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Abstract. The problem of partitioning an edge-capacitated graph on n
vertices into k balanced parts has been amply researched. Motivated by
applications such as load balancing in distributed systems and market
segmentation in social networks, we propose a new variant of the prob-
lem, called Multiply Balanced k Partitioning, where the vertex-partition
must be balanced under d vertex-weight functions simultaneously.
We design bicriteria approximation algorithms for this problem, i.e., they
partition the vertices into up to k parts that are nearly balanced simul-
taneously for all weight functions, and their approximation factor for
the capacity of cut edges matches the bounds known for a single weight
function times d. For the case where d = 2, for vertex weights that are
integers bounded by a polynomial in n and any fixed ε > 0, we obtain
a (2 + ε, O(

√
logn log k))-bicriteria approximation, namely, we partition

the graph into parts whose weight is at most 2+ε times that of a perfectly
balanced part (simultaneously for both weight functions), and whose cut
capacity is O(

√
logn log k) · OPT. For unbounded (exponential) vertex

weights, we achieve approximation (3, O(logn)).
Our algorithm generalizes to d weight functions as follows: For vertex
weights that are integers bounded by a polynomial in n and any fixed
ε > 0, we obtain a (2d + ε, O(d

√
logn log k))-bicriteria approximation.

For unbounded (exponential) vertex weights, we achieve approximation
(2d+ 1, O(d logn)).

1 Introduction

In the k-balanced partitioning problem (aka minimum k-partitioning) the
input is an edge-capacitated graph and an integer k, and the goal is to partition
the graph vertices into k parts of equal size, so as to minimize the total capacity
of the cut edges (edges connecting vertices in different parts). The problem has
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many applications, ranging from parallel computing and VLSI design to social
networks, as we discuss further below. The above problem is known to be NP-
hard. Even the special case where k = 2 (called minimum bisection) is already
NP-hard [7] and several approximation algorithms were designed [13,5,2,17].
For constant k the polynomial-time algorithm of MacGregor [14] can solve
the problem on trees. However, if k is not constant the problem is hard to
approximate within any finite factor [1]. Several heuristics were proposed, see
e.g. [10,16,15,9] but they do not guarantee any upper bounds on the cut capacity.
It is therefore common to consider a bicriteria approximation, which relaxes the
balance constraint.

Formally, let G = (V,E) be a graph of n vertices. In a (k, ν)-balanced parti-
tion, the vertex set V is partitioned into at most k parts, each of size at most
νn/k, and the cut capacity is compared against an optimal (minimum cut ca-
pacity) perfectly balanced k-partition [12,18,4,1,11,6]. In the weighted version,
every vertex v ∈ V has a weight w(v) ≥ 0, and now in a (k, ν)-balanced parti-
tioning, there are at most k parts, and the total weight of every part is at most
νW/k, where W is the total weight of all the vertices. Let us emphasize that we
always consider graphs with edge capacities; the terms weighted or unweighted
graphs refer only to vertex weights. Throughout, we assume that there exists a
perfectly balanced k-partition, e.g., in the unweighted version this means that k
divides n.

Definition 1. An algorithm for k-balanced partitioning is said to give a
(ν, α)-bicriteria approximation if it finds a (k, ν)-balanced partition whose cut
capacity is at most αOPT, where OPT is the cut capacity of an optimal perfectly
balanced k-partition.

The k-balanced partitioning problem has numerous applications. Specif-
ically, in parallel computing, each vertex typically represents a task, its weight
represents the amount of processing time needed for that task, and edges rep-
resent the communication costs. In this example, k is the number of available
processors. However, this formulation does not support the case where we want
to distribute the load by two parameters, for example processing time and mem-
ory. A similar unsolved problem arises in social networks and marketing: vertices
represent people, edges are the strength of the relationship between two people,
and each person has a value (potential revenue) for a marketing campaign. The
goal is to partition the people into k groups, such that there will be the least
connection between the groups, and the groups are balanced both by their size
and by their total marketing value.

Definition 2. In the Doubly Balanced k-Partitioning problem, the input
is a graph G = (V,E,w1, w2, c) and an integer k, where w1, w2 : V → R≥0 are
the vertex-weight functions and c : E → R≥0 is the edge capacity function. The
goal is to find a partition of the graph into at most k parts that are balanced by
both weight functions, so as to minimize the total capacity of the cut between the
different parts.



We emphasize that k-balanced partitioning refers to the case where
there is a single vertex-weight function, in contrast to Doubly Balanced k-
Partitioning. This is true even when one of the two vertex-weight functions
above is constant (aka uniform weights), which means balancing with respect to
the sizes (cardinalities) of the parts.

The problem can be generalized to d vertex-weight functions:

Definition 3. In the Multiply Balanced k Partitioning problem, the in-
put is a graph G = (V,E,w1, w2, ..., wd, c) and an integer k, where w1, ..., wd :
V → R≥0 are the vertex-weight functions and c : E → R≥0 is the edge capacity
function. The goal is to find a partition of the graph into at most k parts that
are balanced by all d weight functions, so as to minimize the total capacity of the
cut between the different parts.

2 Bicriteria Approximations and Our Results

The Doubly Balanced k-Partitioning problem is hard to approximate within
any finite factor, simply because setting w2(v) = 0 (or w2(v) = w1(v)) for all
v ∈ V yields the k-balanced partitioning problem as a special case. We there-
fore aim at a bicriteria approximation for the problem. Throughout, for S ⊆ V ,
1 ≤ j ≤ 2, and a vertex-weight function w, we define w(S) :=

∑
v∈S wj(v), and

let W := w(V ) denote the total weight of all the vertices.

Definition 4. A partition {Pi} of V is called (k, ν)-doubly balanced if it has
at most k parts, and for each part Pi and each j = 1, 2 it hold that wj(Pi) ≤
ν wj(V )/k.

Before defining the precise guarantees of our algorithm, we need to under-
stand the criteria that we are trying to approximate. In the unweighted version,
balanced partition asserts that every part is of size at most dnk e, which guar-
antees that there always exists a perfectly balanced partition. In the weighted
version, this might not be possible at all. For example, if the graph has a single
vertex whose weight exceeds that of all other vertices together, then obviously
there is no perfectly balanced partition. Therefore, in all existing algorithms
there is an implicit assumption that there exists a perfectly balanced partition
(which we are trying to approximate).

In Doubly Balanced k-Partitioning, we could assume the existence of
a perfectly doubly balanced partition as well. However, this might be an unrea-
sonable assumption in many applications, and thus we weaken the requirement
— we only assume that there is a perfectly balanced partition for each weight
separately, but not necessarily together.

Definition 5. A (ν, α)-bicriteria approximation for the Doubly Balanced
k-Partitioning problem finds a (k, ν)-doubly balanced partition, whose cut ca-
pacity is at most αOPT, where OPT is the maximum of the two optimal (k, 1)-
balanced partitions.



Throughout, the term OPT in the context of Doubly Balanced k-Partitioning
refers to the above value. Notice that the cut capacity of a perfectly k-doubly
balanced partition (if it exists) might be substantially larger than each of the
k-balanced partitions. Nevertheless, because we relax the balance constraints,
we require our algorithm to return a near k-doubly balanced partition whose
cut capacity is comparable to the larger of the two different partitions.

Definition 6. A partition {Pi} of the vertices is called (k+, ν)-balanced if w(Pi) ≤
ν W/k for every part Pi.

Notice that in a (k+, ν)-balanced partition, unlike a (k, ν)-balanced partition,
there can be more than k parts.

Definition 7. An algorithm for k-balanced partitioning is said to give a
(ν, α)+-bicriteria approximation if it finds a (k+, ν)-balanced partition whose cut
capacity is at most αOPT, where OPT is the cut capacity of an optimal perfectly
balanced k-partition.

Notice that because every (k, ν)-balanced partition is also a (k+, ν)-balanced
partition, then every (ν, α)-bicriteria approximation algorithm is also a (ν, α)+-
bicriteria approximation.

2.1 Our Results

Theorem 1. The Multiply Balanced k Partitioning problem admits a polynomial-
time (ν, α)-bicriteria approximation, according to the following table:

vertex-weight functions ν α
polynomial 2d+ ε O(d

√
log n log k)

arbitrary (exponential) 2d+ 1 O(d log n)

In particular, for the Doubly Balanced k-Partitioning problem, where d = 2 we
have:

vertex-weight functions ν α
polynomial 2 + ε O(

√
log n log k)

arbitrary (exponential) 3 O(log n)

When we say that the weights are polynomial we mean that the length nec-
essary to encode each weight is poly-logarithmic in n.

We now provide a high-level overview of the algorithm for the Doubly Bal-
anced k-Partitioning problem. The full details are presented in Section 3. Let
A be a (ν, α)+-bicriteria approximation algorithm for the k-balanced parti-
tioning problem.

1. Partition Stage: Divide the vertices into some number of parts t, with cut
capacity at most αOPT, and the respective weight of each part is bounded by
ν W1/k and ν W2/k (simultaneously). If t ≤ k then the balance requirements
are met. Otherwise proceed to stage 2.



2. Union Stage: Combine these t parts into k parts carefully, so that each part
S has weights w1(S) ≤ (1 + ν)W1/k and w2(S) ≤ (1 + ν)W2/k. This new
partition meets the same approximation factor for the cut capacity, because
combining parts can only decrease the capacity of the cut.

We present two different algorithms, each based on a different k-balanced
partition approximation algorithm, to achieve the two bounds stated in Theorem
1. We first present the special case d = 2 in Section 3, and then prove its
generalization to d weight functions in Section 4.

2.2 Polynomial Weights

We now show how it is possible to extend the approximation ratio for k-balanced
partitioning to hold also for weighted graphs.

Andreev and Räcke [1] showed a (1+ ε, log1.5 n) bicriteria approximation for
any constant ε > 0. Their work balances the graph with respect to the sizes of
the parts, but can be extended in a straightforward manner to the case where
the vertices of the graph have polynomial weights and the goal is to balance the
weight among the parts.

Theorem 2. Every (ν, α)-bicriteria approximation algorithm A for the k-balanced
partitioning problem in unweighted graphs can be used also in (polynomially)
weighted graphs with the same approximation factors.

Proof. Will appear at the full version.

If the running time of the unweighted version algorithm is f(n), where n is
the number of vertices, then the modified running time would be f(W ), where
W is the total weight. If the (integer) weights of the vertices are polynomial in n,
then the algorithm runs in polynomial time as well. Since the length necessary
to encode each weight is polylogarithmic in n, then it guarantees that the total
weight is polynomial.

For any fixed 0 < ε < 1, Feldman and Foschini [6] presented a (1 +
ε, O(log n)) bicriteria approximation for unweighted graphs. Krauthgamer, Naor
and Schwartz [11] presented a (2, O(

√
log n log k)) bicriteria approximation algo-

rithm. Their algorithm can be considered as a (1+ε, O(
√

log n log k))+ bicriteria
approximation algorithm, since during its main procedure it finds a (k+, 1 + ε)-
balanced partition. As explained above, we can modify this algorithm to support
weighted graphs.

2.3 Unrestricted Weights

To our knowledge, the only algorithm that achieves a bicriteria approximation
for graphs with exponential weight function is that of Even, Naor, Rao and
Schieber [4]. Their algorithm uses an algorithm for the ρ−separator problem in
order to achieve a (2, log n) bicriteria approximation with an exponential weight
function.



3 Bicriteria Approximation Algorithm for d = 2

Let A be a (ν, α)+-bicriteria approximation algorithm for the k-balanced parti-
tioning problem. For convenience sake, we will normalize the weights such that
for every v ∈ V we have wj(v) ← wj(v) · k

wj(V ) , where j = 1, 2. From the defi-

nition of (k, ν)-doubly balanced partition each part is of weight at most
νwj(V )

k ,

thus after the normalization each part is of weight at most
νwj(V )

k · k
wj(V ) = ν.

Moreover, after the normalization wj(V ) = k.
The algorithm works as follows. First, partition G using algorithm A with re-

spect to weight function w1. Let P = {P1, P2, . . . , P`1} be the resulting partition.
It holds for every P ∈ P, that w1(P ) ≤ ν. Let P> = {P | P ∈ P , w2(P ) > ν}.
In case that P> = ∅, then if `1 ≤ k then we have at most k parts and each part
satisfies the balance condition with respect to both w1 and w2. Let OPTj be the
cut capacity of an optimal perfectly balanced k-partition with respect to weight
function wj , j = 1, 2. The cut capacity of partition P ≤ αOPT1 ≤ αOPT.

In case that P> 6= ∅ we partition G using algorithm A with respect to weight
function w2. Let Q = {Q1, Q2, . . . , Q`2} be the resulting partition.

Fix a part P ∈ P>. Let Ri(P ) = Qi ∩ P , where Qi ∈ Q and 1 ≤ i ≤ `2. As
w2(Qi) ≤ ν it follows that w2(Ri(P )) ≤ ν for every 1 ≤ i ≤ `2.

Consider now the partition R that is composed of all the parts that are in
P \ P> and the parts Ri(P ) = Qi ∩ P , where 1 ≤ i ≤ `2, for every P ∈ P>.
Each part of this partition has weight at most ν with respect to w1 and to w2.
The cut capacity of this partition is at most αOPT1 +αOPT2 ≤ O(α) ·OPT.

The only problem with the partition R is that the number of its parts might
be as large at `1 · `2 and this may be larger than k.

In subsection 3.1 we describe a process that takes as an input this partition
and combines parts of it until it reaches a final partition with at most k parts
each of weight at most 1 + ν. As the the final partition is obtained only by
combining parts of the input partition, its cut capacity cannot exceed the cut
capacity of the input partition. In subsection 3.2 we show lower bounds for the
method of subsection 3.1.

3.1 Combining Partitions via Bounded Pair Scheduling

Let R = {R1, R2, . . . , R`3}. Each Ri ∈ R is represented by a pair of coordinates
(xi, yi), where xi = w1(Ri), yi = w2(Ri) and 1 ≤ i ≤ `3. Moreover, 0 ≤ xi, yi < ν

and
∑`3
i=1 xi =

∑`3
i=1 yi = k. In case that `3 ≤ k then the partition has all

the desired properties. Hence, we assume that `3 > k. This problem resembles
a known NP-hard problem, called Vector Scheduling with 2 dimensions.
Formally:

Definition 8. (Vector Scheduling) We are given a set J of n rational
d-dimensional vectors p1, . . . , pn from [0,∞)d and a number m. A valid solu-
tion is a partition of J into m sets A1, . . . , Am. The objective is to minimize
max1≤i≤m‖Āi‖∞ where Āi =

∑
j∈Ai pj is the sum of the vectors in Ai.



When d is constant, [8] shows a (d + 1) approximation, and a later work [3]
gives a PTAS for the problem.

Our problem is a special case of the VS, namely with d = 2. However, the ex-
isting algorithms approximate the objective with respect to the optimal solution
that can be achieved for a specific instance. We need to design an approximation
algorithm that bounds the maximal objective for a family of instances, and not
just for a specific instance. The family of input instances are the vectors pi such
that ‖pi‖∞ < ν and for all 1 ≤ j ≤ d,

∑n
i=1 p

j
i = k, where pj is the j’th element

of vector p.
Formally, we need to solve the following problem:

Definition 9. (Bounded Pair Scheduling)
INPUT: A number k and a set R of n > k elements, such that each element

is a pair (x, y) that holds 0 ≤ x, y < ν, and
∑n
i=1 xi =

∑n
i=1 yi = k.

OUTPUT: A partition of R into a set of k elements R1, . . . , Rk, such that
for all i = 1, . . . , k and Ri = (x(i), y(i)), it holds that 0 ≤ x(i) ≤ 1 + ν and
0 ≤ y(i) ≤ 1 + ν.

The algorithm below solves the bounded pair scheduling problem.
Consider now the following sets of elements:

1. S = {(x, y) | x < 1, y < 1}
2. A = {(x, y) | 1 ≤ x < 1 + ν, 1 ≤ y < 1 + ν}
3. Bx = {(x, y) | 1 ≤ x < ν, y < 1}
4. By = {(x, y) | x < 1, 1 ≤ y < ν}
5. Cx = {(x, y) | ν ≤ x < 1 + ν, y < 1}
6. Cy = {(x, y) | x < 1, ν ≤ y < 1 + ν}

Elements in A are balanced, and the minimum weight in each coordinate
exceeds 1, therefore, if all our elements were of type A we would be done - there
are no more than k balanced elements.

The B elements are “almost” balanced and the union of every element in Bx
with a element in By is a element in A.

The elements in C are not balanced and can not be trivially combined with
any other elements. The main effort of our algorithm is dealing with these ele-
ments.

The S elements are the ones which present a difficulty since both their co-
ordinates are not bounded below. Thus there may be a very large number of
them. However, they do give us the necessary maneuverability in the combining
process.

The auxiliary sets span the input set R, and because their criteria are ex-
clusive, every element in R fits to exactly one of these sets. We begin by divid-
ing the input set to the appropriate auxiliary sets. Clearly, the C sets remain
empty at this stage. As we show next, the algorithm iteratively combines ele-
ments. The meaning of combining elements Ri and Rj is creating a new element
(xi + xj , yi + yj) instead of them and assigning it to the appropriate set.



As long as there are two elements Ri, Rj ∈ S such that xi + xj < 1 and
yi + yj < 1 we pick such two elements Ri and Rj and combine them. At the
end of this stage it is guaranteed for every Ri, Rj ∈ S that either xi + xj ≥ 1 or
yi + yj ≥ 1.

Next, as long as there is a pair Ri and Rj ∈ S such that xi + xj ≥ 1 and
yi + yj ≥ 1 then it also holds for such a pair that xi + xj ≤ 2 < 1 + ν because
xi < 1 and xj < 1. Similarly, yi + yj ≤ 2 < 1 + ν. We combine such a pair to
Rij , and add it to A.

At the end of this stage it is guaranteed that for every Ri, Rj ∈ S either
xi + xj ≥ 1 and yi + yj < 1 or yi + yj ≥ 1 and xi + xj < 1.

Lemma 1. At this stage of the algorithm, for every pair Ri, Rj ∈ S it holds
that (xi + xj , yi + yj) fits to one of the elements Bx, By, Cx and Cy.

Proof. Will appear at the full version.

The algorithm proceeds as follows. We iteratively choose a pair Ri, Rj ∈ S
that minimizes max{xi + xj , yi + yj}. Since we choose the pair that minimizes
the maximum of the two coordinates it is guaranteed that all the pairs that
their combination is either in Bx or in By will be chosen before all the pairs
that their combination is either in Cx or in Cy. As long as there is a pair whose
combination belongs to Bx (or By), we combine it.

If we reach to a point that Bx and By are not empty and there is no longer
a pair of elements that its combination belong to either Bx or By we do the
following. As long as both Bx and By are not empty we combine an arbitrary pair
Ri ∈ Bx and Rj ∈ By. Notice that the combined element belongs to A because
1 ≤ xi +xj < 1 + ν as 1 ≤ xi < ν and xj < 1, and similarly, 1 ≤ yi + yj < 1 + ν.
After that, at most one of Bx and By is not empty. Assume that one of them is
not empty, and wlog let it be Bx.

Consider the following state of the algorithm: the sets By, Cx and Cy are
empty and the sets Bx and S are not empty. We now distinguish between two
cases. The case that there is at most one R ∈ S such that w1(R) < w2(R) and
the case that there is more than one such element in S. For the first case we
prove:

Lemma 2. If By and Cy are empty elements, and there is at most one R ∈ S
such that w1(R) < w2(R), then there is a way to combine the elements of S so
that the total number of different elements is at most k and every element is of
weight at most 1 + ν.

Proof. Will appear at the full version.

It stems from the lemma above that if we are in the case that there is at most
one R ∈ S such that w1(R) < w2(R) then we can reach the desired partition.
Thus, we assume now that there are at least two elements Rj , Rq ∈ S such
that w1(Rj) < w2(Rj) and w1(Rq) < w2(Rq). We choose an arbitrary element
Ri ∈ Bx. We know that xi < ν, hence xi+xj+xq < 1+ν. So even if we combine



Ri with Rj and Rq the x-coordinate is in the right range for A. The only question
is if the y-coordinate fits. If yi + yj ≥ 1, then we combine Ri and Rj as both yi
and yj are less than 1 we can remove them and add their combination to A. If
yi + yj < 1 then combine the elements Ri, Rj , Rq and add them to A, because
yi + yj < 1 and yq < 1 then yi + yj + yq < 2 < 1 + ν, and because yj + yq ≥ 1
by our assumption. We continue with this process until Bx gets empty.

Now both Bx and By are empty, and the next pair Ri, Rj ∈ S that minimizes
max{xi + xj , yi + yj} fits into Cx or Cy. Assume, wlog it belongs to Cx. There
are two possible cases:

There is a third element Rq ∈ S such that yi + yq ≥ 1 or yj + yq ≥ 1.
Assume, wlog, that yi + yq ≥ 1, which leads to xi + xq < 1 and therefore
xi + xq + xj < 2 < 1 + ν. Additionally, yi + yj < 1, yi + yq ≥ 1 therefore,
1 ≤ yi + yj + yq < 2 < 1 + ν. We can remove these three elements from S and
add their combination to A.

If there is no such third element it holds for each element Rq ∈ S that
yi + yq < 1 and yj + yq < 1. We show that in such a case there is at most
one element Rq ∈ S such that xq < yq. Assume for the sake of contradiction
that there are two elements Rq, Rt ∈ S such that xq < yq and xt < yt. We
know that either xi + xq ≥ xi + xj or yi + yq ≥ xi + xj , because otherwise
a different pair of elements would have obtain the minimum of the maximum.
Because yi + yq < 1 then xi +xq > xi +xj ≥ ν. Also, xq ≥ xi because otherwise
a different pair of elements would have obtain the minimum of the maximum.
From the same considerations xq ≥ xj . Recall that xi + xj ≥ ν, thus, xq ≥ ν

2 .
Recall that by our assumption yq > xq, thus yq >

ν
2 . In the same way we can

show that xt ≥ ν
2 ,yt >

ν
2 , and therefore the combination of Rq and Rt belongs

to A, which contradicts the fact that no combination of any pairs in S belongs
to A. Therefore, the conditions of the Lemma 2 are satisfied and we can apply
it. After each time the algorithm combines two elements, it checks whether we
are left with exactly k pairs, and if so it stops and outputs the result. Therefore
we do not explicitly mention this check in the algorithm itself.

3.2 Lower bounds

This section considers the tightness of the bounds of the union stage. For a
given ν, the partition stage produces many parts such that each part R has
weights w1(R) ≤ (1 + ν)W1/k and w2(R) ≤ (1 + ν)W2/k. It was shown in [4]
that any (k, ν)-balanced partitioning problem with ν > 2 can be reduced to a
(k′, ν′)-balanced partitioning problem with k′ ≤ k and ν ≤ 2, i.e., that it is only
necessary to analyze the problem for values of ν at most 2. Therefore we can
express ν as 1 + ε when 0 < ε ≤ 1.

Lemma 3. There exist an input to the Bounded Pair Scheduling problem that
can not be combined to k parts without exceeding 2 + 2ε

2+ε .

Proof. Our example consists of two types of elements: type A = (1 + ε, 0) and
type B, which will be defined later. First we set up an input with s elements



whose total weight is (s, s). We use only a single element of type A, so we are
left with s − 1 type B elements. The total value of all of the y’s is s and only
the s− 1 type B elements contribute to this value. Therefore the y value of each
such element is s

s−1 . The total value of all of the x’s is s, the type A element
contributes 1 + ε to this sum, so the y value of each of the type B elements is
s−(1+ε)
s−1 . We call this the basic structure. The basic structure will be replicated

many times, as we’ll show later.
Since type A elements get the maximal value (1 + ε), combining two such

elements yields a high value. Therefore, we need to balance between the combined
value of A and B compared to the combined value of two B’s. Combining a type

A with a type B pair yields x value 1 + ε + s−(1+ε)
s−1 and y value s

s−1 , i.e. the x
value is greater.

Combining two type B pairs yields x value 2( s−(1+ε)s−1 ) and y value 2 s
s−1 , i.e.

the y value is greater.

If we want to balance the x and y values, we would need to have 1+ε+ s−(1+ε)
s−1

equals to 2s
s−1 . For this to happen compute s as a function of ε:

1 + ε+ s−(1+ε)
s−1 = 2s

s−1
s = 2 + 2

ε .
We can assume that s is an integer. Otherwise we can represent s as a ratio

of two integers s = n
d , and replicate each of the elements d times.

The y value of type B elements = s
s−1 =

2+ 2
ε

2+ 2
ε−1

= 2+2ε
2+ε = 1 + ε

2+ε < 1 + ε.

The x value of type B elements = s−(1+ε)
s−1 = 1− ε

s−1 = 1− ε
1+ 2

ε

= 1− ε2

2+ε <

1 + ε. Therefore type B elements do not reach the 1 + ε threshold and are valid
elements.

The above scenario is not interesting since the total value of W1 and W2

equals to the number of parts, so no parts should be combined. Therefore we
tweak the example. Modify the basic structure as follows: For each basic structure
subtract an infinitesimally small value δ � ε from each of the coordinates of type
B elements. This decreases the total value of each coordinate by (s− 1)δ. Now

we will replicate the whole set s−(s−1)δ
(s−1)δ = s

(s−1)δ − 1 times. This leaves enough

free space for an additional basic structure.
At this point we have to combine at least two elements. If we combine two

type A elements, their x value will be 2+2ε. If we combine two type B elements,
their y value will be 2 + 2ε

2+ε − 2δ ≈ 2 + 2ε
2+ε . The last possible combination is

combining a type A element with a type B. The x value will be (1 + ε) + (1 −
ε2

2+ε )− δ = 2 + 2ε+ε2−ε2
2+ε − δ = 2 + 2ε

2+ε − δ ≈ 2 + 2ε
2+ε . Therefore no matter which

pair we decide to combine, we get a value, as k goes to infinity of 2 + 2ε
2+ε . ut

Conclusion: Our algorithm is within 1 + ε2

4(1+ε) of the optimal.

Proof. Our algorithm achieves 1 + ν = 2 + ε, which is within 2+ε
2+ 2ε

2+ε

= 2+ε
4+2ε+2ε

2+ε

=

4+4ε+ε2

4+4ε = 1 + ε2

4(1+ε) of the example. ut



4 Generalization to d Weight Functions

The important observation is that the algorithm of Subsection 3.1 can be viewed
as a subroutine whose input is a partition of the vertices into k subsets, each
having weight bounded by ν, and another partition into k subsets, each having
weight bounded by ν. The result of the subroutine is a partition into k subsets,
each having weight bounded by ν + 1. Call this subroutine COMBINE. As pre-
sented, the sum of the weights in each of the two coordinates is bounded by k.
We need to use the subroutine in a more general fashion, where the sum of the
weights of each coordinate is bounded by mk, for a parameter m. The necessary
change to COMBINE is in the definitions of the A,B, and C sets. It now becomes:

1. S = {(x, y) | x < m, y < m}
2. A = {(x, y) | m ≤ x < m+ ν, m ≤ y < m+ ν}
3. Bx = {(x, y) | m ≤ x < ν, y < m}
4. By = {(x, y) | x < m, m ≤ y < ν}
5. Cx = {(x, y) | ν ≤ x < m+ ν, y < m}
6. Cy = {(x, y) | x < m, ν ≤ y < m+ ν}

The result of the subroutine is a partition of the vertices into k subsets, each
having weight bounded by ν + m. Observe also that the cut capacity of the
partition after subroutine COMBINE is bounded by the sum of the two initial
cut capacities.

Assume now that we have d weight functions. Assume also that d is a power
of 2. Using COMBINE we can construct d

2 partitions of the graph vertices, each
into k subsets, and each subset having weight bounded by 1 + ν, where in the
i-th partition the weights considered are w2i−1 and w2i. We prepare these d

2
partitions for the next iteration, by considering partition i as having weight
function w1,i = max(w2i−1, w2i).

We can now do the same process, but we now have only d
2 partitions. Use

COMBINE to produce d
4 partitions of the graph vertices, each into k subsets,

and each subset having weight bounded by 2 + ν. Again, we prepare these d
4

partitions for the next iteration, by considering partition i as having weight
function w2,i = max(w1,2i−1, w1,2i).

After dlog de iterations, we have a partition into k subsets, each having weight
bounded by 2dlog de − 1 + ν ≤ 2d− 1 + ν in every weight function.

Since we employ subroutine COMBINE dlog de times, the final cut capacity as
a result of our algorithm is the cut capacity resulting from a single partitioning
multiplied by O(d).
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