
Towards (1 + ε)-Approximate Flow Sparsifiers∗

Alexandr Andoni†

Microsoft Research
Anupam Gupta‡

CMU and MSR
Robert Krauthgamer§

Weizmann Institute

Abstract

A useful approach to “compress” a large network G is to
represent it with a flow-sparsifier, i.e., a small network
H that supports the same flows as G, up to a factor
q ≥ 1 called the quality of sparsifier. Specifically, we
assume the network G contains a set of k terminals T ,
shared with the network H, i.e., T ⊆ V (G)∩V (H), and
we want H to preserve all multicommodity flows that
can be routed between the terminals T . The challenge
is to construct H that is small.

These questions have received a lot of attention in
recent years, leading to some known tradeoffs between
the sparsifier’s quality q and its size |V (H)|. Neverthe-
less, it remains an outstanding question whether every
G admits a flow-sparsifier H with quality q = 1 + ε, or
even q = O(1), and size |V (H)| ≤ f(k, ε) (in particular,
independent of |V (G)| and the edge capacities).

Making a first step in this direction, we present new
constructions for several scenarios:

• Our main result is that for quasi-bipartite networks
G, one can construct a (1+ε)-flow-sparsifier of size
poly(k/ε). In contrast, exact (q = 1) sparsifiers for
this family of networks are known to require size
2Ω(k).

• For networks G of bounded treewidth w, we
construct a flow-sparsifier with quality q =
O(logw/ log logw) and size O(w · poly(k)).

• For general networks G, we construct a sketch
sk(G), that stores all the feasible multicommodity
flows up to factor q = 1 + ε, and its size (storage
requirement) is f(k, ε).
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1 Introduction

A powerful tool to deal with big graphs is to “com-
press” them by reducing their size — not only does it
reduce their storage requirement, but often it also re-
veals opportunities for more efficient graph algorithms.
Notable examples in this context include the cut and
spectral sparsifiers of [BK96, ST04], which have had a
huge impact on graph algorithmics. These sparsifiers
reduce the number of edges of the graph, while preserv-
ing prominent features such as cut values and Lapla-
cian spectrum, up to approximation factor 1 + ε. This
immediately improves the runtime of graph algorithms
that depend on the number of edges, at the expense of
(1 + ε)-approximate solutions. Such sparsifiers reduce
only the number of edges, but it is natural to wonder
whether more is to be gained by reducing the number
of nodes as well. This vision — of “node sparsification”
— already appears, say, in [FM95].

One promising notion of node sparsification is that
of flow or cut sparsifiers, introduced in [HKNR98,
Moi09, LM10], where we have a network (a term we
use to denote edge-capacitated graphs) G, and the goal
is to construct a smaller network H that supports the
same flows as G, up to a factor q ≥ 1 called the
quality of sparsifier H. Specifically, we assume the
network G contains a set T of k terminals shared
with the network H, i.e., T ⊆ V (G) ∩ V (H), and
we want H to preserve all multicommodity flows that
can be routed between the terminals T . A somewhat
simpler variant is a cut sparsifier, which preserves the
single-commodity flow from every set S ⊂ T to its
complement T \ S, i.e., a minimum-cut in G of the
terminals bipartition T = S ∪ (T \ S). Throughout,
we consider undirected networks (although some of the
results apply also for directed networks), and unless we
say explicitly otherwise, flow and cut sparsifiers refer
to their node versions, i.e., networks on few nodes that
support (almost) the same flow.

The main question is: what tradeoff can one achieve
between the quality of a sparsifier and its size? This
question has received a lot of attention in recent years.
In particular, if the sparsifier is only supported on
T (achieves minimal size), one can guarantee quality



q ≤ O
(

log k
log log k

)
[Moi09, LM10, CLLM10, EGK+10,

MM10]. On the other hand, with this minimal size,
the (worst-case) quality must be q ≥ Ω̃(

√
log k) [LM10,

CLLM10, MM10], and thus a significantly better quality
cannot be achieved without increasing the size of the
sparsifier. The only other result for flow sparsifiers, due
to [Chu12], achieves a constant quality sparsifiers whose
size depends on the capacities in the original graph.
(Her results give flow sparsifiers of size CO(log logC); here
C is the total capacity of edges incident to terminals
and hence may be Ω(nk) even for unit-capacity graphs.)
For the simpler notion of cut sparsifiers, there are
known constructions at the other end of the tradeoff.
Specifically, one can achieve exact (quality q = 1) cut

sparsifier of size 22k

[HKNR98, KRTV12], however, the
size must still be at least 2Ω(k) [KRTV12, KR13] (for
both cut and flow sparsifiers).

Taking cue from edge-sparsification results, and the
above lower bounds, it is natural to focus on small
sparsifiers that achieve quality 1 + ε, for small ε ≥ 0.
Note that for flow sparsifiers, we do not know of any
bound on the size of the sparsifier that would depend
only on k (and 1/ε), but not on n or edge capacities.
In fact, we do not even know whether it is possible to
represent the sparsifier information theoretically (i.e., by
a small-size sketch), let alone by a graph.

1.1 Results Making a first step towards construct-
ing high-quality sparsifiers of small size, we present con-
structions for several scenarios:

• Our main result is for quasi-bipartite graphs, i.e.,
graphs where the non-terminals form an indepen-
dent set (see [RV99]), and we construct for such
networks a (1 + ε)-flow-sparsifier of size poly(k/ε).
In contrast, exact (q = 1) sparsifiers for this fam-
ily of networks are known to require size 2Ω(k)

[KRTV12, KR13]. (See Theorem 6.2.)

• For general networks G, we construct a sketch
sk(G), that stores all the feasible multicommodity
flows up to factor q = 1 + ε, and has size (storage
requirement) of f(k, ε) words. This implies an af-
firmative answer to the above information-theoretic
question on existence of flow sparsifiers, and raises
the hope for a (1 + ε)-flow-sparsifier of size f(k, ε).
(See Theorem 3.1.)

• For networks G of bounded treewidth w, we con-
struct a flow-sparsifier with quality q = O( logw

log logw )

and size O(w · poly(k)). (See Theorem 7.4.)

• Series-parallel networks admit an exact (quality 1)
flow sparsifier with O(k) vertices. (See Theorem
7.2.)

1.2 Techniques Perhaps our most important contri-
bution is the introduction of the three techniques listed
below, and indeed, one can view our results from the
prism of these three rather different approaches. In
particular, applying these three techniques to quasi-
bipartite graphs yields (1 + ε)-quality sparsifiers whose
sizes are (respectively) doubly-exponential, exponential,
and polynomial in k/ε.

1. Clumping: We first “discretize” the set of (almost)
all possible multi-commodity demands into a finite
set, whose size depends only on k/ε, and then
partition the graph vertices into a small number
of “clusters”, so that clumping each cluster into
a single vertex still preserves one (and eventually
all) of the discretized demands. The idea of
clumping vertices was used in the past to obtain
exact (quality 1) cut sparsifiers [HKNR98]. Flow-
sparsifiers require, in effect, to preserve all metrics
between the terminals rather than merely all inter-
terminal cut metrics, and requires new ideas.

2. Splicing/Composition: Our Splicing Lemma shows
that it is enough for the sparsifier to maintain flows
routed using paths that do not contain internally
any terminals. Our Composition Lemma shows
that for a network obtained by gluing two networks
along some subset of their terminals, gluing the re-
spective sparsifiers (in the same manner) gives us a
sparsifier for the glued network. These lemmas en-
able us to do “surgery” on networks, to decompose
and recompose them, so that we find good sparsi-
fiers on smaller networks and then combine them
together without loss of quality.

3. Sampling: This technique samples parts of the
graph, while preserving the flows approximately.
The main difficulty is to determine correct sampling
probabilities (and correlations). This is the techni-
cal heart of the paper, and we outline its main ideas
in Section 1.3.

We hope they will inspire ulterior constructions of
high-quality flow sparsifiers for general graphs. The
clumping techniques give information-theoretic bounds
on flow-sparsification, and the splicing/composition
approach proves useful for sparsification of bounded
treewidth and series-parallel graphs (beyond what can
be derived using their flow/cut gaps from known cut
sparsifiers).

1.3 Outline of Our Sampling Approach A clas-
sic approach to obtain an edge-sparsifier [Kar94, BK96,
SS11] is to sample the edges of the graph and rescale
appropriately. Here, we outline instead how to sam-



ple the vertices of the graph to obtain a small flow-
sparsifier. We outline our main idea on quasi-bipartite
graphs (where the non-terminals form an independent
set), considering for simplicity the (simpler) question
of cut sparsifiers, where we want to construct a smaller
graph G′ that preserves the minimum cut between every
bipartition of terminals T = S ∪ (T \S). The main idea
is to sample a small number of non-terminals v, keeping
only their incident edges, and rescaling the correspond-
ing capacities. For a fixed bipartition T = S ∪ S̄, we
can write the value of the min-cut as

(1.1) αS,S̄ =
∑
v/∈T

min
{∑
s∈S

csv,
∑
t∈S̄

cvt

}
.

(Here cxy is the capacity of the edge xy.) Suppose
we assign each non-terminal v with some sampling
probability pv, then sample the non-terminals using
these probabilities, letting Iv be an indicator variable
for whether v was sampled. Then, for sampled v’s we
re-normalize the capacities on incident edges by 1/pv,
i.e., the new capacities are c′v,t = cv,t/pv for all t ∈ T
(non-sampled v’s are dropped). The new value of the
min-cut in the sparsifier G′ is

(1.2) α′S,S̄ =
∑
v/∈T

Iv/pv ·min
{∑
s∈S

csv,
∑
t∈S̄

cvt

}
.

This classical estimator is unbiased, and hence each
min-cut αS,S̄ is preserved in expectation.

The main challenge now is to prove that the above
random sum concentrates around its expectation for
“small” values of pv. For example, consider setting all
pv equal, say to poly(k)/|V |. Even if all cs,v ∈ {0, 1}
(i.e., all edges in E have unit capacity), due to the min
operation, it is possible that only very few terms in the
summation in Eqn. (1.1) have nonzero contribution to
αS,S̄ , and are extremely unlikely to be sampled.

Our general approach is to employ importance sam-
pling, where each pv is related to v’s contribution to the
sum, namely min

{∑
s∈S csv,

∑
t∈S̄ cvt

}
. Applying this

directly is hard — since that minimum depends on the
bipartition S∪S̄, whereas pv cannot. Instead, we exploit
the fact that for any bipartition, we can estimate
(1.3)

α′S,S̄ ≥ max
s∈S,t∈S̄

∑
v

Iv/pv ·min{csv, cvt} ≥ 1
k2α

′
S,S̄ ,

and hence arguing about the sum in Eqn. (1.3) should
be enough for bounding the variance. Following this
reasoning through, it turns out that a good choice is

(1.4) pv = M ·max
s 6=t

min{csv, cvt}∑
v′ min{csv′ , cv′t}

,

where M = poly(k/ε) is an over-sampling factor. The
underlying intuition of Eqn. (1.4) is that, replacing

the max with a “correct” choice of s ∈ S, t ∈ S̄, the
denominator is just the entire potential contribution to
the sum in Eqn. (1.3), and hence these pv values can be
used as importance sampling probabilities for the sum
in Eqn. (1.2). Moreover, we prove that this setting of
pv allows for a high-probability concentration bound in
the sum from Eqn. (1.2), and thus sampling poly(k/ε)
vertices suffices for the purpose of taking a union bound
over all 2k bipartitions.

So far we have described the approach for obtaining
cut sparsifiers, but in fact we prove that the exact same
approach works for obtaining flow sparsifiers as well.
There are more issues that we need to take care in
this generalized setting. First, we need to bound the
“effective” number of demand vectors. Second, the flow
does not have a simple closed-form formula like (1.1), so
upper and lower bounds need to be proved by analyzing
separately (the concentration of) the optimal value of
the flow LP and of its dual.

2 Preliminaries

A k-terminal network is an edge-capacitated graph G =
(V,E, c) with a subset T ⊆ V of k terminals. We will be
interested only in terminal flows, i.e., flows that start
and end only at the terminal vertices of G. Define
D(G), the demand polytope of G as the set of all demand
vectors d that are supported only on terminal-pairs, and
admit a feasible multicommodity-flow in G, formally,

D(G) := {d ∈ R(T
2)

+ : demand d can be routed in G},
(2.5)

where we denote R+ := {x ∈ R : x ≥ 0} and(
T
2

)
:= {S ⊆ T : |S| = 2}. Throughout, we assume

G is connected.

Lemma 2.1. D(G) is a polytope, and is down-
monotone.

Proof. Let Pij be the set of paths between terminals i
and j. Consider the extended demand polytope Dext(G)
with variables dij for all {i, j} ∈

(
T
2

)
, and fP for each

P ∈ ∪i,jPij . ∑
P∈Pij

fP = dij∑
i,j

∑
P∈Pij :e∈P fP ≤ ce

fP , dij ≥ 0.

This polytope captures all the feasible terminal flows,
and hence all the routable demands between the ter-
minals of G. The projection of this polytope Dext(G)
onto the variables d is exactly D(G); hence the latter is



also a polytope.1 Finally, the down-monotonicity of the
polytope follows from the downward-feasibility of flows,
in turn due to the lack of lower-bounds on the flows on
edges. �

Dual linear program for concurrent flow. For

any demand vector d ∈ R(T
2)

+ , we denote the concurrent
flow problem (inverse of the congestion) by

λG(d) := sup{λ ≥ 0 : λd ∈ D(G)}.

This is well-defined because ~0 ∈ D(G). The following
well-known lemma writes λG(d) by applying linear
programming duality to multicommodity flow, see e.g.
[LR99, Shm97, Moi09].

Lemma 2.2. λG(d) can be computed via the linear pro-
gram (LP1) which has “edge-length” variables `e for
edges e ∈ E and “distance” variable δuv = δvu for ter-
minal pairs {s, t} ∈

(
T
2

)
.

3 A Data Structure for Multicommodity Flows

We present a data structure that “maintains” D(G)
within approximation factor 1 + ε. More precisely, we
preprocess the terminal network G into a data structure
whose storage requirement depends only on k and ε

(but not on n = |V (G)|). Given a query d ∈ R(T
2)

+ ,
this data structure returns an approximation to λG(d)
within factor 1 + ε (without further access to G). The
formal statement appears in Theorem 3.1. We assume
henceforth that 0 < ε < 1/8.

An approximate polytope. For each commod-
ity {i, j} ∈

(
T
2

)
, let Lij be the maximum flow of com-

modity ij alone (i.e., as a single-commodity flow) in G.
Discretize the set D(G) defined in (2.5) by defining the
subset

Ddiscrete
ε :=

{
d ∈ D(G) : every nonzero dij is a power

of 1 + ε in the range [ε/k2 · Lij , Lij ]
}
.

The range upper bound Lij (which is not really neces-
sary, as it follows from d ∈ D(G)), immediately implies
that
(3.6)

|Ddiscrete
ε | ≤

(
1 + 1

ε log1+ε k
)(k

2) ≤
(
O(1)
ε log k

)k2
.

Lemma 3.1. The convex hull conv(Ddiscrete
ε ) is down-

monotone, namely, if d ∈ conv(Ddiscrete
ε ) and 0 ≤ d̂ ≤

d, then also d̂ ∈ conv(Ddiscrete
ε ).

1As a aside, we can write Dext(G) more compactly using edge-

flow variables f ij(e) instead of path variables fP ; we omit such
standard optimizations here.

Proof. Consider first the special case where d̂ is ob-
tained from d by scaling the coordinates in some sub-
set S ⊆

(
T
2

)
by a scalar 0 ≤ β < 1. Write d as a

convex combination of some vectors dj ∈ Ddiscrete
ε , say∑

j αjdj , where αj > 0 and
∑
j αj = 1. Let d̂j be the

vector obtained from dj by zeroing all the coordinates
in S, and observe it is also in Ddiscrete

ε . Now write

d̂ =
∑
j

αj [βdj+(1−β)d̂j ] =
∑
j

αjβdj+
∑
j

αj(1−β)d̂j ,

and observe the right-hand side is a convex combination
of vectors in Ddiscrete

ε , which proves the aforementioned
special case. The general case follows by iterating this
special-case argument several times. �

The data structure. The next theorem expresses
the space requirement of an algorithm in machine words,
assuming every machine word can store log k bits and
any single value Lij (either exactly or within accuracy
of 1 + ε/2 factor). This holds, in particular, when
edge capacities in the graph G are integers bounded by
n = |V (G)|, and a word has 2 log n bits.

Theorem 3.1. For every 0 < ε < 1/8 there is a
data structure that provides a (1 + ε)-approximation for

multicommodity flows, using space
(
O(1)
ε log k

)k2
and

query time O( 1
εk

2 log k).

Proof. We present a data structure achieving approx-
imation 1 + O(ε); the theorem would then follow by
scaling ε > 0 appropriately. The data structure stores
the set Ddiscrete

ε , using a dictionary (such as a hash ta-
ble) to answer membership queries in time O(k2), the
time required to read a single vector. It additionally
stores all the values Lij . (We assume these values can
be stored exactly; the case of 1 + ε/2 approximation
follows by straightforward modifications.)

Given a query d, the algorithm first computes β =
mini,j∈T {Lij/dij}. We thus have that βk−2 ≤ λG(d) ≤
β, because the commodity i, j ∈ T attaining βdij = Lij
limits λG(d) to not exceed β, and because we can
ship βdij ≤ Lij units separately for every commodity

i, j ∈ T , hence also their convex combination
(
k
2

)−1
βd.

The query algorithm then computes an estimate for
λG(d) by performing a binary search over all powers
of (1 + ε) in the range [βk−2, β], where each iteration
decides, up to 1 + 2ε multiplicative approximation,
whether a given λ in that range is at most λG(d).
The number of iterations is clearly O(log1+ε k

2) ≤
O( 1

ε log k).
The approximate decision procedure is performed

in two steps. In the first step, we let d− be the vector



(LP1)

λG(d) = min
∑
e∈E ce`e

s. t.
∑
{s,t}∈

(
T
2

) dstδst ≥ 1

δst ≤
∑
e∈P `e ∀{s, t} ∈

(
T
2

)
and a path P connecting them

`e ≥ 0 ∀e ∈ E
δst ≥ 0 ∀{s, t} ∈

(
T
2

)
.

obtained from λd by zeroing all coordinates that are at
most 2ε/k2 · Lij . This vector can be written as

d− = λd−
∑
i,j∈T

αijLijeij ,

where eij ∈ R(T
2)

+ is the standard basis vector corre-
sponding to {i, j}, and for every i, j ∈ T we define
αij := dij/Lij if dij ≤ 2ε/k2 · Lij , and αij := 0 oth-
erwise. By definition,

∑
i,j αi,j ≤ ε. The second step

lets d′ be the vector obtained from d− by rounding
down each coordinate to the nearest power of 1 + ε.
Finally, decide whether λ ≤ λG(d) by checking whether
d′ ∈ Ddiscrete

ε , which is implemented using the dictio-
nary in O(k2) time.

It remains to prove the correctness of the approxi-
mate decision procedure. For one direction, assume that
λ ≤ λG(d). It follows that the demands λd ≥ d− ≥ d′

can all be routed in G, and furthermore d′ ∈ Ddiscrete
ε ,

implying that our procedure reports a correct decision.
For the other direction, suppose our procedure reports
that λ ≤ λG(d), which means that its corresponding
d′ ∈ Ddiscrete

ε ⊂ D(G). We can thus write

λd = d− +
∑
ij

αijLijeij ≤ (1 + ε)d′ +
∑
ij

αijLijeij .

The right-hand side can be described as a positive com-
bination of vectors in D(G), whose sum of coefficients
is (1 + ε) +

∑
ij αij ≤ 1 + 2ε. Since D(G) is convex and

contains 0, we have that also (1 + 2ε)−1λd ∈ D(G), i.e.,
that (1 + 2ε)−1λ ≤ λG(d), which proves the correctness
of the decision procedure up to 1 + 2ε multiplicative
approximation. Overall, we have indeed shown that the
binary search algorithm approximates λG(d) within fac-
tor (1 + ε)(1 + 2ε) ≤ 1 +O(ε). �

4 The Clumping Lemma for Flow Sparsifiers

Let G = (V,E, c) be a terminal network with terminal
set T . A network G′ = (V ′, E′, c′) with T ⊆ V ′ is called
a flow-sparsifier of G with quality q ≥ 1 if

∀d ∈ R(T
2)

+ , λG(d) ≤ λG′(d) ≤ q · λG(d).

This condition is equivalent to writing D(G) ⊆ D(G′) ⊆
q · D(G).

For a subset S ⊆ V , denote the edges in the induced
subgraph G[S] by E[S] := {(u, v) ∈ E : u, v ∈ S}.
Given a partition Π = {S1, S2, . . . , Sm} of the vertex
set (i.e., ∪mi=1Si = V ), say a distance function δ on
the vertex set V is Π-respecting if for all l ∈ [m] and
{i, j} ∈ Sl it holds that δij = 0.

Proposition 4.1. Let G = (V,E, c) be a k-terminal
network, and fix 0 < ε < 1/3 and b ≥ 1. Suppose
there is an m-way partition Π = {S1, . . . , Sm} such
that for all d′ ∈ Ddiscrete

ε , there exists a Π-respecting
distance function δ that is a feasible solution to (LP1)
with objective function at most b · λG(d′). Then the
graph G′ obtained from G by merging each Si into a
single vertex (keeping parallel edges2) is a flow-sparsifier
of G with quality (1 + 3ε)b.

Proof. The graph G′ can equivalently be defined as
taking G and adding the edges E0 := ∪mi=1

(
Si

2

)
, each

with infinite capacity—merging all vertices in each Si
is the same as adding these infinite capacity edges.
Formally, let G′ = (V,E ∪ E0, c

′) where c′(e) = c(e) if

e ∈ E and c′(e) =∞ if e ∈ E0. Then for any d ∈ R(T
2)

+ ,
it is immediate that λG′(d) ≥ λG(d)—every flow that is
feasible in G is also feasible in G′, even without shipping
any flow on E0.

For the opposite direction, without loss of generality
we may assume (by scaling) that λG(d) = 1. Let d′ ∈
Ddiscrete
ε be the demand vector obtained from d in the

construction of Ddiscrete
ε (by zeroing small coordinates

and rounding downwards to the nearest power of (1+ε)).
Clearly, d′ ≤ d.

First, we claim that λG(d′) < 1 + 3ε. Indeed,
assume to the contrary that (1 + 3ε)d′ is feasible in
G, i.e., (1 + 3ε)d′ ∈ D(G). Then the demand

d′′ := (1− ε)(1 + 3ε)d′ +
∑
i∈(T

2)

ε/
(
k
2

)
· Liei,

2From our perspective of flows, parallel edges can also be
merged into one edge with the same total capacity.



is a convex combination of demands in D(G), and thus
also d′′ ∈ D(G). Observe that d′′ > d (coordinate-
wise), because each coordinate of d′ was obtained from
d by rounding down and possible zeroing (if it is smaller
than some threshold), but we more than compensate for
this when d′′ is created by multiplying d′ by (1−ε)(1+
3ε) ≥ 1 + ε and adding more than the threshold. By
down-monotonicity of D(G) we obtain that λG(d) > 1
in contradiction to our assumption, and the claim that
λG(d′) < 1 + 3ε follows.

To get a handle on the value λG′(d), we
rewrite (LP1) for G′ = G+ E0 to obtain LP (LP2).

By our premise, the demand d′ ∈ Ddiscrete
ε has

a Π-respecting feasible solution {δst, `e} with value at
most b · λG(d′); note that such a Π-respecting distance
function is also a solution to (LP2). Hence λG′(d

′) ≤
b · λG(d′). Plugging in λG(d′) ≤ (1 + 3ε) and the
normalization λG(d) = 1, we conclude that λG′(d) ≤
(1+3ε)bλG(d), which completes the proof of Proposition
4.1. �

The next proposition is similar in spirit to the
previous one, but with the crucial difference that it
allows (or assumes) a different partition of V for every
demand d ∈ Ddiscrete

ε . Its proof is a simple application
of the Proposition 4.1.

Proposition 4.2. Let G = (V,E, c) be a k-terminal
network, and fix 0 < ε < 1/3, b ≥ 1, and m ≥ 1.
Suppose that for every d ∈ Ddiscrete

ε , there is an m-
way partition Πd = {S1, . . . , Sm} (with some sets Sj
potentially empty) and a Πd-respecting distance func-
tion that is a feasible solution to (LP1) with objective
function value at most b · λG(d). Then there is G′ that
is a flow-sparsifier of G with quality (1 + 3ε)b and has
at most

m|D
discrete
ε | ≤ m(ε−1 log k)k

2

vertices. Moreover, this graph G′ is obtained by merging
vertices in G.

Proof. For every demand d ∈ Ddiscrete
ε , we know there

is an appropriate m-way partition Πd of V . Imposing
all these partitions simultaneously yields a “refined”
partition Π = {S′1, . . . , S′m′} in which the number of

parts is m′ ≤ m|D
discrete
ε |, and two vertices in the same

part S′j of this refined partition if and only if they
are in the same part of every initial partition. Now
apply Proposition 4.1 using this m′-way partition (using
that any Πd-respecting distance function is also a Π-
respecting one), we obtain graph G′ that is a flow-
sparsifier of G and has at most m′ vertices. Finally,
we bound |Ddiscrete

ε | using (3.6). �

4.1 Quasi-Bipartite Graphs via Clumping As
a warm-up, we use Proposition 4.2 to construct a
graph sparsifier for quasi-bipartite graphs with quality
(1 + ε), where the size of the sparsifier is only a
function of k and ε. Recall that a graph G with
terminals T is quasi-bipartite if the non-terminals form
an independent set [RV99]. For this discussion, we
assume that the terminals form an independent set
as well, by subdividing every terminal-terminal edge—
hence the graph is just bipartite.

Theorem 4.1. Let G = (V,E, c) be a k-terminal
network whose non-terminals form an independent
set, and let ε ∈ (0, 1/8). Then G has a flow-
sparsifier G′ with quality 1 + ε, which has at most
exp{O(k log k

ε ( 1
ε log k)k

2

)} vertices.

Proof. To apply Proposition 4.2, the main challenge is
to bound m, the number of parts in the partition. To
this end, fix a demand d ∈ Ddiscrete

ε ⊆ D(G), and let
{`e, δij} be an optimal solution for the linear program
(LP1), hence its value is

∑
e∈E ce`e = λG(d). We will

modify this solution into another one, {`′e, δ′ij}, that
satisfies the desired conditions. This modification will
be carried out in a couple steps, where we initially work
only with lengths `uv of edges (u, v) ∈ E, and eventually
let δ′ be the metric induced by shortest-path distances.

For every s, t ∈ T define the interval Γst :=

[εdst, dst], and let Γ = {0} ∪
(
∪s,t∈T Γst

)
, and let Γε

contain 0 and all powers of (1 + ε) that lie in Γ. The
following claim provides structural information about a
“nice” near-optimal solution.

Claim 4.1. Fix a non-terminal v ∈ V \ T , Then the
edges between v and its neighbors set N(v) ⊂ T (in G)

admit edge lengths {̂̀vt : t ∈ N(v)} that

• are dominated by l (namely, ∀t ∈ N(v), ̂̀vt ≤ `vt);

• use values only from Γε (namely, ∀t ∈ N(v), ̂̀vt ∈
Γε); and

• satisfy 1+ε
(1−ε)2 -relaxed shortest distance constraints

(namely, ∀s, t ∈ T, ̂̀sv + ̂̀vt ≥ (1−ε)2
1+ε δst).

Proof. Let every edge length ̂̀
vt be defined as `vt

rounded down to its nearest value from Γε. The first
two claimed properties then hold by construction. For
the third property, recall that l is a feasible LP solution,
thus `sv + `vt ≥ dst. Assume without loss of generality
that `sv ≤ `vt. If the large one `vt ≥ (1 − ε)2dst, the

claim follows because also ̂̀vt ≥ (1−ε)2
1+ε dst, regardless

of whether `vt is smaller or bigger than dst, where the
extra term of (1 + ε) comes from rounding down to the



(LP2)

λG′(d) = min
∑
e∈E ce`e

s. t.
∑
{s,t}∈

(
T
2

) dst · δst ≥ 1

`e = 0 ∀e ∈ E0 := ∪i∈[m]

(
Si

2

)
,

δst ≥
∑
e∈P `e ∀{s, t} ∈

(
T
2

)
and s-t path P on E ∪ E0

`e ≥ 0 ∀e ∈ E
δst ≥ 0 ∀{s, t} ∈

(
T
2

)
.

nearest power of (1 + ε). Otherwise, `vt < (1 − ε)2dst
hence the smaller one `sv ≥ ε(2 − ε)dst, and rounding

down ensures ̂̀sv ≥ ε(2−ε)
1+ε dst. The fact that ε < 1/8

means ε(2− ε)1 + ε ≥ 1, so rounding down does not

zero out ̂̀sv. We conclude that the new lengths are at
least 1

1+ε times the old ones, namely ̂̀sv ≥ `sv
1+ε and̂̀

vt ≥ `vt

1+ε . �

We proceed with the proof of Theorem 4.1. Define
new edge lengths {`′e : e ∈ E} by applying the claim
and scaling edge lengths by 1+ε

(1−ε)2 , namely for every

v ∈ V \ T , and an adjacent t ∈ T , set `′vt := 1+ε
(1−ε)2

̂̀
vt.

This scaling and the third property of Claim 4.1 ensures
that the shortest-path distances (using edge lengths `′e)
between each pair of vertices i, j is at least δij .

Now partition the non-terminals into buckets,
where two non-terminals u, v ∈ V \ T are in the same
bucket if they “agree” about each of their neighbors
t ∈ T : either (i) they are both non-adjacent to t, or
(ii) they are both adjacent to t and `′ut = `′vt. Observe
that this bucketing is indeed a well-defined equivalence
relation. Now for every u, v ∈ V \ T that are the same
bucket, add an edge of length `′uv = 0, and let E′ de-
note this set of new edges. Let δ′ be the shortest-path
distances according to these new edge-lengths. Observe
that the shortest-path distances between the terminals
are unchanged by the addition of these new zero-length
edges, even though the distances between some non-
terminals have obviously changed. Hence (`′e, δ

′
ij) is a

feasible solution to (LP1), with objective function value
at most 1+ε

(1−ε)2λG(d) ≤ (1 + 5ε)λG(d).

We define the equivalence classes of the bucketing
above as the sets Si in Proposition 4.2. Each bucket cor-
responds to a “profile” vector with k coordinates that
represent the lengths of k edges going to the k termi-
nals, if at all there is an edge to the terminals. Each
coordinate of this profile vector is an element of Γε

or it represents the corresponding edge does not exist.
It follows that the number of buckets (or profile vec-

tors) is m ≤
((
k
2

)
(log1+ε

1
ε + 3)

)k
≤ (O(k

2

ε log 1
ε ))k ≤

(O(kε ))2k ≤ exp{O(k log(k/ε))}. The theorem fol-

lows by applying Proposition 4.2, which asserts the

existence of a flow-sparsifier with m(ε−1 log k)k
2

≤
exp{O(k log k

ε ( 1
ε log k)k

2

)} vertices. �

5 The Splicing and Composition Lemmas

We say that a path is terminal-free if all its internal
vertices are non-terminals. This terminology shall
be used mostly for flow paths, in which the paths’
endpoints are certainly terminals. The lemma below
refers to two different methods of routing a demand d
in a network G. The first method is the usual (and
default) meaning, where the demand is routed along
arbitrary flow paths. The second method is to route
the demand along terminal-free flow paths, and we will
say this explicitly whenever we refer to this method.
We use a parameter ρ ≥ 1 to achieve greater generality,
although the case ρ = 1 conveys the main idea.

Lemma 5.1. (Splicing Lemma) Let Ga and Gb be
two networks having the same set of terminals T , and
fix ρ ≥ 1. Suppose that whenever a demand d between
terminals in T can be routed in Ga using terminal-free
flow paths, demand d/ρ can be routed in Gb (by arbi-
trary flow paths). Then for every demand d between
terminals in T that can be routed in Ga, demand d/ρ
can be routed in Gb.

Proof. Consider a demand d that is routed in Ga us-
ing flow f∗, and let us show that it can be routed
also in Gb. Fix for f∗ a flow decomposition D =
{(P1, φ(P1)), (P2, φ(P2)), . . .} for it, where each Pl is a
terminal-to-terminal path, and φ(Pl) is the amount of
flow sent on this path. A flow decomposition also speci-
fies the demand vector since dst =

∑
st-paths P ∈ D φ(P ).

If all the paths (P, φ) ∈ D are terminal-free, then we
know by the assumption of the lemma that demand d/ρ
can be routed in Gb. Else, take a path (P, φ) ∈ D that
contains internally some terminal—say P routes flow
between terminals t′, t′′ and uses another terminal s in-
ternally. We may assume without loss of generality that
the flow paths are simple, so s 6∈ {t′, t′′}. We replace
the flow (P, φ(P )) in d by the two paths (P [t′, s], φ) and
(P [s, t′′], φ) to get a new flow decomposition D′, and de-



note the corresponding demand vector by d′. Note that
d′t′,t′′ = dt′,t′′−φ, whereas d′t′,s = dt′,s+φ and the same
for d′s,t′′ . Moreover, if d′/ρ can be routed on some graph
Gb with an arbitrary routing, we can connect together
φ/ρ amount of the flow from t′ to s with φ/ρ flow from
s to t′′ to get a feasible routing for d/ρ in Gb. Moreover
the total number of terminals occurring internally on
paths in the flow decomposition D′ is less than that in
d, so the proof follows by a simple induction. �

The next lemma addresses the case where our
network can be described as the gluing of two networks
G1 and G2, and we already have sparsifiers for G1

and G2; in this case, we can simply glue together
the two sparsifiers, provided that the vertices at the
gluing locations are themselves terminals. Formally, let
G1 and G2 be networks on disjoint sets of vertices,
having terminal sets T1 = {s1, s2, . . . , sa} and T2 =
{t1, t2, . . . , tb} respectively. Given a bijection φ :=
{s1 ↔ t1, . . . , sc ↔ tc} between some subset of T1 and
T2, the φ-merge of G1 and G2 (denoted G1 ⊕φ G2) is
the graph formed by identifying the vertices si and ti
for all i ∈ [c]. Note that the set of terminals in G is
T := T1 ∪ {tc+1, . . . , tb}.

Lemma 5.2. (Composition Lemma) Suppose G =
G1 ⊕φ G2. For j ∈ {1, 2}, let G′j be a flow-sparsifier
for Gj with quality ρj. Then the graph G′ = G′1 ⊕φ G′2
is a quality max{ρ1, ρ2} flow sparsifier for G.

Proof. Consider a demand d that is routable in G using
flow paths that do not have internal terminals. Since G
is formed by gluing G1 and G2 at terminals, this means
each of the flow paths lies entirely within G1 or G2. We
can write d = d1 + d2, where each dj is the demand
being routed on the flow paths among these that lie
within Gj . By the definition of flow-sparsifiers, these
demands are also routable in G′1, G

′
2 respectively, and

hence demand d1 + d2 = d is routable in G′ (in fact by
paths that lie entirely within G1 or G2). Applying the
Splicing Lemma (with ρ = 1), we get that every demand
d routable in G is routable also in G′.

The argument in the other direction is similar.
Assume d is routable in G′ using terminal-free flow
paths; then we get two demands d1,d2 routable en-
tirely in G′1, G

′
2 respectively. Scaling these demands

down by max{ρ1, ρ2}, they can be routed in G1, G2

respectively, and hence we can route their sum (d1 +
d2)/max{ρ1, ρ2} in G. Applying the Splicing Lemma
with ρ = max{ρ1, ρ2}, we get a similar conclusion for all
demands routable in G′ (on arbitrary flow paths), and
this completes the proof. �

Applications of Splicing/Composition. The
Splicing and Composition Lemmas will be useful in

many of our arguments: we use them to show a singly-
exponential bound for quasi-bipartite graphs in Sec-
tion 5.1 below, in the sampling approach for quasi-
bipartite graphs in Section 6, and also in constructing
flow-sparsifiers for series parallel and bounded treewidth
graphs in Section 7.

5.1 Quasi-Bipartite Graphs via Splicing We
show how to use Splicing Lemma 5.1 to construct a flow

sparsifier for the quasi-bipartite graph of size (1/ε)Õ(k).

Theorem 5.1. For every quasi-bipartite graph G with
terminals T , we can construct a flow sparsifier Ĝ of 1+ε

quality which has size (1/ε)Õ(k).

Proof. The construction goes through several stages.
First, we construct G′ by rounding down the capacity
to an integer power of 1 + ε. The main idea is to define
“types” for non-terminals v and then merge all vertices
of the same type (i.e., the new edge capacity is the sum
of the respective edge capacities incident to the merged
vertices). The main difficulty is in defining the types.

To define the type, first of all partition all non-
terminals v into “super-types”, according to the set S of
terminals that are connected to v by edges with non-zero
capacity. Now fix one such super-type S, i.e., all vertices
v such that {t ∈ T : cvt 6= 0} = S. Without loss of
generality, suppose S = {t1, . . . th+1} and cvti ≥ cvti+1

for i ∈ [h]. For a vertex v, consider the vector of ratios
r∗v = {cvt1/cvt2 , cvt2/cvt3 , . . . cvth/cvth+1

). Note that
r∗v ’s entries are all power of 1+ε. Now let M = k2/ε+1,
and define rv by thresholding all entries of r∗t exceeding
M by M . The rv defines the type of the vertex v. Now
we merge all vertices v with the same super-type S and
type rt. Denote the new capacities ĉt,u for a terminal t

and a non-terminal node u in Ĝ.
Now we proceed to the analysis. First of all, notice

that G′ is a quality 1 + ε flow sparsifier, so we will care
to preserve its flows only. Furthermore, since the main
operation is merging of the nodes, we can only increase
the set of feasible demands in Ĝ. The main challenge
is to prove that if we can route a demand vector d in
G′, we can route a demand (1 − O(ε))d in G′. Using
the Splicing Lemma 5.1, it is enough to consider only
demands d that are feasible using 2-hop paths.

Fix some demand vector d that is feasible in Ĝ using
2-hop paths only. Fix a non-terminal node u ∈ Ĝ, and
let fs,t be the flow (of the solution) between s, t ∈ T via
u. Suppose u has super-type S and type r = (r1, . . . rh).
We will show that we can route (1− O(ε))fs,t in G for
all s to t via the nodes v ∈ G′ that have super-type S
and type r. This would clearly be sufficient to conclude
that (1−O(ε))d is feasible in G′. Let v1, . . . vm be the
nodes with super-type S and type r.



We proceed in stages, routing iteratively from the
“small flows” to the “large flows” via u. Consider a
suffix of r, denoted ri, . . . rh where ri = M and ri′ < M
for all i′ > i. For j ∈ [m], let αvj = cti,vj/ĉti,u.
Now for all flows fst, where s ∈ {ti+1, . . . th+1} and
t ∈ {t1, . . . th}, we route (1 − ε)αvjfst flow from s to t
via vj in G′. We argue this is possible (even when doing
this for all s, t). Namely, consider any edge e = (ti′ , vj)
for ti′ ∈ {ti+1, . . . th+1}. The flow accumulated on this
edge is:∑

t

(1− ε)αvjfti′ ,t = (1− ε)cti,vj/ĉti,u ·
∑
t

fti′ ,t

≤ (1− ε)cti,vj/ĉti,u · ĉti′ ,u.

Note that ctivj/cti′ ,vj = ri · ri+1 · · · ri′−1, and similarly
ĉti,u/ĉti′ ,u = ri · ri+1 · · · ri′−1. Hence the above formula
is bounded by (1 − ε)cti′ ,vj , i.e., we satisfy the edge
capacity (with a 1 − ε slack, which will help later).
Furthermore, we have routed

∑
j(1 − ε)αvjfst = (1 −

ε)fst flow for each s, t.
We will repeat the above procedure for the next

suffix of r until we are done routing flow G′. Note that
we have at most k such stages.

We need to mention one more aspect in the above
argument — what happens to the flow that is con-
tributed to edges (ti′ , vj) where i′ ≤ i? The total con-
tribution is at most k/M ≤ ε/k fraction of the capacity
(since ri = M), which, over all (at most) k stages is still
at most ε fraction of the edge capacity. Since we left
a slack of ε in the capacity for each edge in the above
argument, we still satisfy the capacity constraint overall
for each edge.

Finally, to argue about the size of Ĝ, note that
there are only 2k super-types, and there are at most
O(k2/ε)k possible vectors r, and hence Ĝ has size at

most O(2k ·O(k2/ε)k) = (1/ε)Õ(k). �

6 Sampling Approach To Flow Sparsifiers

In this section we develop our sampling approach to con-
struct flow sparsifiers. In particular, for quasi-bipartite
graphs we construct in this method flow sparsifiers of
size bounded by a polynomial in k/ε. This family in-
cludes the graphs for which a lower bound (for exact
flow sparsification) was proved in [KR13], and we fur-
ther discuss how our construction extends to include
also the graphs for which a lower bound was proved in
[KRTV12].

6.1 Preliminaries We say that a random variable
is deterministic if it has variance 0 (i.e., its value is
determined with probability 1).

Theorem 6.1. (A Chernoff Variant) Let
X1, . . . , Xm ≥ 0 be independent random variables,
such that each Xi is either deterministic or Xi ∈ [0, b],
and let X =

∑m
i=1Xi. Then

Pr
[
X ≤ (1− ε)E[X]

]
≤ e−ε2 E[X]/(2b), ∀ε ∈ (0, 1),

Pr
[
X ≥ (1 + ε)E[X]

]
≤ e−ε2 E[X]/(3b), ∀ε ∈ (0, 1).

Proof. First, replace every deterministic Xi with multi-
ple random variables that are still deterministic but are
all in the range [0, b]. It suffices to prove the deviation
bounds for the new summation, because the new vari-
ables trivially maintain the independence condition, and
the deviation bound does not depend on the number m
of random variables.

Assuming now that every random variable is in the
range [0, b], the deviation bounds follow from standard
Chernoff bounds [MR95, DP09] by scaling all the ran-
dom variables by factor 1/b. �

6.2 Quasi-Bipartite graphs Recall that a quasi-
bipartite graph is one where the non-terminals form an
independent set; i.e., there are no edges between non-
terminals.

Theorem 6.2. Let G = (V,E, c) be a quasi-bipartite
k-terminal network, and let 0 < ε < 1/8. Then G
admits a quality 1 + ε flow-sparsifier Ĝ that has at most
Õ(k7/ε3) vertices.

Our algorithm is randomized, and is based on
importance sampling, as follows. Throughout, let T ⊂
V be the set of k terminals, and assume the graph is
connected. We may assume without loss of generality
that T also forms an independent set, by subdividing
every edge that connects two terminals (i.e., replacing
it with a length 2 path whose edges have the same
capacities as the edge being replaced). We use a
parameter M := Cε−3k5 log( 1

ε log k), where C > 0 is
a sufficiently large constant.

1. For every s, t ∈ T , compute a maximum st-flow in
G along 2-hops paths. These path are edge-disjoint
and each is identified by its middle vertex, this flow
is given by

(6.7) Fst :=
∑

v∈V \T
Fst,v, where

Fst,v := min{csv, cvt}.

2. For every non-terminal v ∈ V \T , define a sampling
probability



(6.8) p̃v := min{1, pv}, where

pv := M ·max
{Fst,v
Fst

: s, t ∈ T and Fst,v > 0
}
.

3. Sample each non-terminal with probability p̃v;
more precisely, for each v ∈ V \ T independently
at random, with probability p̃v scale the capacity
of every edge incident to v by a factor of 1/p̃v, and
with the remaining probability remove v from the
graph.

4. Report the resulting graph Ĝ.

For the sake of analysis, it will be convenient to
replace step 3 with the following step, which is obviously
equivalent in terms of flow.

3’. For each v ∈ V \ T , set independently at random
Iv = 1 with probability p̃v and Iv = 0 otherwise
(with probability 1 − p̃v), and scale the capacities
of every edge incident to v by a factor of Iv/p̃v.

We first bound the size of Ĝ, and then show that
with high probability Ĝ is a flow-sparsifier with quality
1 +O(ε).

Lemma 6.1. With probability at least 0.9, the number
of vertices in Ĝ is at most O(k2M).

Proof. The number of vertices in Ĝ is exactly∑
v∈V \T Iv, hence its expectation is

E
[ ∑
v∈V \T

Iv

]
≤

∑
v∈V \T

pv

≤M
∑

v∈V \T

∑
s,t∈T : Fst,v>0

Fst,v

Fst

= M
∑

s,t∈T : Fst>0

∑
v∈V \T

Fst,v

Fst
≤ O(k2M),

where the second inequality simply bounds the maxi-
mum in (6.8) with a summation, and the last inequality
follows from (6.7). The lemma then follows by applying
Markov’s inequality. �

Lemma 6.2. Let d range over all nonzero demand vec-

tors in R(T
2)

+ . Then

Pr
[
∀d 6= 0, λĜ(d) ≥ (1− 3ε)λG(d)

]
≥ 0.9,(6.9)

Pr
[
∀d 6= 0, λĜ(d) ≤ (1 + 4ε)λG(d)

]
≥ 0.9.(6.10)

Observe that Theorem 6.2 follows immediately from
Lemmas 6.1 and 6.2. It remains to prove the latter
lemma, and we do this next. We remark that the
0.9 probabilities above are arbitrary, and can be easily
improved to be 1− o(1).

6.2.1 Proving the lower bound (6.9) The plan for
proving (6.9) is to discretize the set of all demand vec-
tors, show a deviation bound for each one (separately),
and then apply a union bound. We will thus need the
next lemma, which shows that for every fixed demand
vector d (satisfying some technical conditions), if this
demand d is feasible in G, then with high probability
almost the same demand (1− ε)d is feasible in Ĝ.

Given a demand vector d, the problem of concurrent
flow along 2-hop paths can be written as linear program
(LP3). It has variables fstv representing flow along
a path s − v − t, for the commodity s, t ∈ T and
intermediate non-terminal v ∈ V \T . Let NG(w) denote
the set of neighbors of vertex w in the graph G.

Lemma 6.3. Fix η > 0 and let d ∈ R(T
2)

+ \ {0} be vector
that (i) demand d can be satisfied in G by flow along
2-hop paths, and (ii) every nonzero coordinate dst in d
is a power of 1 + ε in the range [ηFst, Fst].

3 Then

Pr[demand (1− ε)d admits a flow

in Ĝ along 2-hop paths] ≥ 1−
(
k
2

)
e−ε

2ηM/2.

Proof. Given demand vector d, fix a flow f that satisfies
it in G along 2-hop paths. Thus, fst = dst ≥ ηFst. Let
Ĝ be the graph constructed using the above randomized
procedure, and recall that random variable Iv is an
indicator for the event that non-terminal v is sampled in
step 3’, which happens independently with probability
p̃v.

Define a flow f̂ in Ĝ in the natural way: scale every
flow-path in f whose intermediate vertex is v ∈ V \T by
the corresponding Iv/p̃v. The resulting flow f̂ is indeed
feasible in Ĝ along 2-hop paths. It remains to prove that
with high probability this flow f̂ routes at least (i.e., a
demand that dominates) (1− ε)d.

Fix a demand pair (commodity) s, t ∈ T . The
amount of flow shipped by f̂ along the path s − v − t
is f̂stv := fstv Iv/p̃v, and the total amount shipped by f̂
between s and t is
(6.11)

f̂st :=
∑

v∈NG(s)∩NG(t)

f̂stv =
∑

v∈NG(s)∩NG(t)

fstv · Iv/p̃v.

By linearity of expectation, E[f̂st] =
∑
v f

st
v ·E[Iv]/p̃v =∑

v f
st
v = fst. Furthermore, we wrote f̂st in (6.11) as

the sum of independent non-negative random variables,
where each of summand is either deterministic (when

3The range upper bound Fst follows anyway from require-
ment (i). We also remark that the requirement about power of

1 + ε is not necessary for the lemma’s proof, but will appear later
on.



(LP3)

max λ

s. t.
∑
v∈NG(s)∩NG(t) f

st
v ≥ dstλ ∀{s, t} ∈

(
T
2

)∑
s∈NG(v)\{t} f

st
v ≤ cvt ∀(v, t) ∈ E

fstv ≥ 0 ∀{s, t} ∈
(
T
2

)
,∀v ∈ NG(s) ∩NG(t).

p̃v = 1), or (when p̃v = pv < 1) can be bounded using
(6.8) by

fstv · Iv/p̃v ≤ fstv /p̃v ≤ Fst,v/pv ≤ Fst/M.

Applying Theorem 6.1, we obtain, as required,

Pr[f̂st ≤ (1− ε)fst] ≤ e−ε2fst/(2Fst/M) ≤ e−ε2ηM/2.

A trivial union bound over the
(
k
2

)
choices of s, t

completes the proof. �

We proceed now to prove (6.9) using Lemma 6.3.

Proof. [Proof of (6.9)] Set η := ε/k2 and define

DLB :=
{

d ∈ R(T
2)

+ \ {0} that satisfy

requirements (i) and (ii) in Lemma 6.3
}
.

Then clearly |DLB | ≤
(

2 + log1+ε
1
η

)(k
2) ≤(

1
ε log k

ε

)k2
≤
(

log k
ε

)O(k2)

. Applying Lemma 6.3 to

each d ∈ DLB and using a trivial union bound, we get
that with probability at least 1− |DLB | ·

(
k
2

)
e−ε

2ηM/2 ≥
0.9, for every d ∈ DLB we have that (1−ε)d can be sat-
isfied in Ĝ by 2-hop flow paths. We assume henceforth
this high-probability event indeed occurs, and show that
it implies the event described in (6.9).

To this end, fix a demand vector d ∈ R(T
2)

+ \ {0},
and let us prove that λĜ(d) ≥ (1 − 3ε)λG(d). We can
make two simplifying assumptions about the demand
vector d, both of which are without loss of generality.
Firstly, we assume that λG(d) = 1, as we can simply
scale d, observing that the event in (6.9) is invariant
under scaling. Secondly, we assume that the demand
d can be satisfied in G by 2-hop flow paths. If each
such demand d can be satisfied in Ĝ with congestion
1/(1 − 3ε), Lemma 5.1 implies that every demand can
be satisfied with the same congestion.

So consider a demand d ∈ R(T
2)

+ \ {0}, such that
λG(d) = 1 and d can be satisfied in G by 2-hop flow
paths. Let d− be the vector obtained from d by zeroing
every coordinate dst that is smaller than 2η Fst. This
vector can be written as d− = d −∑st αstest, where

est ∈ R(T
2)

+ is the standard basis vector for pair (s, t),
and αst := dst if this value is smaller than 2ηFst, and
zero otherwise. Rounding each nonzero coordinate of
d− down to the next power of 1 + ε yields a demand
vector d′ ∈ DLB , and thus by our earlier assumption,
(1 − ε)d′ ≥ 1−ε

1+εd
− can be satisfied in Ĝ by 2-hop flow

paths. For each s, t ∈ T , consider the demand vector
Fstest. By rounding its single nonzero coordinate down
to the next power of 1 + ε, we obtain a vector in DLB .
Hence we conclude that 1−ε

1+εFstest can be satisfied in
Ĝ by 2-hop flow paths. The set of demands satisfiable
by 2-hop flow paths in Ĝ is clearly convex, so taking
a combination of such demand vectors with coefficients
that add up to (1−ε)+

∑
s,t∈T

αst

Fst
≤ (1−ε)+ k2

2 ·2η = 1,
we conclude that

(1− ε) · 1−ε
1+ε d− +

∑
st

αst
Fst
· 1−ε

1+εFstest

≥ (1−ε)2
1+ε

[
d− +

∑
st

αstest

]
≥ (1− 3ε)d

can be satisfied in Ĝ. This implies that λĜ(d) ≥ 1−3ε,
which completes the proof of (6.9). �

6.2.2 Proving the upper bound (6.10) The plan
for proving (6.10) is similar, i.e., to prove a deviation
bound for every demand in a small discrete set and
then apply a union bound. However, we need to bound
the deviation in the opposite direction, and thus use
the LP that is dual to flow (which can be viewed as
“fractional cut”). This requires more care and a more
subtle argument.

Moreover, the sampling argument is very general,
and we can extend it as follows. Let G be a terminal
network such that if we delete the terminal set T then
each component of G \ T has at most w nodes in it.
(The case of quasi-bipartite graphs is precisely when
w = 1.) The proof above extends to this setting and
gives a graph of size w times larger.

The details appear in the full version of the paper
[AGK13].

7 Results Using Flow/Cut Gaps

Given the k-terminal network and demand matrix d,
recall that λG(d) is the maximum multiple of d that



can be sent through G. We can also define the sparsity
of a cut (S, V \ S) to be

ΦG(S; d) :=

∑
e∈∂S ce∑

i,j:|{i,j}∩S|=1 dij
,

and the sparsest cut as

ΦG(d) := min
S⊆V

ΦG(S; d).

Define the flow-cut gap as

γ(G) := max
d∈D(G)

ΦG(d)/λG(d).

It is easy to see that ΦG(d) ≥ λG(d) for each demand
vector d (and hence γ(G) ≥ 1); a celebrated result
of [LLR95, AR98] shows that the gap γ(G) = O(log k)
for any k-terminal network G. Many results known
about the flow-cut gap based on the structure of the
graph G and that of the support of the demands in
D(G); in this section we use these results and results
about cut sparsifiers to derive new results about flow
sparsifiers.

It will be convenient to generalize the notion of
a k-terminal network. Given a k-terminal network
G = (V,E, c) with its associated subset T ⊆ V of
k terminals, define the demand-support to be another
undirected graph H = (T, F ) with some subset of
edges F between the terminals T . The demand polytope
with respect to (G,H) is the set of all demand vectors
d = (de)e∈H which are supported on the edges in the
demand-support H, that are routable in G; i.e.,

D(G,H) := {d ∈ RF+ : demand d can be routed in G}.
(7.12)

This is a generalization of (2.5), where we defined H to
be the complete graph on the terminal set T . Define
the flow-cut gap with respect to the pair (G,H) as

γ(G,H) := max
d∈D(G,H)

ΦG(d)/λG(d).

Analogously to a flow sparsifier, we can define
cut-sparsifiers. Given a k-terminal network G with
terminals T , a cut-sparsifier for G with quality β ≥ 1
is a graph G′ = (V ′, E′, c′) with T ⊆ V ′, such that for
every partition (A,B) of T , we have

mincutG(A,B) ≤ mincutG′(A,B) ≤ β ·mincutG(A,B).

A cut-sparsifier G′ is contraction-based if it is obtained
from G by increasing the capacity of some edges, and
identifying vertices (which, from the perspective of cuts
and flows, is equivalent to adding an infinite capacity
edges between vertices).

Theorem 7.1. Given a k-terminal network G with ter-
minals T , let G′ be a quality β ≥ 1 cut-sparsifier for G.

Then for every demand-support H and all d ∈ RE(H)
+ ,

1

γ(G′, H)
≤ λG′(d)

λG(d)
≤ β · γ(G,H).(7.13)

Therefore, the graph G′ with edge capacities scaled up by
γ(G′, H) is a quality β ·γ(G,H)·γ(G′, H) flow sparsifier
for G for all demands supported on H.

Moreover, if G′ is a contraction-based cut-sparsifier,
then trivially λG(d) ≤ λG′(d), and hence G′ itself is a
quality β · γ(G,H) flow sparsifier for G for demands
supported on H.

Proof. Consider a demand d ∈ D(G,H); the maxi-
mum multiple of it we can route is λG(d). For any
partition (A,B) of the terminal set T , let d(A,B) :=∑
{i,j}:|{i,j}∩A|=1 dij . The flow across a cut cannot

exceed that cut’s capacity, hence λG(d) · d(A,B) ≤
mincutG(A,B). Since G′ is a cut sparsifier of G, we
have mincutG(A,B) ≤ mincutG′(A,B), and together
we obtain

λG(d) ≤ mincutG(A,B)

d(A,B)
.

Minimizing the right-hand-side over all partitions
(A,B) of the terminals, we have λG(d) ≤ ΦG′(d). The
flow-cut gap for G′ implies that λG(d) ≤ γ(G′, H) ·
λG′(d), which shows the first inequality in (7.13). For
the second one, we just reverse the roles of G and
G′ in the above argument, but now have to use that

mincutG′(A,B) ≤ β · mincutG(A,B) to get λG′ (d)
β ≤

mincutG(A,B)
d(A,B) , and hence eventually that λG′(d) ≤ β ·

γ(G,H) · λG(d).
For the second part of the theorem, observe that if

G′ is contraction-based, then it is a better flow network
than G, which means λG′(d) ≥ λG(d). �

This immediately allows us to infer the following
results.

Corollary 7.1. (Single-Source Flow Sparsifiers)
For every k-terminal network G, there exists a graph

G′ with 22k

vertices that preserves (exactly) all
single-source and two-source flows.4

Proof. Hagerup et al. [HKNR98] show that all graphs
have (contraction-based) cut-sparsifiers with quality

β = 1 and size 22k

. Moreover, it is known that

4A two-source flow means that there are two terminals t′, t′′ ∈
T such that every non-zero demand is incident to at least one of

t′, t′′. Single-source flows are defined analogously with a single
terminal.



whenever H has a vertex cover of size at most 2, the
flow-cut gap is exactly γ(G,H) = γ(G′, H) = 1 [Sch03,
Theorem 71.1c]. �

Corollary 7.2. (Outerplanar Flow Sparsifiers)
If G is a planar graph where all terminals T lie on
the same face, then G has an exact (quality 1) flow
sparsifier with O(k222k) vertices. In the special case
where G is outerplanar, the size bound improves to
O(k).

Proof. Okamura and Seymour [OS81] show that the
flow-cut gap for planar graphs with all terminals on
a single face is γ(G,H) = 1, and Krauthgamer and
Rika [KR13] show that every planar graph G has a
contraction-based cut-sparsifier G′ with quality β = 1
and size O(k222k). And since the latter is contraction-
based, also this G′ is planar with all terminals on a
single face, hence γ(G′, H) = 1.

To improve the bound when G is outerplanar,
we use a result of Chaudhuri et al. [CSWZ00, Theo-
rem 5(ii)] that every outerplanar graph G has a cut-
sparsifiers G′ with quality β = 1 and size O(k),
and moreover, this also G′ is outerplanar and thus
γ(G′, H) = 1. �

Corollary 7.3. (4-terminal Flow Sparsifiers)
For k ≤ 4, every k-terminal network has an exact
(quality 1) flow sparsifier with at most k + 1 vertices.

Proof. Lomonosov [Lom85] shows that the flow-cut gap
for at most 4 terminals is γ(G,H) = γ(G′, H) = 1, and
Chaudhuri et al. [CSWZ00] show that all graphs with
k ≤ 5 terminals have cut-sparsifiers with quality β = 1
and at most k + 1 vertices. (See also [KRTV12, Table
1].) �

The above two results are direct corollaries, but
we can use Theorem 7.1 to get flow-sparsifiers with
quality 1 from results on cut-sparsifiers, even when
the flow-cut gap is more than 1. E.g., for series-
parallel graphs we know that the flow-cut gap is ex-
actly 2 [CJLV08, CSW13, LR10], but we give flow-
sparsifiers using cut-sparsifiers for series-parallel graphs
in the next section.

7.1 Series-Parallel Graphs and Graphs of
Bounded Treewidth To begin, we give some defini-
tions. An s-t series-parallel graph is defined recursively:
it is either (a) a single edge {s, t}, or (b) obtained by
taking a parallel combination of two smaller s-t series-
parallel graphs by identifying their s and t nodes, or
(c) obtained by a series combination of an s-x series-
parallel graph with an x-t series-parallel graph. See

Figure 7.1. The vertices s, t are called the portals of
G, and the rest of the vertices will be called the inter-
nal vertices.

G1

G1

G2

G2

s

t

s

t
x

Figure 7.1: Series and Parallel Compositions

Theorem 7.2. (Series-Parallel Graphs) Every
k-terminal series-parallel network G admits an exact
(quality 1) flow sparsifier with O(k) vertices.

Proof. The way we build series-parallel graphs gives us
a decomposition tree T , where the leaves of T are edges
in G, and each internal node prescribes either a series
or a parallel combination of the graphs given by the
two subtrees. We can label each node in T by the two
portals. We will assume w.l.o.g. that T is binary.

Consider some decomposition tree T where the two
portals for the root node are themselves terminals, and
let the number of internal terminals in T be k. (Giving
us a total of k + 2 terminals, including the portals.)
Consider the two subtrees T1, T2. The easy case is when
the number of internal terminals in T1, T2, which we
denote k1, k2, are both strictly less than k. Let Gi be
the graph defined by Ti. In case G1, G2 are in parallel,
recursively construct sparsifiers G′1, G

′
2 for them, and

compose them in parallel to get G′; the Composition
Lemma implies this is a sparsifier for G. In case they
are in series, the middle vertex may not be a terminal:
so add it as a new terminal, recurse on G1, G2, and again
compose G′1, G

′
2. In either case, the number of internal

vertices in the new graph is S(k) ≤ S(k1) + S(k2) + 1,
where we account for adding the middle vertex as a
terminal.

Now suppose all the k internal terminals of the
root of T lie are also internal terminals of T1. In
this case, find the node in T furthest from the root
such that the subtree T ′ rooted at this node still has
k internal terminals, but neither of its child subtrees
T ′1 , T ′2 contains all the k internal terminals.5 There
must be such a node, because the leaves of T contain no
internal terminals. Say the portals of T ′ are s′, t′. And
say the graphs given by T ′, T ′1 , T ′2 are G′, G′1, G

′
2. The

picture looks like one of the two cases in Figure 7.2.
Add the two portals s′, t′ of G′ and the middle

vertex x between G′1, G
′
2 (if it was a series combination)

as new terminals. Observe that G is obtained by
composing G \G′ with G′ (at the new terminals s′, t′),

5The easy case above is a special case of this, where T ′ = T .
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Figure 7.2: The subgraph G′ within G

hence we can apply the Composition Lemma to the
sparsifiers forG\G′ and forG′. We can use Corollary 7.3
to find a flow sparsifier for G\G′: it has only 4 terminals
s, t, s′, t′. To find a flow sparsifier for G′, we recurse
on G′1, G

′
2 and then combine the resulting sparsifiers

H ′1, H
′
2 by the Composition Lemma to get a sparsifierH ′

for G′. Overall, we obtain a flow sparsifier for G with
at most S(k) ≤ S(k1) + S(k2) + (c4 − 4) + 3 internal
vertices, where the number of new vertices generated
by Corollary 7.3 is at most c4 − 4, and we added in at
most 3 new terminals (namely s′, t′ and possibly x).

In either case, we arrive at the recurrence S(k) ≤
S(k1) + S(k2) + c4, where k1 + k2 ≤ k and k1, k2 ≥ 1.
The base case is when there are at most 2 internal
terminals, in which case we can use Corollary 7.3 again
to get S(1), S(2) ≤ c4. The recurrence solves to S(k) ≤
(2k− 1) · c4. Adding the two portal terminals of T still
remains O(k), and proves the theorem. �

7.2 Extension to Treewidth-w Graphs The gen-
eral theorem about bounded treewidth graphs follows
a similar but looser argument. The only fact about a
treewidth-w graph G = (V,E) we use is the following.

Theorem 7.3. ([Ree92]) If a graph G = (V,E) has
treewidth w, then for every subset T ⊆ V , there exists
a subset X ⊆ V of w vertices such that each component
of G−X contains at most 2

3 |T \X| vertices of T .

Theorem 7.4. Suppose every k-terminal network ad-
mits a flow sparsifier of quality q(k) and size S(k).
Then every k-terminal network G with treewidth w has
a q(6w)-quality flow sparsifier with at most k4 · S(6w)
vertices.

Proof. The proof is by induction. Consider a graph G:
if it has at most 6w terminals, we just build a q(6w)-
quality vertex sparsifier of size S(6w).

Else, let T be the set of terminals in G, and use
Theorem 7.3 to find a set X such that each component
of G−X contains at most 2

3 |T \X| terminals. Suppose
the components have vertex sets V1, V2, . . . , Vl; let Gi :=
G[Vi ∪ X]. Recurse on each Gi with terminal set
(T ∩ Vi) ∪ X to find a flow sparsifier G′i of quality

q(6w). Now use the Composition lemma to merge these
sparsifiers G′i together and give the sparsifier G′ of the
same quality. Now use the Composition lemma to merge
these sparsifiers G′i together and give the sparsifier G′

of the same quality.
If the number of terminals in G was kG, the number

of terminals in each Gi is smaller by at least 1
3kG−w =

kG/6, and hence kGi
≤ 5/6 kG. Hence the depth of the

recursion is at most h := log6/5(k/w) ≤ log6/5 k, and

the number of leaves is at most 2h. Each leaf gives us
a sparsifier of size S(6w), and combining these gives a
sparsifier of size at most S(6w) · klog6/5 2 ≤ S(6w) · k4.
�

Using, e.g., results from Englert et al. [EGK+10] we can
achieve q(k) = O

(
log k

log log k

)
and S(k) = k, which gives

the results stated in Section 1.
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