
The Smoothed Complexity of Edit Distance

Alexandr Andoni1 and Robert Krauthgamer2

1 MIT
Email: andoni@mit.edu

2 Weizmann Institute and IBM Almaden
Email: robert.krauthgamer@weizmann.ac.il

Abstract. We initiate the study of the smoothed complexity of sequence
alignment, by proposing a semi-random model of edit distance between
two input strings, generated as follows. First, an adversary chooses two
binary strings of length d and a longest common subsequence A of them.
Then, every character is perturbed independently with probability p,
except that A is perturbed in exactly the same way inside the two strings.

We design two efficient algorithms that compute the edit distance on
smoothed instances up to a constant factor approximation. The first
algorithm runs in near-linear time, namely d1+ε for any fixed ε > 0. The
second one runs in time sublinear in d, assuming the edit distance is not
too small. These approximation and runtime guarantees are significantly
better then the bounds known for worst-case inputs, e.g. near-linear time
algorithm achieving approximation roughly d1/3, due to Batu, Ergün,
and Sahinalp [SODA 2006].

Our technical contribution is twofold. First, we rely on finding matches
between substrings in the two strings, where two substrings are consid-
ered a match if their edit distance is relatively small, a prevailing tech-
nique in commonly used heuristics, such as PatternHunter of Ma, Tromp
and Li [Bioinformatics, 2002]. Second, we effectively reduce the smoothed
edit distance to a simpler variant of (worst-case) edit distance, namely,
edit distance on permutations (a.k.a. Ulam’s metric). We are thus able to
build on algorithms developed for the Ulam metric, whose much better
algorithmic guarantees usually do not carry over to general edit distance.

1 Introduction

The edit distance (aka Levenshtein distance) between two strings is the number
of insertions, deletions, and substitutions needed to transform one string into
the other. This distance is of key importance in several fields, such as compu-
tational biology and text processing, and consequently computational problems
involving the edit distance were studied extensively, both theoretically and ex-
perimentally, see e.g. the detailed survey on edit distance by Navarro [Nav01].
Despite extensive research, the worst-case guarantees currently known for algo-
rithms dealing with edit distance are quite poor, especially in comparison to the
Hamming distance (which is just the number of substitutions to transform one
string into the other).

The most basic problem is to compute the edit distance between two strings
of length d over alphabet Σ. The worst-case running time known for this prob-
lem has not improved in three decades — the problem can be solved using

2

dynamic programming in time O(d2) [WF74], and in time O(d2/ log2 d) when
the alphabet has constant size [MP80]. Unfortunately, such near-quadratic time
is prohibitive when working on large datasets, which is common in areas such
as computational biology. The gold standard is to achieve a linear-time algo-
rithm, or even sublinear in several cases, which has triggered the study of very
efficient distance estimation algorithms – algorithms that compute an approxi-
mation to the edit distance. In particular, the best quasi-linear time algorithm,
due to Batu, Ergün, and Sahinalp [BES06], achieves d1/3+o(1) approximation
(improving over [BJKK04]), and the only known sublinear time algorithm, due
to Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld and Sami [BEK+03],
decides whether the edit distance is O(dα) or Ω(d) in time O(dmax{α/2,1−2α}).
In fact, distance estimation with sublogarithmic approximation factor was re-
cently proved impossible in a certain model of low communication complexity
[AK07]. In practice, this situation is mitigated by heuristic algorithms. In com-
putational biology settings for instance, tools such as BLAST [AGM+90] are
commonly used to solve the problem quickly, essentially by relying on heuristic
considerations that sacrifice some sensitivity.

We initiate the study of the smoothed complexity of sequence alignment,
by proposing a semi-random model of edit distance (the input is a worst-case
instance modified by a random perturbation), and design for it very efficient
approximation algorithms. Specifically, an adversary chooses two strings and a
longest common subsequence of them, and every character is perturbed indepen-
dently with probability 0 ≤ p ≤ 1, except that every character in the common
subsequence is perturbed in the same way in the two strings. Semi-random mod-
els appeared in the literature in other contexts, but to the best of our knowledge,
not for sequence alignment problems; see Sect. 1.2 for more details. Our algo-
rithms for the smoothed model approximate the edit distance within a constant
factor in linear, and even sublinear time.

Why study semi-random models of sequence alignment? First, they elude
the extreme difficulty posed by worst-case inputs, while avoiding the naivete of
average-case (random) inputs. Using these models as a theoretical testbed for
practical algorithms may lead to designing new algorithmic techniques, and/or to
providing rigorous explanation for the empirical success of well-known heuristics.
Second, studying algorithms for semi-random models may be viewed as an attack
on the worst-case complexity. It is difficult to quantify the progress we manage
to make in this direction, but we certainly achieve much better performance
guarantees on a very large collection of inputs (including random inputs as an
extreme case), by delineating rather general assumptions on the input, under
which we have efficient algorithms.

1.1 Our Contribution

A smoothed model. Let 0 < p ≤ 1 be a perturbation probability. In our smoothed
model for edit distance, an input consisting of two strings, x and y, is generated
as follows. (A more formal description is given in Sect. 1.3.)

1. An adversary chooses two strings x∗, y∗ ∈ {0, 1}d, and a longest common
subsequence A of x∗, y∗.

3

2. Every character in x∗ and y∗ is replaced independently with probability p
by a random bit, except that the perturbation of A inside x and that of A
inside y are identical.

Results. We start by investigating the typical properties of a smoothed instance
(x, y), including proving that the expected edit distance ed(x, y) is comparable
to that of the generating strings, ed(x∗, y∗).

Our first result is a deterministic algorithm that approximates the edit dis-
tance within a constant factor, and its smoothed runtime complexity is near-
linear. Specifically, for any desired 0 < ε < 1, the algorithm always obtains
O(1

εp log 1
εp) approximation, and with high probability over the randomness in

the smoothing, runs in time O(d1+ε). For comparison, the algorithm of Batu,
Ergün, and Sahinalp [BES06] for worst-case inputs requires a similar running
time of O(d1+ε) and achieves approximation d(1−ε)/3+o(1).

Our second result is a sublinear time algorithm for smoothed instances.
Specifically, for every desired 0 < ε < 1, the algorithm computes a O(1

εp log 1
εp)

approximation to ed(x, y) in time O(d1+ε/
√

ed(x, y)). For comparison, recall
that the algorithm of Batu et al. [BEK+03] for worst-case inputs can only dis-
tinguish a polynomially large gap in the edit distance, and only at the highest
regime Ω(d).

Techniques. Our algorithms are based on two new technical ideas. The first one
is to find matches of blocks (substrings) of length L = O(1

p log d) between the
two strings, where two blocks are considered a match if they are at a small
edit distance (say εL). This same idea, but in a more heuristic form, is used
by practical tools. In particular, PatternHunter [MTL02] uses such a notion of
matches (to identify “seeds”), significantly improving over BLAST [AGM+90],
which considers only identical blocks to be a match. Thus, our smoothed analysis
may be viewed as giving some rigorous explanation for the empirical success of
such techniques.

The second idea is to reduce the problem to edit distance on permutations
(in worst-case), called in the literature Ulam’s distance, or the Ulam metric.
Here and throughout, a permutation is a string in which every symbol appears
at most once.3 The Ulam metric is a submetric of edit distance, but the algorith-
mic bounds known for it are significantly better than those for the general edit
distance. In particular, Ulam’s distance between permutations of length d can be
computed in linear time O(d log d), e.g. using Patience Sorting. The main chal-
lenge we overcome is to design a reduction that distorts distances by at most a
constant factor. Indeed, there is an easy reduction with distortion L = O(1

p log d),
that follows simply because with high probability, in each string, the blocks of
length L are all distinct, see [CK06, Section 3.1].

1.2 Related Work
Average-case analysis of edit distance. Random models for edit distance were
studied in two contexts, for pattern matching and for nearest neighbor searching.
3 It is sometimes convenient, though not crucial, to use an alphabet Σ with size larger

than d. We then define a permutation as a string whose characters are all distinct.

4

In the former, the text is typically assumed to be random, i.e., each character
is chosen uniformly and independently from the alphabet, and the pattern is
usually not assumed to be random. We refer the reader to the survey [Nav01,
Section 5.3] for details and references. For nearest neighbor search, the average-
case model is quite similar, see [NBYST01,GP06].

Our model is considerably more general than the random strings model.
In particular, the average-case analysis often relies on the fact that no short
substring of the text is identical to any substring of the pattern, to quickly
“reject” most candidate matches. In fact, for distance estimation, it is easy to
distinguish the case of two random strings from the case of two (worst-case)
strings at a smaller edit distance — just choose one random block of logarithmic
length in the first string and check whether it is close in edit distance to at least
one block in the second string. We achieve a near-linear time algorithm for a
more adversarial model, albeit by allowing constant factor approximation.

Smoothed complexity and semi-random models. Smoothed analysis was pio-
neered by Spielman and Teng [ST04] as a framework aimed to explain the
practical success of heuristics that do not admit traditional worst-case anal-
ysis. They analyzed the simplex algorithm for linear programming, and since
then researchers investigated the smoothed complexity of several other problems,
mostly numerical ones, but also some discrete problems. An emerging principle
in smoothed analysis is to perform property-preserving perturbation [ST03], ex-
ample of which is our model. Specifically, our model may be seen as performing
a perturbation of x∗ and y∗ that preserves the common subsequence A.

In combinatorial optimization problems, smoothed analysis is closely related
to an earlier notion of semi-random models, which were initiated by Blum and
Spencer [BS95]. This research program encompasses several interesting ques-
tions, such as what algorithmic techniques are most effective (spectral methods?),
and when is the optimum solution likely to be unique, hard to find, or easy to
certify, see e.g. [FM97,FK01] and the references therein.

To the best of our knowledge, smoothed analysis and/or semi-random models
were not studied before for sequence alignment problems.

Distance estimation. Algorithms for distance estimation are studied also in other
scenarios, using different notions of efficiency. One such model is the communica-
tion complexity model, where two parties are each given a string, and they wish
to estimate the distance between their strings using low communication. The
sketching model falls into this category, with further restriction to simultaneous
communication protocols. A communication lower bound was recently proved
in [AK07] for the edit distance metric, even on permutations, and it holds for
approximations as large as Ω(log d/ log log d).

1.3 Preliminaries

Strings. Let x be a string of length d over alphabet Σ. A position in the string is
an index i ∈ [d]. We write x[i] or xi to denote the symbol appearing in position i
in x. Let [i : j] denote the sequence of positions (i, i + 1, . . . , j). We write x[i : j]
or x[i:j] for the corresponding substring of x. A block is a substring, often of a
predetermined length.

5

A variant of edit distance. Let x, y be two strings. Define ed(x, y) to be the
minimum number of character insertions and deletions needed to transform x
into y. Character substitution are not allowed, in contrast to ed(x, y), but a
substitution can be simulated by a deletion followed by an insertion, and thus
ed(x, y) ≤ ed(x, y) ≤ 2 ed(x, y). Observe that

ed(x, y) = |x|+ |y| − 2LCS(x, y),

where LCS(x, y) is the length of the longest common subsequence of x and y.

Alignments. For two strings x, y of length d, an alignment is a function A : [d] →
[d]∪{⊥} that is monotonically increasing on A−1([d]) and satisfies x[i] = y[A(i)]
for all i ∈ A−1([d]). Define the length (or size) of the alignment as len(A) =
|A−1([d])|, i.e., the number of positions in x that are matched by A. Let the cost
of A be cost(A) = 2(d− len(A)) = 2|A−1(⊥)|, i.e. the number of positions in x
and in y that are not matched by A. Observe that an alignment between x and
y corresponds exactly to a common subsequence to x and y. Thus, if A is an
alignment between x and y, then

cost(A) = 2(d− len(A)) ≥ 2d− 2LCS(x, y) = ed(x, y),

with equality if and only if A is an alignment of maximum length.

Block matches. Consider two strings x, y and a block length L ∈ [d]. For blocks
x[i:i+L−1] and y[j:j+L−1] of length L, we let edA(x[i:i+L−1], y[j:j+L−1]) be the
number of positions k ∈ [i : i + L − 1] such that A(k) 6∈ [j : j + L − 1]. We let
match(x[i:i+L−1]) denote the block y[j:j+L−1], where j ∈ [d − L + 1] minimizes
ed(x[i:i+L−1], y[j:j+L−1]), breaking ties arbitrarily. For an alignment A between x
and y, let matchA(i, L) be the block y[j:j+L−1], where j ∈ [d−L + 1] minimizes
edA(x[i:i+L−1], y[j:j+L−1]). Slightly abusing notation, we sometimes let match
and matchA represent the corresponding position j (instead of the substring
y[j:j+L−1]), but the distinction will be clear from the context.

Smoothed model. Let 0 ≤ p ≤ 1, let x∗, y∗ ∈ {0, 1}d be two strings, and fix
a maximum-length alignment A∗ between x∗ and y∗. Let x, y ∈ {0, 1}d be the
strings obtained from x∗, y∗ respectively, by replacing, independently with prob-
ability p, each character with a random one, except that the positions aligned by
A∗ are kept correlated. Formally, let πx ∈ {0, 1}d be a string where each πx[j] is
drawn independently to be 1 with probability p/2 and 0 otherwise, and let πy be
defined similarly (and independently), except for position j ∈ A∗([d]), for which
we set πy[j] = πx[(A∗)−1(j)]. Now let x[i] = x∗[i] + πx[i] and y[i] = y∗[i] + πy[i],
where addition is done modulo 2. We call the pair (x, y) a smoothed instance of
edit distance, and denote its distribution by SMOOTHp(x∗, y∗, A∗).

2 Typical properties of smoothed instances

We first show that the edit distance of a smoothed instance is likely to be similar
to that of the strings used to generate it. We then turn our attention to the dis-
tance between different substrings of the smoothed strings x and y. Specifically,

6

we show that blocks of length L = O(p−1 log d) are likely to be far from each
other in terms of edit distance, with the few obvious exceptions of overlapping
blocks and blocks that are aligned via the original alignment A∗.

Besides the inherent interest, these bounds are useful in the smoothed anal-
ysis of our algorithms carried out in subsequent sections.

2.1 Edit Distance of a Smoothed Instance

Theorem 2.1. Let A∗ be an optimal alignment between x∗, y∗ ∈ {0, 1}d, and fix
0 < p ≤ 1. Then a smoothed instance (x, y) ∈ SMOOTHp(x∗, y∗, A∗) satisfies

Pr
(x,y)

[
Ω(p

log(1/p)) ed(x∗, y∗) ≤ ed(x, y) ≤ ed(x∗, y∗)
]
≥ 1− 2−Ω(p) ed(x∗,y∗).

Proof. Observe that ed(x, y) ≤ ed(x∗, y∗) always holds (i.e. with probability 1).
We proceed to show that with high probability, ed(x, y) ≥ Ω(p

log(1/p))·ed(x∗, y∗),
which by Sect. 1.3 would complete the proof. We let U denote the unaligned
positions in x under A∗, i.e. U = (A∗)−1(⊥) and |U | = 1

2 ed(x∗, y∗).
Consider a potential alignment A between x and y, i.e. a map A : [d] 7→ [d]∪

{⊥} that is monotonically increasing on A−1([d]), and suppose that cost(A) =
2|A−1(⊥)| is at most α · ed(x∗, y∗) for a small 0 < α ≤ 1/4 to be chosen later.
For A to be an actual alignment, we must additionally have that x[i] = y[A(i)]
for every position i /∈ A−1(⊥), and in particular for every position i ∈ U \
A−1(⊥). The number of such positions is at least |U |−|A−1(⊥)| ≥ 1

2 ed(x∗, y∗)−
1
2α ed(x∗, y∗) ≥ 1

4 ed(x∗, y∗). For each of them, x∗[i] is perturbed independently
of y∗[A(i)], and thus x[i] 6= y[A(i)] occurs with probability at least p/2. These
events might not be mutually independent due to correlations via A∗, but it
is easy to see that for at least half of such i, the probability is at least p/2
even when conditioned on earlier events (namely, x[i] is independent of x[i′] and
y[A(i′)] for all i′ < i). Thus, the probability that A is an actual alignment is at
most

Pr
[
x[i] = y[A(i)] for all i ∈ U \A−1(⊥)

]
≤

(
1− p

2

)ed(x∗,y∗)/8

≤ e−p·ed(x∗,y∗)/16.

We will apply a union bound on all potential alignments, and thus it suf-
fices to have an upper bound on the number of different values taken by A|U ,
the restriction of A to the positions in U . We note that A|U is determined by
the number of insertions and deletions occurring between every two successive
positions in U (including the insertions and deletions before the first position in
U and after the last position in U). Thus we can count the number of A|U as:

#{A|U} ≤
(|U |+ 1

2α ed(x∗, y∗)
1
2α ed(x∗, y∗)

)3

≤
(

e(1+α)
α

)1.5α ed(x∗,y∗)
≤ (1

α2)1.5α ed(x∗,y∗).

Choosing α = cp
log(1/p) for a sufficiently small constant c > 0, we get by a union

bound Pr
[
ed(x, y) ≤ α ed(x∗, y∗)

]
≤ e[3α ln(1/α)−p/16]·ed(x∗,y∗) ≤ e−(p/32) ed(x∗,y∗).

ut

7

2.2 Edit Distance Between Different Blocks

Our next lemma concerns typical distances between two blocks from x and y.
The main technical difficulty in this lemma, beyond technique used to prove
Theorem 2.1, is that here we consider blocks whose perturbations are correlated,
e.g. overlapping blocks in the same string, thus impeding direct concentration
bounds. The proof of this lemma is deferred to the full version of the article.

Lemma 2.1. Let A∗ be an optimal alignment between x∗, y∗ ∈ {0, 1}d and fix
0 < p ≤ 1. Let L ≥ C

p log d for a sufficiently large constant C > 0, and
let ca, cb, cc > 0 be sufficiently small constants. Then with probability at least
1 − d−Ω(C), a smoothed instance (x, y) ∈ SMOOTHp(x∗, y∗, A∗) satisfies the
following for all i, j ∈ [d]:

(a). ed(x[i:i+L−1], x[j:j+L−1]) ≥ ca ·min{pL, |j − i|}, and similarly in y.
(b). If edA∗(x∗[i:i+L−1], y

∗
[j:j+L−1]) ≥ L/4, then ed(x[i:i+L−1], y[j:j+L−1]) ≥ cb · pL.

(c). Let k∗ = matchA∗(i, L), then
ed(x[i:i+L−1], y[j:j+L−1]) ≥ min{cc · pL, cc · |j − k∗| − edA∗(x∗[i:i+L−1], y

∗
[k∗:k∗+L−1])}.

Furthermore, if |j − k∗| ≥ L, then ed(x[i:i+L−1], y[j:j+L−1]) ≥ cc · pL.

3 Near-Linear Time Distance Estimation

Our first algorithm is guaranteed to give a correct answer for any input strings,
but has an improved runtime for smoothed inputs, coming from a distribution
SMOOTHp(x∗, y∗, A∗).

Theorem 3.1. For every ε > 0 and p > 0 there is a deterministic algorithm
that, given as input two strings x, y ∈ {0, 1}d, approximates ed(x, y) within factor
O(1

εp log 1
εp), and on a p-smoothed instance, with high probability its running time

is O(d1+ε).

We will need three lemmas, the first two of which do not deal directly with
smoothed instances and may be useful in other scenarios as well.

Lemma 3.1. Consider a bipartite graph G = ([d], [d], E), and call two edges
(i, j) ∈ E and (k, l) ∈ E intersecting if (i − k)(j − l) ≤ 0. Then a maximum-
cardinality subset of non-intersecting edges can be found in time O(d+ |E| log d)
by reducing the problem to Patience Sorting.

Proof (sketch). Construct a string z of length |E| as follows. Start with an
empty string. For each node i = 1, . . . , d, append to the end of z the list of
symbols (j1,−i), . . . , (jk,−i) where j1 > j2 > . . . > jk are the neighbors of i,
i.e. {j1, . . . jk} = {j | (i, j) ∈ E}. Then the longest increasing subsequence of
z (when the order on (j,−i) is lexicographic) gives a maximum-size subset of
non-intersecting edges. We can find it using Patience Sorting. ut

8

Lemma 3.2. Fix an optimal alignment A between two strings x, y ∈ {0, 1}d. Let
L ∈ [d] divide d. Partition x into successive blocks of length L, denoted (Xi)

d/L
i=1 ,

and let Yi = matchA(Xi). Then
∑d/L

i=1 edA(Xi, Yi) ≤ 2 ed(x, y). Hence, for every
ε > 0, the number of indices i ∈ [d/L] such that ed(Xi, Yi) > εL is at most
4

εL · ed(x, y).

Proof (sketch). For i ∈ [d/L], let MINi and MAXi, respectively, be the posi-
tions of the first and last aligned symbol in Xi, i.e., MINi = min{j ∈ [iL−i+1 :
iL] | A(j) ∈ [d]} and similarly for MAXi. Let ux

i be the number of unaligned
positions in Xi = x[iL−L+1:iL], i.e. ux

i = |{j ∈ [iL − L + 1 : iL] | A(j) = ⊥}|.
Also, let uy

i be the number of unaligned position in y[A(MINi) : A(MAXi)].
If A(MAXi) − A(MINi) < L, then edA(Xi, Yi) = ux

i . If A(MAXi) −
A(MINi) ≥ L, then edA(Xi, Yi) ≤ ux

i + uy
i . Observing that each of

∑
i ux

i

and
∑

i uy
i is bounded by ed(x, y) proves the first part. The second part follows

immediately because for such blocks edA(Xi, Yi) ≥ 1
2 ed(Xi, Yi) > 1

2εL. ut

Lemma 3.3. Let C > 1 and 0 < c′ < 1 be sufficiently large and sufficiently
small constants, respectively, and let L = C

p log d. Let A∗ be a maximum-length
alignment between x∗, y∗ ∈ {0, 1}d. Then for every i ∈ [d] there is j∗i ∈ [d] such
that, for (x, y) ∈ SMOOTHp(x∗, y∗, A∗), with probability at least 1−d−2, for all
j with |j − j∗i | > L we have ed(x[i:i+L−1], y[j:j+L−1]) > c′pL.

Proof. Take j∗i = matchA∗(x∗[i:i+L−1]). If edA∗(x∗[i:i+L−1], y
∗
[j∗i :j∗i +L−1]) < L/4,

then for all j with |j − j∗i | > L we have edA∗(x∗[i:i+L−1], y
∗
[j:j+L−1]) ≥ L − L/4.

Otherwise, for all j we have edA∗(x∗[i:i+L−1], y
∗
[j:j+L−1]) ≥ L/4. In both cases the

conclusion results by applying Lemma 2.1(b). ut

Proof (of Theorem 3.1). We use as a building block a near neighbor (NN) data
structure under edit distance, defined as follows. Preprocess a database of m
strings each of length L, so that given a query string, the algorithm returns
all database strings at distance ≤ εL from the query. We will construct such
data structure at the end, and for now assume it can be implemented with
preprocessing P (m,L) and query time Q(m,L) + O(|output|), where output is
the list of points reported by the query.

Let C > 1 and L be as in Lemma 3.3 and assume ε < c′p. Our algorithm
proceeds in two stages. The first one uses the NN data structure to find, for
each position in x, a few “candidate matches” in y, presumably including the
correct match (under optimal alignment) for a large fraction of positions in x.
The second stage views the candidate matches between positions in x and in y as
the edge-set E of a bipartite graph and applies the algorithm from Lemma 3.1,
thereby reconstructing an alignment.

Let us describe the algorithm in more detail. The first stage builds an NN
data structure on all the substrings of length L in y. Then, it partitions x into
successive blocks x[iL−L+1:iL], and for each such block, queries the NN data
structure to identify all blocks in y that are within distance εL. For each such
block in y, collect all the character matches between the two blocks, i.e., every
zero in the block in x with every zero in the block in y, and same for ones. Let

9

E be the resulting list of all candidate matches. The second stage simply applies
Lemma 3.1 to this list E to retrieve an alignment between x and y. The reported
approximation to ed(x, y) is then twice the cost of this alignment.

Next we argue the correctness of the algorithm. Consider an optimal align-
ment A between x and y. Lemma 3.2 guarantees that for all but 4 ed(x, y)/εL
blocks from x, there exists a corresponding block y[si:si+L−1] at distance ≤ εL.
Since the algorithm detects all pairs of blocks at distance ≤ εL, the lemma im-
plies that all but O(1

ε) ed(x, y) of aligned pairs from the alignment A will appear
in the list of candidate matches. The algorithm will then compute an alignment
A′ that has at least d − O(1

ε) ed(x, y) aligned pairs. Concluding, the algorithm
will output a distance D such that ed(x, y) ≤ D ≤ O(1

ε) ed(x, y).
Next we show that, with high probability, the running time of the algorithm

is O(dL log d+P (d, L)+ d
L ·Q(d, L)). Indeed, by Lemma 3.3, for each query block

x[iL−L+1:iL], only blocks y[j:j+L−1] for |j − j∗iL−L+1| ≤ L can be at distance εL.
Thus, for each position in x[iL−L+1:iL], we have at most 3L candidate matches,
hence |E| ≤ O(dL). We can now conclude that the first stage runs in O(P (d, L)+
d/L · (Q(d, L) + L2)), and the second stage runs in O(|E| log d) = O(dL log d).

Finally, it remains to describe the NN data structure. We achieve P (m,L) =
m log m · 2L·O(ε log 1/ε) preprocessing and Q(m,L) = O(L) query time. The data
structure simply prepares all answers in advance: for each string σ in the database
and every string τ at edit distance ≤ εL from σ, store the pair (σ, τ) in a trie
keyed by τ . To query a string q, the algorithm accesses the trie using q as the key,
and for every pair (η, q) returned by the trie, it reports the string η. Recall that
a trie with t strings of length L, has query time O(L), and preprocessing time
O(tL log t). Thus, Q(m,L) ≤ O(L) and since there are at most

(
2L
εL

)3
strings at

edit distance ≤ εL from a given string,

P (m,L) ≤ O(m log m · (2L
εL

)4 · L) ≤ m log m · 2L·O(ε log(1/ε)).

The overall running time becomes d1+O(p−1ε log(1/ε)) for O(1/ε) approxima-
tion. To complete the proof, apply the above to ε′ = Θ(εp/ log 1

pε). The resulting
running time is d1+ε and the approximation is O(1/ε′) = O(1

εp log 1
εp). ut

4 Sublinear Time Distance Estimation

We now present a sublinear time algorithm that estimates the edit distance of
a smoothed instance (x, y) within a constant factor. Full proof of the following
theorem is deferred to the full version of this paper.

Theorem 4.1. For every ε > 0 there is a randomized algorithm that, given
as input (x, y) ∈ SMOOTHp(x∗, y∗, A∗), approximates ed(x, y) within factor
O(1

εp log 1
εp) in time O(d1+ε/

√
ed(x, y)), with success probability at least 1−d−2

(over the randomness in the smoothing operation and the algorithm’s coins).

The high-level approach is to map the smoothed instance (x, y) to a pair of
permutations (P, Q), such that the edit distance between x and y is approxi-
mately equal to the Ulam distance between P and Q. We can then estimate the
Ulam distance between P and Q using an off-the-shelf sublinear algorithm for
estimating Ulam distance. Specifically, we use the following algorithm of [AIK08].

10

Theorem 4.2 ([AIK08]). There exists a randomized algorithm that, given ac-
cess to two permutations P, Q of length d, approximates ed(P, Q) up to a constant
factor in time Õ(d/

√
ed(P, Q)), with success probability at least 2/3.

The first key observation is that every algorithm for Ulam distance estimation
can work independently of the actual names of symbols it reads from P, Q.
Specifically, when the algorithm queries one character, say position i in P , it
suffices to know whether it is identical to a previously queried character Q[j],
and vice versa. This observation can be leveraged in the following way: if at the
time that Ulam algorithm asks to query P [i], the matching character Q[j] (i.e.
position j such that P [i] = Q[j]) was not queried yet, then we may “delay”
revealing the actual symbol P [i] until Q[j] is queried (if at all, as the running
time is sublinear). Hence, for the sake of analysis we may decide (by relabeling
symbols) that Q is a fixed permutation, say the identity (Q[j] = j for all j ∈ [d]).
In the sequel, P,Q will be permutation of length d over the alphabet Σ = [2d].

Our construction of P, Q is based on the following principle. Let A be an
alignment between x and y. Then we can construct P (while Q is the identity) so
that A is the optimal alignment between P and Q, as follows: set P [i] = Q[A(i)]
whenever A(i) ∈ [d], and set P [i] = d+i whenever A(i) = ⊥. To be useful for our
sublinear algorithm (when x, y is a smoothed instance), the alignment A must
have cost O(ed(x, y)), and furthermore it has to be computable “on the fly”.
More precisely we require that, for queried positions i, j in P,Q respectively, if
A(i) = j, then we can detect this by only querying x[i], possibly together with a
small local neighborhood around x[i] and around y[j] (in particular, the question
whether A(i) ?= j is independent of the rest of the strings x, y). We term this
property “locality”; ensuring locality of the alignment A we construct is the
main technical part of the proof of the theorem. We note that, for worst-case
strings (x, y), constructing a near-optimal alignment A that satisfies the locality
property seems hard; for a smoothed instance, on the other hand, we show this
is possible, due to, in part, Lemma 2.1 and a stronger version of Lemma 3.2. For
the sake of presentation, we show how to construct P directly.

4.1 Reducing Smoothed Instances to Ulam’s Metric

We proceed to show how to efficiently translate a smoothed instance of edit
distance into an instance of Ulam’s distance, while distorting the distance by
only a constant factor.

As mentioned above we set Q to be the identity permutation, and construct P
as a function of x and y. (We now define the entire permutation P , even though
only a sublinear portion of it will be queried by the algorithm.) The basic idea
appears simple. First, we partition P into blocks of length L = O(1

p log d). Then,
each such block x[i:i+L−1] we match to its closest block in y, say y[j:j+L−1], and
define P[i:i+L−1] based on Q[j:j+L−1] and ed(x[i:i+L−1], y[j:j+L−1]) only. Namely,
it is such that ed(P[i:i+L−1], Q[j:j+L−1]) = ed(x[i:i+L−1], y[j:j+L−1]). One differ-
ence from our earlier high-level description using A is that we work at the level
of blocks, not single characters. But the main problem we now face is that some
characters may repeat in P , because the blocks we match against in y may have
overlaps. Once we fix this issue, we can apply a form of Lemma 3.2 to argue

11

that ed(P,Q) is approximately ed(x, y). Unfortunately, a straightforward fix to
the above issue would introduce dependencies between different blocks in P , vi-
olating the locality requirement. We thus need additional transformations of P ,
under which each block can locally certify it does not interfere with other blocks.

Lemma 4.1 (Reduction Lemma). Fix ε > 0, 0 < p < 1, and and an optimal
alignment A∗ between strings x∗, y∗. Let (x, y) ∈ SMOOTHp(x∗, y∗, A∗) and let
L = C

p log d for a large constant C > 0. Then there exists two permutations P

and Q = (1, 2, . . . d) such that, with high probability, the following hold:
Distance. Ω(1) · ed(x, y) ≤ ed(P,Q) ≤ O(log 1/p

p + 1
εp) · ed(x, y).

Locality. For k ∈ [d/L], j ∈ [kL− L + 1 : kL], and sk = match(x[kL−L+1:kL]),
• P [j] can be computed from only sk, x[kL−2L+1:kL+L−1], and y[sk−4L+1:sk+5L−1],

in time O(L3).
• Unless P [j] = d+ j, we have: P [j] ∈ [d], ed(x[kL−L+1:kL], y[sk:sk+L−1]) ≤ εpL

and ed(x[kL−L+1:kL], y[z:z+L−1]) > Ω(pL) for all z s.t. |z − sk| ≥ 2L.

Next we describe the construction of the permutation P , deferring the proof
of the distance and locality properties to the full version of the paper.

Proof (Sketch). Some positions in P will be “invalidated”, which means that we
set P [j] = d + j for such a position j. However for the other positions we will
have P [j] ∈ [d]. We construct P in three stages: first we define a permutation P 1,
then we invalidate some of the positions in P 1 to obtain P 2, and again invalidate
more positions to obtain the final P .

Let L = C
p log d denote the block length. Partition x into d/L blocks of length

L, called Xk, and for each k ∈ [d/L], let Yk = match(Xk). Let M be the set of
k’s such that ed(Xk, Yk) ≤ εpL. Let sk be the starting position of Yk and let
ck = ed(Xk, Yk).

We construct P 1 by setting, for every k ∈ M , P 1
[kL−L+1:kL] to be equal to

the block Q[sk : sk + L − 1], except that the first ck symbols are invalidated
(and thus ed(P 1

[kL−L+1:kL], Q[sk:sk+L−1]) = ck). For k ∈ [d/L] \ M , we simply
invalidate the entire block P 1

[kL−L+1:kL].
In the second stage, we construct P 2 from P 1. We start by defining a set

F ⊆ M . For k ∈ M , k > 1, consider a block Xk and the matching Yk. We put
k into F iff either of the following holds: (i) k − 1 6∈ M , or (ii) k − 1 ∈ M and
sk − sk−1 > 2L. We obtain P 2 by invalidating all blocks P 1

[sk:sk+L−1] for k ∈ F .
In the third stage, to obtain from P 2 a permutation P , we invalidate all

positions j ∈ [d] such that P 2[j] occurs also somewhere else in P 2 (all such
symbols are invalidated concurrently). ut
5 Conclusions

It seems challenging to obtain a distance estimation algorithm whose smoothed
running time is quasi-linear, i.e. d · logO(1) d, or whose approximation is indepen-
dent of the smoothing parameter p at the expense of only O(1/p) increase in the
runtime. Perhaps more important is to extend the smoothed analysis framework
to other problems, such as nearest neighbor search (or pattern matching). One
may hope to match the O(log log d) approximation that was recently obtained
for the Ulam metric [AIK08].

12

Acknowledgments. We thank Dick Karp for useful discussions at an early
stage of this research.

References

AGM+90. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A
basic local alignment search tool. J. of Molecular Biology, 215(3):403–410,
1990.

AIK08. A. Andoni, P. Indyk, and R. Krauthgamer. Overcoming the `1 non-
embeddability barrier: Algorithms for product metrics. Manuscript, 2008.

AK07. A. Andoni and R. Krauthgamer. The computational hardness of estimat-
ing edit distance. In Proceedings of the Symposium on Foundations of
Computer Science, 2007.

BEK+03. T. Batu, F. Ergün, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld,
and R. Sami. A sublinear algorithm for weakly approximating edit dis-
tance. In Proceedings of the Symposium on Theory of Computing, pages
316–324, 2003.

BES06. T. Batu, F. Ergün, and C. Sahinalp. Oblivious string embeddings and edit
distance approximations. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, pages 792–801, 2006.

BJKK04. Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, and R. Kumar. Approxi-
mating edit distance efficiently. In Proceedings of the Symposium on Foun-
dations of Computer Science, pages 550–559, 2004.

BS95. A. Blum and J. Spencer. Coloring random and semi-random k-colorable
graphs. J. Algorithms, 19(2):204–234, September 1995.

CK06. M. Charikar and R. Krauthgamer. Embedding the ulam metric into `1.
Theory of Computing, 2(11):207–224, 2006.

FK01. U. Feige and J. Kilian. Heuristics for semirandom graph problems. J.
Comput. Syst. Sci., 63(4):639–673, 2001.

FM97. A. Frieze and C. McDiarmid. Algorithmic theory of random graphs. Ran-
dom Structures and Algorithms, 10(1-2):5–42, 1997.

GP06. S. Gollapudi and R. Panigrahy. A dictionary for approximate string search
and longest prefix search. In 15th ACM international conference on Infor-
mation and knowledge management, pages 768–775. ACM, 2006.

MP80. W. J. Masek and M. Paterson. A faster algorithm computing string edit
distances. J. Comput. Syst. Sci., 20(1):18–31, 1980.

MTL02. B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive
homology search. Bioinformatics, 18(3):440–445, 2002.

Nav01. G. Navarro. A guided tour to approximate string matching. ACM Comput.
Surv., 33(1):31–88, 2001.

NBYST01. G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing meth-
ods for approximate string matching. IEEE Data Engineering Bulletin,
24(4):19–27, 2001. Special issue on Text and Databases. Invited paper.

Pel99. D. Peleg. Proximity-preserving labeling schemes and their applications. In
Proceedings of the 25th International Workshop on Graph-Theoretic Con-
cepts in Computer Science, pages 30–41, London, UK, 1999.

ST03. D. A. Spielman and S.-H. Teng. Smoothed analysis: Motivation and dis-
crete models. In WADS, Lecture Notes in Computer Science, 2003.

ST04. D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM, 51(3):385–463,
2004.

WF74. R. A. Wagner and M. J. Fischer. The string-to-string correction problem.
J. ACM, 21(1):168–173, 1974.

