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Abstract

The Earth Mover Distance (EMD) between two equal-
size sets of points in Rd is defined to be the minimum
cost of a bipartite matching between the two pointsets.
It is a natural metric for comparing sets of features, and
as such, it has received significant interest in computer
vision. Motivated by recent developments in that area,
we address computational problems involving EMD over
high-dimensional pointsets.

A natural approach is to embed the EMD metric
into `1, and use the algorithms designed for the latter
space. However, Khot and Naor [KN06] show that any
embedding of EMD over the d-dimensional Hamming
cube into `1 must incur a distortion Ω(d), thus practi-
cally losing all distance information. We circumvent this
roadblock by focusing on sets with cardinalities upper-
bounded by a parameter s, and achieve a distortion of
only O(log s · log d). Since in applications the feature
sets have bounded size, the resulting distortion is much
smaller than the Ω(d) lower bound. Our approach is
quite general and easily extends to EMD over Rd.

We then provide a strong lower bound on the
multi-round communication complexity of estimating
EMD, which in particular strengthens the known non-
embeddability result of [KN06]. Our bound exhibits a
smooth tradeoff between approximation and communi-
cation, and for example implies that every algorithm
that estimates EMD using constant size sketches can
only achieve Ω(log s) approximation.

1 Introduction

The Earth Mover Distance (EMD) between two sets
of points in Rd of equal sizes (say, s) is defined to
be the cost of the minimum cost bipartite matching
between the two pointsets. It is a natural metric for
comparing sets of geometric features of objects. For
example, an image can be represented as a set of pixels
in a color space; computing EMD between such sets
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yields an accurate measure of dissimilarity between
color characteristics of the images [RTG00]. In an
analogous manner, an image can be represented as a
set of representative geometric features, such as object
contours [GD04] and other features [GD05a].

Starting with the work of [RTG00], the EMD metric
has received significant interest in computer vision.
Unfortunately, the computational properties of EMD
are not very good. The best exact algorithm known
for computing EMD between two feature sets, even
low-dimensional ones, has cubic running time [Law76]1.
Furthermore, in many applications, one needs to select
one feature set out of a large collection of sets (e.g.,
the one closest to a given query set), which requires a
number of EMD computations that is linear in the size
of the collection. This approach is clearly not scalable
to large data sets, which can easily contain millions of
feature sets.

This computational bottleneck motivates the need
for faster algorithms dealing with the EMD metric.
A particularly versatile approach to this problem is
through metric embeddings. In this approach, each
feature set is mapped to a vector in a normed space
(say `1), such that the distance between sets is well-
approximated by the distance between the correspond-
ing vectors (the approximation factor is called the
distortion of the embedding). After performing the
mapping, the distances can be estimated simply by
computing the distances between the vectors. Analo-
gously, the nearest neighbor problem over EMD space
can be solved by using efficient algorithms developed
for the vector space, such as kd-trees or other meth-
ods [KOR98, IM98].

It is shown in [Cha02, IT03] that if the feature sets
are subsets of [∆]d, then one can obtain an embedding
into `1 with O(d log ∆) distortion and furthermore the
running time of computing the embedding of a given
feature set is near-linear in the set size. Despite non-
constant distortion bounds, the embeddings are still

1Faster, but still super-quadratic algorithms, are known for
the case of d = 2. Better running times are achievable by
approximation algorithms, cf. [Ind07a] and references therein.



quite accurate [IT03, GD04, GD05a, CLL04, CLJ+06,
GD06a], especially for low values of d such as 2 or
3. The geometric representation of the EMD space
which they provide turns out to be very useful for other
reasons as well. For example, it has been used to design
Mercer kernels, useful for supervised classification of
the images [GD05b] and unsupervised learning [GD06b].
Also, the algorithmic techniques have led to efficient
algorithms for computing EMD without performing the
actual embedding. E.g., [Ind07a], building on the
work of [AV04], gave an s logO(1) s time constant factor
approximation algorithm for computing EMD between
low-dimensional pointsets.

Choice of Norm. Throughout the paper, we as-
sume that distances in Rd are measured using to the
`1-norm. This norm is often more convenient than the
`2-norm (at least in the context of theoretical analysis
of EMD). Our results can generally be adapted to the
`2-norm (using e.g. a constant distortion embedding of
`d2 into `O(d)

1 , see [Ind07b] for a recent account of such
embeddings, or using a trivial embedding with distor-
tion

√
d), but we will not discuss such extensions in this

version of the paper. It should be noted however that
some of the experimental results we mentioned, includ-
ing [RTG00] and [GD05b], actually use the `2-norm.

High-Dimension. We focus on the case of high
dimension d, which is also important in practice. For
instance, in [GD06a] the image recognition rate was
studied for dimension d in the range [8, 128] and set-
size s = 256. The previously mentioned embeddings
of [Cha02, IT03, GD05b] suffer (both in theory and
in practice [GD06a]) from a high approximation error
when the dimension is ”too large”. Recently, a different
method for embedding EMD over high-dimensional
spaces was introduced [GD06a]; although achieving
much lower empirical error, this method is heuristic and
has no guarantees. In fact, it is known [KN06] that every
embedding of EMD over a d-dimensional Hamming cube
into `1 requires Ω(d) distortion. However, the lower
bound is shown only for rather large subsets of the
Hamming space, namely of size exponential in d, leaving
open the possibility of designing much more accurate
embeddings for sets of more moderate size s = s(d),
with distortion bound parametrized by (and growing
slowly with) s. For example, an embedding that has
low distortion when s is polynomial in d may be useful
in practice for sets with a few hundreds or thousands of
points.

Results I: Improved Embeddings. We prove
that EMD metric over s-subsets of the d-dimensional
Hamming cube {0, 1}d can be embedded into `1 with
distortion O(log s · log d). Since an Ω(log s) lower bound
on the distortion follows immediately from the afore-

mentioned result of [KN06], our upper bound is within
O(log d) of optimal. The embedding naturally extends
to EMD over s-subsets of [∆]d, achieving distortion
bound O(log s·log(d∆)). Since many metrics (e.g., vari-
ants of edit distance [MS00, CM07, OR05, CK06]) can
be embedded with bounded distortion into `1 with small
integer coordinates, our result implies that EMD over
s-subsets of such metrics can be embedded into `1 as
well. As hinted earlier, the standard applications of
these embeddings include a fast estimate of EMD dis-
tance and algorithms for nearest neighbor problem over
EMD space. Moreover, our embedding yields a low-
distortion embedding of a metric called “shift metric”,
a metric related to the edit distance. These embedding
results are presented in Section 3.

Although our embedding into `1 attains a near-
optimal distortion, one might ask whether metric em-
bedding (into `1 and in general) is the best algorithmic
technique for dealing with EMD over high-dimensional
spaces. To answer this question, we provide a strong
communication lower bound that goes beyond the usual
embedding lower bound. In particular, it strengthens
and immediately implies the known non-embeddability
result of [KN06].

Distance Estimation. The problem of estimat-
ing EMD in the sketching model is defined as follows:
given s-subsets of {0, 1}d, preprocess each subset sepa-
rately into a short representation called a sketch, so that
the EMD distance between two subsets can be approxi-
mated only from their sketches. (The preprocessing may
use shared randomness, but the approximation should
succeed with probability at least 2/3 over these random
coins.) Solving this problem could lead to very fast ap-
proximation of EMD distance, since the second step of
using the sketches to compute the approximation often
runs in time that is linear in the sketch size. For ex-
ample, it is known that estimating `1 distance in the
sketching model (defined analogously to EMD) can be
solved with 1 + ε approximation (in the sense of a re-
laxed decision problem) using sketches of size O(1/ε2),
for every ε > 0 [KOR98]. Another application of an es-
timation algorithm that uses small sketches could be as
a filtering method for the nearest neighbor problem (i.e.
the EMD distance between a query and each item in a
data set could be estimated quickly from their sketches,
avoiding many accurate but elaborate computations).

Results II: Communication Lower Bounds.
We prove that a sketch of constant size can only yield
Ω(d) approximation; in terms of s, a lower bound of
Ω(log s) follows immediately. Let us compare this result
to non-embeddability into `1. Observe that a distortion
D embedding of the EMD metric into `1 could be com-
posed with the aforementioned estimate for `1 distance,



yielding an EMD estimation with 2D approximation us-
ing constant-size sketches. We conclude that D = Ω(d),
recovering the result of [KN06]. But these same ar-
guments give a similar conclusion for embeddings into
`2-squared (negative type) metrics, which strictly in-
cludes `1. We thus see that, in general, lower bounds
for the sketching model are much stronger than non-
embeddability into `1.

Our impossibility result for the sketching model is
shown in the well-known framework of communication
complexity and is actually more general—it pertains to
multi-round communication complexity (see Section 2.2
for a review of standard terminology): Alice and Bob
are two players that have access to shared randomness;
upon receiving s-subsets A and B, respectively, as their
inputs, they wish to determine, by exchanging messages,
whether EMD(A,B) ≤ r or EMD ≥ αr, for some
threshold r > 0 and approximation ratio α > 1. Our
main result says that in order to succeed with constant
probability, the two parties must exchange a total of
Ω( dα ) bits. This bound is optimal for α = Ω(d),
since d approximation is trivial using O(1) bits. This
communication lower bound appears in Section 4.

Techniques. A (somewhat simplified) overview of
our embedding is as follows. There are two steps. First,
we use dimensionality reduction techniques in `d1 to re-
duce the dimension of the underlying space to, say,
O(log(d∆)); this step is implemented by a random-
ized map that, with high probability, preserves up to
a small approximation factor all pairwise distances in
a set of 2s points. The second step uses an embed-
ding of EMD over low-dimensional spaces [CCG+98],
which incurs distortion at most linear in the dimension.
In general, dimension reduction in `1 requires a large
distortion [BC03, LN04]; but for our purposes, it essen-
tially suffices to obtain a randomized mapping from [∆]d

into a weighted Hamming cube of dimensionO(log(d∆))
(a subset of `O(log(d∆))

1 ) that with probability at least
1−1/s2 distorts the distance between a pair of points by
at most O(log s · log(d∆)). Furthermore, due to our par-
ticular weighting of the Hamming cube, we can embed
EMD over this weighted cube into `1 with only constant
distortion.

For the lower bound on the total communication
between Alice and Bob, we first prove that it suffices
to analyze very restricted protocols, where Alice sends
only one bit to Bob. These protocols clearly correspond
to boolean functions over {0, 1}d, and can be analyzed
directly using the powerful approach of Fourier anal-
ysis, employing in particular (but not only) the tech-
nique developed in [KN06]. We show that every such
restricted protocol succeeds with a tiny probability, im-
plying the desired lower bound on the communication

complexity of general protocols. To the best of our
knowledge, the only other metrics for which a super-
constant non-approximability in communication proto-
cols is known are: the `∞ metric (and the metrics em-
beddable into it with sufficiently small distortion, such
as `p for p > 2) [SS02, BJKS04], and, as of recently, edit
distance [AK07]. In fact, the communication complex-
ity lower bound for the edit distance [AK07] uses some
of the techniques developed for this paper.

2 Preliminaries

We define the Earthmover distance over a general metric
as follows.

Definition 2.1. Consider a metric space X endowed
with distance function dX . Then, for two multi-sets
A,B ⊂ X, of size s = |A| = |B|, the earthmover
distance (EMD) between A and B is defined as

EMDX(A,B) =
1
s

min
φ:A→B

∑
x∈A

dX(x, φ(x))

where the minimum is taken over all bijections φ : A→
B. The resulting metric is called EMD over X.

When the metric X is `1, we will omit the subscript
and simply write EMD(A,B) = EMD`1(A,B) =
1
s minφ:A→B

∑
x∈A ‖x− φ(x)‖1.

2.1 Notation. We use lg x to denote logarithm in
base 2, and denote [∆] = {1, 2, . . .∆}. For a finite
alphabet Σ and x, y ∈ Σ, we define H(x, y) = 1 if x 6= y
and H(x, y) = 0 if x = y. For a distribution µ on (x, y),
its marginal distributions are called µx, µy. Let Supp(µ)
denote the support of µ. For two vectors x, y ∈ {0, 1}d,
let x+ y ∈ {0, 1}d be the component-wise sum modulo
2.

2.2 Communication Complexity of Protocols
and Sketching. Consider a (partial) function F (x, y) :
D → {0, 1}, where D ⊆ X × Y; we view this function
as a communication problem, where Alice gets x ∈ X ,
Bob gets y ∈ Y and they want to compute F (x, y)
(given that (x, y) ∈ D). To compute F (x, y), Alice
and Bob exchange some messages in rounds, where in
each round one player sends exactly one message to the
other player. At the end, Bob outputs the result. We
call communication protocol Π one such procedure by
which Alice and Bob compute the messages and their
output. The protocol is valid if protocol’s output is
equal to F (x, y) for all (x, y) ∈ D.

The protocol is randomized if Alice and Bob have
access to a shared infinite random string. If the protocol
is randomized, then a valid protocol has to output
F (x, y) with probability at least 2/3 for all (x, y) ∈ D.



The communication complexity of a protocol Π is
the maximum total length of the exchanged messages;
we denote the communication complexity of Π by |Π|.
Finally, the communication complexity of a problem
F , denoted R(F ), is the minimum communication
complexity of a valid (randomized) protocol for the
problem F .

We also define the sketch size of a problem F :
D → {0, 1}, D ⊆ X × Y. In a sketching scenario,
Alice and Bob independently send some l bits to a
common referee, who ultimately decides the output of
the function. Formally, sketch size of F is the minimum
l such that there exist a distribution ΠS over functions
sA : X → {0, 1}l, sB : Y → {0, 1}l, and output
function φref : {0, 1}l × {0, 1}l → {0, 1}, such that
φref (sA(x), sB(y)) = F (x, y) for every (x, y) ∈ D with
probability at least 2/3 (over the choice of (sA, sB , φref )
according to ΠS). We denote by S(F ) the sketch size
of the problem F .

It is immediate to check that S(F ) ≥ R(F ): since,
for a communication protocol, Alice only needs to send
l bits representing sA(x) to Bob, and Bob can locally
compute φref (sA(x), sB(y)). Thus, for proving lower
bounds on S(F ), it is sufficient to prove lower bounds
on R(F ).

2.3 Fourier Analysis over {0, 1}d. We review basic
properties of Fourier analysis over {0, 1}d. The set of
functions f : {0, 1}n → R is a vector space of dimension
2n in which the inner product between two elements f
and g is defined as

〈f, g〉 = Ex [f(x) · g(x)] =
1
2d

∑
x∈{0,1}d

f(x)g(x).

For a set S ⊆ [d], define the character χS :
{0, 1}d → {−1, 1} as χS(x) = (−1)

P
i∈S xi . The set

of all characters {χS : S ⊆ [d]} forms an orthonormal
basis for the vector space. This implies that every
function f : {0, 1}d → R can be expanded uniquely
as f(x) =

∑
S⊆[d] f̂(S)χS(x) where f̂(S) = 〈f, χS(x)〉

is the Fourier coefficient of f with respect to set S.
Moreover, for two functions f, g : {0, 1}d → R, we have
that 〈f, g〉 =

∑
S⊆[d] f̂S ĝS .

The notationNε stands for the random noise vector.
Specifically, Nε ∈ {0, 1}d is a vector of d random
independent boolean values, each equal to one with
probability 1/2− ε/2.

We will make use of the noise operator Tε (also
called Bonami-Beckner operator), which, for a func-
tion f : {0, 1}d → R is defined as (Tεf)(x) =
ENε [f(x+Nε)]. A standard fact about this operator
states that, for every set S ⊆ [d], (̂Tεf)S = f̂Sε

|S|.

3 Upper bound

We will first prove the main theorem of this section.
We will then present the algorithmic implications of the
theorem. Our main theorem concerns embedding EMD
over grids [∆]d into `1.

Theorem 3.1. For any d,∆ ≥ 1, one can construct
a randomized embedding ψ of EMD over [∆]d into `1
such that, for every two multi-sets A,B ⊆ [∆]d, of size
s = |A| = |B|, we have that
1. Eψ [‖ψ(A)− ψ(B)‖1] ≤ O(log(d∆)) · EMD(A,B),
2. With probability at least 1− 1/s, we have:

‖ψ(A)− ψ(B)‖1 ≥ Ω
(

1
log s

)
· EMD(A,B).

In addition, for a given multi-set A of size s, ψ(A)
is computable in O(sd logO(1)(sd∆)) time, and ψ(A)
is a sparse vector having only O(s log(d∆)) non-zero
coordinates.

The theorem immediately implies the low distortion
embedding of EMD over [∆]d into `1 (by standard ar-
gument of concatenating the probabilistic embeddings).

Corollary 3.1. Let d,∆ ≥ 1. Then there exist an
embedding ψ of EMD over [∆]d into `1 for sets of size
s that achieves distortion O(log s · log(d∆)).

The proof of the theorem proceeds in two steps.
First we show an embedding of [∆]d into a weighted
Hamming metric Hw, which is a subset of `1 of di-
mension O(log(d∆). This step can be seen as a “di-
mensionality reduction” in `d1, reducing the dimension
to O(log(d∆)), but incurring a distortion of O(log s ·
log(d∆)) for a size s pointset. We note that this step
is randomized. In the second step, we show that EMD
over this new metric Hw is O(1)-embeddable into `1.
A trivial implementation of this step would be to use
directly one of the standard embeddings of EMD over
low-dimensional spaces [CCG+98], but it would incur an
additional Ω(log(d∆)) factor distortion. We bypass this
additional factor by exploiting the particular weighting
of the intermediate space Hw: we embed Hw into a tree
metric with distortion 2 and then we can use [Cha02] to
embed EMD over trees into `1 with constant distortion.

Formally, we define a k-dimensional weighted Ham-
ming metric Hk

w as follows. Fix some alphabet Σ.
Then the metric Hk

w is over strings in Σk, and the
distance between x, y ∈ Σk is defined as Hw(x, y) =∑k
i=1 2i ·H(xi, yi). We denote the distance function of

the metric Hk
w by Hw(x, y).

The following lemma implements the first step of
the embedding.



Lemma 3.1. There exists a probabilistic embedding ρ :
[∆]d → Hk

w, for k = lg(d∆) + 1 such that for every
x, y ∈ [∆]d, it holds that
1. Eρ [Hw(ρ(x), ρ(y))] ≤ 2k · ‖x− y‖1
2. For all δ > 0, we have:

Pr
[
Hw(ρ(x), ρ(y)) ≥ Ω(

1
log 1/δ

) ·‖x−y‖1
]
≥ 1−δ.

Proof. The embedding ρ is into Hk
w over alphabet Σ =

{0, 1, . . .∆}d. Each coordinate of ρ(x) is a hash of x
into Σ. Impose a randomly shifted cubic grid with cell
side length 2t on the space [∆]d. Then the point x is
hashed into the cell containing x. Formally, for t ≥ 1,
define a hash function on x = (x1, x2, . . . , xd) to be

ht(x) ,

(⌊
x1 + u1

2t

⌋
,

⌊
x2 + u2

2t

⌋
, . . .

⌊
xd + ud

2t

⌋)
(3.1)

where each u1, u2, . . . ud is chosen uniformly at random
from [2t]. It is easy to verify that, for every x, y ∈ [∆]d,

1− ‖x− y‖1
2t

≤ Pr
ht

[ht(x) = ht(y)] ≤ e−‖x−y‖1/2
t

.

Thus, we have that

Eht
[H(ht(x), ht(y))] ≤ 1−

(
1− ‖x− y‖1

2t

)
=
‖x− y‖1

2t
.

(3.2)

Also, for ‖x− y‖1 ≥ Ω(2t log 1/δ),

Pr
ht

[H(ht(x), ht(y)) = 1] ≥ 1−e−‖x−y‖1/2
t

≥ 1−δ. (3.3)

Finally, we define ρ as follows:

ρ , (id, h1, h2, h3, . . . , hk−1)

where id is the identity function id(x) = x, and ht,
t = 1 . . . k− 1, are chosen randomly as explained above.

Now, to prove property (1) of lemma, note that, by
Eqn. (3.2),

Eρ [Hw(ρ(x), ρ(y))] =
Eρ

[
2H(x, y) +

∑k−1
t=1 2t+1H(ht(x), ht(y))

]
≤

2‖x− y‖1 + (k − 1) · 2‖x− y‖1 ≤ 2k · ‖x− y‖1.

For property (2) of the lemma, note that, by
Eqn. (3.3), for ‖x − y‖1 ≥ Ω(log 1/δ), with probability
at least 1− δ,

Hw(ρ(x), ρ(y)) = 2H(x, y) +
k−1∑
t=1

2t+1H(ht(x), ht(y))

≥ min
{
d∆,

‖x− y‖1
O(log 1/δ)

}
≥ ‖x− y‖1
O(log 1/δ)

.

Also, for ‖x−y‖1 ≤ O(log 1/δ), ρ(x) and ρ(y) differ
in the first coordinate and thus ‖ρ(x) − ρ(y)‖1 ≥ 2 ≥
‖x−y‖1
O(log 1/δ) .

The second step of the embedding results from the
following lemma.

Lemma 3.2. For any k > 0, EMD over Hk
w is embed-

dable into `1 with distortion O(1).

Proof. Suppose the metric Hk
w is over some alphabet Σ.

The embedding results from the following two steps:
1. The metric Hk

w embeds into a tree metric with
distortion 2 as follows. For x = (x1, . . . xk) ∈ Σk,
let R(x) , (xk, xk−1, . . . x1) be the reverse of x.
Then take the tree metric to be the trie on all R(x),
x in Hk

w, with the corresponding weights: edges
at the first level are weighted by 2k, edges at the
second level are weighted by 2k−1, etc. Note that
all points in Hk

w correspond to leaves of the tree.
We call the resulting tree metric T .
Now, for any x, y from Hk

w, we have that T (x, y) =
maxxi 6=yi,i∈[k]

∑i
j=1 2j = maxxi 6=yi,i∈[k] 2i+1 −

1, which is a 2-approximation to Hw(x, y) =∑k
i=1 2iH(xi, yi).

2. EMD over a tree metric T is O(1)-embeddable into
`1 (cf. [Cha02]).

We are now ready to prove the theorem.

Proof. [Proof of theorem 3.1] We construct a random-
ized embedding ψ by composing the embeddings from
Lemma 3.1, and Lemma 3.2. Let ρ be the embed-
ding from Lemma 3.1, and µ be the embedding from
Lemma 3.2. Then define ψ(A) , µ(ρ(A)), where
ρ(A) , {ρ(x) | x ∈ A}. We use Lemma 3.1 for δ = 1/s3.
Since there are only s2 pairs (x, y) ∈ A × B, by union
bound, with probability at least 1−1/s, all pairs (x, y) ∈
A × B satisfy Hw(ρ(x), ρ(y)) ≥ Ω

(
1

log s

)
· ‖x − y‖1.

Also, Eρ [Hw(ρ(x), ρ(y))] ≤ O(log(d∆)) · ‖x−y‖1 for all
x, y ∈ A×B.

Then, Lemma 3.2 implies that
1. Eρ [‖ψ(A)− ψ(B)‖1] ≤

Eρ
[
O(1) · EMDHk

w
(ρ(A), ρ(B))

]
≤ O(log(d∆)) ·

EMD(A,B),
2. With probability at least 1− 1/s,

‖ψ(A)− ψ(B)‖1 ≥ Ω(1) · EMDHk
w
(ρ(A), ρ(B)) ≥

Ω
(

1
log s

)
· EMD(A,B).

Note that we can compute ρ(A) in O(sd log(d∆))
time. Also, the embedding ψ(a) = µ(ρ(A)) can be com-
puted in O(sd logO(1)(sd(d∆))) time. The embedding



of [Cha02] of EMD over the tree metric T yields a vec-
tor in `1 that has at most O(s log(d∆)) non-zero coordi-
nates. Thus, ψ(A) is computable in O(sd logO(1)(sd∆))
time and has O(s log(d∆)) non-zero coordinates.

The above theorem has a couple further implica-
tions.

Algorithmic applications. Theorem 3.1 implies
an efficient algorithm for approximating EMD between
two sets A,B ⊆ [∆]d of size s.

Corollary 3.2. Let d,∆ ≥ 1. For any two set A,B ⊆
[∆]d of size s, we can compute EMD(A,B) up to
approximation O(log s · log(d∆)) in O(sd logO(1)(sd∆))
time.

Together with the algorithm of, e.g., [Pan06], we
obtain an efficient nearest neighbor data structure for
approximation O(log s · log(d∆)).

Corollary 3.3. Let d,∆ ≥ 1. Then, for any
constant ε > 0, there exist an O(log s · log(d∆))-
approximate nearest neighbor data structure for EMD
over [∆]d that achieves Õ(ns(d log ∆)O(1)) space and
Õ(nεs(d log ∆)O(1)) query time.

Embedding of the shift metric. Theorem 3.1
also yields a low-distortion embedding for the shift met-
ric, a simplified version of the edit distance. Specifically,
for two binary strings x and y, of length d, the shift met-
ric is defined to be the minimum cost of transforming
x into y, where the allowed transformation operations
are substitutions (of cost 1), and cyclic shifts of the en-
tire string (of cost 0). This metric is of interest because
it captures the “core” of the [KR06]’s proof of Ω(log d)
non-embeddability of edit distance into `1. In particu-
lar, shift metric also has distortion of Ω(log d) for em-
bedding into `1 (via an argument similar to [KR06]). To
obtain an upper bound on the distortion, we can con-
struct the set A to contain all the shifts of x and the
set B to contain all the shifts of y, and then apply the
embedding from Corollary 3.1, obtaining the following
corollary.

Corollary 3.4. Shift metric over {0, 1}d has an
O(log2 d)-distortion embedding into `1.

4 Lower Bound

In this section, we prove a lower bound on the com-
munication complexity on the following problem of es-
timating EMD over {0, 1}d (see Section 2.2 for the rel-
evant definitions): Alice receives a set A ⊂ {0, 1}d and
Bob receives a set B ⊂ {0, 1}d, where |A| = |B|, and
they wish to determine whether EMD(A,B) > R or

EMD(A,B) ≤ R/α for some threshold R and approxi-
mation ratio α ≥ 1. This promise problem is described
by the partial function

FR,α(A,B) =

{
1 if EMD(A,B) ≤ R/α,

0 if EMD(A,B) > R.
(4.4)

The main result of this section is stated in the following
theorem.

Theorem 4.1. For every dimension d ≥ 1, and ap-
proximation ratio α ≥ 1, there exists R such that the
problem FR,α has communication complexity R(FR,α) ≥
Ω( dα ).

This theorem implies that the sketch size for esti-
mating EMD over {0, 1}d is at least Ω( dα ) for any ap-
proximation factor α ≤ d. We note that in this proof,
the size of the multisets is s ≤ 2d. Hence, in terms of s
the lower bound is Ω( log s

α ), and it immediately extends
to every larger d (and same s).

Before proving Theorem 4.1 we need to introduce
a simpler (more restricted) model of communication,
which is easier to analyze. Specifically, we consider pro-
tocols where Alice sends exactly one bit to Bob, and
Bob decides on the value of the output. For such pro-
tocols, we are interested in the correctness probability,
and more specifically in the advantage of the protocol
over a random decision (i.e., difference between proto-
col’s success probability and 1/2). The connection to
this restricted model is that an efficient communication
protocol for FR,α always implies a 1-bit protocol with a
“not too small” advantage (Section 4.1.1). We further
show a Fourier-analytic characterization of such 1-bit
protocols (Section 4.1.2). We will then show (Section
4.2) an upper bound on the advantage of any 1-bit pro-
tocol for our problem FR,α. Altogether, this will imply
a lower bound on the communication complexity of gen-
eral communication protocols for FR,α, proving Theo-
rem 4.1.

4.1 Restricted Communication Protocols. In
the sequel, we consider two restricted types of commu-
nication protocols. In the first one, one-way protocols,
only Alice can send (once) a message of length l to Bob,
and Bob has to decide on the output using this mes-
sage. The second type of protocols, LSH protocols2, is a

2The name comes from protocol’s resemblance to the Local-
ity Sensitive Hashing, a framework used for solving approximate
nearest neighbor problem in high dimensions [IM98]. In partic-
ular, for the considered distance estimation problem in a metric,
the LSH protocol is exactly equivalent to some LSH family of hash
functions in the same metric.



further restriction of one-way protocols, where, after re-
ceiving Alice’s message f(x), Bob computes some func-
tion g(y) of his input, and outputs 1 iff f(x) = g(y). As
before, we will mostly consider a pair of functions (f, g)
that is drawn from some joint distribution (i.e., Alice
and Bob use shared randomness).

We proceed to formally define these notions and to
establish connections between communication complex-
ity of (unrestricted) protocols and the success probabil-
ity of 1-bit LSH protocols.

4.1.1 One-way Protocols. As before, F (x, y) :
D → {0, 1} is a communication problem, where D ⊆
X × Y.

Definition 4.1. A deterministic one-way l-bit proto-
col is a pair (A,B) of functions A : X → {0, 1}l and
B : Y × {0, 1}l → {0, 1}. For an input distribution µ
over D ⊆ X ×Y, we define the success probability of the
protocol (A,B) on µ to be Prµ [B(y,A(x)) = F (x, y)].

Definition 4.2. A randomized one-way l-bit δ-error
protocol is a distribution Π over one-way deterministic
l-bit protocols, such that for every input (x, y) ∈ D ⊆
X × Y, with probability at least 1 − δ the chosen
protocol gives a correct answer on the input, namely,
PrΠ [B(y,A(x)) = F (x, y)] ≥ 1− δ.

To measure the efficiency of a one-way randomized
l-bit protocol, we use the success probability of the
protocol, and, more specifically, the advantage of the
protocol over a random guess. We’ll use the following
notation: AdvOWF (l) is the difference between the
maximum success probability of one-way randomized
l-bit protocols and 1/2; i.e., AdvOWF (l) ≥ 1/2 − δ
iff there exists some one-way randomized l-bit δ-error
protocol for the problem F . For a distribution µ over
(x, y) ∈ (X ,Y), we also define AdvOWF (l, µ) to be the
difference between the maximum success probability of
an l-bit deterministic protocol and 1/2.

By Yao’s minimax principle [Yao83], AdvOWF (l) =
minµ AdvOWF (l, µ).

We use the following lemma connecting the advan-
tage of a one-way protocol of a problem F to the (gen-
eral) communication complexity R(F ).

Lemma 4.1. For any l ≥ 1, and communication prob-
lem F , if R(F ) ≤ l, then AdvOWF (1) ≥ 2−O(l).

We omit our original proof of this lemma (given
also in [AIK07]), and instead refer to a simplified proof
presented later in [AK07, Lemma 3.1].

4.1.2 LSH Protocols. We further restrict our atten-
tion to a particular type of one-way protocols, which

we call LSH protocols. Here, Bob simply computes
a function HB(y) : Y → {0, 1}l, compares it to the
value HA(x) he receives from Alice, and outputs 1 iff
HA(x) = HB(y). Thus, in terms of a one-way proto-
col, Alice’s function is A = HA, and Bob’s function is
B(y, z) = χ[z = HB(y)], where χ[α = β] is 1 if α = β
and 0 otherwise.

Definition 4.3. A deterministic LSH l-bit protocol is
defined to be a pair of functions (HA,HB), where HA :
X → {0, 1}l, HB : Y → {0, 1}l. For a given input dis-
tribution µ, define the success probability of (HA,HB)
on µ to be Prµ

[
F (x, y) = χ[HA(x) = HB(y)]

]
.

As before, we define a randomized LSH l-bit δ-
error protocol to be a distribution over determinis-
tic protocols, where for every input (x, y) the proba-
bility of success is ≥ 1 − δ. For a problem F and
input distribution µ, we also define AdvLSHF (l, µ)
(AdvLSHF (l)) to be the analogue of AdvOWF (l, µ)
(AdvOWF (l)) for deterministic (randomized) LSH l-
bit protocols. Again, Yao’s minimax principle implies
AdvLSHF (l) = minµ AdvLSHF (l, µ).

Note that AdvLSHF (l, µ) ≤ AdvOWF (l, µ) for any
problem F and distribution µ since LSH protocols are a
restriction of one-way protocols. However, when l = 1,
the protocol is so restricted that we can also show that
AdvLSHF (1, µ) = AdvOWF (1, µ) for a specific type of
µ’s.

Lemma 4.2. Let µ be a distribution on (x, y) such that
for every y0 ∈ Supp(µy), Prµ[F (x, y) = 0 | y = y0] =
1/2. Then AdvLSHF (1, µ) = AdvOWF (1, µ).

Proof. Let ε = AdvOWF (1, µ), δ = 1/2 − ε, and let
(A,B) be the deterministic protocol realizing the success
probability 1− δ.

We argue that there exists a one-way protocol
(A,B′) with success probability ≥ 1 − δ on µ, where
B′(y, 0) 6= B′(y, 1) for every y ∈ Supp(µy). We
construct B′ by taking B and modifying the function
on all y’s for which B(y, 0) = B(y, 1). Let y0 be such
that B(y0, 0) = B(y0, 1). Let A0 = A−1(0) ⊆ X and
A1 = A−1(1) ⊆ X . Next, let a = Prµ[A(x) = F (x, y0) |
y = y0] and b = 1− a = Prµ[A(x) 6= F (x, y0) | y = y0].
If a ≤ 1/2 then set B′(y0, 0) = 0 and B′(y0, 1) = 1, and,
if b < 1/2, then B′(y0, 0) = 1 and B′(y0, 1) = 0.

Such modification of the protocol for an y0 increases
the error by

Prµ[y = y0] · (Pr[B′(y0,A(x)) = F (x, y0) | y = y0]
−Pr[B(y0, 0) = F (x, y0) | y = y0])

= Prµ[y = y0] ·
(
min{a, b} − 1

2

)
≤ 0



After doing as above for all y0 where B(y0, 0) =
B(y0, 1), take the LSH protocol to be HA(x) , A(x)
and HB(y) , B′(y, 1). Since this LSH protocol has
success probability at least 1 − δ, we conclude that
AdvLSHF (1, µ) ≥ AdvOWF (1, µ).

We can further give the following Fourier-analytic
characterization of the success probability of LSH 1-bit
protocols on input distributions µ of a certain structure.
Recall that Nε is a vector of d random independent
boolean values, each equal to one with probability
1/2 − ε/2. The proof is a bit technical and is given
in Appendix A.

Lemma 4.3. Fix f, g : {0, 1}d → {0, 1}. Let µ0 be
the distribution where x, y ∈ {0, 1}d are random and
independent. Let µ1 be the distribution where x ∈
{0, 1}d is random and y = x+Nε. Then

Prµ0 [f(x) = g(y)] + Prµ1 [f(x) 6= g(y)]
2

=
1
2
−

∑
S 6=∅

f̂S ĝSε
|S|

4.2 Analysis of 1-bit Protocols. We are now ready
to complete the proof of Theorem 4.1. In fact, we shall
give a direct analysis of the advantage of 1-bit protocols,
as stated in the following proposition.

Proposition 4.1. For every dimension d ≥ 1, and
approximation ratio 1 ≤ α ≤ d, there exists R, such that
every randomized 1-bit protocol for FR,α has advantage
at most 2−Ω(d/α).

By combining this proposition together with
Lemma 4.1, we immediately conclude that R(FR,α) =
Ω(d/α), proving Theorem 4.1. It thus remains to prove
the proposition. Our proof builds on the techniques
and insights of the non-embeddability result of [KN06];
in particular, we use their code-based distribution of
“hard” inputs, as well as its Fourier-analytic properties.

Proof. [Proof of Proposition 4.1] We assume that 1 <
α ≤ d/200, since for α > d/200 the conclusion is trivial.
Fix R = d/100, and define r = R/2α. Fix C ⊂ {0, 1}d
to be a linear code with dimension ≥ d/4 and weight
≥ cd, where c is a constant; for existence of such code,
see e.g. [KN06, Corollary 3.5]. For x ∈ {0, 1}d, we
denote by Gx the set {x + a}a∈C⊥ (formally, G is the
set of isometries fg(x) = x + g, g ∈ C⊥, and Gx is
the orbit of x induced by the group action G). In the
sequel, we will only consider as inputs (for Alice and
Bob) sets of the form X = Gx for some x ∈ {0, 1}d.
Notice these sets all have size s = |C⊥| ≤ 23d/4.
Furthermore, for all X = Gx, Y = Gy, and y′ ∈ Y , we
have EMD(X,Y ) = minx′∈X ‖x′− y′‖1 (see e.g. [KN06,
Lemma 3.1]).

Recall that Nε is a vector of d random independent
boolean values, each equal to one with probability
1/2− ε/2. Let η0 be the uniform distribution over pairs
(x, y) ∈ {0, 1}d × {0, 1}d, and let η1 be a distribution
over pairs (x, y) ∈ {0, 1}d × {0, 1}d where x is random
and y = x+Nε for ε = 1−2r/d. For i ∈ {0, 1}, define µi
as the distribution of (Gx,Gy) where (x, y) are picked
from ηi. Since not all the pairs (x, y) in the support of
µi satisfy F (x, y) = i, we define µ′i to be the distribution
µi conditioned on the fact that FR,α(X,Y ) = i.

We next show that for all i ∈ {0, 1} the statistical
distance between µi and µ′i is 2−Ω(r). For (x, y) drawn
from µ1, with probability at least 1 − 2−Ω(r), we have
‖x− y‖1 ≤ 2r, implying that EMD(X,Y ) ≤ 2r = R/α,
or FR,α(X,Y ) = 1. Similarly, for (x, y) drawn from µ0,
we can prove that for every x′ ∈ Gx, the probability
that ‖y − x′‖1 > d/100 is at least 1 − 2−Ω(d). Indeed,
for every x′ ∈ Gx, the number of points at distance
≤ d/100 from x′ is at most by

(
d

d/100

)
≤ 2d/10. Thus,

with probability at least 1− s · 2d/10/2d ≥ 1− 2Ω(r), for
all x′ ∈ Gx we have ‖y − x′‖1 > d/100, implying that
F (x, y) = 0.

Now let (A,B) be a deterministic one-way 1-bit
protocol with maximal success probability on µ′ =
µ′0+µ

′
1

2 . Let δ be such that this success probability
is 1 − δ. Applying Lemma 4.2 to µ′, we conclude
there exists some LSH protocol (H̃A, H̃B) with success
probability 1 − δ on µ′. Note that µ′ satisfies the
precondition of the Lemma 4.2, because (i) both µ′0, µ

′
1

have marginals that are uniform (by symmetry), and
(ii) after conditioning µ′ on y = y0, the probability that
F (x, y) = 0 is exactly 1/2.

Since (H̃A, H̃B) is a deterministic δ-error LSH pro-
tocol on distribution µ′, and because µi and µ′i are sta-
tistically close for all i ∈ {0, 1}, we have

Prµ0 [H̃A(X) = H̃B(Y )] + Prµ1 [H̃A(X) 6= H̃B(Y )]
2

≤
Prµ′0

[gHA(X)=gHB(Y )]+Prµ′1
[gHA(X) 6=gHB(Y )]

2 + 2−Ω(r)

≤ δ + 2−Ω(r) (4.5)

We define HA,HB : {0, 1}d → {0, 1} as the ex-
tensions of H̃A and H̃B in the natural way: HA(x) ,

H̃A(Gx) and HB(x) , H̃B(Gx). By definition, for
all a ∈ C⊥ we have HA(x) = HA(x + a) and
HB(x) = HB(x + a). Furthermore, for all i ∈ {0, 1},
Prηi

[
HA(x) = HB(y)

]
= Prµi

[
H̃A(Gx) = H̃B(Gy)

]
,

and thus we have from Eqn. (4.5) that



Prη0 [HA(x) = HB(y)] + Prη1 [HA(x) 6= HB(y)]
2

≤ δ + 2−Ω(r) (4.6)

By the Fourier characterization of Lemma 4.3,

Prη0 [HA(x) = HB(y)] + Prη1 [HA(x) 6= HB(y)]
2

=

1
2
−

∑
S 6=∅

ĤA
S ĤB

S ε
|S| ≥ 1

2
−

∑
S 6=∅

ĥ2
Sε
|S|, (4.7)

where h : {0, 1}d → {0, 1} is equal to either HA or
HB (the last inequality is by Cauchy-Schwarz). Since
h(x) = h(x + a) for all a ∈ C⊥, we have from [KN06,
Lemma 3.3] that ĥS = 0 for all S with 0 < |S| < w(C),
where w(C) ≥ cr is the weight of the code C. Now since∑
S ĥ

2
S ≤ 1,∑

S 6=∅

ĥ2
Sε
|S| =

∑
|S|≥cd

ĥ2
Sε
|S| ≤ εcd = (1−2r/d)cd ≤ e−2cr.

(4.8)

Putting together Equations (4.6), (4.7),and (4.8),
we get 1

2 − e−2cr ≤ δ + 2−Ω(r). We conclude that
AdvOWFR,α

(1) ≤ AdvOWFR,α
(1, µ′) = 1/2 − δ ≤

e−2cr + 2−Ω(r) = 2−Ω(d/α), proving the proposition.
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A Proof of Lemma 4.3

Proof. Let pf , Ex [f(x)] = f̂∅ and pg , Ey [g(y)] = ĝ∅.
If we set f̄(x) , 1 − f(x), then note that ˆ̄f∅ = 1 − pf

and ˆ̄fS = −f̂S for S 6= ∅ (analogously for g).
We can then write that

Pr
µ0

[f(x) = g(y)] = pf · pg + (1− pf ) · (1− pg)

and

Pr
µ1

[f(x) 6= g(y)] = pf Pr
µ1

[g(y) = 0 | f(x) = 1]

+(1− pf ) Pr
µ1

[gy = 1 | f(x) = 0].

If we set a , Prµ1 [g(y) = 0 | f(x) = 1], then we
have that

a = Pr
µ1

[ḡ(y) = 1 | f(x) = 1] = 2d · 〈 1
|f−1(1)|

Tεf, ḡ〉

=
1
pf

∑
S

f̂S ˆ̄gSε|S| =
1
pf

pf (1− gf )−
∑
S 6=∅

f̂S ĝSε
|S|

 .

Similarly, define b as

b , Pr
µ1

[g(y) = 1 | f(x) = 0] =
1

1− pf

(1− pf )gf −
∑
S 6=∅

f̂S ĝSε
|S|

 .

Thus,

Pr
µ0

[f(x) = g(y)] + Pr
µ1

[f(x) 6= g(y)] =

= pfgf + (1− pf )(1− gf ) + pfa+ (1− pf )b
= pfpg + (1− pf )(1− pg) + pf (1− gf ) + (1− pf )gf

−2
∑
S 6=∅

f̂S ĝSε
|S|

= 1− 2
∑
S 6=∅

f̂S ĝSε
|S|.
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