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Abstract. We prove the first nontrivial communication complexity lower bound for the problem
of estimating the edit distance (aka Levenshtein distance) between two strings. To the best of our
knowledge, this is the first computational setting in which the complexity of estimating the edit
distance is provably larger than that of Hamming distance. Our lower bound exhibits a trade-off
between approximation and communication, asserting, for example, that protocols with O(1) bits of
communication can obtain only approximation α ≥ Ω(log d/ log log d), where d is the length of the
input strings. This case of O(1) communication is of particular importance since it captures constant-
size sketches as well as embeddings into spaces like l1 and squared-l2, two prevailing algorithmic
approaches for dealing with edit distance. Indeed, the known nontrivial communication upper bounds
are all derived from embeddings into l1. By excluding low-communication protocols for edit distance,
we rule out a strictly richer class of algorithms than previous results. Furthermore, our lower bound
holds not only for strings over a binary alphabet but also for strings that are permutations (aka
the Ulam metric). For this case, our bound nearly matches an upper bound known via embedding
the Ulam metric into l1. Our proof uses a new technique that relies on Fourier analysis in a rather
elementary way.
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1. Introduction. The edit distance (aka Levenshtein distance) between two
strings is the number of insertions, deletions, and substitutions needed to transform
one string into the other. This distance is of key importance in several fields, such as
computational biology and text processing, and consequently computational problems
involving the edit distance were studied quite extensively. The most basic problem
is that of computing the edit distance between two strings of length d over alpha-
bet Σ. The fastest algorithm known for the case of constant-size alphabet remains
the algorithm of Masek and Paterson [25] from 1980, which runs in time O(d2/ log2 d).
Unfortunately, such near-quadratic time is prohibitive when working on large datasets,
which is common in areas such as computational biology. A possible approach is to
trade accuracy for speed and employ faster algorithms that compute the edit distance
approximately (possibly as a preliminary filtering step). Currently, the best near-
linear time algorithm, due to Andoni and Onak [5], achieves an approximation factor

of 2Õ(
√
log d), improving the earlier results of [8, 6, 9].

Another major algorithmic challenge is to design a scheme for nearest neighbor
search (NNS) under the edit distance. In this problem, we wish to design a data
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structure that preprocesses a dataset of n strings of length d each, so that when a query
string is given, the query’s nearest neighbor (i.e., a dataset string with the smallest edit
distance to the query string) can be reported quickly. However, no efficient solutions
for this problem are known, even if one allows a small approximation. All known
algorithms with fast query time (polynomial in d and logn) either require large space
or have large approximation error—Indyk [19] achieves constant approximation using

ndΩ(1)

space, and Ostrovsky and Rabani [29] obtain 2O(
√
log d log log d) approximation

using space that is polynomial in d and n.
It is thus natural to ask the following: Is it really “hard” to design algorithms

for the edit distance? A natural benchmark is the Hamming distance, which is equal
to the number of positions where the two strings differ. Hamming distance can be
seen as edit distance where the only operation allowed is substitution. For Hamming
distance, much better algorithms are known: (i) the distance between two strings can
clearly be computed in O(d) time, and (ii) NNS schemes by Indyk and Motwani [20]
and by Kushilevitz, Ostrovsky, and Rabani [24] achieve 1 + ε approximation using

space that is polynomial in d and in n1/ε2 . Empirically, edit distance appears to be
more difficult than Hamming distance, and the reason is quite clear—insertions and
deletions cause portions of the string to move and create an alignment problem—
but there is no rigorous evidence that supports this intuition. In particular, we are
not aware of a computational model in which the complexity of approximating edit
distance is provably larger than that of Hamming distance.1

We give the first rigorous evidence for the computational hardness of approximat-
ing the edit distance. In fact, we show a computational model in which the complexity
of estimating edit distance is significantly larger than that of Hamming distance, and
this is the first setting where such a separation is known. Our results hold for two
important metrics:

1. standard edit metric, i.e., edit distance on {0, 1}d;
2. the Ulam metric, which is the edit distance on permutations of length d.

Here and throughout, a permutation is a string consisting of distinct characters coming
from a large alphabet, |Σ| ≥ d. This definition of permutations is nonstandard,
although our results also hold under the standard one, where |Σ| = d (see Fact 2.4
and the discussion preceding it). Our results immediately imply lower bounds for
sketching algorithms and for metric embeddings. These two algorithmic techniques
received a lot of attention lately as promising approaches to many metric problems.
We will discuss these implications in more detail after stating our main results.

1.1. Main results. Our main result is stated in terms of the communication
complexity of the distance threshold estimation problem (DTEP) and holds for both

1We are aware of only two results that come close. First, if the operations on the symbols
of the strings are restricted to tests of equality, then computing edit distance between two strings
over a large alphabet requires Ω(d2) comparisons [34]. However, this lower bound holds only for
exact computation (or 1 + o(1) approximation) and for strings over a large alphabet (but not for
binary strings). In fact, the lower bound breaks down even in the comparison model (when we can

compare the relative order of two symbols); e.g., the algorithm of [10] runs in time O(d2 log2 log d
log2 d

)

for computing edit distance between strings over an arbitrarily large alphabet.
Second, if we restrict our attention to sublinear time, i.e., algorithms that probe only a small part

of the two input strings, then there exists a simple separation in terms of query complexity. Specif-
ically, deciding whether the edit distance is Ω(d) or O(d1−ε) requires reading at least Ω(d1/2−ε/2)
positions of the strings [8], while the same decision under Hamming distance is achieved easily by
sampling O(1) positions. This separation has limited computational implications since it essentially
shows that estimating edit distance requires reading “many” positions of the input strings.
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the edit metric over Σ = {0, 1} and for the Ulam metric. In DTEP [32], for a threshold
R and an approximation α ≥ 1 fixed as parameters, we are given inputs x, y and want
to decide whether ed(x, y) > R or ed(x, y) ≤ R/α.

In the communication protocol setting, Alice and Bob, who have access to a com-
mon source of randomness, receive strings x and y, respectively, as their inputs, and
their goal is to solve DTEP by exchanging messages. The communication complexity
of the protocol is then defined as the minimum number of bits Alice and Bob need to
exchange in order to succeed with probability at least 2/3. When x, y come from the

standard edit metric, we denote the communication complexity by CC
{0,1}d

α,R . Simi-
larly, when x, y come from the Ulam metric, we denote the communication complexity
by CCUlamd

α,R . Our main theorem provides a lower bound on the latter, exhibiting a
trade-off between communication and approximation.

Theorem 1.1 (main theorem). There exists a constant c > 0 such that, for every
string length d > 1, approximation α > 1, and R satisfying d0.1 ≤ R ≤ d0.49,

c · CCUlamd

α,R + log(α logα) ≥ log log d.

We extend this result from the Ulam metric to the standard edit metric by reduc-
ing the latter to the former. The key idea, which may be of independent interest, is
that substituting every alphabet symbol independently with a random bit is likely to
preserve the edit distance, up to a constant factor, as stated in the following theorem.

Theorem 1.2. Let P,Q ∈ Σd be two permutations, and let π : Σ �→ {0, 1} be a
random function. Then

• ed(π(P ), π(Q)) ≤ ed(P,Q) for any choice of π, and
• Prπ

[
ed(π(P ), π(Q)) ≥ Ω(1)·ed(P,Q)

]
≥ 1− 2−Ω(ed(P,Q)).

Using our two theorems, we obtain the following.
Corollary 1.3. There exists a constant c > 0 such that, for every string length

d > 1, approximation α > 1, and R satisfying d0.1 ≤ R ≤ d0.49,

c · CC{0,1}d

α,R + log(α logα) ≥ log log d.

The previously known lower bounds for CC
{0,1}d

α,R and CCUlamd

α,R are all obtained by
a straightforward reduction from the same problem on the Hamming metric. These
bounds assert that the communication complexity for α = 1+ ε is Ω(1/ε), and in the
case of sketching (aka simultaneous)2 protocols is Ω(1/ε2) [35] (see also [36, Chap-
ter 4]), and both are clearly uninformative for (say) α ≥ 2. See also [30] for other
related results.

The only nontrivial upper bounds currently known are (i) CC
{0,1}d

α,R ≤ O(1) for

suitable α = 2O(
√
log d log log d); and (ii) CCUlamd

α,R ≤ O(1) for suitable α = O(log d);
and they both follow via embedding into �1. See section 1.2 and Table 1.1 for more
details.

Comparison with Hamming distance. The next proposition, proved (implicitly) by
Kushilevitz, Ostrovsky, and Rabani [24], upper bounds the communication complexity
of DTEP over the Hamming metric. Let H(x, y) be the Hamming distance between
x and y.

Proposition 1.4 (see [24]). Let d > 1, R > 1, and ε > 0. Then there exists a
communication protocol (in fact, a sketching algorithm) that given inputs x, y ∈ Σd

2See the formal definition of sketching in section 1.2.
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distinguishes whether H(x, y) > R or H(x, y) ≤ R/(1 + ε), using O(1/ε2) bits of
communication.

Observe that for approximation factor α, which is a constant (namely, indepen-
dent of d and R), the complexity of the Hamming metric is O(1), while that of the
edit metric is Ω(log log d). It thus follows that edit distance is indeed provably harder
to compute than Hamming distance in the context of communication protocols.

1.2. Implications and related work. Two promising approaches to design-
ing algorithms for the edit metrics are via metric embeddings and via sketching, and
our results preclude good approximation algorithms obtained via either of these ap-
proaches.

Embedding of edit distance into normed metrics. A current line of attack on edit
distance is by embedding it into a computationally easier metric, for which efficient
algorithms are known. An embedding is a mapping f from the strings into, say, an �1
metric such that, for all strings x, y,

ed(x, y) ≤ ‖f(x)− f(y)‖1 ≤ D · ed(x, y),

andD ≥ 1 is called the embedding’s distortion (approximation factor). An embedding
with low distortion would have major consequences since it allows porting a host
of existing algorithms for an �1 metric to the case of edit distance. For example,
an (efficiently computable) embedding with distortion D gives an efficient nearest
neighbor data structure for approximation (say) 2D by applying the embedding and
reverting to [20, 24].

Naturally, researchers were keen to find the least distortion for an embedding into
�1—the problem is cited in Matoušek’s list of open problems [26], as well as in Indyk’s
survey [18]. Table 1.1 summarizes the previously known upper and lower bounds, as
well as the implications of our theorems. The reader may find more background on
some variants of the edit distance in [31].

Table 1.1

Known bounds on distortion/approximation of embedding variants of edit distance into �1,
squared-�2, and the approximation for achieving O(1)-size sketch. Since �1 embeds isometrically
into squared-�2 and the latter admits O(1)-size sketch for 2-approximation, the upper bounds transfer
from left to right, and the lower bounds transfer from right to left (as suggested by the arrows). n/a
means no result is given (even implicitly).

Metric Reference Embedding into Embedding O(1)-size
�1 into squared-�2 sketch

Edit distance
on {0, 1}d

[29] 2Õ(
√
log d) −→ −→

[22],[23] Ω(log d) n/a n/a

[1] ←− ≥ 3/2 n/a

This paper ←− ←− Ω( log d
log log d

)

Ulam metric
(edit distance
on permutations)

[12] O(log d) −→ −→
[13] ←− ≥ 4/3 n/a

This paper ←− ←− Ω( log d
log log d

)

Edit distances with [15],[28],
Õ(log d) −→ −→

block operations [13],[14]

It is readily seen from the table that the only previous superconstant distortion
lower bound is Ω(log d) for embedding edit distance into �1, due to Krauthgamer
and Rabani [23], building on a technique of Khot and Naor [22], who gave a bound
of Ω

(
(log d)1/2−o(1)

)
. Although this lower bound is important, one can potentially
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overcome such a lower bound by, say, embedding edit distance into a richer space, such
as squared-�2, a real space with squared Euclidean distance, with a possibly smaller
distortion—the major implications of an embedding into squared-�2 are precisely the
same as those of an embedding into �1. On this front, much weaker lower bounds
were known: the previous lower bound is only 3/2 [1]. To further stress how little was
known, we note that one can consider even richer metrics, such as any fixed power of
�2 (essentially equivalent to embedding a fixed root of edit distance into �2), which
also has an efficient nearest neighbor data structure. For a sufficiently high (but fixed)
power of �2, even the 3/2 bound of [1] gets weaker and becomes arbitrarily close to 1.

Our results rule out all such embeddings indirectly by targeting a richer class
of metrics—metrics for which the respective DTEP problem admits a protocol with
O(1) bits of communication and O(1) approximation. (Proposition 1.4 shows that this
class of metrics is indeed richer.) It follows from our communication lower bounds
that every embedding of edit distance (either on 0-1 strings or on permutations) into
a metric in that richer class must incur distortion D ≥ Ω( log d

log log d ), without requiring
that the embedding be efficiently computable. For completeness, we state and prove
this distortion lower bound explicitly for metrics which are a fixed power of �2.

Corollary 1.5. For every fixed p ≥ 1, embedding the standard edit metric or
the Ulam metric into (�2)

p, the pth power of �2, requires distortion Ω( log d
log log d). The

same is true also for embedding into �1.
Proof. Suppose p ≥ 1 is fixed and the edit metric ed (or similarly the Ulam met-

ric) embeds into (�2)
p with distortion D ≥ 1. In other words, the metric ed1/p (i.e.,

1/p-power of every distance) embeds into �2 with distortion D1/p. The DTEP prob-
lem for �2 metrics can be solved with (say) approximation 1 + 1

p and communication

O(p2) using Proposition 1.4 (since finite �2 metrics embed isometrically into Hamming

space). Together, we obtain a protocol for the DTEP problem on the metric ed1/p,
which achieves approximation D1/p(1 + 1

p ) and communication O(p2). Observe that
the same protocol also solves DTEP on the edit metric ed, except that the threshold
now is Rp instead of R, and the approximation is (D1/p(1 + 1

p ))
p < De. The com-

munication is the same O(p2), and thus Corollary 1.3 (or Theorem 1.1, respectively)

implies that De log(De) ≥ 2−O(p2) log d. For fixed p this completes the proof.
For the Ulam metric, this distortion lower bound of Ω( log d

log log d) is near-optimal,

since that metric embeds into �1 with O(log d) distortion [12]. The previous distor-
tion lower bound was 4/3 [13]. Other upper and lower bounds for low-distortion
embeddings appear in Table 1.1.

Sketching of edit distance. The sketch of a string x is a (randomized) mapping of
x into a short “fingerprint” sk(x) such that sketches of two strings, sk(x) and sk(y),
are sufficient to distinguish between the case where edit distance is ed(x, y) ≤ R/α,
and the case where ed(x, y) > R, for fixed approximation factor α > 1 and parameter
R > 1. The main parameter of a sketching algorithm is its sketch size, the length of
sk(x).

The sketching model can also be described as a (randomized) simultaneous com-
munication protocol as follows. Alice receives x and computes sk(x), Bob receives y
and computes sk(y), and then they send their computed values to a “referee,” who
needs to decide whether x, y are close or far based only on the sketches. By letting
either Alice or Bob play the role of the referee in this simultaneous protocol, one easily
sees that the sketch size required by a sketching algorithm is always no smaller than
the number of communication bits required by a (general) protocol. The following
corollary thus follows immediately from our preceding communication lower bounds.
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Corollary 1.6. For every d > 1 and d0.1 ≤ R ≤ d0.49, every O(1)-size sketching
algorithm of the standard edit metric or of the Ulam metric can achieve approximation
of only Ω( log d

log log d).

Sketching with constant sketch size can be viewed as a generalization of the “em-
beddings approach” presented above, by using Proposition 1.4, albeit with an arbitrar-
ily small constant factor loss in the approximation factor. An important observation
is that this more general approach suffices for the purpose of designing an NNS scheme
with efficient query time (assuming that computing the sketch can be done efficiently)
and with polynomial storage.3 Indeed, the nearest neighbor data structure for the
Hamming metric of [24] could be viewed as an instantiation of the last step. In addi-
tion, sketching can be useful for the original goal of quickly estimating the distance
(e.g., as a filtering step).

The sketching model is also important as a basic computational notion for massive
data sets, and in recent years, an intensive research effort has led to several sketching
algorithms for DTEP over different metrics. Prior to our work, there were essentially
three metrics for which a sketch size’s lower bounds were known: �1 [35] (equivalently,
for �p, p ∈ (1, 2]), �∞ [32, 7] (implying lower bounds for �p, p > 2), and the Earth-
mover distance over {0, 1}d [2].

Sketching of edit distance was studied in [8, 6, 29, 12], but the only lower bound
known for sketching of edit distance is trivial in the sense that it follows immediately
from Hamming distance (by a straightforward reduction). This lower bound on the
sketch size is Ω(1/ε2) for approximation α = 1+ ε [35], which becomes uninformative
for even a 2-approximation. In fact, Bar-Yossef et al. [6] write that “The state of
affairs indicates that proving sketching lower bounds for edit distance may be quite
hard.”

1.3. Our techniques. Our proof of Theorem 1.1 consists of three steps. Gen-
erally speaking, we design two input distributions: μ̃0 over “far” pairs (x, y) (i.e.,
ed(x, y) > R) and μ̃1 over “close” pairs (i.e., ed(x, y) ≤ R/α). The goal then becomes
to show that these distributions are indistinguishable by protocols with low commu-
nication complexity. By Yao’s minimax principle, it suffices to consider deterministic
protocols.

The first step reduces the problem to proving that the two distributions μ̃0, μ̃1

are indistinguishable by boolean functions over Zd
p. Roughly speaking, we show

that if there is a protocol using at most l bits of communication, then there ex-
ists a (deterministic) sketching protocol that uses sketch size of 1 bit and achieves
an advantage of at least Ω(2−l) in distinguishing between the two distributions. Let
HA,HB : Zd

p → {−1,+1} be the boolean functions that Alice and Bob, respectively,
use as their sketch functions. We can then further restrict the sketching protocol
so that the referee decides by checking whether or not HA(x) = HB(y) . This step
follows the approach employed earlier in [2], with some minor technical differences.

The second step’s main goal is to further characterize the advantage achieved
by HA,HB in terms of a carefully crafted measure of statistical distance between
the two input distributions μ̃0, μ̃1. For this approach to be effective, it is important

3In particular, one can first amplify the sketching’s probability of success to 1−n−Ω(1), where n is
the number of points in the dataset, using sketch size O(logn). Then, the data structure preindexes
all possible sketches in the amplified protocol, using only 2O(log n) = nO(1) space. For each possible
value of the amplified sketch, the data structure stores the answer that the sketching referee would
conclude from the sketch of the query and that of each dataset point. Note that, in fact, s-size
sketches imply nO(s)-size nearest neighbor data structure.
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that the functions HA,HB depend only on a few coordinates of their inputs, and in
order to guarantee this (indirectly), we include in μ̃0, μ̃1 a noise component, which
effectively destroys any dependence of HA,HB on many coordinates. Specifically,
this step assumes that each distribution μ̃t, t ∈ {0, 1}, has the following structure:
choose x ∈ Zd

p uniformly at random, and then generate y from x via a sequence
of two randomized operations. The first of the two is a noise operator with rate
ρ ∈ (0, 1); i.e., each coordinate is modified independently with probability 1 − ρ into
a randomly chosen value. The second operation permutes the coordinates according
to a permutation drawn from a distribution Dt. Given this Dt, consider the following
derived distribution: take a vector u ∈ Zd

p with λ nonzero positions (called a λ-test)

and apply a random permutation π ∈ Dt to it; let A
(t,λ)
u be the resulting distribution

of vectors. (Note that the support of A
(t,λ)
u contains only vectors with precisely λ

nonzero entries.) Our measure Δλ, called λ-test distinguishability, is the maximum,

over all such λ-tests u, of the total variation distance between A
(0,λ)
u and A

(1,λ)
u . It

pretty much captures the statistical advantage in distinguishing D0 from D1 (and thus
μ̃0 from μ̃1) achievable by inspecting only λ positions of, say, y (e.g., by tracing them
back to x). Altogether, our upper bound on the advantage achieved by HA,HB takes
roots in the following dichotomy. If HB essentially depends on many coordinates of
y (e.g., a linear function with many terms), then the advantage is bounded by ρλ

(i.e., the noise destroys almost all the information), and if HB essentially depends
on a few, say λ, coordinates, then the advantage is bounded by the aforementioned
Δλ. To prove this dichotomy, we rely on Fourier analysis which expands HA,HB into
linear functions at different levels λ.

In the third step, we complete the description of μ̃0, μ̃1 by detailing the construc-
tion of D0,D1 and give an upper bound on the λ-test distinguishability Δλ for these
distributions. In a simplified view, each distribution Dt is generated by a block rota-
tion operation, namely, choosing a random block of length L and applying to it εtL
cyclic shifts. The difference between the two distributions is in the magnitude of the
rotation (namely, εt).

Our use of Fourier analysis is elementary and does not involve the KKL theo-
rem [21] or Bourgain’s noise sensitivity theorem [11], which were used in the previous
nonembeddability results for edit distance [22, 23]. We also note that our hard dis-
tribution is notably different from the distributions of [23] or [22], which do admit
efficient communication protocols.

To prove Theorem 1.2, we give a new characterization of the Ulam distance be-
tween two strings. In particular, building on the work of [30, 17], we prove that if two
strings (permutations) P,Q are at distance k = ed(P,Q), then there exist Θ(k) pairs
of characters in P , all characters at distinct positions, such that for each pair (a, b)
their order in P is opposite to that in Q (if they appear in Q at all). We then ex-
ploit this characterization by a careful counting of the number of the possible low-cost
alignments between P and Q, tailored to the aforementioned Θ(k) positions.

2. Preliminaries. We use the notation [d] = {1, 2, . . . , d} and Zp = {0, 1, . . . , p−
1}. For a vector u ∈ Zd

p, define the weight of u, denoted wt(u), to be the number of
coordinates in u that are nonzero.

Definition 2.1. For matrix A ∈ Mn,n(R) and p ∈ [1,∞], the p-norm of A is
defined by ‖A‖p = max{‖Av‖p : v ∈ Cn, ‖v‖p = 1}.

2.1. Fourier analysis over Zd
p. We review basic Fourier analysis over Zd

p for a
prime p ≥ 2.
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The collection of functions f : Zd
p → C is a vector space of dimension pd, equipped

with an inner product given by 〈f, g〉 = Ex∈Zd
p
[f(x) · g(x)]. For u ∈ Zd

p, define a

character χu(x) = e
2πi
p (x·u), where x · u is the scalar product of x, u ∈ Zd

p. The set

of characters {χu | u ∈ Zd
p} forms an orthonormal basis, called the Fourier basis.

Thus every function f : Zd
p → C admits a Fourier expansion f =

∑
u∈Zd

p
f̂uχu, where

f̂u = 〈f, χu〉 is called the Fourier coefficient of f corresponding to u. Parseval’s

identity states that Ex∈Zd
p
[f(x)g(x)] =

∑
u∈Zd

p
f̂uĝu.

We let Nρ stand for a noise vector over Zd
p, namely, a vector where each coordinate

is set independently at random as follows: with probability ρ it is set to zero, and
with probability 1− ρ it is set to a random value from Zp. We refer to ρ as the rate
of the noise.

The noise operator Tρ (also called Bonami–Beckner operator) operates on func-
tions f : Zd

p → R and is defined by (Tρf)(x) = ENρ [f(x+Nρ)]. The following
standard fact relates the Fourier coefficients of f with those of Tρf .

Fact 2.2. For every vector u ∈ Zd
p, (̂Tρf)u = f̂u · ρwt(u).

Proof. We can write (Tρf)(x) = ENρ [f(x+Nρ)] as

ENρ

⎡
⎣∑
u∈Zd

p

f̂ue
2πi
p u·(x+Nρ)

⎤
⎦ =

∑
u∈Zd

p

f̂ue
2πi
p u·x

ENρ

[
e

2πi
p u·Nρ

]
=

∑
u∈Zd

p

f̂uρ
wt(u)χu,

where we used the fact that for every w ∈ Zp \ {0} we have Ev∈Zp [e
2πi
p wv] = 0.

Note that, for p = 2, i.e., Fourier expansion over {0, 1}d, this is equivalent to

having (̂Tρf)S = f̂Sρ
|S| for every S ⊆ [d].

2.2. Edit metric and Ulam metric. Let Σ be the alphabet; we mostly con-
sider Σ = {0, 1} or Σ = Zp = {0, 1, . . . , p− 1} for p ∈ N (we will use p = Θ(d3)).

For x ∈ Σd, we let xi denote the ith position in x whenever i ∈ [d] and extend
the notation to i �∈ [d] by defining xi = xj , where i ≡ j (mod d) and j ∈ [d].

Definition 2.3 (edit metrics). Let d be a positive integer. The edit metric
over Σ is the space Σd endowed with distance function ed(x, y), which is defined as
the minimum number of character substitutions/insertions/deletions to transform x
into y.

When |Σ| ≥ d, let the Ulam metric be the space of permutations x ∈ Σd, where x
is called a permutation if no symbol c ∈ Σ appears more than once in x. This space
is endowed with the same distance function ed(x, y).

We note that allowing alphabets Σ bigger than [d] does not make the Ulam
metric harder (at least in our communication complexity setting), and thus our main
theorem carries over to the Ulam metric over permutations with alphabet Σ = [d] (i.e.,
the standard notion of permutations). In particular, one can perform the following
reduction from the former problem to the latter problem.

Fact 2.4. For any string length d and alphabet Σ, |Σ| ≥ d, there is a function
f : Σd → Σ|Σ| such that for every pair of permutations x, y ∈ Σd we have that
f(x), f(y) are permutations over Σ and

ed(x, y) ≤ ed(f(x), f(y)) ≤ 3 ed(x, y).

Proof. For given x ∈ Σd, construct f(x) ∈ Σ|Σ| by appending all the alphabet
symbols that are missing from x in an increasing order. Then, clearly ed(f(x), f(y)) ≥
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ed(x, y). Furthermore, we claim that ed(f(x), f(y)) ≤ 3 ed(x, y). Indeed, the edit
distance between the starting block of length d of f(x) and of f(y) is ed(x, y). Also,
if z ≤ ed(x, y) is the number of symbols that appear in x but not in y and vice versa,
then the edit distance between the ending block of length |Σ| − d of f(x) and f(y) is
2z. The total edit distance between f(x) and f(y) is at most 3 ed(x, y).

Note that when |Σ| = p = Θ(d3), as is the case in our main theorem, log |Σ| =
Θ(log d), and thus the logarithmic lower bound carries over.

We will also use the following operation on strings, which is illustrated in Fig-
ure 2.1.

Definition 2.5 (rotation operations). Fix a positive integer d and an alphabet

Σ. For s, L ∈ [d], define the right rotation operation
−→
R s,L : Σd → Σd as follows.

When applied to a string x, it takes the substring of x of length L starting at position
s (with wraparound) and performs on it one cyclic shift to the right (by 1 position);

the rest of x remains unchanged. A left rotation
←−
R s,L is defined similarly. We call L

the length of the rotation operation.

aσ

a σ
−→
R s,L(x):

L

x:

Fig. 2.1. The rotation operation
→
Rs,L(·). Here, σ is the substring of length L − 1 starting at

position s in x, and a is the character at position s+ L− 1 in x.

Note that
−→
R s,L works as a permutation (and thus is a bijection on the space

of strings). Also, for i ∈ [L], (
−→
R s,L)

i is a rotation of the same block by i positions

to the right. Note that a rotation operation
−→
R s,L can be simulated by at most two

deletions and two insertions (and only one of each when the rotation block does not

wrap around at the string’s boundary). Thus, ed(x, (
−→
R s,L)

i(x)) = O(i) for every x
and i.

3. Proof of main theorem. In this section we prove Theorem 1.1. Fix the
values of d and R, and let us use the alphabet Σ = Zp for p sufficiently large so that a
random string from Σd is a permutation with high probability (e.g., it suffices to set
p to be the smallest prime greater than d3). For the rest of this section, we denote
our hard distribution by μ̃ = μ̃0+μ̃1

2 , where μ̃0 will be a distribution over far pairs of
strings (x, y) and μ̃1 will be a distribution over close pairs (x, y), i.e., ed(x, y) > R
and ed(x, y) ≤ R/α, respectively.

We will follow the steps outlined in section 1.3 and eventually put all the pieces
together in section 3.3. Our general approach to proving the theorem uses just a few
simple properties of the hard distribution, which we will specify along the way. To
differentiate the underlying technique from the specifics of our hard distribution, we
describe the hard distribution and prove its required properties separately in section 4.

3.1. Reduction to boolean functions. Our first lemma says that if there is
an efficient communication protocol, then there are boolean functions with a nonneg-
ligible advantage in distinguishing the distribution μ̃0 from μ̃1. This lemma is based
on the ideas from [2], although the presented proof is simpler than in [2].
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Lemma 3.1. Let μ̃0 and μ̃1 be distributions over far and close pairs, respectively.
If CCUlamd

α,R ≤ l for some l ≥ 1, then there exist boolean functions HA,HB : Zd
p →

{−1,+1} such that

Pr
μ̃0

[HA(x) �= HB(y)]− Pr
μ̃1

[HA(x) �= HB(y)] ≥ 1
3 · 2−l.

Proof. The idea is to reduce the general communication protocol to a simulta-
neous (i.e., sketching) protocol where Alice and Bob each send a sketch of one bit
only, and the referee performs an equality test on these two bits. Then, using Yao’s
minimax principle, we easily obtain two deterministic boolean functions HA and HB

that complete the proof.
To accomplish the reduction, consider an actual l-bit (randomized) protocol Π.

We construct a one-bit sketching protocol as follows: Alice and Bob make a random
guess of the entire transcript of an l-bit protocol using the public coins, uniform over
the space of all 2l protocols (the guess is independent of the actual inputs). Each of
them then checks whether the guessed transcript describes the messages they would
send in the actual protocol Π, using the guessed transcript to simulate the other
party’s messages. For example, Alice starts the protocol Π (that depends on her
input), but instead of sending the messages to Bob, she verifies that her messages are
exactly the same as the ones appearing in the guessed protocol. Alice also uses the
messages from the guessed protocol to simulate Bob’s answers.

If at any moment Alice (or Bob) spots an inconsistency, she (or he) sends a bit
chosen independently at random. Otherwise, Alice outputs 1, and Bob outputs the
outcome of the guessed transcript. Observe that if the guessed transcript is not equal
to the actual protocol they would have run, then at least one of the two players notices
an inconsistency, and one of the bits output by Alice or Bob is random.

Thus, if x and y are such that ed(x, y) ≤ R/α (close pair), then Alice and Bob’s
bits are equal with probability at least 2

3 ·2−l+(1− 2−l)12 = 1
2 +

1
62

−l (where 2
3 is the

probability that the original protocol Π succeeds on (x, y)). Similarly, if x and y are
such that ed(x, y) > R (far pair), then Alice and Bob’s bits are equal with probability
at most 1

3 ·2−l+(1−2−l) · 12 = 1
2 −

1
62

−l. Using Yao’s minimax principle, we conclude
that, for given distributions μ̃0 and μ̃1 over far and close pairs, respectively, there
exist some fixed boolean functions HA,HB that achieve a success probability at least
1
2 + 1

62
−l on the distribution μ̃ = μ̃0+μ̃1

2 , or, formally,

1

2
Pr
μ̃0

[HA(x) �= HB(y)] +
1

2
Pr
μ̃1

[HA(x) = HB(y)] ≥ 1

2
+

1

6
· 2−l.

We conclude that Prμ̃0 [HA(x) �= HB(y)]− Prμ̃1 [HA(x) �= HB(y)] ≥ 1
3 · 2−l.

The rest of the proof of Theorem 1.1 uses these boolean functions HA,HB.

3.2. From boolean functions to λ-tests. Next we provide a method to lower
bound the advantage achieved by the boolean functions HA,HB by relating it to a
certain statistical property of the hard distribution μ̃. Our hard distribution μ̃ =
μ̃0+μ̃1

2 will have a specific generic construction that we describe next. For each t ∈
{0, 1}, the distribution μ̃t is formed via a small modification of another distribution μt,
which is easier to analyze (due to certain independencies) but might (rarely) produce
invalid inputs. Specifically, each μ̃t is the distribution μt conditioned on the fact that
the pair (x, y) ∈ μt is valid in the sense that x and y are both permutations and the
pair (x, y) is, respectively, a far (when t = 0) or a close (when t = 1) pair. We analyze
below the distributions μ0 and μ1 (specifically, in Lemma 3.4). For completeness, we
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mention that, in the next section, we show that this analysis extends to distributions
μ̃0 and μ̃1 using the fact that μ̃0 and μ̃1 are statistically very close to distributions
μ0 and μ1, respectively.

The distribution μt consists of pairs (x, y) chosen as follows: x ∈ Zd
p is chosen

uniformly at random, and y is constructed from x in two steps. In the first step,
let z � x + Nρ, where Nρ, defined in the preliminaries, is noise of rate ρ ∈ (0, 1),
independent of t. In the second step, y is obtained from z by permuting the coordinates
of z according to a distribution Dt. Formally, Dt is a distribution over permutation
operations, where a permutation operation is a function π : Zd

p → Zd
p for which there

exists a permutation π̂ : [d] → [d] such that π(x) ≡ (xπ̂(1), . . . , xπ̂(d)). We will require
that Dt be symmetric in the sense that, for every π, the permutation operations π
and π−1 are equiprobable (in it). Notice that y has the same marginal distribution
as x, i.e., uniform over Zd

p.
We now quantify the “difference” between the distributions D0,D1 from the per-

spective of what we call λ-tests. For λ ∈ [d], we define a λ-test to be a vector u ∈ Zd
p

with precisely λ nonzero entries, i.e., wt(u) = λ. For a distribution Dt and λ ∈ [d],
let the matrix A(t,λ) be the transition matrix of a Markov chain whose states are all
the λ-tests and whose transitions are according to Dt; i.e., at a λ-test u, the process
picks π ∈ Dt and moves to state π(u) (which is also a λ-test). In other words, a row
corresponding to u in A(t,λ) is a vector that has, for every λ-test w, a coordinate of

value Prπ∈Dt [π(u) = w]. We denote this row by A
(t,λ)
u . Note that the matrix A(t,λ)

is symmetric (since Dt is symmetric), and thus it is doubly stochastic.
Definition 3.2. The λ-test distinguishability of D0,D1, denoted Δλ, is the

maximum, over all λ-tests u, of the total variation distance between the distributions

A
(0,λ)
u and A

(1,λ)
u .

We can also write Δλ using matrix norms (as per Definition 2.1) and the easy fact
that ‖B‖∞ = maxi∈[n]

∑
j∈[n] |Bij | for all B ∈ Mn,n(R). Later (in Fact 3.8) we shall

use known inequalities between different matrix norms (in particular �∞ and �2).
Fact 3.3. Δλ = ‖A(0,λ) −A(1,λ)‖∞/2.
The following lemma bounds the advantage achieved by HA,HB in terms of the

λ-test distinguishability Δλ of distributions D0 and D1 for any pair of distributions
D0,D1. Note that we have not yet specified the distributions D0 and D1 themselves.
We will specify the distributions D0 and D1 in section 4, thus completing the definition
of the hard distribution μ̃.

Lemma 3.4. Consider HA,HB : Zd
p → {−1,+1} and ρ ∈ (0, 1). If each μt, for

t ∈ {0, 1}, is defined as above from a symmetric distribution Dt over permutation
operations, then

Pr
μ0

[HA(x) �= HB(y)]− Pr
μ1

[HA(x) �= HB(y)] ≤ max
λ∈[d]

Δλρ
λ.

Proof. For t ∈ {0, 1}, define C(t) � Eμt

[
HA(x)HB(y)

]
to be the correlation

between the two boolean functions. Note that

Pr
μt

[HA(x) �= HB(y)] =
1

4
Eμt

[
HA(x) −HB(y)

]2
=

1

2
− C(t)

2
.

Thus,

Pr
μ0

[HA(x) �= HB(y)]− Pr
μ1

[HA(x) �= HB(y)] =
C(1) − C(0)

2
.
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We will show that C(1) − C(0) ≤ 2maxλ∈[d]Δλρ
λ. For this purpose, it is more

convenient to express each C(t) in terms of the Fourier coefficients of HA and HB.
Recall that μt is generated by picking a random x and constructing y from x by adding
to it the noise Nρ and then applying a random permutation drawn from Dt, namely,
y = π(x+Nρ), where π ∈ Dt. Let μt|x denote the distribution μt conditioned on the
value of x. Thus,

Eμt

[
HA(x)HB(y)

]
= Ex∈Zd

p

[
HA(x) · Eμt|x

[
HB(y)

]]
.

Define f (t)(x) � Eμt|x
[
HB(y)

]
. Then

f (t)(x) = ENρ

[
Eπ∈Dt

[
HB(π(x +Nρ))

]]
.

Since C(t) = Ex

[
HA(x)f (t)(x)

]
, we can switch to the Fourier basis by applying Par-

seval’s identity and get

(3.1) C(t) =
∑
u∈Zd

p

(̂HA)u(̂f
(t))u,

where (̂HA)u and (̂f (t))u are the Fourier coefficients of HA and f (t), respectively.
The next proposition, which we shall prove shortly, expresses the level λ Fourier

coefficients of f (t) in terms of those of HB . Let ((̂f (t))u)u:wt(u)=λ be the vector of the

Fourier coefficients of f (t) indexed by u’s of weight wt(u) = λ. Define ((̂HB)u)u:wt(u)=λ

similarly.

Proposition 3.5. For all λ ∈ [d] and HB : Zd
p → C,

(3.2)
(
(̂f (t))u

)
u:wt(u)=λ

= ρλA(t,λ) ·
(
(̂HB)u

)
u:wt(u)=λ

.

This proposition naturally leads us to break each C(t) into the terms correspond-
ing to each Fourier level λ. Define the λth correlation to be

(3.3) C
(t)
λ �

∑
u∈Zd

p:wt(u)=λ

(̂HA)u(̂f
(t))u.

Then, C(1)−C(0) =
∑d

λ=0(C
(1)
λ −C(0)

λ ). We can now bound each C
(1)
λ −C(0)

λ in terms
of Δλ and ρ.

Let ωA
λ = ‖((̂HA)u)u:wt(u)=λ‖2 be the �2-weight of the level λ Fourier coeffi-

cients of HA, and define ωB
λ similarly. By Parseval’s identity,

∑d
λ=0(ω

A
λ )

2 =

Ex[HA(x) · HA(x)] = 1, and similarly
∑d

λ=0(ω
B
λ )2 = 1.

Proposition 3.6. For all λ ∈ [d],

C
(1)
λ − C

(0)
λ ≤ 2Δλρ

λ · ωA
λ ω

B
λ .

We will prove the proposition shortly by a straightforward calculation. In addi-

tion, C
(1)
0 = C

(0)
0 because the 0th level Fourier coefficient of f (t) equals Ex∈Zd

p

[
f (t)(x)

]
= Ey∈Zd

p

[
HB(y)

]
, which does not depend on t ∈ {0, 1}. Given the above proposition,
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we thus have

C(1) − C(0) =

d∑
λ=0

(
C

(1)
λ − C

(0)
λ

)
≤

d∑
λ=1

2Δλρ
λ · ωA

λ ω
B
λ

≤
d∑

λ=1

2Δλρ
λ ·

(
ωA
λ

)2
+
(
ωB
λ

)2
2

≤ 2max
λ∈[d]

Δλρ
λ,

where we used the geometric–arithmetic mean inequality. This finishes the proof of
Lemma 3.4.

It remains to prove Propositions 3.5 and 3.6.
Proof of Proposition 3.5. Define a new function g(t) : Zd

p → R as

g(t)(z) � Eπ∈Dt

[
HB(π(z))

]
.

Then f (t) = Tρg
(t), and thus (̂f (t))u = (̂g(t))u · ρwt(u) for all u ∈ Zd

p (by Fact 2.2). It
remains to prove that

(3.4)
(
(̂g(t))u

)
u:wt(u)=λ

= A(t,λ) ·
(
(̂HB)u

)
u:wt(u)=λ

.

Similarly to the operator Tρ, we define the operator Ot as

(OtHB)(x) � Eπ∈Dt

[
HB(π(x))

]
.

Since g(t) = OtHB, we proceed to analyze how the operator Ot works on the Fourier
coefficients of a function HB.

Fact 3.7. For a permutation operation π, define Pπ to be an operator on func-

tions ψ : Zd
p → R, given by (Pπψ)(x) � ψ(π(x)). Then, (̂Pπψ)u = ψ̂π(u).

Now, the operator Ot defined earlier is simply a convex combination of several
Pπ, where π is drawn from Dt. Thus, with the above fact, for every u ∈ Zd

p,

(3.5) (̂g(t))u = ̂(OtHB)u = Eπ∈Dt

[
(̂HB)π(u)

]
.

Consequently, the vector of level λ Fourier coefficients of g(t) can be written as a
product of the matrix A(t,λ) and the vector of the (same) level λ Fourier coefficients
of HB, which proves Proposition 3.5.

We will need the following fact for the proof of Proposition 3.6. Recall that ‖A‖p
denotes the p-norm of such a matrix A, as per Definition 2.1.

Fact 3.8. Let B ∈Mn,n(R) be a symmetric matrix. Then, ‖B‖2 ≤ ‖B‖∞.

Proof. It is known that

‖B‖1 = max
j∈[n]

∑
i∈n

|Bij | and ‖B‖∞ = max
i∈[n]

∑
j∈[n]

|Bij |,

and since B is symmetric, these two norms are equal. By the Riesz–Thorin interpola-
tion theorem, ‖B‖2 ≤ max{‖B‖1, ‖B‖∞} = ‖B‖∞. (The Riesz–Thorin interpolation
theorem states that for every 1 ≤ p < q < r ≤ ∞ and a real matrix A we have
‖A‖q ≤ max{‖A‖p, ‖A‖r}.)
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Proof of Proposition 3.6. For every λ, the matrix A(t,λ) is symmetric, and so is
A(1,λ) −A(0,λ). Thus,

C
(1)
λ − C

(0)
λ =

∑
u∈Zd

p:wt(u)=λ

(̂HA)u ·
((̂
f (1)

)
u
−
(̂
f (0)

)
u

)

≤
∥∥∥∥
(
(̂HA)u

)
u:wt(u)=λ

∥∥∥∥
2

·
∥∥∥∥∥
((̂
f (1)

)
u
−
(̂
f (0)

)
u

)
u:wt(u)=λ

∥∥∥∥∥
2

= ωA
λ ·

∥∥∥∥∥ρλ
(
A(1,λ) −A(0,λ)

)(
(̂HB)u

)
u:wt(u)=λ

∥∥∥∥∥
2

≤ ρλ · ωA
λ ·

∥∥∥A(1,λ) −A(0,λ)
∥∥∥
2

∥∥∥∥
(
(̂HB)u

)
u:wt(u)=λ

∥∥∥∥
2

≤ ρλ · ωA
λ ω

B
λ ·

∥∥∥A(1,λ) −A(0,λ)
∥∥∥
∞

= 2Δλ · ρλ · ωA
λ ω

B
λ ,

where we used (3.3), Cauchy–Schwarz, Proposition 3.5, Definition 2.1, Fact 3.8, and
Fact 3.3, respectively.

3.3. Putting it all together. We proceed to proving Theorem 1.1, using the
machinery just developed in sections 3.1 and 3.2. Recall that we still need to exhibit
a suitable hard distribution. We outlined the construction of our hard distribution
in section 3.2; the construction relies on two distributions D0 and D1 which were not
specified. The next lemma asserts that the desired hard distribution exists. More
precisely, it asserts that it can be constructed to satisfy the required properties, such
as a small λ-test distinguishability.

Lemma 3.9 (hard distribution). There exist constants θ, c1, c2, d0 > 0 such that,
for all d > d0, p > d3, 1 < α ≤ O( log d

log log d), and d0.1 ≤ R ≤ d0.49, there exist

symmetric distributions D∗
0 and D∗

1 over permutation operations on Zd
p (as defined in

section 3.2) with the following guarantees.
(a) For all λ ≥ 1, the λ-test distinguishability of D∗

0 and D∗
1 is Δλ ≤ c1 ·λ logα

log d ·
R
d .

(b) Define each distribution μt from D∗
t as described in section 3.2, setting ρ =

1− θR/α
d . Define the distribution μ̃t to be the restriction (i.e., conditioning)

of μt to the event that the sampled pair (x, y) ∈ μt be legal, in the sense that
x, y ∈ Zd

p are permutations and are, respectively, a far pair (for t = 0) or a
close pair (for t = 1). Then for each t ∈ {0, 1}, the total variation distance
between μ̃t and μt is at most d−c2 .

We prove this lemma separately in section 4, where we include a full description
of D∗

0 and D∗
1 . Here, we use the lemma to complete the proof of the main theorem.

Proof of Theorem 1.1. First, consider the hard distribution given by Lemma 3.9.
Next, by Lemma 3.1, there must exist functions HA,HB such that

Pr
μ̃0

[HA(x) �= HB(y)]− Pr
μ̃1

[HA(x) �= HB(y)] ≥ 1
3 · 2−CC

Ulamd
α,R .

Applying Lemma 3.4 to the distributions μ0, μ1 and using the fact that μ̃0 and μ̃1,
respectively, are statistically close to μ0 and μ1 (Lemma 3.9(b)), we deduce that

Pr
μ̃0

[HA(x) �= HB(y)]− Pr
μ̃1

[HA(x) �= HB(y)] ≤ max
λ∈[d]

Δλρ
λ + d−c2 .
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Combining the two inequalities above and plugging in the upper bound on Δλ and
the value of ρ from Lemma 3.9(a), we have

1
3 · 2−CC

Ulamd
α,R ≤ max

λ∈[d]

[
c1 · λ logα

log d · R
d ·

(
1− θR/α

d

)λ
]
+ d−c2

≤ c1
θ · α · logα

log d ·max
x≥0

x · e−x + d−c2

= O
(

α logα
log d

)
,

which concludes the proof of Theorem 1.1.

4. Construction of the hard distribution. In this section we prove Lemma
3.9. We start by giving the detailed construction of our hard distribution μ̃ = μ̃0+μ̃1

2 .
Then, in sections 4.1 and 4.2 we prove, respectively, λ-test indistinguishability (part
(a)) and statistical closeness (part (b)) properties of the hard distribution.

The hard distribution construction follows the outline given in section 3.2. We
first specify the distributions D∗

0 ,D∗
1 over permutation operators, which form the bulk

of the construction. Once these distributions are specified, we obtain the intermediary
distributions μ0 and μ1 as already described in section 3.2. We finalize the description
by constructing μ̃t from μt, for each t ∈ {0, 1}, by conditioning on the pair (x, y) ∈ μt

being a legal pair, namely, that x, y ∈ Zd
p are permutations and are, respectively, a

far pair (for t = 0) or a close pair (for t = 1).
Fix ε0 � 1/2, and select ε1 = Θ( 1

α ) as follows. Let β � 1−ε1
1−ε0

= 2(1− ε1), and let

ξ1 � �log2(C1α)�, for a sufficiently large constant C1 > 0 (in particular C1 = 805 will
suffice). Let ε1 be the solution to the equation (1 − ε1) = ε1β

ξ1 satisfying ε1 ≤ 2
C1α

.
The existence of ε1 follows from the following claim, whose proof is deferred to the
end of the construction.

Claim 4.1. Let α > 1 and C1 > 1 be sufficiently large. Then there exists ε1 with
1

3C1α
< ε1 ≤ 2

C1α
such that (1− ε1) = ε1(2(1− ε1))

ξ1 , where ξ1 = �log2(C1α)�.
We thus have, by construction,

(4.1) ε0 = (1 − ε0) = (1− ε1)β
−1 = ε1β

ξ1−1.

For each t ∈ {0, 1}, we define the distribution μt over (x, y) such that ed(x, y)
is almost surely Θ(εtR). Choose x ∈ Σd = Zd

p uniformly at random. Then set

z � x + Nρ, where Nρ ∈ Zd
p is a noise of rate ρ � 1 − ε1R/d (i.e., each position is

randomized with probability 1 − ρ = ε1R/d). We shall obtain y from z by applying
a number of random rotation operations, each picked independently from a specific
distribution. We use the following notation:

• m � 0.01 · logβ d = Θ(log d) is the number of possible lengths of a rotation
operation;

• Lmin � d0.01 determines the minimum length of a rotation operation (modulo
a factor of β);

• w � C2 · R
m·Lmin

is the number of rotation operations that we apply for a
sufficiently large constant C2 > 0 to be determined later (in section 4.2).

Generate a sequence (r1, r2, . . . , rw) of w rotations by picking each ri independent
and identically distributed (i.i.d.) according to the following distribution Drot

t :

1. Pick li ∈ [m] randomly so that Pr[li = l] = β−l

ζ for each l ∈ [m], where

ζ =
∑m

l=1 β
−l is the normalization constant.
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2. Pick a starting position si ∈ [d] uniformly at random, and rotate the block
that starts at position si and has length (with wraparound) Li = βliLmin by
εtLi positions, either to the right or to the left, at random. We choose ri at

random from the set {(R̃s,Li)
εtLi | s ∈ [d], R̃ ∈ {−→R,←−R}}.

We note that (R̃s,Li)
εtLi is not well defined when εtLi or Li are not integers.

Overloading the notation, we define (
−→
R s,Li)

εtLi for noninteger εtLi, Li as
follows. Let B1 be the block that starts at position si and has length �(1 −
εt)Li�, and let B2 be the block immediately following B1 of length �εtLi�,
i.e.,

B1 = [s : s+�(1−εt)Li�−1], B2 = [s+�(1−εt)Li� : s+�(1−εt)Li�+�εtLi�−1].

Then, (
−→
R s,Li)

εtLi swaps blocks B1 and B2. We define (
←−
R s,Li)

εtLi similarly.
To obtain y, we apply to z = x+Nρ the sequence of rotations r1, . . . , rw, i.e.,

y � rw(rw−1(. . . r1(z) . . .)) = (rw ◦ · · · ◦ r2 ◦ r1)(x +Nρ).

In the language of section 3.2, the distribution D∗
t of permutation operations is simply

the distribution of π = rw ◦ rw−1 ◦ · · · ◦ r1, where r1, . . . , rw are drawn independently
from Drot

t .
Intuitively, each rotation operation ri, or more precisely its distribution Drot

t , is
designed to achieve the following goal. Consider a position j ∈ [d], and assume for
simplicity j ∈ [0.1d, 0.9d]. Let the random variable Zt,j ∈ Z be the displacement
(change in position) of position j under a (random) rotation operation ri ∈ Drot

t ; i.e.,
Zt,j ∈ Z is the unique value such that ri(ej) = ej+Zt,j , where ek denotes the kth
standard basis vector. By construction, Zt,j is symmetric around 0, i.e., Pr[Zt,j =
k] = Pr[Zt,j = −k], and its distribution does not depend on j; i.e., Zt,j and Zt,j′ have
the same distribution (but they are correlated). Moreover, its support, i.e., values
k > 0 with probability Pr[Zt,j = k] > 0, forms a geometric sequence (because the
block length L has a geometric distribution). Let us now condition on the event that
position j be included in the rotation block, i.e., Zt,j �= 0. Then the distribution of
Zt,j is almost uniform over the support—this follows from the distribution of L and
of s and by (4.1). Furthermore, the distributions of Z0,j and Z1,j (when we condition
on them being nonzero) are almost identical, because their supports differ only at the
boundaries, i.e., at the smallest and largest displacements, again due to (4.1), and
they are both almost uniform. We repeat the rotation operation many times in order
to obtain a high concentration in the distance between y and z.

To finalize the construction, it remains to define μ̃t for t ∈ {0, 1}. We note that
we cannot set μ̃t to be exactly μt because the latter may sometimes generate pairs
(x, y) that are not far or close, respectively, or are not even permutations altogether.
(x and y are not always permutations since each of the two strings is uniformly at
random and may have a multiple occurrence of the same symbol.) We thus define
μ̃0 to be the distribution μ0 restricted to (i.e., conditioned on) pairs of permutations
(x, y) with ed(x, y) > R, and similarly μ̃1 is the distribution μ1 restricted to pairs of
permutations with ed(x, y) ≤ R/α.

It remains only to prove Claim 4.1, namely, that the desired ε1 exists.
Proof of Claim 4.1. Define function f(x) : [0, 1] → R as f(x) = x·(1−x)ξ1−12ξ1−1.

Note that ε1 is the solution to the equation f(x) = 0. For x = 1/(3C1α), f(x) ≤
1

3C1α
(1 − 1

3C1α
)ξ1−1 · 2log2(C1α)+1 − 1 < 0. Similarly, for x = 2

C1α
, f(x) ≥ 2

C1α
(1 −

2(ξ1−1)
C1α

) · 2log2(C1α) − 1 ≥ 2(1 − 2(log2(C1α)−1)
C1α

) − 1 > 0, provided C1 is a sufficiently
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large constant. By the continuity of f(x), there exists some x ∈ [ 1
3C1α

, 2
C1α

] satisfying
f(x) = 0.

In the rest of this section we prove the two properties required from our hard
distribution, stated in Lemma 3.9: that D∗

0 and D∗
1 have small λ-test distinguisha-

bility (Lemma 3.9(a)), and that each μ̃t is very close to μt, for both t ∈ {0, 1}
(Lemma 3.9(b)).

Here and throughout the big O(·) notation may hide dependence on constants
used in the construction of the hard distribution, namely C1 and C2. Furthermore,
although the parameters β and ζ are not constants (they depend on α), we can bound
1.5 < β < 2, which guarantees that 1

1−β−1 ≤ O(1) and 1
ζ ≤ β ≤ O(1).

4.1. λ-test indistinguishability. We prove Lemma 3.9(a) via the following
lemma.

Lemma 4.2. Let Δλ be the λ-test distinguishability of D∗
0 and D∗

1. Then for all
λ ≥ 1 we have Δλ ≤ O(λ logα

log d · R
d ).

Proof. Fix a λ-test u ∈ Zd
p, and let

δλ(u) = max
T⊆Zd

p

∣∣∣Pr[r(0)(u) ∈ T ]− Pr[r(1)(u) ∈ T ]
∣∣∣

be the total variation distance between the distributions r(0)(u) and r(1)(u), where
r(t) ∈ Drot

t for t ∈ {0, 1}. The heart of this lemma is the following bound, which we
shall prove below:

(4.2) δλ(u) ≤ O

(
λ logα · Lmin

d

)
.

We shall also prove shortly the claim that Δλ ≤ w · maxu δλ(u). The lemma
then follows immediately from (4.2), and this claim, by plugging the former into the
latter and recalling w = C2 · R

m·Lmin
, is the number of rotation operations. Since

λ logα
log d · R

d > 1 for λ ≥ d0.95, it actually suffices to prove (4.2) only for λ < d0.95.

We now prove the above claim, that Δλ ≤ w · maxu δλ(u), by induction. Let

vti = r
(t)
i (r

(t)
i−1(. . . r

(t)
1 (u) . . .)) for t ∈ {0, 1} and i ∈ [w]. We prove that, for any

T ⊆ Zd
p, we have |Pr[v0i ∈ T ]−Pr[v1i ∈ T ]| ≤ i ·maxv δλ(v). The base case i = 1 holds

by the definition of δλ, and so we turn to the inductive step:

Pr[v0i ∈ T ] =
∑
v

Pr[v0i−1 = v] Pr[r
(0)
i (v) ∈ T ]

≤
∑
v

Pr[v0i−1 = v]
(
Pr[r

(1)
i (v) ∈ T ] + δλ(v)

)

≤ max
v

δλ(v) +
∑
r

Pr[r
(1)
i = r] Pr[r(v0i−1) ∈ T ]

≤ max
v

δλ(v) +
∑
r

Pr[r
(1)
i = r]

(
Pr[r(v1i−1) ∈ T ] + (i− 1) ·max

v
δλ(v)

)

= i ·max
v

δλ(v) + Pr[v1i ∈ T ].

Proving the same inequality with the roles of t = 0 and t = 1 reversed, we obtain
that Δλ = maxT⊆Zd

p
|Pr[v0w ∈ T ]− Pr[v1w ∈ T ]| ≤ w ·maxu δλ(u).

In the rest of the proof of Lemma 4.2, we prove the bound (4.2). The proof
consists of two parts. The first part proves the bound for λ = 1 and contains the
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main intuition why our distribution is hard. The second part builds on the first one
to show the bound for general λ.

Part 1: λ = 1. We prove that δ1(u) ≤ O(logα · Lmin

d ) next. In this part, we shall
assume that L and εtL are integers, deferring the full treatment of this technicality
to the second part.

Since λ = 1, we have only one nonzero entry in u, say, at position j. For t ∈ {0, 1},
let jt be the random variable denoting the position of the symbol uj in the vector
r(t)(u) obtained by applying the random rotation r(t) ∈ Drot

t on u. Also, let Zt be
the displacement of jt with respect to j on the cycle Zp, and namely Zt = (jt −
j + d/2)(mod d) − d/2 (where the addition/subtraction of d/2 is for the purpose of
accounting for string boundaries). It is not hard to see that the distribution of Zt

does not depend on the value of j.
The total variation distance between the distributions of r(0)(u) and of r(1)(u)

equals to the total variation distance between Z0 and Z1. We compute the latter via
its complement, i.e., the probability mass that is “common” to the two distributions,
which is, formally,

∑
z∈[−d,d]mint∈{0,1} Prr(t) [Zt = z].

First, we can compute the probability that Zt = 0, i.e., the symbol uj remains at
position j, as follows:

Pr[Zt = 0] =
d− E [L]

d
= 1−m · Lmin

ζd
,

irrespective of the value of t ∈ {0, 1}.
Next, consider the case when Zt �= 0, and note that Prr(0) [Z0 �= 0] = Prr(1) [Z1 �=

0] = m · Lmin

ζd . We show that, conditioned on Zt �= 0, the variable Zt is uniform over
most of its support, denoted St. Moreover S0 and S1 have almost the same size and
almost completely overlap. Formally, we prove the following claim.

Claim 4.3. There exists a set S ⊂ Z \ {0} satisfying the following:
• There is ν > 0 such that for each t ∈ {0, 1} and z ∈ S we have Prr(t) [Zt =
z] = ν.

• For each t ∈ {0, 1} we have Prr(t) [Zt ∈ S] ≥ m−ξ1
m · Prr(t) [Zt �= 0].

We first show how Claim 4.3 lets us prove that δ1(u) ≤ O(logα · Lmin

d ). Indeed,
one can observe that δ1(u) is bounded by the probability that Prr(0) [Z0 �∈ S ∪ {0}] =
Prr(1) [Z1 �∈ S ∪ {0}], which we can bound as

δ1(u) ≤ 1− Pr
r(t)

[Zt = 0]− Pr
r(t)

[Zt ∈ S] ≤ ξ1
m

· Pr
r(t)

[Zt �= 0] = O(logα) · Lmin

ζd
.

Proof of Claim 4.3. We show the claim for

S =
{
±(1− ε1)β

lLmin | l = 1, . . . ,m− ξ1
}

and ν = 1
2 · Lmin

ζd .
Let us consider the case that Zt �= 0. Then, the magnitude of the displacement,

|Zt|, must be either εtL or (1−εt)L, where L = βlLmin for some l ∈ [m]. In particular,
Zt �= 0 iff the position j falls inside the rotation block of the operation r(t), and either
(i) j falls into the bigger part of size (1− εt)L (that does not wrap around) and hence
|Zt| = εtL; or (ii) j falls into the smaller part of size εtL (that does wrap around),
and hence |Zt| = L− εtL = (1− εt)L. Moreover, conditioned on the magnitude of Zt,
the sign of Zt is equiprobable to be either positive or negative (depending on whether
the rotation block rotates to the right or left).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2416 ALEXANDR ANDONI AND ROBERT KRAUTHGAMER

When t = 0, we can compute the probability that |Z0| = 1
2L = 1

2β
lLmin for some

l ∈ [m] as follows. We have Z0 = L/2 when we choose block length L = βlLmin,
which happens with probability β−l/ζ, and additionally either (i) position j is inside
the “bigger” part of the block, of size (1− ε0)L = L/2, and the block moves to right,
or (ii) position j is inside the “smaller” part of the block, of size ε0L = L/2, and the
block moves to left. Formally,

Pr
r(0)

[
Z0 = L

2

]
= Pr

r(0)

[
Z0 = −L

2

]
= β−l

ζ · (1−ε0)β
lLmin

d · 12 +
β−l

ζ · ε0β
lLmin

d · 12 = Lmin

ζd · 12 = ν.

Note that z = 1
2β

lLmin may be written as z = (1 − ε1)β
l−1Lmin (using (4.1)), and

thus z ∈ S whenever l ∈ {2, . . . ,m− ξ1 + 1}.
Now let t = 1. When |Z1| = ε1β

l+ξ1Lmin = (1 − ε1) · βlLmin ∈ S for l ∈
{1, . . . ,m− ξ1} (the equality here is by (4.1)), we again have that

Pr
r(1)

[Z1 = ε1β
l+ξ1 ] = β−l−ξ1

ζ · (1−ε1)β
l+ξ1Lmin

d · 1
2 + β−l

ζ · ε1β
lLmin

d · 1
2 = Lmin

ζd · 1
2 = ν.

Finally, note that Prr(t) [Zt ∈ S] =
∑

z∈S Prr(t) [Zt = z] = 2(m− ξ1) · ν = m−ξ1
m ·

Prr(t) [Zt �= 0]. This concludes the proof of Claim 4.3.
Part 2 : λ ≥ 2. When we have λ ≥ 2 nonzero entries in u, the intuition is to

group these nonzero entries into one or more “atomic intervals” and then reduce to
the case λ = 1 with the role of “symbol uj” being replaced by an atomic interval. For
example, when there are λ = 2 nonzero entries in u, most of the block lengths L fall
into two categories:

• L is much larger than the distance between the positions of the two nonzero
entries—in this case, the two nonzero symbols from u move jointly (atom-
ically) most of the time, and thus the interval connecting the two symbols
behaves roughly as the “symbol uj” in the λ = 1 scenario;

• L is much smaller than the distance between the two positions—in this case,
each of the two nonzero entries can be treated independently as in λ = 1 case,
and we lose only a factor of λ (by “union bound”).

Furthermore, we can bound the number of values of L that do not satisfy one of the
above properties. A relatively straightforward bound is O(λ2) (all pairwise distances
between the nonzero entries) times O(ξ1) (the same extra factor as in the λ = 1 case).
This analysis would give a bound of δλ(u) ≤ O(λ3 logα · Lmin

d ). In what follows we
obtain a stronger bound, with only a linear dependence on λ, using a more careful
analysis. (For the impact of a weaker bound see the calculation in section 3.3.)

More generally, we partition the nonzero entries of u such that each part consists
of “nearby” entries, while the parts are “far” amongst themselves. We then view each
part as a contiguous A-interval (stands for atomic interval). Once we manage such
an approximation, we have several A-intervals (at most λ), and we expect each one to
move atomically: all nonzero entries from the same A-interval will move in the same
direction by the same displacement most of the time. The main challenge lies in the
fact that the notion of nearby entries depends on the length L of the rotation block,
and we say two nonzero entries are nearby if their positions differ by at most L. Thus,
for each possible block length L, we have a possibly different partition of entries into
A-intervals (partitions are progressively coarser with bigger L). The main technical
work is to analyze the structure of these A-intervals over all lengths L.

We proceed with a complete proof below. For a block length L = βlLmin, we
define the graph GL as follows. GL is an undirected graph on λ vertices, where
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each vertex corresponds to a nonzero entry in u. For convenience, we use the term
“entry” when we refer to the position of a nonzero entry of u and equivalently a
vertex of GL (in contrast, we will use the term “node” for another graph structure
defined later). We connect two entries i, j ∈ [d] if |i − j|∗ ≤ L, where |i − j|∗ =
min{|i− j|, d−|i− j|} computes distance on the d-cycle. For a graph GL, we focus on
its connected components, which may be viewed as intervals in Zd. Specifically, to each
connected component C ⊂ V we assign the interval I(C), an interval defined as the
minimal interval (with wraparound) on Zd that contains all entries in C. Overloading
the notation, we write an interval I(C) = [i, j] to mean that I(C) = {i, i+ 1, . . . , j}
if i ≤ j and I(C) = {i, i+ 1, . . . , d, 1, 2, . . . j} if j < i. The length of interval I = [i, j]
is len(I) = |I| = (j − i + 1)(mod d). Note that, for every connected component C,
every two consecutive entries in I(C) are at distance at most L; thus, the length of
any interval I(C) can be at most L · λ < d0.99; also if I(C) = [i, j], then both i and j
are nonzero entries of u.

An A-interval is then an interval I(C) that corresponds to some connected com-
ponent C. Each block length L induces a potentially different graph GL, which in turn
induces a different set of A-intervals. The following observation relates A-intervals
induced by different GL’s.

Observation 4.4. If two entries are in the same A-interval (equivalently, con-
nected component) in GL for some L, then they are also in the same A-interval in
GL′ for any L′ ≥ L.

We use this observation to define a forest on all the A-intervals as follows. The
forest consists of m levels, where nodes at level l ∈ [m] correspond to the A-intervals
for L = βlLmin (i.e., the connected components in GL). For a forest node v at
level l we write I(v) for the corresponding A-interval. The edges in the forest are
defined as follows: for two forest nodes v1, v2 on two consecutive levels, l and l + 1,
respectively, we connect v1 to v2 iff I(v1) ⊆ I(v2). This construction is well defined
due to Observation 4.4. Nodes at level 1 will be called leaves. Notice that every forest
node at level l > 1 indeed has at least one edge to a node at level l − 1; i.e., nonleaf
nodes have at least one child. Let nl ∈ [λ] be the number of nodes at level l.

We now wish to bound the error incurred by considering an A-interval to be an
atomic object. Specifically, a too long A-interval is likely to move not atomically, in
the sense that the interval is “cut” by the rotation block. We bound the error of
our “approximation” using the probability that a random position s ∈ [d] (one of the
two block boundaries) falls inside these A-intervals at a random level l. The latter
probability is proportional to the expected sum of lengths of the A-intervals of GL

when we choose the block length L randomly according to the distribution Drot
t .

Claim 4.5. Let s ∈ [d] be chosen uniformly at random, and let l ∈ [m] be chosen
randomly with probability β−l/ζ. Then,

Pr
s,l

[s is inside one of the A-intervals at level l] ≤ O

(
λ
Lmin

d

)
.

Proof. Consider any two consecutive nonzero entries of u, and let J be the interval
between them (with wraparound), including one of the endpoints, say the left one.
We compute next the probability that s is contained in this interval J and interval J
is contained in an A-interval I(v) for a forest node v at level l. Note that summing
this probability over all λ intervals J gives the final quantity we want.

By definition, an interval J is inside an A-interval at level l iff |J | ≤ βlLmin. Thus,
for a fixed J , the probability that both s ∈ J and J is contained in an A-interval at
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level l is at most

|J |
d

·
∑

l∈[m]: |J|≤βlLmin

β−l

ζ
≤ |J |

d
· Lmin

ζ · |J | ·
1

1− β−1
≤ O

(
Lmin

d

)
.

We have exactly λ such intervals J ; thus the total contribution is O(λLmin

d ).
We now continue with computing the total variation distance δλ(u) between

r(0)(u) and r(1)(u), where r(0) ∈ Drot
0 and r(1) ∈ Drot

1 . As in Part 1 (λ = 1), we
will bound the total variation distance between them by estimating the probability
mass “common” to the two distributions.

First we compute the probability that all nonzero entries of u stay put (as in
Part 1).

Claim 4.6. For each t ∈ {0, 1}, we have that

Pr
r(t)

[r(t)(u) = u] ≥ 1−O

(
λ
Lmin

d

)
−

m∑
l=1

nl ·
Lmin

ζd
.

Proof. The complement event is that at least one nonzero entry of u is displaced.
Whenever it occurs, at least one of the following holds:

• the left or right endpoint of the rotation block belongs to an A-interval in-
duced by GL; or else

• the rotation block contains inside it an entire A-interval induced by GL.
The probability of the first event is bounded by, using Claim 4.5,

2 Pr
s,L

[s is inside one of the A-intervals at level l] ≤ O

(
λ
Lmin

d

)
.

The probability of the second event can be bounded by the probability that the
rotation block includes the leftmost endpoint of some A-interval at level l:

m∑
l=1

β−l

ζ

∑
v at level l

Pr
s

[
left endpoint of I(v) is inside [s, s+ L− 1]

]

≤
m∑
l=1

β−l

ζ
· nl · L

d
=

m∑
l=1

nl
Lmin

ζd
.

The claim follows from the last two inequalities by applying a union and then consid-
ering the complement event.

We now prove a claim that should be seen as the analogue of Claim 4.3 from
Part 1, which characterizes the common weight of the distributions of r(0)(u) and
r(0)(u) when some entries (more precisely, A-intervals) move. In contrast to Part 1,
here we have to also consider the case when an A-interval does not behave atomically,
i.e., when the rotation block intersects the A-interval of some node v at a level l ∈ [m].
This will contribute some additional error term that depends on the length of the
interval I(v) and which we will bound using Claim 4.5.

Let us define the random variable Zt(I), for an interval I = I(v) corresponding to
a forest node v, and t ∈ {0, 1}. Zt(I) denotes the (position) displacement of the entries
from the interval I under rotation r(t) ∈ Drot

1 when the interval I moves atomically
and no entry outside I moves. We set Zt(I) = ⊥ if the interval I does not move
atomically and/or some other entry outside I moves as well under r(t).

Claim 4.7. There exists a set S ⊂ Z \ {0} satisfying the following:
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• For each interval I = I(v) corresponding to a forest node v at level l∗ ∈
{ξ1 + 1, . . . ,m}, and for each t ∈ {0, 1} and z ∈ S,

Pr
r(t)

[Zt(I) = z] ≥ 1

2
· Lmin

ζd
− β−(l∗−ξ1) · 2 len(I)

ζd
.

• Call two intervals I(v) and I(v′) distinct if they have at least one distinct
endpoint; then

∑
z∈S

∑
distinct I=I(v)

min
t∈{0,1}

{
Pr
r(t)

[Zt(I) = z]

}
≥

m∑
l=ξ1+1

nl
Lmin

ζd
−O

(
λ
Lmin

d

)
.

Proof. We show the claim for S =
{
±
⌊
(1− ε1)β

lLmin

⌋
| l = 1, . . . ,m− ξ1

}
.

Fix an interval I = I(v) for a node at level l∗ ≥ ξ1+1. Consider the displacement
z =

⌊
ε1β

l∗Lmin

⌋
=

⌊
(1− ε1)β

l∗−ξ1Lmin

⌋
∈ S (the equality again is by (4.1)). We

now bound Pr[Z1(I) = z], namely the probability that all the entries in I(v) are
moved (atomically) z positions to the right (and all the other entries stay put), under
the distribution Drot

1 . We have Pr[Z1(I) = z] when either (i) l = l∗, interval I is
completely inside the “bigger” part of the block, of size

⌊
(1− ε1)β

lLmin

⌋
, and the

block moves to right, or (ii) l = l∗ − ξ1, interval I is completely inside the “smaller”
part of the block, of size

⌊
ε1β

l−ξ1Lmin

⌋
, and the block moves to left. Note that in

both cases all entries outside I stay put as they are at (position) distance at least
βl∗Lmin + 1 from I and thus cannot be inside the rotation block. Formally,

Pr
r(1)

[Z1(I) = z] = Pr
r(1)=(R̃s,L)ε1L, L=βlLmin

[
Z1(I) = z, l = l∗, R̃ =

−→
R
]

+ Pr
r(1)=(R̃s,L)ε1L, L=βlLmin

[
Z1(I) = z, l = l∗ − ξ1, R̃ =

←−
R
]

≥ β−l∗

ζ
· 1
2
· (1− ε1)β

l∗Lmin − 1− len(I)

d

+
β−(l∗−ξ1)

ζ
· 1
2
· ε1β

l∗−ξ1Lmin − 1− len(I)

d

≥ 1

2

Lmin

ζd
− β−(l∗−ξ1)

ζ
· 2 len(I)

d
.(4.3)

Similarly, we can give the exact same lower bound for each of the following four
events: Z1(I) = ±z and Z0(I) = ±z.

We can now bound the probability mass that is common to the two distributions
r(0)(u) and r(1)(u) for the event that there is a distinct interval I such that Zt(I) = z
for some z ∈ S:

∑
z∈S

∑
distinct I=I(v)

min
t∈{0,1}

{
Pr
r(t)

[Zt(I) = z]

}

≥
m∑

l=ξ1+1

∑
v at level l

Pr
[
Zt(I(v)) ∈

{
±
⌊
ε1β

lLmin

⌋}]
(4.4)

because, for each node v at level l∗ ≥ ξ1 + 1, we can consider the interval I = I(v)
and the displacement of z = z(v) =

⌊
ε1β

l∗Lmin

⌋
∈ S. Then all the events Zt(I(v)) =
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±z(v) are mutually exclusive (over the choice of such v), and hence we obtain the
sum from (4.4). Furthermore, using (4.3), we obtain

∑
z∈S

∑
distinct I=I(v)

min
t∈{0,1}

{
Pr
r(t)

[Zt(I) = z]

}

≥
m∑

l∗=ξ1+1

2
∑

v at level l∗

(
1

2
· Lmin

ζd
− β−(l∗−ξ1)

ζ
· 2 len(I(v))

d

)

≥
m∑

l∗=ξ1+1

nl∗
Lmin

ζd
− 4

m∑
l∗=1

∑
v at level l∗

β−l∗

ζ
· len(I(v))

d
,(4.5)

where we recall that nl is the number of nodes at level l∗. The last inequality follows
from the fact that, for each interval I = I(v) of a node v at level l∗ ≥ ξ1 + 1, we can
charge len(I(v)) to lengths of the intervals of the descendants of v at level l∗ − ξ1.

Finally, observe that the last term in (4.5), namely
∑

l∗
∑

v
β−l∗

ζ · len(I(v))d , is equal
precisely to the probability that a random position s falls into an A-interval at level
l∗, where l∗ is chosen at random according to the distribution l∗ = l with probability
β−l/ζ. Thus we can use Claim 4.5 to bound it from above,

m∑
l∗=1

∑
v at level l∗

β−l∗

ζ
· len(I(v))

d
≤ O(λ) · Lmin

ζd
,

which together with (4.5) completes the proof of Claim 4.7.
To summarize, the total probability mass that we accounted to be common for

t = 0 and t = 1 is the sum of (our lower bounds on) the probability that all entries
stay put, plus the probability that exactly one distinct interval I = I(v) is displaced
by precisely z ∈ S positions. Combining Claims 4.6 and 4.7 and using the trivial
bound of nl ≤ λ for all l ∈ [m], we obtain

1− δλ(u) ≥ 1−O

(
λ · Lmin

d

)
−

m∑
l=1

nl ·
Lmin

ζd
+

m∑
l=ξ1+1

nl
Lmin

ζd
−O

(
λ
Lmin

d

)

≥ 1−O(λξ1) ·
Lmin

ζd
.

Finally, using the fact that ξ1 = O(logα), we conclude (4.2), which completes the
proof of Lemma 4.2.

4.2. Statistical closeness of the distributions μ̃t and μt. We prove Lemma
3.9(b) via the following lemma.

Lemma 4.8. For every t ∈ {0, 1}, the total variation distance between μ̃t and μt

is at most d−Ω(1).
Proof. First we recall that μ̃t is equal to the distribution μ conditioned on the

fact that the generated pair (x, y) ∈ μ be legal; i.e., both x and y are permutations,
and (x, y) are far or close for t = 0 or t = 1, respectively. Since both x and y are
random from Zd

p, and p > d3, we obtain that x and y are both permutations with
probability at least 1−O(1/d).

Thus, the total variation distance between μ̃0 and μ0 is at most Prμ0 [ed(x, y) ≤
R] + O(1/d). Similarly, the total variation distance between μ̃1 and μ1 is at most
Prμ1 [ed(x, y) > R/α] + O(1/d). Thus, it suffices to prove that Prμ0 [ed(x, y) ≤ R] ≤
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d−Ω(1) and Prμ1 [ed(x, y) > R/α] ≤ d−Ω(1). Remember that x is chosen at random,
then z = x+Nρ, and finally y is obtained from z via a sequence of rotation operations.

We choose the constant C2 = 20ζ/ε0 = 40ζ and condition on the event that x, y,
and z all be permutations, which happens with probability ≥ 1 − O(1/d). We can
also describe the distribution μt as follows. Start with a permutation z, and let x
be the permutation obtained by modifying every coordinate in z to a new symbol
independently with probability 1 − ρ. We may assume, without loss of generality
(by renaming symbols), that z is the identity permutation of length d, i.e., for all
i ∈ [d] we have z(i) = i, and furthermore with probability ρ we have x(i) = z(i) and
x(i) = i + d otherwise. Next, let y be the permutation obtained from z by applying
w random rotation operations chosen from Drot

t .
It will then suffice to prove the following two claims.
Claim 4.9. For both t ∈ {0, 1},

Pr
μt

[
ed(x, z) ≤ 2ε1R

]
≥ 1− e−dΩ(1)

.

Claim 4.10. For both t ∈ {0, 1},

Pr
μt

[
0.1 ≤ ed(z, y)

R · C2εt/ζ
≤ 10

]
≥ 1− d−Ω(1).

We can now obtain the lemma statement from the above two claims, using a union
bound and applying the triangle inequality | ed(x, y) − ed(z, y)| ≤ ed(x, z) (see also
Figure 4.1). Indeed, we obtain (i) that for the distribution μ0, with high probability,
ed(x, y) ≥ (0.1C2ε0/ζ− 2ε1)R = (2− 2ε1)R > R; and (ii) that for the distribution μ1,
with high probability, ed(x, y) ≤ (10C2ε1/ζ + 2ε1)R = 402ε1R ≤ 804

C1α
· R < R/α.

x

y

z ≥ 2R

≤ 2ε1R

x

z

≤ 2ε1R

y

≤ 400ε1R

Fig. 4.1. The relative positions of x, y, z under the distributions μ0 and μ1, respectively.

It remains to prove Claims 4.9 and 4.10.
Proof of Claim 4.9. One can verify that ed(x, z) is upper bounded by the number

of substitutions performed when constructing x from z. This number of substitutions
may be bounded using a straightforward Chernoff bound.

Theorem 4.11 (Chernoff bound; cf. [27]). Let Xi, i = 1 . . . , d, be i.i.d. random
Poisson trials with E [Xi] = q for some q ∈ (0, 1). Then Pr[|

∑
Xi − qd| > 1

2qd] ≤
2e−qd/10.

In our case probability of substitution is q = (1 − ρ)(1 − 1/p), where the second
factor is the probability that the substituted symbol is different from the original
symbol. Since ρ = 1− ε1R/d, we get

Pr
μt

[
ed(x, z) ≤ 2ε1R

]
≥ 1− e−Ω(ε1R) ≥ 1− e−dΩ(1)

.

Proof of Claim 4.10. We first show an upper bound on ed(z, y) by analyzing the
sum of magnitudes of all the rotation operations. Recall that there are w rotation
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operations; a single rotation operation works on a block of (random) length L =
βlLmin and incurs edit distance at most (in fact, exactly) 2�εtL�. For l ∈ [m], let
the random variable Zl denote the number of rotation operations in which the block

length equals βlLmin. Observe that Zl has Binomial distribution B(w, β
−l

ζ ) and its

expectation is E[Zl] = w · β
−l

ζ ≥ C2R
mLmin

· d−0.01

ζ ≥ dΩ(1). By a straightforward Chernoff

bound (Theorem 4.11),

Pr
[
Zl ≥ 2E[Zl]

]
≤ e−Ω(E[Zl]) ≤ e−dΩ(1)

.

Taking a union bound over these events for l = 1, . . . ,m, we conclude that with high
probability

ed(z, y) ≤
m∑
l=1

(
2w

β−l

ζ
· 2εtβlLmin

)
=

4C2εtR

ζ
.

We proceed to show a lower bound on ed(z, y) by counting inversions, i.e., pairs of
symbols (a1, b1), . . . , (ak, bk), such that each aj appears before bj in z, but aj appears
after bj in y. It is easy to verify that if the inversions are disjoint, in the sense
that the symbols a1, b1, . . . , ak, bk are all distinct, then ed(z, y) ≥ k (because in every
alignment of z with y, for each j = 1, . . . , k, at least one of aj, bj must incur an edit
operation). For each of the w rotation operations we take �εtL� pairs—simply take the
�εtL� symbols that were at the beginning of the block and match them to the �εtL�
symbols that were at the end of the block. It follows, using Chernoff bounds as above,

that with probability at least 1− e−dΩ(1)

this process picks at least 1
2 · C2εtR

ζ pairs of
symbols, but this count might include repetitions. Furthermore, a pair “inverted” in
one rotation operation may be inverted back by another rotation. To mitigate this
concern, fix a pair (a, b) taken at some jth rotation operation. The probability that
symbol a was inside a rotated block in at least one other rotation is at most (using
the independence between rotations and a union bound)

(w − 1)

m∑
l=1

(
β−l

ζ
· β

lLmin

d

)
<
wmLmin

ζd
=
C2R

ζd
.

A similar argument applies to symbol b, and clearly if both a and b were not inside
a rotated block of any of the other w − 1 rotations, then either (a, b) or (b, a) is an
inversion between z and y. It remains to apply a union bound over the C2εtR

2ζ pairs
of symbols the above process produces, and indeed the probability that at least one
of them fails is at most

2 · C2εtR

2ζ
· C2R

ζd
≤ O

(
R2

d

)
≤ d−Ω(1).

We conclude that with probability at least 1 − d−Ω(1) the above process produces
C2εtR

2ζ disjoint inversions, and thus ed(y, z) ≥ C2εtR
2ζ . This completes the proof of

Claim 4.10.
We thus have finalized the proof of Lemma 4.8.

5. Reducing Ulam to edit distance on 0-1 strings. In this section, we prove
Theorem 1.2. We make no attempt to optimize the constants.

The basic intuition behind this proof is quite simple. The first part (the upper
bound on ed(π(P ), π(Q))) is immediate, and the main challenge is to prove the lower
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bound on ed(π(P ), π(Q)). To prove the lower bound, we proceed by ruling out all
“potential certificates” that ed(π(P ), π(Q)) is small. Specifically, a “potential certifi-
cate” is a potential fixed alignment between π(P ) and π(Q) of low cost, i.e., a fixed
monotone mapping that matches monotonically all but at most 1

100 ed(P,Q) of the
positions in π(P ) and π(Q). We then analyze the probability that such an alignment
is “successful,” in the sense that every pair of positions that is matched under the
potential alignment has equal symbols. Indeed, we show this probability is exponen-
tially small because many of the pairs matched are independent coin tosses. We then
apply a union bound over all potential alignment of small cost. Although a direct
union bound is not sufficient (there are too many potential alignments to consider),
we reduce the number of potential low-cost alignments by partitioning the set of all
such alignments into a smaller number of groups of “equivalent alignments.”

We proceed to set up some basic terminology and notation and to provide two
lemmas that will be used in the proof of the theorem.

For two permutations P,Q, we say that an index (position) i ∈ [d] in P is miss-
ing (from Q) if the symbol P (i) does not appear inside Q.4 We say that a pair
of indices {i, j} ⊆ [d] is an inversion (in P with respect to Q) if the two characters
P (i), P (j) appear in Q but in the opposite relative order than in P , formally given by
(i− j)(Q−1(P (i))−Q−1(P (j))) < 0. We also say that index j is inverted with respect
to i.

An alignment of two strings x, y ∈ Σd is a mapping A : [d] �→ [d] ∪ {⊥} that is
monotonically increasing on A−1([d]) = {i ∈ [d] | A(i) ∈ [d]}. Intuitively, A models a
candidate longest common subsequence between x and y, and thus it maps indices in
x to their respective indices in y and takes the value ⊥ when there is no respective
index in y (i.e., the respective position of x is not in the candidate subsequence). A
disagreement in the alignment A is an index i ∈ [d] for which A(i) �= ⊥ and x(i) �=
y(A(i)). The alignment is called successful if it has no disagreements. The cost of an
alignment is the number of positions in x (equivalently, in y) that are not mapped to
a respective index in the other string, namely |A−1(⊥)| = d−|A−1([d])| = d−|A([d])|,
where A([d]) = {A(i) | i ∈ [d]}. It is easy to verify that, for all x, y,

(5.1) 1
2 ed(x, y) ≤ min

A
cost(A) ≤ ed(x, y),

where the minimum is taken over all successful alignments A.

In the following lemma, we present a property of strings P and Q that will let us
prove that, for a fixed potential alignment between π(P ) and π(Q), the probability
of the alignment being successful is very small.

Lemma 5.1. Let P,Q be two permutations of length d that contain the same
symbols, i.e., P ([d]) = Q([d]). Then there exists a collection of m ≥ ed(P,Q)/4
inversions {i1, j1}, . . . , {im, jm} such that i1, j1, . . . , im, jm are all distinct.

Proof. Fix P,Q. Define an (undirected) graph G with vertex set [d] and an edge
{i, j} whenever {i, j} is an inversion. Let E∗ ⊆ E(G) be a matching in G (i.e., no two
edges in E∗ share an endpoint) that is maximal with respect to containment. Observe
that E∗ is a collection of inversions whose indices are all distinct (as desired), and it
remains only to bound m = |E∗| from below. Following [30], we achieve the latter
using the well-known relation between maximal matching and vertex-cover.5

4Remember that we have defined a permutation P as a string with a large alphabet where every
symbol appears at most once.

5Another proof may be obtained using the O(1)-approximation in [17, Theorem 3.3].
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Let V ∗ be the set of vertices incident to any edge in E∗; thus |V ∗| = 2|E∗|.
Clearly, V ∗ is a vertex-cover of G; namely, every edge (inversion) must have at least
one endpoint in V ∗. It follows that V \ V ∗ contains no edges (inversions) and thus
immediately yields a successful alignment A between P and Q. Formally, the subse-
quence of P obtained by removing the positions V ∗ is also a subsequence of Q, and A
is the monotone map matching them. Thus, A(i) = ⊥ iff i ∈ V ∗ and cost(A) = 2|E∗|.
Finally, using (5.1) we get m = |E∗| = 1

2 cost(A) ≥
1
4 ed(P,Q).

We now give a lemma that essentially lets us partition all potential alignments
into a small number of groups of equivalent alignments.

Lemma 5.2. Let P,Q be two permutations of length d. Fix 0 < γ < 1/2 and
a subset S ⊆ [d]. For an alignment A of P and Q (not necessarily successful), let
A|S : S → [d] ∪ {⊥} be a function that is equal to the function A on the domain S.
Define

F = {A|S | A is an alignment of P and Q with cost(A) ≤ γ|S|}.

Then |F | ≤ (3e/γ)2γ|S|.
Proof. Let us denote s = |S|. An alignment of P with Q of cost at most γs can be

described as deleting exactly γs symbols from P and exactly γs symbols from Q. (We
assume here for simplicity that γs is an integer; otherwise, we round it up and change
constants accordingly.) Clearly, we can bound |F | by the number of such alignments
between P and Q, namely |F | ≤

(
d
γs

)(
d
γs

)
, but we aim to get a bound that depends

on s = |S| and not on d by more carefully counting restrictions A|S .
An alignment A of P with Q of cost at most γs can be described as first deleting

exactly γs characters from P and then inserting into the resulting string exactly γs
characters. Observe that A|S is completely determined from the following information:
(a) which positions in S are deleted; (b) how many characters are deleted between
every two successive indices in S; and (c) how many characters are inserted between
every two successive indices in S. (When we say two successive indices in S, it should
be interpreted to also include 0 and d+1 as indices in S, and in particular (b) describes
also how many characters before the first index in S are deleted from P .) Indeed, for
each i ∈ S, data (a) determines whether A(i) = ⊥. If A(i) �= ⊥, then A(i) = i−di+ai,
where di is the total number of deletions among indices 1, . . . , i − 1, which can be
determined from data (a) and (b), and ai is the total number of insertions before
position i, which can be determined from data (c).

It remains to upper bound the number of possible outcomes to data (a)–(c).
Clearly, the outcomes for (a) and (b) together can be upper bounded by the number
of outcomes of throwing γs indistinguishable balls into 2s+2 bins (a bin per element
in S which may get at most one ball, a bin per each interval between elements in S,
and one extra bin to account for the case when the cost is strictly less than γs). This
upper bound is equal to

(
2s+2+γs

γs

)
possible outcomes. The outcomes of data (c) can

be similarly upper bounded by
(
s+1+γs

γs

)
. Together, we obtain that

|F | ≤
(
2s+ 2 + γs

γs

)(
s+ 1 + γs

γs

)
≤

(
e(2 + 2γ)

γ

)γs (
e(1 + 2γ)

γ

)γs

≤
(
3e

γ

)2γs

,

which proves the lemma.

Having established the two lemmas, we proceed to prove the theorem, which
states that with high probability Ω(ed(P,Q)) ≤ ed(π(P ), π(Q)) ≤ ed(P,Q).
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Proof of Theorem 1.2. Fix two permutations P and Q of length d. The inequal-
ity ed(π(P ), π(Q)) ≤ ed(P,Q) follows immediately from the observation that every
sequence of edit operations to transform P into Q can also be applied to transform
π(P ) and π(Q). It thus remains to prove the other direction. Assume for now that
P and Q use the same symbols, i.e., P ([d]) = Q([d]). We will later explain how the
general case follows using a similar argument.

Apply Lemma 5.1 to P,Q, and extract m ≥ ed(P,Q)/4 inversions {i1, j1}, . . . ,
{im, jm} such that i1, j1, . . . , im, jm are all distinct. Define S = {i1, j1, . . . , im, jm};
hence |S| = 2m. Fix γ = 1/100, and let F be defined as in Lemma 5.2 (with respect
to our P,Q, S, and γ). By that lemma, |F | ≤ (3e/γ)2γ|S| = (3e/γ)4γm. Note that F
does not depend on π.

For every f ∈ F , let Ef be the event that all i ∈ S with f(i) �= ⊥ satisfy
π(P (i)) = π(Q(f(i))). That is,

Ef =
∧

i∈S\f−1(⊥)

{π(P (i)) = π(Q(f(i))}.

We claim that

(5.2) Pr
[
ed(π(P ), π(Q)) < 1

2γ · ed(P,Q)
]
≤ Pr

[ ⋃
f∈F

Ef
]
.

To prove the claim we show that ed(π(P ), π(Q)) < 1
2γ · ed(P,Q) implies that at

least one of the events Ef happens. Indeed, suppose there is a successful alignment
A between π(P ) and π(Q) that has cost 1

2γ · ed(P,Q) ≤ 2γm = γ|S|. Since A is
successful, for all i ∈ S \ A−1(⊥), we must have π(P (i)) = π(Q(A(i)). Furthermore,
we can think of A as an alignment between P and Q, and then by definition its
restriction A|S must be in F .

We now bound Pr[Ef ] for any fixed f ∈ F ; i.e., f = A|S for some alignment A of
cost at most γ|S| = 2γm. Since S is the union of m inversions {it, jt} with distinct
indices, for at least (1− 2γ)m of these inversions, we have that f(it), f(jt) �= ⊥. For
every such inversion {it, jt}, it cannot be that both P (it) = Q(f(it)) and P (jt) =
Q(f(jt)) (as that would contradict the fact that the alignment A is increasing). Let
at �= bt denote these two differing symbols (i.e., either at = P (it), bt = Q(f(it)) or
at = P (jt), bt = Q(f(jt))); the event Ef can occur only if π(at) = π(bt). We thus
obtain (1 − 2γ)m requirements of the form π(at) = π(bt). These requirements have
distinct symbols at in their left-hand sides (since they come from distinct positions in
P ), and similarly, the right-hand sides contain distinct symbols bt. Altogether, every
symbol in Σ may appear in at most two requirements, and thus we can extract (say,
greedily) a subcollection containing at least one half of these requirements, namely, at
least (1−2γ)m/2 ≥ m/4 requirements, such that every symbol appears in at most one
requirement. Since π is a random function, the probability that all these requirements
are satisfied is at most 2−m/4, and we conclude that Pr[Ef ] ≤ 2−m/4.

To complete the proof of the theorem, we plug the last bound into (5.2) and use
a union bound and Lemma 5.2, which altogether gives

Pr
[
ed(π(P ), π(Q)) < 1

2γ · ed(P,Q)
]
≤

(
3e

γ

)4γm

· 2−m/4 ≤ 2−m/8.

Finally, we extend the proof to the case where P and Q differ on some symbols;
i.e., there is at least a symbol in P that is not in Q (and vice versa). Define Σ′ =
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P ([d]) ∩ Q([d]) to be the set of symbols that appears in both P and Q. Let P ′

be the string obtained by deleting from P the symbols not in Σ′, and let Q′ be
obtained similarly from Q. Clearly, P ′ and Q′ are permutations, they have the same
length d′ = |Σ′|, and they use exactly the same symbols. Furthermore, ed(P,Q) =
ed(P ′, Q′) + Θ(d − d′). Applying Lemma 5.1 to P ′, Q′, we get m ≥ ed(P ′, Q′)/4
inversions {i′1, j′1}, . . . , {i′m, j′m} such that i′1, j

′
1, . . . , i

′
m, j

′
m are all distinct. Translating

these positions to P yields m inversions {i1, j1}, . . . , {im, jm} between P and Q such
that i1, j1, . . . , im, jm are all distinct. We then let S contain the indices in these
inversions and also the d − d′ indices in P containing the symbols not in Σ′. It is
not difficult to see that we will still get |S| ≥ Ω(ed(P,Q)). Inversions will give rise to
requirements of the form π(a) = π(b) as before, and each index i, where P (i) /∈ Σ′,
gives rise to a requirement π(P (i)) = π(Q(f(i))). Altogether, after removing indices i
such that f(i) = ⊥, we still get at least |S|/8 requirements whose variables π(a), π(b)
are all distinct.

6. Concluding remarks.
Poincaré inequality. Our communication complexity lower bounds imply that

embedding the edit and Ulam metrics into �1, and into powers thereof, requires dis-
tortion Ω( log d

log log d ). But our proof also yields a Poincaré-type inequality as follows.

Indeed, using (i) a variant of Lemma 3.4, where Pr[HA(x) �= HB(x)] is replaced
with E[HA(x) −HB(x)]2 and HA,HB are real (rather than boolean) functions with

Ex

[
HA(x)

]2
= Ex

[
HB(x)

]2
= 1, together with (ii) Lemma 4.2 for suitable param-

eters R = d1/4 and α = Θ( log d
log log d ), we get that for all f : Zd

p → R (and thus all

f : Zd
p → �2)

(6.1) E(x,y)∈μ0
[f(x)− f(y)]

2 − E(x,y)∈μ1
[f(x)− f(y)]

2 ≤ 1
10Ex,y∈Zd

p
[f(x)− f(y)]

2
.

In fact, the aforementioned nonembeddability into �1 (actually into the bigger
space squared-�2) can be proved directly from the Poincaré inequality (6.1) as follows.
Consider a D-distortion embedding into squared-�2; namely, let φ : Zd

p → �2 be such

that, for all permutations x, y ∈ Zd
p,

ed(x, y)/D ≤ ‖φ(x)− φ(y)‖22 ≤ ed(x, y).

Schoenberg [33] proved (see, e.g., [16, Theorem 9.1.1]) that, for every λ > 0, applying
the transform x �→ 1 − e−λx on the distances of a squared-�2 metric always results
with a squared-�2 metric. Thus, there exists a mapping ψ : Zd

p → �2 satisfying

‖ψ(x)− ψ(y)‖22 = 1− e−‖φ(x)−φ(y)‖2
2·α/R.

We thus get, using Lemma 4.8, that

Eμ0 ‖ψ(x)− ψ(y)‖22 − Eμ1 ‖ψ(x)− ψ(y)‖22 − 1
10 · Ex,y∈Zd

p
‖ψ(x)− ψ(y)‖22

≥ 1
e − 1

eα/D − 1
10 − d−Ω(1).

Combining this inequality with (6.1) implies that D ≥ Ω(α) = Ω( log d
log log d ).

Overcoming nonembeddability into �1. One moral of our nonembeddability lower
bound is that some of the usual approaches for designing algorithms for Ulam and
edit metrics cannot give approximation better than Ω̃(log d). In particular, to design
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for these metrics a nearest neighbor algorithm that achieves a sublogarithmic (in d)
approximation factor, we must depart from embedding into �1 or into other spaces
that admit O(1)-size sketches.

This challenge was accomplished for the Ulam metric in a recent paper [3],
which designs a nearest neighbor algorithm achievingO(log log d) approximation using
polynomial (in n + d) space and sublinear (in n) query time. These guarantees by-
pass the �1 nonembeddability barrier proved in the current paper by relying on a
constant-distortion embedding of the Ulam metric into an alternative, richer host
space (namely, iterated product of simple spaces such as �1) which, despite the richer
structure, turns out to have reasonably good algorithms.

Sketching complexity. After the preliminary version of this paper appeared in
2007, there has been further progress on the communication complexity of estimating
the Ulam and edit distances. First, [3] showed that the Ulam metric can be sketched
in (log d)O(1) space with constant approximation. Second, [4] showed that the Ulam

metric requires Ω( log d/ log log d
α ) communication complexity, for approximation α > 1,

which improves our lower bound of Ω(log( log d
α logα )) from Theorem 1.1. In particular, for

a constant approximation, this significantly improves the communication lower bound
from Ω(log log d) to Ω( log d

log log d). We note that the lower bound of [4] is nonetheless

based on Theorem 1.1 in the setting where approximation α = Θ( log d
log log d ). This

lower bound of [4] for the Ulam metric extends to edit distance over binary strings by
applying Theorem 1.2.

The two aforementioned results together imply that a (sufficiently large) constant
approximation of the Ulam distance has sketching complexity (log d)Θ(1).
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