (S)

]
≤ 2 exp

(
−
ϵ2θ2cutHAG

[βiE≥i] (S)

3γ2r

)
≤ 2 exp

(
−
ϵ2cutHAG

[βiEmax
≥i] (S)

3γ2r

)
,

where r is the maximum possible contribution of any sampled hyperedge to the cut. The second
inequality is from θ ≥ 1. Observe that r is bounded by

r = max
e∈E,S⊆V

1

pe
ge(S) ≤

κe
ρ
µH .

Since all the sampled edges e are in Ei, all of them have strength in κe ∈
[
ρ2i, ρ2i+1

)
. This implies

that r ≤ 2i+1µH . Let x = minT⊆VAG
cutAG

(T) be the value of a minimum cut of AG. We begin

by lower bounding the value of the cut S in HAG
[βiEmax

≥i]. By Corollary 3.11, if S ̸= VAG
then

cutHAG
[βiEmax

≥i](S) ≥ cutAG
(S). Otherwise, by the same corollary we have that cutHAG

[βiEmax
≥i](S) ≥

x. Combining these and recalling cutAG
(S) = 0 if S = VAG

we find that cutHAG
[βiEmax

≥i](S) ≥
max(cutAG

(S), x).
Let α = max(cutAG

(S), x)/x be the ratio between the lower bound on cutHAG
[βiEmax

≥i](S) and

x. By Claim 3.8, we have that x ≥ ρ2i. Therefore,

cutHAG
[βiEmax

≥i](S) ≥ αx ≥ αρ2i.

17

Plugging in these two bounds

Pr

[∣∣∣cutHAG
[Êi]

(S)− cutHAG
[βiE≥i] (S)

∣∣∣ ≥ ϵ

γ
cutHAG

[βiEmax
≥i] (S)

]
≤ 2 exp

(
− ϵ2αρ2i

3γ2µH2i+1

)
= 2 exp

(
− ϵ2α

6γ2µH

tµHγ2 lnn

ϵ2

)
= 2 exp

(
−αt lnn

6

)
.

Therefore, the event occurs with probability at most 2n
−αt
6 .

By the cut-counting lemma (Lemma 3.9), there are at most |VAG
|2α cuts of value at most

αx in AG which are different from ∅, VAG
. Counting also the cut S = VAG

, there are at most
|VAG

|2α + 1 ≤ 2|VAG
|2α such cuts in total. Hence, the probability that Equation (10) occurs for

any cut is at most,
∞∑
α=1

4|VAG
|2α(

−t
6
+2) ≤ 8|VAG

|
−t
6
+1.

Using a union bound over all connected components we find that the probability that Equation (10)
occurs for any cut in any connected component AGi is at most

∞∑
α=1

∑
j

4|VAGj
|2α(

−t
6
+2) ≤ 8n

−t
6
+2,

where inequality is since
∑

j |VAGj
| ≤ n. Choosing t > 24 we find that the error term satisfies

the requisite bound for all cuts simultaneously with probability at least 1 − 8n−2. Therefore,
Equation (9) holds with high probability. This completes the proof of Lemma 3.6.

4 Deformation of Additive Splitting Functions

This section proves Theorem 1.10 by showing that every hyperedge with an additive splitting
function ge : 2

e → R can be decomposed into multiple hyperedges, each with support size at most
O(ϵ−2K−1|e| log |e|). Our proof is based on sampling, namely, we approximate ge by a sum of
hyperedges {ei}i with additive splitting functions {gei}i, such that each ei ⊆ e is constructed by a
uniform independent sample of the vertices of e. The main challenge in the proof is showing that
for every S ⊆ e, we have E [gei(S ∩ ei)] ∈ (1± ϵ)ge(S). We also prove that Theorem 1.10 implies a
succinct representation of hypergraphs with additive splitting functions (Corollary 1.11). We begin
by presenting a more detailed version of Theorem 1.10.

Lemma 4.1 (Detailed Statement of Theorem 1.10). Let e be a hyperedge with an additive splitting
function ge with parameter K ≤ |e|. Then, for every ϵ ∈ (0, 1) there exists a deformation of e into
N = O

(
ϵ−2|e|2

)
hyperedges {ei}i with additive splitting functions{gei}i with parameter K ′, such

that

∀S ⊆ V,

N∑
i=1

gei(S ∩ ei) ∈ (1± ϵ) ge(S).

In addition, the cardinality of each hyperedge satisfies |ei| ≤ O
(
ϵ−2(|e|/K) log |e|

)
and its spread is

µei ≤ O(ϵ−2 log |e|). Moreover, this decomposition can be found by a randomized sampling process
with success probability at least 1− 2|e|−4.

Using the above decomposition we obtain a succinct representation of hypergraphs with additive
splitting functions.

18

Proof of Corollary 1.11. Let H = (V,E, g) be a hypergraph such that all ge ∈ g are additive
splitting functions, each with parameter Ke. Denote K̂ = mine∈E Ke/|e|. Applying Theorem 1.10
on all the hyperedges, we obtain a new hypergraph H ′ with additive splitting functions that (1+ϵ)-
approximates all the cuts of H. Furthermore, µH′ ≤ O

(
ϵ−2 log n

)
. Hence, applying Theorem 1.7

on H ′, we obtain a sparsifier H ′′ = (V,E′′) with at most O(ϵ−2nµH′ log n) = O
(
ϵ−4n log2 n

)
hyperedges. Note that H ′′ is a (1 + ϵ)2-sparsifier of H and that it has additive splitting functions.

Finally, to bound the encoding size of H ′′ note that Ke′′ ≤ n for all e′′ ∈ E′′ since otherwise it
does not affect the splitting function. Hence, we can store Ke′′ using O (log n) bits. Additionally,

the cardinality of each hyperedge e′′ in H ′′ is at most O
(
ϵ−2K̂−1 log n

)
by Lemma 4.1. Hence, we

can store it using O
(
ϵ−2K̂−1 log2 n

)
bits (using log n bits to store every vertex in e′′). Therefore,

we find that the total encoding size of H ′′ is O
(
ϵ−6K̂−1n log4 n

)
bits.

It is straightforward to adapt the proof of Corollary 1.11 to be algorithmic. Observe that we
can assume that |E| ≤ Õ(ϵ−2n2), since by the structure of additive splitting functions we have
µe ≤ n, and thus by applying Theorem 1.7 we can first find a (1+ ϵ)-sparsifier of H with Õ

(
ϵ−2n2

)
hyperedges. We can then improve the success probability of Lemma 4.1 to 1 − 2n−4 by changing
the sampling probabilities to use log n instead of log |e|. Finally, using the union bound on all
Õ(ϵ−2n2) hyperedges of H, we obtain that the succinct representation is successfully constructed
with very high probability.

4.1 Proof of Lemma 4.1

We will use the following claim.

Claim 4.2. Let S ⊆ e be a subset of the vertices of the hypergraph, and let Ŝ be a random subset of
S where each v ∈ e is sampled independently with probability p = min(c·log |e|

Kϵ2
, 1) for some K ≤ |e|

and c > 0. Then,

∀δ ≥ 0, Pr
[∣∣∣|Ŝ| − p|S|

∣∣∣ ≥ δp|S|
]
≤ 2|e|−

cδ2|S|
(2+δ)Kϵ2 .

The claim follows immediately from the Chernoff bound (Lemma A.1).

Proof of Lemma 4.1. Denote ϵ′ = ϵ/4 and let N = qϵ′−2|e|2 for some q ≥ 1. Let e be some
hyperedge with splitting function ge(S) = min (|S| ,K) or ge(S) = min

(
|S| ,

∣∣S̄∣∣ ,K). If either
K ≤ 100ϵ−2 log |e| or ϵ−2 > |e|, then |e| ≤ O(ϵ−2(|e|/K) log |e|) and we are done.

Generate the hyperedges {ei}Ni=1 by sampling the vertices of e independently with probability
p = cϵ′−2K−1 log |e| for some constant 100 > c > 0 to be determined later. Note that p < 1
since K > 100ϵ−2 log |e|. The splitting functions of the new hyperedges are then given by gei(S) =
1
N min (|S ∩ ei| /p,K) or gei(S) =

1
N min

(
|S ∩ ei| /p,

∣∣S̄ ∩ ei
∣∣ /p,K) in accordance with ge. Observe

that these functions are additive by factoring out 1/p from all terms in the minimum.
We begin by showing that ei has small spread and small support. Observe that

µei =
maxS⊆e gi(S)

minT⊆e gi(T)
≤ Kp ≤ c · log |e|

ϵ′2
.

By Claim 4.2 the cardinality of each hyperedge is no more than 2p|e| = 2cϵ′−2(|e|/K) log |e| with
probability 1 − 2|e|−cδϵ′−2|e|/(3K) ≥ 1 − 2|e|−cϵ′−2/3, where the inequality is by K ≤ |e|. Choosing
c ≥ 20 and applying the union bound over all N hyperedges we obtain that the cardinality of

19

all hyperedges is at most 2cϵ′−2(|e|/K) log |e| with probability at least 1 − 2|e|−cϵ′−2/3qϵ′−2|e|2 ≥
1− 2|e|−5; the inequality holds as ϵ′−2 < |e|, q ≥ 1 and ϵ < 1 which implies ϵ′ ≤ 1/4.

We now show that the sum
∑

i gei (1 + ϵ)-approximates ge. Denote h(S) =
∑N

i=1 gei(S). We
will show that for every S ⊆ e, with high probability,

h(S) ∈ (1± ϵ) · ge(S).

Fix some S ⊆ e such that ge(S) > 0 and assume without loss of generality |S| ≤ |S̄|. The
analysis of the expectation of gei is split into two claims for the monotone and symmetric cases,
that we will prove shortly.

Claim 4.3. Let ge(S) = min (|S| ,K) and suppose c > 0 is a sufficiently large constant. Then

E [N · gei(S)] ∈ (1± 2ϵ′)ge(S).

Claim 4.4. Let ge(S) = min
(
|S| ,

∣∣S̄∣∣ ,K) and suppose c > 0 is a sufficiently large constant. Then

E [N · gei(S)] ∈ (1± 2ϵ′)ge(S).

By Claims 4.3 and 4.4, E [h(S)] ∈ (1 ± 2ϵ′)ge(S). Now using the Chernoff bound for bounded
random variables (Lemma A.2),

Pr
[
h(S) ̸∈ (1± ϵ′)E [h(S)]

]
≤ 2 exp

(
−ϵ′2E [h(S)]

3r

)
,

where r is the maximum possible contribution of a single gei(S) to the sum. By the definition of
gei we have r = K/N ≤ |e|/N = q−1ϵ′2/|e|. Note also that ge(S) ≥ 1 and hence E [h(S)] ≥ 1− 2ϵ′.
Plugging these back in we find that

Pr
[
h(S) ̸∈ (1± ϵ′)E [h(S)]

]
≤ 2 exp(−q(1− 2ϵ′)|e|/3).

Choosing q > 12, and noting 1− 2ϵ′ > 1/2, gives us that with probability at least 1− 2−2|e|,

h(S) ∈ (1± ϵ′) ·
(
(1± 2ϵ′)ge(S)

)
⊆
(
1± 4ϵ′

)
ge(S).

Using a union bound over all 2|e| possible cuts of e we find that h(S) is a quality 1 + ϵ approx-
imation for ge(S) with probability at least 1− 2−|e|. Finally, observe that by the union bound we
have that both the cardinality of all hyperedges is bounded and the quality of the approximation
is 1 + ϵ simultaneously with probability at least 1− 2|e|−4.

We now return to prove the claim about the expectation of h(S) when ge is monotone. The
proof for the symmetric case (Claim 4.4) is similar to Claim 4.3 and appears in Appendix D.

Proof of Claim 4.3. Let Si = S ∩ ei be the intersection between S and the sampled hyperedge.
Observe that the function min(x,K) is concave, and hence by Jensen’s inequality

E [min(|Si| /p,K)] ≤ min(E [|Si| /p] ,K) = min(|S| ,K) = ge(S).

It remains to prove that E [Ngei(S)] ≥ (1 − 2ϵ′)ge(S). We split the analysis into two cases, when
|S| < K/2 and its complement. Starting with the case when |S| is small, observe that setting
δ = K/|S| > 2 we have by Claim 4.2 that

Pr [|Si| ≥ pK] ≤ 2|e|−
cδ2|S|

(2+δ)Kϵ′2 ≤ 2|e|−
cδ|S|
2K = 2|e|−

c
2 ,

20

where the second inequality is by δ/(2 + δ) > 1/2 when δ > 2. Choosing c > 5 we find that the
probability is at most 2|e|−5/2. Now rewriting the expectation of f(S) we have

E [Ngei(S)] =

|S|∑
j=0

min

(
j

p
,K

)
Pr [|Si| = j] ≥

⌊pK⌋∑
j=0

j

p
Pr [|Si| = j]

≥
|S|∑
j=0

j

p
Pr [|Si| = j]−

|S|∑
j=⌊pK⌋+1

j

p
Pr [|Si| = j] ,

where the first inequality is by dropping all elements with j ≥ ⌊pK⌋+1 and the second is by adding

and subtracting the same terms for j ≥ ⌊pK⌋ + 1. Since j ≤ |S| and
∑|S|

j=⌊pK⌋+1 Pr [|Si| = j] =

Pr [|Si| ≥ ⌊pK⌋+ 1] we find

E [f(S)] ≥ E [|Si|]
p

− |S|
p

Pr [|Si| ≥ pK] ≥ |S| − |S|
p|e|5/2

.

Observe that |S|/p = |S|Kϵ′2/(c log |e|) < |e||S| by K ≤ |e| and c > 1. Therefore, we find

E [Ngei(S)] ≥ |S| − |e|2

10|e|5/2
≥ |S| − 1

10|e|1/2
≥ (1− ϵ′)ge(S),

where the last inequality is by |S| ≥ 1 for all nontrivial cuts and ϵ−2 < |e|.
Now we turn to the case |S| > K/2. Observe that for Ngei(S) = min (|Si|/p,K) < (1− ϵ′)ge(S)

we must have |Si| < (1 − ϵ′)p|S|. By Claim 4.2 this event happens with probability at most

2|e|−
cϵ′2|S|
3Kϵ′2 ≤ 2|e|−

c
6 . Therefore,

E [Ngei(S)] ≥
(
1− 2|e|−

c
6

)
(1− ϵ′)p|S|/p ≥ (1− 2ϵ′)|S| = (1− 2ϵ)ge(S),

where the last inequality is by c > 9 and ϵ′ > 1/|e|.

This concludes the proof of Lemma 4.1.

5 Encoding-Size Lower Bounds

This section shows that for additive splitting functions, Ω(n2) bits are needed to represent sparsifiers
that are reweighted-subgraphs, proving Theorem 1.12. We also prove two results on the encoding
size of directed hypergraphs (see Section 5.2): (1) reweighted-subgraph sparsifiers for directed
hypergraphs require encoding size of Ω(n3/ϵ) bits, and (2) any data structure that stores the cuts
of a directed hypergraph requires Ω(n2/ϵ) bits.

To show Theorem 1.12, we actually prove a stronger version of the theorem for all cardinality-
based splitting functions with µe < n/3.

Lemma 5.1 (Stronger Version of Theorem 1.12). Let ĝ : [n] → R+ define a cardinality-based
splitting function ge with spread µe < n/3. There exists a family of hypergraphs H with splitting
function ge(S) = ĝ(|S|) for all e ∈ E, such that encoding a reweighted subgraph (1 + ϵ)-sparsifier
for an input H ∈ H requires Ω(n2) bits.

21

5.1 Proof of Lemma 5.1

Denote the gradient of a function f : [n] → R+ be defined as ∆i(f) := f(i + 1) − f(i), we will
omit the function f when it is clear from the context. The proof follows immediately from the
proceeding technical claim.

Claim 5.2. Let ĝ : [n] → R+ and let t be the smallest integer such that ∆t < ∆0. If t < n/3, then
there exists a family of hypergraphs H, with splitting function ge(S) = ĝ(|S ∩ e|) for all e ∈ E, such
that encoding a reweighted-subgraph (1 + ϵ)-sparsifier for an input H ∈ H requires Ω(n2) bits.

Note that ∆i satisfies the following easy property.

Observation 5.3. Let ge : 2e → R+ be a cardinality based splitting function which is defined by
the function ĝ : [e] → R+. Then the series defined by ∆0,∆1, . . . ,∆|e|−1 is non-increasing.

Proof. Let S ⊆ e be a set of size i and T ⊂ S be a set of size j < i and x ∈ e \ {S}. Then by the
submodularity of ge we have

∆i = ge(S ∪ {x})− ge(S) ≤ ge(T ∪ {x})− ge(T) = ∆j .

Lemma 5.1 follows immediately using Observation 5.3 and Claim 5.2.

Proof. Assume without loss of generality that ĝ(1) = 1, then ∆0 = 1. If there exists some k < n/3
such that ∆k ≤ 0 we can apply Claim 5.2 for the first k with ∆k < ∆0. Since ∆0 = 1 and ∆i are
non-increasing we have that

∑µe

i=0∆i ≤ µe and hence the average ∆i is at most µe/(µe + 1) < 1.
Therefore, there must exist at least one ∆i < 1 for some i ∈ [µe + 1] ⊆ [n/3]. Apply Claim 5.2 to
the first such i.

The proof of Claim 5.2 boils down to a counting argument, we create a family of hypergraphs
with ge(S) = ĝ(|S|) as their splitting function. The vertices of each hypergraph are partitioned into
three sets V,U,W . Each hyperedge is defined by a union of three parts: (1) a random subset of the
vertices of V , (2) a subset of U that is defined by the Hadamard code, and (3) an unsparsifiable
part over the vertices W .

Using the unsparsifiable part we show that any reweighted-subgraph sparsifier must contain all
the hyperedges. We then show that it is possible to exactly recover the adjacency matrix over the
vertices of V from any hypergraph containing the same hyperedges as H (up to reweighing) using
only cut queries, hence Ω(n2) bits are required to represent it.

The recovery process is based on observing that the difference between any two cuts S, S ∪ {v}
for v ̸∈ S is given by

cutH(S ∪ {v})− cutH(S) =
∑
e∈E

ge(S ∪ {v})− ge(S) =
∑
e∈E

1{v∈e}∆|S∩e|we,

where we is the weight of e. Notice that if we find some d such that ∆d < ∆d/2, and a cut where
exactly one hyperedge e∗ has |S ∩ e∗| = d while all the hyperedges have |S ∩ e| ≤ d/2 then we can
recover whether v ∈ e∗. We create a hypergraph where such cuts exist for every hyperedge e ∈ E
and vertex v ∈ V using the Hadamard code.

22

Proof of Claim 5.2. Let d = 2k be the smallest power of two such that d ≥ t. Assume for simplicity
that d ≤ n/3. We start by defining the family H of hypergraphs. Let H ∈ H be a hypergraph
over n vertices. Split the vertices into three sets, V,U,W with |V | = |W | = n/6 and |U | = 2n/3.

Denote the vertices in each set by V = {vi}n/6i=1, W = {wi}n/6i=1 and U = {ui}2n/3i=1 . Notice that since
the splitting functions ge are all cardinality based, they are defined by the hyperedges. H includes
exactly n/6 hyperedges as described below.

We start by describing the Hadamard code words which we will use in the proof. If d = 1 then
for all i ∈ [n/6] set pi to be strings of length 2n/3 with 1 in the i-th position and 0 elsewhere.
Otherwise, denote the words of the Hadamard code (without the all zeros and all ones words) of
length 2d by h1, . . . , h2d−2. Since 2d could be much smaller than 2n/3 we pad hi with zeros to
get words of length 2n/3. Furthermore, we wish to create a hypergraph with n/6 hyperedges and
hence if 2d < n/6 we create ⌈n/(12d)⌉ copies of each word and denote them by pi,j , where pi,j is
the padded version of hi shifted by 2d · j bits to the right. Observe that by the properties of the
Hadamard code p2i,j = d and that pi,j ·pi′,j′ ∈ {d/2, 0}. For simplicity, we rename pi,j to p1, . . . , pn/6
where pk = p⌊k/(2d)⌋,k mod 2d dropping extra words if needed.

For each i ∈ [n/6] let ei be a union of three sets: Pi = {uj ∈ U : pi(j) = 1}, a random subset of
n/12 vertices of V and the singleton {wi}.

Every reweighted-subgraph sparsifier H ′ for H must contain every hyperedge e ∈ E with weight
in [1− ϵ, 1+ ϵ], otherwise the cuts of the singletons, S = {wi} for i ∈ [n/6], would not be preserved.
Fix some reweighted-subgraph sparsifier H ′ of H, and denote the weights of the hyperedges in H ′

by w′
e.

Denote the incidence matrix of H corresponding to the vertices in V by B. We show that it is
possible to recover B from the cuts of H ′ this means that every H ∈ H requires a unique sparsifier.

In addition, there are
(n/6
n/12

)n/6
possible choices for B and hence the encoding size is Ω(n2) bits.

Denote the set of hyperedges containing vi by Ei = {e ∈ E : vi ∈ e}. We recover each element
Bij by examining the difference

βij = cutH′ (Pj ∪ {vi})− cutH′ (Pj) =
∑
e∈Ei

ge(Pj)− ge(Pj ∪ {vi}).

Recall that by the construction of the code part of the incidence matrix, for every k ̸= j, |Pj∩Pk| ∈
{0, d/2}. Furthermore, by the definition of d we have ∆d/2 = ∆0 > ∆d. Hence,

βij =

{
β1
ij :=

∑
e∈Ei\{ej}∆0w

′
e +∆dw

′
ej , if Bij = 1

β0
ij :=

∑
e∈Ei

∆0w
′
e, if Bij = 0.

Hence, β1
ij < β0

ij . In addition, observe that

cutH′({vi}) =
∑
e∈Ei

w′
eĝ(1) = ∆0

∑
e∈Ei

w′
e.

Therefore, if cutH′({vi}) = βij then Bij = 0 and otherwise Bij = 1.

5.2 Directed Hypergraph Encoding Size

In [OST23], the authors provide an Ω
(
n2/ϵ

)
lower bound for the number of hyperedges in a

reweighted-subgraph sparsifier of directed hypergraphs. We improve on this result in two different
ways: (1) Lemma 5.4 shows that in the reweighted-subgraph sparsifier setting, encoding directed

23

hypergraph cuts requires Ω
(
n3/ϵ

)
bits. (2) Theorem 1.13 proves that any encoding of directed

hypergraph cuts requires Ω
(
n2/ϵ

)
bits (rather than hyperedges).

We begin with Lemma 5.4. This result is based a similar construction to Claim 5.2 without the
Hadamard code part. We define a random family H whose vertices are partitioned into three parts
V,U,W . Each hyperedge is defined by a union of two parts: (1) a random subset of the vertices
of V , and (2) an unsparsifiable part on the vertices of U,W that is based on the construction of
[OST23].

To recover the random part of the hypergraph we again turn to comparing different cuts of H ′.
However, since the hypergraph is much denser we need to isolate the contribution of each hyperedge
using the intersection of several cuts.

Lemma 5.4. There exists a family of hypergraphs H with the directed all-or-nothing splitting
function, such that for every 1/(4ϵ) < n/3 encoding a reweighted-subgraph (1 + ϵ)-sparsifier for an
input H ∈ H requires Ω(n3) bits.

Proof. Define a hypergraph H over n vertices as follows. Partition the vertices of H into three sets

of equal cardinality V,U,W . Denote V = {vi}n/3i=1 and similarly for U,W . For every i, j ∈ [n/3]

and r ∈
[
1, 2, . . . , 1

8ϵ

]
add a hyperedge ei,i+r,j with tail

(
eTi,i+r,j

)
=
{
ui, ui+r mod n/3

}
and head(

eHi,i+r,j

)
= {wj}. Note that this is the same construction as in [OST23]. Then augment the tail of

every hyperedge with a random subset of V , where every vertex v ∈ V is sampled independently
with probability 1/2.

Observe that for any cut S ⊆ U ∪W the value of the cut is independent of the random bits in
the head of the hyperedges. Hence, following the argument in [OST23] any reweighted subgraph
sparsifier of H must include all its hyperedges. Let H ′ be some reweighted subgraph sparsifier for
H, we will show that we can recover the random part of the tail of every hyperedge from the cuts
of H ′. Since H has Θ

(
n2/ϵ

)
hyperedges, and each one encodes n/3 random bits, storing the any

reweighted subgraph sparsifier requires Ω
(
n3/ϵ

)
bits.

Denote the modified weights of the hyperedges in H ′ by w′(e) : E → R+, we will also write
w′(F) =

∑
e∈F w′(e) for F ⊆ E. For every cut set S, denote the set of hyperedges e ∈ E with

ge(S) > 0 by E(S). Examine the cut set Si,j := {ui} ∪ (W \ {wj}) and notice that E (Si,j) =
{ei,i+r,j : r ∈ [1/(8ϵ)]} ∪ {ei−r,i,j : r ∈ [1/(8ϵ)]}.

We now describe the process for determining whether vk is in eTi,i+x,j for some x ∈
[
1, 2, . . . , 1

8ϵ

]
.

Observe that E(Si,j) ∩ E(Si+x,j) = {ei,i+x,j}, and since ei,i+x,j ∈ H ′, we find that vk ∈ eTi,i+x,j

if w′ (E(Si,j) ∩ E(Si+x,j) ∩ E ({vk})) > 0. To find the value of w′ (E(Si,j) ∩ E(Si+x,j) ∩ E ({vk})),
observe that for every S ⊆ U ∪W we can find w′ (E(S) ∩ E({vk})) by the following method.

Begin by noting that,

cutH′ (S ∪ {vk})− cutH′ (S) = w′ (E (S ∪ {vk}) \ E (S)) = w′ (E({vk}) \ E (S))

= w′ (E({vk}))− w′ (E (S) ∩ E({vk})) ,

where the last equality is by the directed all-or-nothing splitting function and that V is disjoint from
the heads of the hyperedges. Furthermore, observe that cutH′({vk}) = w′ (E({vk})) and hence,

w′ (E(S) ∩ E({vk})) = cutH′({vk})− (cutH′ (S ∪ {vk})− cutH′ (S)) . (11)

To conclude the proof observe that

w′ (E(Si,j) ∩ E(Si+x,j) ∩ E({vk})) =w′ (E(Si,j) ∩ E({vk})) + w′ (E(Si+x,j) ∩ E({vk}))
−w′ (E(Si,j ∪ Si+x,j) ∩ E({vk})) .

24

We can find all the terms on the right-hand side using Equation (11), and hence we can determine
for every k if vk is in eTi,i+x,j . Therefore, representing any reweighted subgraph sparsifier for H

requires Ω
(
n3/ϵ

)
bits.

We now turn to proving that representing directed hypergraph cuts requires Ω(n2/ϵ) bits in any
data structure (Theorem 1.13). The proof constructs of hypergraphs H based on the construction
in [OST23], with an added sampling step. We then show that every (1 + ϵ)-sparsifier of some
hypergraph H ∈ H does not (1 + ϵ)-approximate the cuts of any other member of the family.
Therefore, every hypergraph in the family requires a unique sparsifier. The lower bound follows by
showing there are 2Ω(n2/ϵ) hypergraphs in the family.

Proof of Theorem 1.13. Define a family of hypergraphs H as follows. Let H ∈ H be a hypergraph
with 2n vertices, and partition its vertex set into two disjoint sets of equal cardinality U,W .
Throughout the proof we assume that 1/(16ϵ) is an integer for simplicity. For every i, j ∈ [n]
sample a uniform subset of size 1

16ϵ from
[
1
8ϵ

]
and denote it by Vi,j . For every x ∈ Vi,j add the

hyperedges ei,i+x,j with tail eTi,i+x,j = {ui, ui+x mod n} and head eHi,i+x,j = {wj} to H.
Fix some H ∈ H. We will show that every quality (1 + ϵ)-sparsifier for H does not (1 + ϵ)-

approximate any other hypergraph Ĥ ∈ H. Therefore, this family implies the existence of at least

Ω
(
2n

2/ϵ
)
distinct sparsifiers. Hence, representing a (1+ϵ)-approximation of the cuts of any H ∈ H

requires Ω
(
n2/ϵ

)
bits.

Assume without loss of generality that the hyperedge e1,2,1 is in H but not in Ĥ. Let Si =
{ui} ∪ {W \ {w1}}. Observe that by the symmetry of the construction,

cutH (Si) ∈
{

1

16ϵ
,

1

16ϵ
+ 1, . . . ,

1

8ϵ

}
.

If there exists some i such that cutH (Si) ̸= cutĤ (Si) then any quality 1 + ϵ sparsifier for Ĥ does
not approximate H, since ∣∣∣∣cutĤ (Si)

cutH (Si)
− 1

∣∣∣∣ ≥
∣∣∣∣∣ 1
8ϵ − 1

1
8ϵ

− 1

∣∣∣∣∣ = 8ϵ.

Hence, we proceed with the case where H, Ĥ have the same value for every cut Si. Assume there
exists some quality (1 + ϵ)-sparsifier H ′ for both H, Ĥ. Now observe that for H

cutH (S1 ∪ S2) = cutH (S1) + cutH (S2)− 1,

and since H ′ is a quality (1 + ϵ)-sparsifier for H, then

cutĤ (S1 ∪ S2) ≥ (1− ϵ) (cutH (S1) + cutH (S2)− 1) .

We can also get an upper bound on the cut S1 ∪ S2 in Ĥ by observing that since e1,2,1 ̸∈ Ĥ then

cutĤ (S1 ∪ S2) = cutĤ (S1) + cutĤ (S2) = cutH (S1) + cutH (S2) ,

where the second equality is by our assumption that H, Ĥ have the same value for every cut Si.
Since H ′ also (1 + ϵ)-approximates the cuts of Ĥ we have

cutH′ (S1 ∪ S2) ≤ (1 + ϵ) (cutH (S1) + cutH (S2)) .

However,
(1− ϵ) (cutH (S1) + cutH (S2)− 1) ≤ (1 + ϵ) (cutH (S1) + cutH (S2)) ,

whenever cutH (S1) + cutH (S2) ≤ 1
4ϵ Therefore H ′ does not (1 + ϵ) approximates both H, Ĥ and

every hypergraph in H requires a unique sparsifier.

25

6 Deformation Lower Bounds

In this section we prove lower bound on the support size for approximating several families of split-
ting functions. In particular, we show a lower bound for additive splitting function (Theorem 1.14).
The results are all based on the following technical lemma, which we prove at the end of the section.

Lemma 6.1. Let e be a hyperedge with a splitting function ge : 2
e → R+. For every S, T ⊆ e such

that |S| = |T | = t, denote

δt(S, T) := 1− ge(S ∪ T)

ge(S) + ge(T)
.

If for some t < |e|/2 at least a ρ-fraction of the pairs (S, T) ∈
((et)

2

)
satisfy δt(S, T) > δ̂ for some δ̂

such that ρδ̂2 ≥ Ω(|e|−1/2), then every (1+ δ̂/2)-approximation of e must have support size at least

Ω
(
ρδ̂2|e|/t

)
.

Informally, the lemma states that if a splitting function is far from linear on a large enough
fraction of pairs of sets of size t, then it cannot be closely approximated by a sum of hyperedges
with small support. The lemma is based on identifying

δt(S, T) := 1− ge(S ∪ T)

ge(S) + ge(T)

as a quantity that describes how close to linear is the function ge for subsets of size t, S, T ⊆ e. We
then show that if the function is far from linear on a large enough fraction, of pairs of sets of size
t, then it cannot be closely approximated by a sum of hyperedges with small support.

Note that δt is related to the notion of curvature of submodular functions, the total curvature
of a submodular function ge is given by

cge := 1− min
S⊆e,v∈e\S

ge(S ∪ {v})− ge(S)

ge({v})
.

Intuitively, the curvature describes how far from linear the function ge is in the worst case. The
curvature is used to parametrize the quality of approximation in maximization of submodular
functions; where if a function has low curvature, hence it is close to linear, then it is possible to
achieve a better approximation [CC84, Von10].

The quantity δt differs from the curvature in two regards. First, δt describes a relation two sets
of size t and not the marginal contribution of adding a single element. Second, in the optimization
setting the guarantees depend on the worst case curvature, while our lemma requires δt to be large
only on a constant fraction of subsets of size t.

6.1 Support Size Lower Bounds for Approximating Splitting Functions

This section proves support size lower bounds for approximating several families of common splitting
functions. A summary of the results is provided in Table 1.

We begin by presenting several results for different families of cardinality based splitting func-
tions. For cardinality based splitting functions the value δt(S, T) only depends on |S∪T |, therefore
it is possible to find a uniform bound on δt(S, T) for all sets of size t. This idea is formalized in the
following corollary of Lemma 6.1.

26

Corollary 6.2 (Lemma 6.1 for Cardinality Based Splitting Functions). Let e be a hyperedge with
a cardinality based splitting function ge : 2

e → R+. For every t ≤ |e| denote

δ̄t := 1− max
S1,S2⊆V :|S1|=|S2|=t

ge(S1 ∪ S2)

ge(S1) + ge(S2)
.

Suppose δ̄t > 0 for some t ≤ |e|/2, then every (1+ δ̄t/2)-approximation of e must have support size
at least Ω

(
δ̄2t |e|/t

)
.

Proof. Let ρ = 1, and observe that δt(S, T) ≥ δ̄t for every S, T ⊆ e of size t. Applying Lemma 6.1
concludes the proof.

We begin with the lower bound for additive splitting functions (Theorem 1.14).

Proof. Let e be a hyperedge with an additive splitting function ge, with parameter K. We will
show that every 1.1-approximation of ge requires support size Ω (|e|/K). Note that if K > |e|/2
then Ω(|e|/K) = Ω(1) and the lower bound is trivial. Otherwise, note that for t = K we have
δ̄t ≥ 1/2. Applying Corollary 6.2 we find that every 1.1-approximation of e requires support size
at least Ω (|e|/K).

We also provide results for polynomial and logarithmic cardinality based splitting functions.
Both results are based on identifying a constant t such that δ̄t is strictly positive constant.

Corollary 6.3 (Lower Bound for Polynomial Cardinality Based Splitting Functions). Let ĝ(S) =

|S|β or ĝ(S) = min
(
|S|β,

∣∣S̄∣∣β) with β ∈ (0, 0.999) and let e be a hyperedge with ge(S) = ĝ(|S|) as
its splitting function. Every

(
1 + (2−1 − 2β−2)

)
-approximation of ge must have support size at least

Ω
(
(2−1 − 2β−2)2|e|

)
.

Proof. Notice that for any t ≥ 1, we have

δ̄t = 1− (2t)β

2tβ
= 1− 2β−1.

Applying Corollary 6.2 with t = 1 concludes the proof.

Corollary 6.4. Let ĝ(S) = log (|S|) or ĝ(S) = min
(
log (|S|+ 1) , log(¯|S|+ 1)

)
and let e be a

hyperedge with ge(S) = ĝ(|S|) as its splitting function. Then every 1 + 1/5-approximation of ge
must have support size at least Ω (|e|).

Proof. Observe that for t = e5, we have

δ̄t = 1− log(2e5)

2 log(e5)
> 2/5.

Applying Corollary 6.2 with t = e5 concludes the proof.

We also present a general lower bound for all cardinality based splitting functions that is char-
acterized by the spread. The proof is based on showing that if δt is small for all t < r, for r ∈ N,
then ge(2

r) ≥ cr with c > 1. Hence, there exists some t < log(µe) with a large δt. We can then
apply Corollary 6.2 for this t.

27

Corollary 6.5. Let e be a hyperedge with cardinality based splitting function ge(S) = ĝ(|S|), for
some ĝ : [|e|] → R+. For every ϵ < 1/4, every (1 + ϵ)-approximation of e requires support size at

least Ω

(
ϵ2|e|/µlog−1

2 (2−4ϵ)
e

)
.

Proof. Assume without loss of generality that ĝ(1) = 1. Note that for every t, if δ̄t ≤ 2ϵ then

2ϵ ≥ 1− ĝ(2t)

2ĝ(t)
,

and hence ĝ(2t) ≥ (2 − 4ϵ)ĝ(t). Therefore, if δ̄t ≤ 2ϵ for all t ≤ r with r ∈ N, then ĝ(2r) ≥
(2− 4ϵ)r. However, since the maximum of the splitting function maxi∈[|e|] ĝ(i) = µe there exists

some t < 2log2−4ϵ(µe)+1 ≤ µ
log−1

2 (2−4ϵ)
e +1 such that δ̄t > 2ϵ. The lower bound follows from applying

Corollary 6.2 for this t.

Finally, we present a generalization of Corollary 6.5 to all unweighted splitting functions. A
splitting function is called unweighted if all its singleton cuts are equal to 1, i.e. ge({v}) = 1 for
all v ∈ e. One natural example of a family of unweighted splitting functions are matroid rank
functions.

The proof is similar to the cardinality based case, but in the unweighted case we have an
additional complication as not all cuts of size t have the same value. Therefore, we lower bound
both the value of the splitting function for sets of size t (as in the cardinality based case) and the
fraction of sets S of size t for which ge(S) is at least this value. To simplify the proof we focus

on pairs of sets of size t that are disjoint. Specifically, we show that for some t ≤ µ
Ω(1)
e , at least a

µ
−Ω(1)
e fraction of disjoint pairs of sets have δt(S, T) > 2ϵ. This technique introduces an additional

µ
Ω(1)
e factor in the lower bound in comparison to Corollary 6.5 as we apply Lemma 6.1 for only

ρ = µ
−Ω(1)
e fraction of pairs.

Corollary 6.6. Let ϵ < 1/4 and denote γ = log−1
2 (2 − 4ϵ). In addition, let e by a hyperedge with

an unweighted splitting function ge(S) such that µe < |e|1/(2γ). Then, every (1 + ϵ)-approximation

of e must have support size at least Ω
(
ϵ2|e|/µ2γ

e

)
.

Proof. Let Di =
{
(S, T) ∈

(
e
i

)
×
(
e
i

)
: S ∩ T = ∅

}
be the set of disjoint pairs of subsets of size i of e.

Also, let Pi = {(S, T) ∈ Di : δi(S, T) < 2ϵ} be subset of Di composed of all pairs with δi (S, T) < 2ϵ.
Denote α = 2− 4ϵ and let Ri =

{
(S, T) ∈ Pi : f(T) ≥ αi, f(S) ≥ αi

}
be the subset of Pi such that

f(S), f(T) ≥ αi. Observe that by the definition of µe, Rlogα(2µe) must be empty.

Fix β = µ−γ
e /16. We will show that if |P2j | ≥ (1−β)|D2j | for all j ≤ logα(2µe) then Rlogα(2µe) is

nonempty and hence this leads to contradiction. Therefore, there exists some q < 2logα(2µe) ≤ (2µe)
γ

such that |Pq| ≤ (1 − β)|Dq|. Hence, at least β|Dq| disjoint pairs of size q have δt(S, T) > 2ϵ.
Furthermore, for all q <

√
|e|, we have that |Dq| is at least 1/10 fraction of all pairs of sets of size

t by the following claim, which we prove later.

Claim 6.7. For all q <
√

|e|, |Dq| >
((|e|q)

2

)
/10.

Note that we can apply the claim as q ≤ µγ
e <

√
|e| by the theorem statement. Hence, at

least β/10 fraction of pairs (S, T) of size q have δq(S, T) > 2ϵ. Finally, using Lemma 6.1 with

t = q ≤ (2µe)
γ , δ̂ = 2ϵ and ρ = β/10 = µ−γ/160 we find that every (1 + ϵ)-approximation of e

requires support size Ω
(
ϵ2|e|/µ2γ

e

)
. Note that we can apply the theorem as ρδ̂2 ≥ Ω(|e|−1/2).

28

To finish the proof we now show that |P2j | ≥ (1 − β)|D2j | for all j ≤ logα(2µe) implies that
Rlogα(2µe) is nonempty. Denote the size of |R2j | = (1 − f(j))|D2j |, we will define f(j) recursively,
noting that f(0) = 0 since ge is unweighted. Let S ∈

(
e
2j

)
, and observe that S can be partitioned

into two disjoint subsets S1, S2 of size 2j−1. If both these subsets are in the intersection of R2j−1

and P2j−1 then

f(S) = f(S1 ∪ S2) ≥ α (ge(S1) + ge(S2)) ≥ αr+1,

where the first inequality is by δ2j−1(S1, S2) < 2ϵ as (S1, S2) ∈ P2j−1 and the second inequality is
since for every (S1, S2) ∈ R2j−1 we have ge(S1), ge(S2) ≥ α2j−1

. Hence, S can be a member in pairs of
R2j . By our assumption |P2j−1 | > (1−β)|D2j−1 |, and hence R2j−1∩P2j−1 ≥ (1−f(j−1)−β)|D2j−1 |.
Therefore, the fraction of disjoint pairs (S, T) ∈ D2j where both S, T can be partitioned into disjoint
subsets S1, S2 and T1, T2 that are in R2j−1∩P2j−1 is at least (1− f(j − 1)− β)2. We can now bound
f(j) by,

f(j) = 2f(j − 1) + 2β − (f(j − 1) + β)2 ≤ 2(f(j − 1) + β).

Solving this recursive formula we find f(j) ≤ 2j+1β. Recalling β = µ−γ
e /16 we get f(logα(2µe)) >

1/2 and hence Rlogα(2µe) is nonempty in contradiction. Therefore, there exists some q < µγ
e such

that |Pq| ≤ (1− β)|Dq|.
To finish the proof we turn back to proving Claim 6.7.

Proof. Let S, T be two random subsets of size j of e. Denote the event that S, T are disjoint by
DS,T . Observe that

Pr [DS,T] =

(
|e| − j

|e|

)(
|e|
j

)−1

=
(|e| − j)!(|e| − j)!

|e|!(|e| − 2j)!
=

∏
i∈{|e|,|e|−1,...,|e|−j+1}

i− j

i

=
∏

i∈{|e|,|e|−1,...,|e|−j+1}

1− j

i
≥
(
1− 2j

|e|

)j

≥

(
1− 2√

|e|

)√|e|

≥ e−2

(
1− 4√

|e|

)
,

where the first inequality is by |e| − j > n/2 for all j <
√
|e|, the second by j <

√
|e| and the third

by (1 − x/k)k ≥ e−x(1 − x2/|e|). This expression is larger than 1/10 for all |e| > 250. Therefore,
the fraction of disjoint pairs out of all pairs of subsets of size j is at least 1/10.

This concludes the proof of Corollary 6.6.

6.2 Proof of Lemma 6.1

We now return to proving Lemma 6.1.

Proof of Lemma 6.1. Throughout the proof we denote |e| = n. Let p = αn/t for α > 0 to be
determined later. Assume on the contrary that there exists a set of hyperedges of cardinality at
most p such that the sum of their splitting functions approximates ge with quality q = 1+ δ̂/2. Let
{ei}ki=1 be all the possible subsets of e of size p and denote k =

(
n
p

)
. Note that we can assume that

p ≥ 2 as otherwise the lower bound is trivial. Since a sum of submodular functions is submodular,
this is the most general case for decomposing e into hyperedges with maximal support p as any
two hyperedges e1, e2 with e1 ⊆ e2 can be combined into a single hyperedge with ge1 + ge2 as its
splitting function.

29

Starting with some notation let IT := {i ∈ [k] : ei ∩ T ̸= ∅} and h(S, I) :=
∑

i∈I gei(S ∩ ei).

Choose some subsets of size t of e S1, S2 ⊆ e with δt(S1, S2) ≥ δ̂. Notice that h(S1∪S2, IS1 \ IS2) =
h(S1, IS1 \ IS2), and hence we can write

h(S1 ∪ S2, [k]) = h(S1, IS1 \ IS2) + h(S2, IS2 \ IS1) + h(S1 ∪ S2, IS2 ∪ IS1)

≤ (1 + δ̂/2)ge(S1 ∪ S2) ≤ (1 + δ̂/2)(1− δ̂) (ge(S1) + ge(S2)) , (12)

where the first inequality is by our assumption that h(S, [k]) (1 + δ̂/2)−approximates ge(S) and
the second is since δt(S1, S2) ≥ δ̂. Observe that also

h(S1, [k]) = h(S1, IS1 \ IS2) + h(S1, IS1 ∩ IS2) ≥ (1− δ̂/2)ge(S1),

where the inequality is again by our assumption that h(S, [k]) (1 + δ̂/2)−approximates ge(S). Let
β1 := h(S1, IS1 ∩ IS2)/ge(S1), we can then write h(S1, IS1 \ IS2) ≥ (1 − δ̂/2 − β1)ge(S1). Similarly
observe that h(S2, IS2 \ IS1) ≥ (1 − δ̂/2 − β2)ge(S2) and denote β := max {β1, β2}. Substituting
back into Equation (12) we find

(1− δ̂/2− β)ge(S2) + (1− δ̂/2− β)ge(S1) ≤ (1 + δ̂/2)(1− δ̂) (ge(S1) + ge(S2)) .

Therefore, we find β = max {β1, β2} ≥ δ̂2/2. Recalling the definition of β this implies that either
h(S1, IS1 ∩ IS2) > δ̂2ge(S1)/2 or h(S2, IS1 ∩ IS2) > δ̂2ge(S2)/2. By the theorem assumption there

are ρ
((nt)

2

)
pairs of sets A,B ⊆ e with δt(A,B) ≥ δ̂, and following the same argument in each pair

at least one of A,B satisfies this lower bound. Hence, there must be at least one set T ⊆ e of size

t for which the lower bound is satisfied in at least ρ
(
n
t

)−1((nt)
2

)
≥ ρ
(
n
t

)
/4 pairs.

For every i ∈ [k] denote the set Qi = {P ⊆ e : |P | = t, P ∩ ei ̸= ∅, P ̸= T}. Note that by
symmetry |Qi| = |Q| for all i ∈ IT . Furthermore, we can use the following lemma to bound the
size of |Qi|, the proof of the lemma is provided later.

Claim 6.8. If α ≤ ρδ̂2/16, then |Qi| < ρδ̂2

8(1+δ̂/2)

(
n
t

)
for every i ∈ IT .

Using this notation we can rewrite h(T, [k]) as

h(T, [k]) =
∑
i∈IT

gei(T) =
∑
i∈IT

1

|Qi|
∑
P∈Qi

gei(T)

=
∑

P∈(et)\{T}

∑
i∈IT∩IP

1

|Qi|
gei(T) =

1

|Q|
∑

P∈(et)\{T}

h(T, IT ∩ IP),

where the second equality is since for every gei in the inner sum, i ∈ IT , IP . By the definition of T
we know that for at least ρ

(
n
t

)
/4 of the sets P ∈

(
e
t

)
satisfy h(T, IT ∩ IP) > δ̂2/2 · ge(T). Hence,

h(T, [k]) ≥ ρδ̂2

8|Q|

(
n

t

)
ge(T) > (1 + δ̂/2)ge(T).

Where the last inequality is by Claim 6.8. Therefore, h(T, [k]) does not (1 + δ̂/2)-approximates
ge(T) in contradiction to our assumption. It remains to prove Claim 6.8.

30

Proof of Claim 6.8. Recall Qi = {P ⊆ V : |P | = t, P ∩ ei ̸= ∅, P ̸= T}, hence the number of ele-
ments in Qi is the total number of sets of size t minus the number of sets that don’t intersect ei
minus 1. Formally, this is equal to |Qi| =

(
n
t

)
−
(
n−p
t

)
− 1. Examine,(

n

t

)−1

·
(
n− p

t

)
=

t!(n− t)!

n!
· (n− p)!

t!(n− p− t)!
=

(n− p)!

n!

(n− t)!

(n− p− t)!
=

n−p+1∏
i=n

i− t

i

=

n−p+1∏
i=n

1− t

i
≥

n−p+1∏
i=n

1− t

n− p
=

(
1− t

n− p

)p−1

.

Substituting p = αn/t and observing α = ρδ̂2/16 < 1/2, we find(
n

t

)−1

·
(
n− p

t

)
≥
(
1− t

n− αn/t

)αn/(2t)

=

(
1− t

n

1

1− α/t

)αn/(2t)

≥ exp (−2α)

(
1−

(
1

1− α/t

)2 t

n

)α

,

where the first inequality is from p ≥ 2. The second inequality stems from (1−x/k)k ≥ ex(1−x2/k)
and (1 − α/t)−1 < 2 since α < 1/2, t ≥ 1. We now split the analysis into the case where t < n1/3

and its complement. When t < n1/3, we have(
n

t

)−1

·
(
n− p

t

)
≥ exp (−2α)

(
1− 4

1

n2/3

)
≥ exp (−3α) ,

where the first inequality is from and t < n1/3, and the second is from
(
1− 4/n2/3

)
≥ e−α whenever

α ≥ Ω(1/
√
n) and n is large enough. For the case when t ≥ n1/3 observe that

1−
(

1

1− α/t

)2 t

n
>

1

3
,

for all n > N for some N > 0. Hence,(
n

t

)−1

·
(
n− p

t

)
≥ exp (−(2 + log(3))α) ≥ exp (−4α) ,

Overall, we find that in both cases
(
n
t

)−1 ·
(
n−p
t

)
≥ e−4α. Plugging this back to bound the size of

|Qi| we find

|Qi| =
(
n

t

)
−
(
n− p

t

)
− 1 <

(
1− e−4α

)(n
t

)
− 1.

To finish proving the claim we choose α such that

ρδ̂2

8(1 + δ̂/2)
≥ 1− e−4α > 1− e−4α −

(
n

t

)−1

.

Moving sides,

e−4α ≥ 1− δ̂2

8(1 + δ̂/2)
,

and using log(1− x) < −x for x ∈ (0, 1), we find that

α ≤ ρδ̂2

16
satisfies the requirement.

This concludes the proof of Lemma 6.1.

31

References

[ACK+16] Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff, and Qin
Zhang. On sketching quadratic forms. In Innovations in Theoretical Computer Science, ITCS’16,
pages 311–319. ACM, 2016. doi:10.1145/2840728.2840753.

[ADK+16] Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. On
fully dynamic graph sparsifiers. In IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS, pages 335–344. IEEE Computer Society, 2016.

[AGK14] Alexandr Andoni, Anupam Gupta, and Robert Krauthgamer. Towards (1 +)-approximate
flow sparsifiers. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 279–293. SIAM, 2014.

[AS20] Sepehr Assadi and Sahil Singla. Improved truthful mechanisms for combinatorial auctions with
submodular bidders. SIGecom Exch., 18(1):19–27, 2020. doi:10.1145/3440959.3440964.

[BK96] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages
47–55. ACM, 1996. doi:10.1145/237814.237827.

[BK15] András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts and flows
in capacitated graphs. SIAM J. Comput., 44(2):290–319, 2015. doi:10.1137/070705970.

[BSS14] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers.
SIAM Rev., 56(2):315–334, 2014. doi:10.1137/130949117.

[BST19] Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of sparsification
for graphs and hypergraphs. In 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, pages 910–928. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.
00059.

[CC84] Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the greedy
algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem.
Discret. Appl. Math., 7(3):251–274, 1984. doi:10.1016/0166-218X(84)90003-9.

[CCPS21] Ruoxu Cen, Yu Cheng, Debmalya Panigrahi, and Kevin Sun. Sparsification of directed graphs
via cut balance. In 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, volume 198 of LIPIcs, pages 45:1–45:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.45.

[CKKL12] Mahdi Cheraghchi, Adam R. Klivans, Pravesh Kothari, and Homin K. Lee. Submodular functions
are noise stable. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, pages 1586–1592. SIAM, 2012. doi:10.1137/1.9781611973099.126.

[CKN20] Yu Chen, Sanjeev Khanna, and Ansh Nagda. Near-linear size hypergraph cut sparsifiers. In
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 61–72. IEEE,
2020.

[CKST19] Charles Carlson, Alexandra Kolla, Nikhil Srivastava, and Luca Trevisan. Optimal lower bounds
for sketching graph cuts. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2565–2569, 2019.

[dCSHS16] Marcel Kenji de Carli Silva, Nicholas J. A. Harvey, and Cristiane M. Sato. Sparse sums of positive
semidefinite matrices. ACM Trans. Algorithms, 12(1):9:1–9:17, 2016. doi:10.1145/2746241.

[DDS+13] Nikhil R. Devanur, Shaddin Dughmi, Roy Schwartz, Ankit Sharma, and Mohit Singh. On the
approximation of submodular functions. CoRR, abs/1304.4948, 2013. arXiv:1304.4948.

[DS06] Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for combinato-
rial auctions with submodular bidders. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, pages 1064–1073. ACM Press, 2006.

32

https://doi.org/10.1145/2840728.2840753
https://doi.org/10.1145/3440959.3440964
https://doi.org/10.1145/237814.237827
https://doi.org/10.1137/070705970
https://doi.org/10.1137/130949117
https://doi.org/10.1109/FOCS.2019.00059
https://doi.org/10.1109/FOCS.2019.00059
https://doi.org/10.1016/0166-218X(84)90003-9
https://doi.org/10.4230/LIPIcs.ICALP.2021.45
https://doi.org/10.1137/1.9781611973099.126
https://doi.org/10.1145/2746241
http://arxiv.org/abs/1304.4948

[Fei09] Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM J. Comput.,
39(1):122–142, 2009. doi:10.1137/070680977.

[FK14] Vitaly Feldman and Pravesh Kothari. Learning coverage functions and private release of
marginals. In Proceedings of The 27th Conference on Learning Theory, COLT 2014, volume 35
of JMLR Workshop and Conference Proceedings, pages 679–702. JMLR.org, 2014.

[FKV13] Vitaly Feldman, Pravesh Kothari, and Jan Vondrák. Representation, approximation and learn-
ing of submodular functions using low-rank decision trees. In COLT 2013 - The 26th Annual
Conference on Learning Theory, volume 30 of JMLR Workshop and Conference Proceedings,
pages 711–740. JMLR.org, 2013.

[FV06] Uriel Feige and Jan Vondrák. Approximation algorithms for allocation problems: Improving the
factor of 1 - 1/e. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2006), pages 667–676. IEEE Computer Society, 2006. doi:10.1109/FOCS.2006.14.

[FV16] Vitaly Feldman and Jan Vondrák. Optimal bounds on approximation of submodular and XOS
functions by juntas. SIAM J. Comput., 45(3):1129–1170, 2016. doi:10.1137/140958207.

[GHIM09] Michel X. Goemans, Nicholas J. A. Harvey, Satoru Iwata, and Vahab S. Mirrokni. Approxi-
mating submodular functions everywhere. In Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, pages 535–544. SIAM, 2009.

[GHRU13] Anupam Gupta, Moritz Hardt, Aaron Roth, and Jonathan R. Ullman. Privately releasing
conjunctions and the statistical query barrier. SIAM J. Comput., 42(4):1494–1520, 2013.
doi:10.1137/110857714.

[GK10] Ryan Gomes and Andreas Krause. Budgeted nonparametric learning from data streams. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 391–
398. Omnipress, 2010.

[HKNR98] Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde. Characterizing
multiterminal flow networks and computing flows in networks of small treewidth. J. Comput.
Syst. Sci., 57(3):366–375, 1998. doi:10.1006/jcss.1998.1592.

[JLLS23] Arun Jambulapati, James R. Lee, Yang P. Liu, and Aaron Sidford. Sparsifying sums of norms.
CoRR, abs/2305.09049, 2023. arXiv:2305.09049.

[Kar93] David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm.
In Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms,
pages 21–30. ACM/SIAM, 1993.

[KG11] Andreas Krause and Carlos Guestrin. Submodularity and its applications in optimized infor-
mation gathering. ACM Trans. Intell. Syst. Technol., 2(4):32:1–32:20, 2011. doi:10.1145/

1989734.1989736.

[KK15] Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In Pro-
ceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015,
pages 367–376. ACM, 2015. doi:10.1145/2688073.2688093.

[KKTY21] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Towards tight
bounds for spectral sparsification of hypergraphs. In STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 598–611. ACM, 2021. doi:10.1145/3406325.

3451061.

[KPZ19] Nikolai Karpov, Marcin Pilipczuk, and Anna Zych-Pawlewicz. An exponential lower bound
for cut sparsifiers in planar graphs. Algorithmica, 81(10):4029–4042, 2019. doi:10.1007/

s00453-018-0504-8.

[KR13] Robert Krauthgamer and Inbal Rika. Mimicking networks and succinct representations of ter-
minal cuts. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’13, page 1789–1799. SIAM, 2013.

33

https://doi.org/10.1137/070680977
https://doi.org/10.1109/FOCS.2006.14
https://doi.org/10.1137/140958207
https://doi.org/10.1137/110857714
https://doi.org/10.1006/jcss.1998.1592
http://arxiv.org/abs/2305.09049
https://doi.org/10.1145/1989734.1989736
https://doi.org/10.1145/1989734.1989736
https://doi.org/10.1145/2688073.2688093
https://doi.org/10.1145/3406325.3451061
https://doi.org/10.1145/3406325.3451061
https://doi.org/10.1007/s00453-018-0504-8
https://doi.org/10.1007/s00453-018-0504-8

[KZ23] Jannik Kudla and Stanislav Zivný. Sparsification of monotone k-submodular functions of low
curvature. CoRR, abs/2302.03143, 2023. arXiv:2302.03143.

[LB11] Hui Lin and Jeff A. Bilmes. A class of submodular functions for document summarization. In
The 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, Proceedings of the Conference 2011, pages 510–520. The Association for Computer
Linguistics, 2011.

[LM17] Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. In Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, pages 2308–2318, 2017.

[LM18] Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-laplacians, cheeger inequalities and
spectral clustering. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, volume 80 of Proceedings of Machine Learning Research, pages 3020–3029. PMLR,
2018.

[LVS+21] Meng Liu, Nate Veldt, Haoyu Song, Pan Li, and David F. Gleich. Strongly local hypergraph
diffusions for clustering and semi-supervised learning. In WWW ’21: The Web Conference 2021,
pages 2092–2103. ACM / IW3C2, 2021. doi:10.1145/3442381.3449887.

[McC05] S Thomas McCormick. Submodular function minimization. Handbooks in operations research
and management science, 12:321–391, 2005.

[OST23] Kazusato Oko, Shinsaku Sakaue, and Shin-ichi Tanigawa. Nearly tight spectral sparsification of
directed hypergraphs. In 50th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2023, volume 261 of LIPIcs, pages 94:1–94:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.94.

[Pog17] Yosef Pogrow. Solving symmetric diagonally dominant linear systems in sublinear time (and some
observations on graph sparsification). Master’s thesis, Weizmann Institute of Science, 2017.
URL: https://www.wisdom.weizmann.ac.il/~robi/files/YosefPogrow-MScThesis-2017_

12.pdf.

[Qua22] Kent Quanrud. Quotient sparsification for submodular functions. Manuscript, 2022. URL:
https://kentq.s3.amazonaws.com/submodular-sparsification.pdf.

[RY22] Akbar Rafiey and Yuichi Yoshida. Sparsification of decomposable submodular functions. In
Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pages 10336–10344. AAAI Press,
2022.

[ST11] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput.,
40(4):981–1025, 2011. doi:10.1137/08074489X.

[SY19] Tasuku Soma and Yuichi Yoshida. Spectral sparsification of hypergraphs. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 2570–
2581. SIAM, 2019. doi:10.1137/1.9781611975482.159.

[TIWB14] Sebastian Tschiatschek, Rishabh K. Iyer, Haochen Wei, and Jeff A. Bilmes. Learning mixtures
of submodular functions for image collection summarization. In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014,
pages 1413–1421, 2014.

[VBK20] Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Minimizing localized ratio cut objectives
in hypergraphs. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 1708–1718. ACM, 2020. doi:10.1145/3394486.3403222.

[VBK21] Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Approximate decomposable submodular
function minimization for cardinality-based components. In Advances in Neural Information
Processing Systems 34, NeurIPS2021, pages 3744–3756, 2021.

34

http://arxiv.org/abs/2302.03143
https://doi.org/10.1145/3442381.3449887
https://doi.org/10.4230/LIPIcs.ICALP.2023.94
https://www.wisdom.weizmann.ac.il/~robi/files/YosefPogrow-MScThesis-2017_12.pdf
https://www.wisdom.weizmann.ac.il/~robi/files/YosefPogrow-MScThesis-2017_12.pdf
https://kentq.s3.amazonaws.com/submodular-sparsification.pdf
https://doi.org/10.1137/08074489X
https://doi.org/10.1137/1.9781611975482.159
https://doi.org/10.1145/3394486.3403222

[VBK22] Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Hypergraph cuts with general splitting
functions. SIAM Rev., 64(3):650–685, 2022. doi:10.1137/20m1321048.

[Von10] Jan Vondrák. Submodularity and curvature: The optimal algorithm (combinatorial optimization
and discrete algorithms). RIMS Kokyuroku Bessatsu, 23:253–266, 2010. URL: http://hdl.
handle.net/2433/177046.

[Yam16] Yutaro Yamaguchi. Realizing symmetric set functions as hypergraph cut capacity. Discret.
Math., 339(8):2007–2017, 2016. doi:10.1016/j.disc.2016.02.010.

[ZLS22] Yu Zhu, Boning Li, and Santiago Segarra. Hypergraph 1-spectral clustering with general sub-
modular weights. In 56th Asilomar Conference on Signals, Systems, and Computers, ACSSC
2022, pages 935–939. IEEE, 2022. doi:10.1109/IEEECONF56349.2022.10052065.

A Chernoff Bounds

We use the following versions of the Chernoff bound throughout the paper.

Lemma A.1 (Chernoff bound for bernoulli random variables). Let X1, . . . , Xm be independent
random variables taking values in {0, 1}. Let X denote their sum and µ = E [X]. Then,

∀δ ≥ 0, Pr [|X − µ| ≥ δµ] ≤ 2 · exp
(
− δ2µ

2 + δ

)
.

Lemma A.2 (Chernoff bound for bounded random variables, Theorem 6.1 in [AGK14]). Let
X1, . . . , Xm ≥ 0 be independent random variables such that either Xi is deterministic or Xi ∈ [0, b].
Let X denote their sum and µ = E [X], then,

∀δ > 0, Pr [|X − µ| ≥ δµ] ≤ 2 · exp
(
− δ2µ

(2 + δ)b

)
.

Additionally,

∀δ ∈ [0, 1], Pr [|X − µ| ≥ δµ] ≤ 2 · exp
(
−δ2µ

3b

)
.

B Approximating Coverage Functions

Due to the wide prevalence of submodular hypergraph cut functions, our results have several
applications. One example is finding a succinct representation for coverage functions.

Definition B.1. A function f : 2V → R+ is called a coverage function over ground set W with
weight function ρ : W → R+ if there exists a collection {Av}v∈V where each Av ⊆ W , such that

∀S ⊆ V, f(S) =
∑

w∈
⋃

v∈S Av

ρ(w).

Coverage functions are commonly used as objective functions, for example in sensor-placement
problems [KG11]. The running time of algorithms for these problems may be improved considerably
by decreasing the size of the ground set |W |. To this end, the next corollary shows that every
coverage function can be approximated by a coverage function with ground-set size Õϵ(n). In
general, the given ground set might have size 2n, hence the decrease in size may be exponential.

35

https://doi.org/10.1137/20m1321048
http://hdl.handle.net/2433/177046
http://hdl.handle.net/2433/177046
https://doi.org/10.1016/j.disc.2016.02.010
https://doi.org/10.1109/IEEECONF56349.2022.10052065

Corollary B.2. Let e be a hyperedge whose splitting function ge is a coverage function, and let K :=
maxw∈W |{v ∈ V : w ∈ Av}| The e can be (1 + ϵ)-approximated by O(ϵ−2n log n) hyperedges with
support size at most K. Furthermore, the resulting sparsifier is a coverage function on O(ϵ−2n log n)
elements.

This result was recently obtained independently in [Qua22], using two different proof methods.
One of them is by reduction to (sparsification of) undirected hypergraph cuts. Our proof is simpler,
and designs a reduction to (sparsification of) additive splitting, for which we can apply Theorem 1.7.

Proof. For w ∈ W , let Vw := {v ∈ V : w ∈ Av}. Observe that f(S) can be written as

f(S) =
∑

w∈
⋃

v∈S Av

ρ(w) =
∑
w∈W

ρ(w) · 1|Vw∩S|>0 =
∑
w∈W

ρ(w) ·min (|Vw ∩ S| , 1) .

Hence, f can be written as a sum of |W | splitting functions of the form gw : S 7→ ρ(w) ·
min (|Vw ∩ S| , 1). Observe that the spread of each gw is µgw = 1, therefore Theorem 1.7 yields
the desired result. Finally, note that the resulting sparsifier is a reweighted subgraph, hence it is a
coverage function with O(ϵ−2n log n) elements.

C Application to Terminal Cut Functions

Terminal Cut Functions. Let G = (V,E,w) be some undirected graph and let T ⊆ V be a
special set of vertices called the terminals of G. Denote |T| = k. The terminal cut function of G is
defined as

∀S ⊆ T, cutG(S, S̄) = min
U⊆V :U∩T=S

∑
e∈δ(U)

w(e),

where δ(U) is the set of edges with exactly one endpoint in U . Note that the terminal cut function
cutG(S) : 2T → R+, of G is submodular. In [HKNR98], the authors show that it is possible to

construct a graph with O(22
k
) vertices that preserves the terminal cut function of G exactly. On

the other hand, [KR13, KPZ19] showed that a minimum of 2Ω(k) vertices is necessary to preserve
the terminal cut function of G, even for planar graphs.

In the approximate case, a construction of quality 1+ϵ with Õ(poly(k, ϵ−1)) vertices was shown
for bipartite graphs by [AGK14, ADK+16]. However, there is no known upper or lower bound
for the size of a data structure approximating the cuts of general graphs. One such possible data
structure would be to represent the terminal cut function as cuts of a submodular hypergraph
with simple splitting functions. Then, using Theorem 1.4 we can achieve a small data structure to
represent the graph cuts. However, it turns out that this is not possible using the all-or-nothing
splitting function.

Theorem C.1 (Theorem 3.3 in [Yam16]). If a symmetric submodular function f : 2V → R+ can
be realized as a cut capacity function of an undirected hypergraph with nonnegative capacities, then

∀i ∈ [V],∀S ∈
(
V

i

)
, (−1)if (i)(S) ≤ 0,

where
f (i)(S) =

∑
X⊆S

(−1)|S\X|f(X).

36

Consider the following counter-example, let G = (V,E) be the star graph with 4 leaves and
a central vertex, where the terminals T = {t1, t2, t3, t4} are the leaves. Denoting its terminal cut

function as fG, observe that f
(3)
G ({t1, t2, t3}) = −2 < 0. Hence, by Theorem C.1, f cannot be

realized as a cut capacity function of an undirected hypergraph. However, in this case fG is exactly
the small-side splitting function. Therefore, we pose the following question - is there a class of
simple splitting functions that can represent the terminal cut function of any graph?

D Proof of Expectation for Symmetric Additive Decomposition

Proof of Claim 4.4. Let Si = S ∩ ei, S̄i = S̄ ∩ ei be the intersection between S and the sampled
hyperedge. Assume without loss of generality that |S| < |S̄|. Observe that the function min(x, y,K)
is concave, and hence by Jensen’s inequality

E
[
min(|Si| /p,

∣∣S̄i

∣∣ /p,K)
]
≤ min(E [|Si| /p] ,E

[∣∣S̄i

∣∣ /p] ,K) = min(|S| ,
∣∣S̄∣∣K) = ge(S),

where the second inequality is since Si, S̄i are independent. Hence, it only remains to prove that
E [Ngei(S)] ≥ (1 − 2ϵ′)ge(S). We split the analysis into two cases, when |S| < K/2 and its
complement. Starting with the case when |S| is small, observe that setting δ = K/|S| > 2 we have
by Claim 4.2 that

Pr [|Si| ≥ pK] ≤ 2|e|−
cδ2|S|

(2+δ)Kϵ′2 ≤ 2|e|−
cδ|S|
2K = 2|e|−

c
2 ,

where the second inequality is by δ/(2 + δ) > 1/2 when δ > 2. Choosing c > 10 we find that the
probability is at most |e|−5. Note that K < |e|/2, otherwise it doesn’t affect the splitting function.
Hence, |S̄| ≥ 3K/2 therefore using Claim 4.2 again we have (setting δ = 1/2),

Pr
[∣∣S̄i

∣∣ < pK
]
≤ 2|e|−

cδ2|S̄|
3Kϵ′2 ≤ 2|e|−

3cK/2

12Kϵ′2 ≤ 2|e|−4c,

where the last inequality is by ϵ′ = ϵ/4 and ϵ < 1. Choosing c > 2 we find that the probability that
both events not occur is at most 4|e|−5. Note that the expectation of Ngei(S) is given by

E [Ngei(S)] =

⌊pK⌋∑
j=0

j

p
(Pr

[
|Si| = j, |S̄i| ≥ j

]
+ Pr

[
|Si| > j, |S̄i| = j

]
) +K Pr

[
|Si| > pK, |S̄| > pK

]
.

Hence, we can bound the expectation from below by keeping only the most significant terms

E [Ngei(S)] ≥
⌊pK⌋∑
j=0

j

p
Pr
[
|Si| = j, |S̄i| ≥ j

]
≥

⌊pK⌋∑
j=0

j

p
Pr [|Si| = j] Pr

[
|S̄i| ≥ j

]
≥ Pr

[
|S̄i| ≥ pK

] ⌊pK⌋∑
j=0

j

p
Pr [|Si| = j] ≥

(
1− 4|e|−5

) ⌊pK⌋∑
j=0

j

p
Pr [|Si| = j] ,

where the second inequality is by the independence of Si, S̄i and the last by substituting the bound
Pr
[
|S̄i| < pK

]
. Now adding and subtracting the rest of the possible values of |Si| we get

E [Ngei(S)] ≥
(
1− 4|e|−5

) |S|∑
j=0

j

p
Pr [|Si| = j]−

|S|∑
j=⌊pK⌋+1

j

p
Pr [|Si| = j]

≥
(
1− 4|e|−5

)(E [|Si|]
p

− |S|2

p
Pr [|Si| > pK]

)
,

37

where the last inequality is by j, |S| − ⌊pK⌋ < |S|. Note that E [|Si|] /p = |S| = ge(S) since
|S| < K < |S̄|. Recall that p = cϵ′2K−1 log |e| and observe,

|S|2

p
Pr [|Si| > pK] ≤ |e|2K

c|e|5 log |e|
≤ 1

10|e|2
,

where the first inequality is by substituting the bound for Pr [|Si| > pK] and the second by K < |e|,
log |e| > 1 and c > 10. Hence, we obtain E [Ngei(S)] ≥ (1− 4|e|−5)(ge(S)− |e|−2) ≥ (1− 2ϵ′)ge(S)
with the last inequality by ϵ−2 < |e|.

Now we turn to the case |S| > K/2. Observe that for Ngei(S) = min(|Si|/p, |S̄i|/p,K) <
(1 − ϵ′)ge(S) we must have min

(
|Si|,

∣∣S̄i

∣∣) < (1 − ϵ′)p|S|. By Claim 4.2 this event happens with

probability at most 4|e|−
cϵ′2|S|
3Kϵ′2 ≤ 4|e|−

c
6 . Therefore,

E [Ngei(S)] ≥
(
1− 4|e|−

c
6

)
(1− ϵ′)p|S|/p ≥ (1− 2ϵ′)|S| = (1− 2ϵ′)ge(S),

where the last inequality is by setting c > 15 and ϵ2 > 1/|e|.

38

	Introduction
	Sparsification: All Submodular Hypergraphs
	Sparsification: Parameterized by Spread
	Succinct Representation
	Deformation Lower Bounds
	Related Work
	Concluding Remarks

	Polynomial Sparsifiers for Submodular Hypergraphs
	Sparsification of Monotone Hypergraphs (Theorem 1.5)

	Sparsifiers for Finite-Spread Splitting Functions
	Proof of Lemma 3.6

	Deformation of Additive Splitting Functions
	Proof of Lemma 4.1

	Encoding-Size Lower Bounds
	Proof of Lemma 5.1
	Directed Hypergraph Encoding Size

	Deformation Lower Bounds
	Support Size Lower Bounds for Approximating Splitting Functions
	Proof of Lemma 6.1

	Chernoff Bounds
	Approximating Coverage Functions
	Application to Terminal Cut Functions
	Proof of Expectation for Symmetric Additive Decomposition

