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We initiate the study of the smoothed complexity of sequence alignment, by proposing a semi-random model of
edit distance between two input strings, generated as follows: First, an adversary chooses two binary strings
of length d and a longest common subsequence A of them. Then, every character is perturbed independently
with probability p, except that A is perturbed in exactly the same way inside the two strings.

We design two efficient algorithms that compute the edit distance on smoothed instances up to a constant
factor approximation. The first algorithm runs in near-linear time, namely d'1*¢! for any fixed ¢ > 0. The
second one runs in time sublinear in d, assuming the edit distance is not too small. These approximation
and runtime guarantees are significantly better than the bounds that were known for worst-case inputs.

Our technical contribution is twofold. First, we rely on finding matches between substrings in the two
strings, where two substrings are considered a match if their edit distance is relatively small, a prevailing
technique in commonly used heuristics, such as PatternHunter of Ma et al. [2002]. Second, we effectively
reduce the smoothed edit distance to a simpler variant of (worst-case) edit distance, namely, edit distance on
permutations (a.k.a. Ulam’s metric). We are thus able to build on algorithms developed for the Ulam metric,
whose much better algorithmic guarantees usually do not carry over to general edit distance.
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1. INTRODUCTION

The edit distance (aka Levenshtein distance) between two strings is the number of
insertions, deletions, and substitutions needed to transform one string into the other.
This distance is of key importance in several fields, such as computational biology
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44:2 A. Andoni and R. Krauthgamer

and text processing, and consequently computational problems involving the edit dis-
tance were studied extensively, both theoretically and experimentally, see, for example,
the detailed survey on edit distance by Navarro [2001]. Despite extensive research, the
worst-case guarantees currently known for algorithms dealing with edit distance are
quite poor, especially in comparison to the Hamming distance (which is just the num-
ber of substitutions to transform one string into the other). In this article, we discuss
the problems of computing and/or estimating the distance between two input strings,
which are the focus of our article, but the situation is similar for other problems like
pattern matching and near-neighbor searching.

The most basic problem is to compute the edit distance between two strings of
length d over alphabet X. The worst-case running time known for this problem has not
improved in three decades—the problem can be solved using dynamic programming in
time O(d?) [Wagner and Fischer 1974], and in time O(d?/log? d) when the alphabet has
constant size [Masek and Paterson 1980] (see also Bille and Farach-Colton [2008]).!
Unfortunately, such near-quadratic time is prohibitive when working on large datasets,
which is common in areas such as computational biology. The gold standard is to
achieve a linear-time algorithm, or even sublinear in several cases, which has triggered
the study of very efficient distance estimation algorithms—algorithms that compute an
approximation to the edit distance. In particular, prior to our work the best quasi-linear
time algorithm, due to Batu et al. [2006], achieves d¥/3+°) approximation (improving
over Bar-Yossef et al. [2004]).2 The only known sublinear time algorithm, due to Batu
et al. [2003], decides whether the edit distance is O(d%) or (d) in time O(g™axte/2.1-2a}) 3
In fact, distance estimation with sublogarithmic approximation factor was recently
proved impossible in a certain model of low communication complexity [Andoni and
Krauthgamer 2010].* In practice, this situation is mitigated by heuristic algorithms. In
computational biology settings, for instance, tools such as BLAST [Altschul et al. 1990]
are commonly used to solve the problem quickly, essentially by relying on heuristic
considerations that sacrifice some sensitivity.

We initiate the study of the smoothed complexity of sequence alignment, by proposing
a semirandom model of edit distance (the input is a worst-case instance modified by
a random perturbation), and design for it very efficient approximation algorithms.
Specifically, an adversary chooses two strings and a longest common subsequence of
them, and every character is perturbed independently with probability 0 < p < 1,
except that every character in the common subsequence is perturbed in the same way
in the two strings. Semirandom models appeared in the literature in other contexts,
but to the best of our knowledge, not for sequence alignment problems; see Section 1.2
for more details. Our algorithms for the smoothed model approximate the edit distance
within a constant factor in linear, and even sublinear time.

Why study semi-random models of sequence alignment? First, they elude the ex-
treme difficulty posed by worst-case inputs, while avoiding the naivete of average-case
(random) inputs. Using these models as a theoretical testbed for practical algorithms
may lead to designing new algorithmic techniques, and/or to providing rigorous expla-
nation for the empirical success of well-known heuristics. Second, studying algorithms
for semirandom models may be viewed as an attack on the worst-case complexity. It is

1In contrast, the Hamming distance can clearly be computed in O(d) time.

2After the conference version of our paper appeared [Andoni and Krauthgamer 2008], the approximation
factor was improved to 20(/1ogd) [Andoni and Onak 2009], and then to (logd)®1/® in d'*¢ time, for any
0 < & < 1 [Andoni et al. 2010b].

3In contrast, the analogous decision problem under Hamming distance can clearly be solved in O(1) time.

4In contrast, the analogous problem under Hamming distance can be solved within 1 + ¢ approximation
[Kushilevitz et al. 2000].
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The Smoothed Complexity of Edit Distance 44:3

difficult to quantify the progress we manage to make in this direction, but we certainly
achieve much better performance guarantees on a very large collection of inputs (in-
cluding random inputs as an extreme case), by delineating rather general assumptions
on the input, under which we have efficient algorithms.

1.1. Our Contribution

A Smoothed Model. Let 0 < p < 1 be a perturbation probability. In our smoothed
model for edit distance, an input consisting of two strings, x and y, is generated as
follows. (A more formal description is given in Section 1.3.)

(1) An adversary chooses two strings x*, y* € {0, 1}¢, and a longest common subse-
quence A of x*, y*.

(2) Every character in x* and y* is replaced independently with probability p by a
random bit, except that the perturbation of A inside x and that of A inside y are
identical.

Results. We start by investigating the typical properties of a smoothed instance (x, y),
proving along the way that the expected edit distance ed(x, y) is comparable to that of
the generating strings, ed(x*, y*).

Our first result is a deterministic algorithm that approximates the edit distance
within a constant factor, and its smoothed runtime complexity is near-linear. Specifi-
cally, for any desired 0 < ¢ < 1, the algorithm always obtains an O(% log %) approx-

imation to ed(x, y), and with high probability over the randomness in the smoothing,
it runs in time O(d'*?). For comparison, the algorithm of Batu et al. [2006] for worst-
case inputs requires a similar running time of O(d'**) and achieves approximation
d1—8)/3+o(1)

Our second result is a sublinear time algorithm for smoothed instances. Specifically,
for every desired 0 < ¢ < 1, the algorithm achieves an O(é log E—;) approximation in

time O(d*%*¢ 4 d'*¢/ed(x, y)). For comparison, the algorithm of Batu et al. [2003] for
worst-case inputs can only distinguish a polynomially large gap in the edit distance,
and only at the highest regime Q(d). This second result obviously subsumes the first
one; we nevertheless present the first result because its algorithm is simpler (and
deterministic), and because it gradually introduces the ideas necessary for the second
algorithm.

While not the focus of this article, we note that it is likely that the results may
be extended to larger alphabets (adapting a natural extension of the smoothed model)
without degradation in the parameters of the algorithms. We concentrate on the binary
alphabet case since this seems to be the hardest regime, as suggested by the recent
work of Andoni et al. [2010b] (see Theorem 4.12 and Lemma 4.13).

Techniques. Our algorithms are based on two new technical ideas. The first one
is to find matches of blocks (substrings) of length L = O(%logd) between the two

strings, where two blocks are considered a match if they are at a small edit distance
(say ¢L). This same idea, but in a more heuristic form, is used by practical tools. In
particular, PatternHunter [Ma et al. 2002] uses such a notion of matches (to identify
“seeds”), significantly improving over BLAST [Altschul et al. 1990], which considers
only identical blocks to be a match. Thus, our smoothed analysis may be viewed as
giving some rigorous explanation for the empirical success of such techniques.

The second idea is to reduce the problem to edit distance on permutations (in worst-
case), called in the literature Ulam’s distance, or the Ulam metric. Here and throughout,
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44:4 A. Andoni and R. Krauthgamer

a permutation is a string in which every symbol appears at most once.’ The Ulam metric
is a submetric of edit distance, but the algorithmic bounds known for it are significantly
better than those for the general edit distance. In particular, Ulam’s distance between
permutations of | ength d can be computed in linear time O(dlog d), for example, using
Patience Sorting [Aldous and Diaconis 1999]. The main challenge we overcome is to
design a reduction that distorts distances by at most a constant factor. Indeed, there
is an easy reduction with distortion L = O(% logd), that follows simply because with

high probability, in each string, the blocks of length L are all distinct, see Charikar and
Krauthgamer [2006, Section 3.1].

1.2. Related Work

Average-Case Analysis of Edit Distance. Random models for edit distance were stud-
ied in two contexts, for pattern matching and for nearest neighbor searching. In the
former, the text is typically assumed to be random, that is, each character is chosen uni-
formly and independently from the alphabet, and the pattern is usually not assumed
to be random. We refer the reader to the survey [Navarro 2001, Section 5.3] for details
and references. For nearest neighbor search, the average-case model is quite similar,
see Navarro et al. [2001] and Gollapudi and Panigrahy [2006].

Our model is considerably more general than the random strings model. In partic-
ular, the average-case analysis often relies on the fact that no short substring of the
text is identical to any substring of the pattern, to quickly “reject” most candidate
matches. In fact, for distance estimation, it is easy to distinguish the case of two ran-
dom strings from the case of two (worst-case) strings at a smaller edit distance—just
choose one random block of logarithmic length in the first string and check whether it
is close in edit distance to at least one block in the second string. We achieve a near-
linear time algorithm for a more adversarial model, albeit by allowing constant factor
approximation.

Smoothed Complexity and Semirandom Models. Smoothed analysis was pioneered
by Spielman and Teng [2004] as a framework aimed to explain the practical success
of heuristics that do not admit traditional worst-case analysis. They analyzed the
simplex algorithm for linear programming, and since then researchers investigated
the smoothed complexity of several other problems, mostly numerical ones, but also
some discrete problems. An emerging principle in smoothed analysis is to perform
property-preserving perturbations [Spielman and Teng 2003], example of which is our
model. Specifically, our model may be seen as performing a perturbation of x* and y*
that preserves the common subsequence A.

In combinatorial optimization problems, smoothed analysis is closely related to an
earlier notion of semi-random models, which were initiated by Blum and Spencer
[1995]. This research program encompasses several interesting questions, such as what
algorithmic techniques are most effective (spectral methods), and when is the optimum
solution likely to be unique, hard to find, or easy to certify, see, for example, Frieze and
McDiarmid [1997] and Feige and Kilian [2001] and the references therein.

To the best of our knowledge, smoothed analysis and/or semirandom models were
not studied before for sequence alignment problems.

Distance Estimation. Algorithms for distance estimation are studied also in other
scenarios, using different notions of efficiency. One such model is the communication
complexity model, where two parties are each given a string, and they wish to estimate

51t is sometimes convenient, though not crucial, to use an alphabet = with size larger than d. We then define
a permutation as a string whose characters are all distinct.
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the distance between their strings using low communication [Kushilevitz and Nisan
1997]. A communication lower bound was recently proved in Andoni and Krauthgamer
[2010] and Andoni et al. [2010a] for the edit distance metric, even on permutations,
and it holds for approximations as large as Q(logd/loglogd).

1.3. Preliminaries

Strings. Let x be a string of length d over alphabet . A position in the string is an
index i € [d], where throughout we let [k] = {1, 2, ..., k}. We write x[i] or x; to denote
the symbol appearing in position i in x. Let [i : j] denote the sequence of positions
(@G, i+1,..., 7). Wewrite x[i : j] or x5.; for the corresponding substring of x. A block is
a substring, often of a predetermined length.

A variant of Edit Distance. Let x, y be two strings. Define ed(x, y) to be the minimum
number of character insertions and deletions needed to transform x into y. Character
substitution are not allowed, in contrast to ed(x, y), but a substitution can be simulated
by a deletion followed by an insertion, and thus ed(x, y) < ed(x, y) < 2ed(x, y). Observe
that

ed(x, y) = |x| + [y| — 2LCS(x, ),
where LCS(x, y) is the length of the longest common subsequence of x and y.

Example. For x = 010111 and y = 101000, LCS(x, y) = 3 (corresponding, e.g., to
substring 101), and ed(x, y) = 6, whereas ed(x,y) = 4 (corresponding to a deletion,
insertion and two substitutions).

Alignments. For two strings x, y of length d, an alignment is a function A : [d] —
[d] U {1} that is monotonically increasing on A~!([d]) and satisfies x[i] = y[A(i)] for
all i € A71([d]). Define the length (or size) of the alignment as len(A) = |A~1([d])],
that is, the number of positions in x that are matched by A. Let the cost of A be
cost(A) = 2(d — len(A)) = 2|A~1(L)|, that is, the number of positions in x and in y that
are not matched by A. Observe that an alignment between x and y corresponds exactly
to a common subsequence to x and y. Thus, if A is an alignment between x and y, then

cost(A) = 2(d — len(A)) > 2d — 2LCS(x, y) = ed(x, y),
with equality if and only if A is an alignment of maximum length.

Example. For the same x = 010111 and y = 101000, the alignment corresponding to
the substring 101 would be defined as A= (1,1, 2,3, 1, 1), hence cost(A) = 6.

Block Matches. Consider two strings x,y and a block length L € [d]. For blocks
Xpi+r—11 and yg.j+r-1) of length L, we let eda(xy it+r-11, ¥j:j+1-11) be the number of
positions & € [i : i + L— 1] such that A(k) € [j : j+ L—1]. We let match(xj;,;.z_1;) denote
the block y;.j+1-1], where j € [d — L+ 1] minimizes ed(xj;.;+ -1, ¥j.j+L-11), breaking the
ties arbitrarily. For an alignment A between x and y, let match 4(xj;.;+7—17) be the block
Yij:j+L-1], where j € [d — L + 1] minimizes eda(xj;;+1-1], ¥1j:j+1-11), breaking the ties
arbitrarily. Slightly abusing notation, we sometimes let match and matchy represent
the corresponding position j (instead of the substring y(;.;+-17), but the distinction will
be clear from the context.

Example. Consider the previous example and L = 3. Then, ed a(x[1.3], ¥2:41) = 2, even
if ed(x(1:3], ¥2:41) = 0. Also, match(x(1.3)) = y2.45, but matcha(x1:3) = y1:3;.

Smoothed Model. Let0 < p < 1,letx*, y* € {0, 1}¢ be two strings, and fix a maximum-
length alignment A* between x* and y*. Let x, y € {0, 1} be the strings obtained from
x*, y* respectively, by replacing, independently with probability p, each character with
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44:6 A. Andoni and R. Krauthgamer

a random one, except that the positions aligned by A* are kept correlated. Formally, let
¢ € {0, 1} be a string where each 7,.[] is drawn independently to be 1 with probability
p/2 and 0 otherwise, and let 7, be defined similarly (and independently), except for
position j € A*([d]), for which we set 7, [j] = 7, [(A*)"1(j)]. Now let x[i] = x*[i] + 7, [i]
and y[i] = y*[il + =[], where addition is done modulo 2. We call the pair (x,y) a
smoothed instance of edit distance, and denote its distribution by Smooth,(x*, y*, A*).

2. TYPICAL PROPERTIES OF SMOOTHED INSTANCES

We first show that the edit distance of a smoothed instance is likely to be similar to that
of the strings used to generate it. We then turn our attention to the distance between
different substrings of the smoothed strings x and y. Specifically, we show that blocks
of length L = O(p~'logd) are likely to be far from each other in terms of edit distance,
with the few obvious exceptions of overlapping blocks and blocks that are aligned via
the original optimal alignment A*. Besides the inherent interest, these bounds are
useful in the smoothed analysis of our algorithms carried out in subsequent sections.

2.1. Typical Edit Distance of a Smoothed Instance

We start by proving that for any two strings x*, y*, their smoothed instance preserves
the original edit distance, up to a constant factor.

THEOREM 2.1. Let A* be an optimal alignment between x*, y* € {0, 1}¢, and fix 0 <
p < 1. Then, a smoothed instance (x,y) € Smooth,(x*, y*, A*) satisfies

p - x ok _ o—Q(p)ed(x*,y*)
<£§) [Q(—log(Z/p)) ed(x*, y*) < ed(x, y) < ed(x*,y )} >1-2 .

Proor. Observe that ed(x, y) < ed(x*, y*) always holds (i.e., with probability 1). We
proceed to show that with high probability, ed(x, y) > Q(m) - ed(x*, y*), which by
the facts from Section 1.3 would complete the proof. We let U denote the unaligned
positions in x under A*, thatis, U = (A*)"1(L) and |U| = %@(x*, y*).

Consider a potential alignment A between x and y, that is, a map A: [d] — [d] U {1}
that is monotonically increasing on A~!([d]), and suppose that cost(A) = 2|A~1(1)] is
at most « - ed(x*, y*) for a small 0 < o < 1/4 to be chosen later. For A to be an actual
alignment, we must additionally have that x[i] = y[A(i)] for every position i ¢ A~1(L1),
and in particular for every position i € U \ A~1(L). The number of such positions is at
least |U| — |A71(L)| > %e_d(x*, y*) — %a ed(x*, y*) > %@(x*, y*). For each of them, x*[i]
is perturbed independently of y*[A(i)], and thus x[i] # y[A({)] occurs with probability
at least p/2. Thus, the probability that A is an actual alignment is at most

ed(x*,y*)/4
Prix[i] = y[AG)] foralli e U \ A 1(1L)] < (1 - g) < g P/8edyn)

We will apply a union bound on all potential alignments, and thus it suffices to have
an upper bound on the number of different values taken by A|y, the restriction of A
to the positions in U. Observe that A|y is determined by the number of insertions
and deletions occurring between every two successive positions in U (including the
insertions and deletions before the first position in U and after the last position in U),
and thus we can count the number of Ay as:

1 w2 aed(x*,y*) aed(x*,y*)
FAL) < <|U|1+ laeda*, y )) 3 <e(1+a)> - < 1) .
éa@(x*, y*) o Ol2
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J [, j+L—1] J+L-1

R N |
lii+L—1]

Fig. 1. Illustration of Lemma 2.2(a) addressing two blocks from the same string x.

Applying a union bound and choosing « = % for a sufficiently small constant ¢ > 0,
we get

Pried(r, y) < a ed(x*, y)] < eIV -p/Sledey) < o= (p/16)edlx"y"),

which completes the proof of Theorem 2.1. O

2.2. Typical Edit Distance Between Substrings (Blocks)

We now turn to showing some finer properties of a smoothed instance. The next lemma
analyzes the distances between two arbitrary blocks of logarithmic length from x and
y. We show that, two such blocks are almost always far away in terms of edit distance,
modulo two obvious exceptions: (1) blocks at nearby positions in the same string;
and (2) blocks from different strings that are (mostly) matched under the original
optimal alignment A*. This lemma is similar in spirit to Theorem 2.1, but the main
difference is that here we also consider blocks whose perturbations are correlated, for
example, overlapping blocks in the same string. This technical difficulty impedes direct
concentration bounds used in the previous theorem, and thus will require more ideas
to complete the proof.

The lemma comprises three parts, taking care of three types of pairs of blocks: (a)
both blocks coming from the same string (either x or y); (b) a block from x and a block
from y that are (mostly) not matched under A*; and finally (c) a block from x and a
block from y that are largely matched under A*. See Figures 1 and 2 for illustrations
of the first two parts. We shall use of the notation introduced in Section 1.3.

LemMa 2.2. Let A* be an optimal alignment between x*,y* € {0,1}¢ and fix 0 <
p <1 Let L > %logd for a sufficiently large constant C > 0, and let ¢4, cp,cc > 0
be sufficiently small constants. Then with probability at least 1 — d—¥C), a smoothed
instance (x, y) € Smooth,(x*, y*, A*) satisfies the following for all i, j € [d — L+ 1]:
(1) ed(xjiirz-11, X[j:j+L-11) = ¢q - min{pL, |j —i|}, and similarly for y.
(2) IfedA*(xE;i+L,1]a yB;j+L,1]) = ,3L fOl" some 5_02 < /3 =< ]-; then ed(x[iti-‘rL—l]’ y[j2j+L—1]) >

B
b Toglarp  PL-
(3) Let k* = matchy:(i, L), then
ed(xg;i+r-1, y[j:j+L—1]) > min{c. - pL, c.-|j — k| -2 edA*(xFi:i+L7]_]7 yf;e*;k*+L,1])}'

Furthermore, if |j — k*| > L, then ed(x;.;1 111, ¥Ij:j+2-11) = ¢ - pL.

Proor. It suffices to prove these bounds for fixed i, j € [d — L + 1] and BL € [L],
because the lemma follows by a union bound, when C > 0 is sufficiently large.

We start by proving part (a). Consider the case when |j — i|] > L. Since the cor-
responding blocks xj;;17—17 and xf;.;+7-1) do not overlap, they are perturbed indepen-
dently of each other. We will use the following observation: for every collection of events
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44:8
] [i,i+L—1] )
UUCEEEEE . i+L—1
r =
T T T
i i i i i
1 1 1 1 1
1 1 1 1 1
A o
1 1 1 1 i
alignment A* ,/ ,/ ,/ e ,/ ,/
I I I I 1
1 1 1 1 i
i i i i i
| 2 4 | 2 4
Y=
K G
[j,d+L-1]
Fig. 2. Illustration of Lemma 2.2(b) addressing blocks from x and from y that are mostly not matched under
A*,

EF, ... F,
Pr(U;F] < Prlf] + ) min{Pr[F], Pr[F;|€]}. 2.1

1

In particular, let £ be the event that at least pL/4 bits in xj;;, 717 are flipped by the
2

perturbation. Note that Pr[f] < e~%?L) by Chernoff bound. We shall use the notation
land p > % require

p = min{p, %} (the reason to consider p is that the cases p <
slightly different bounds).

Consider a potential alignment A between the two blocks xf;.;4+7—1) and xi;.j4+1-1], that
is, amap A: [L] — [L] U {1} that is monotonically increasing on A~1([L]), and assume
that cost(A) = 2|A~1(L)| equals apL for a constant 0 < « < 1/6 to be determined later.
Consider the mismatches under A between the unperturbed blocks namely,

(2.2)

My=the ATNLD ¢ iy # 5[ 1pam)-

First, suppose that |M4| > pL/16. Then for A to be an actual alignment between the
two blocks in x, for every mismatch £ € My, the perturbation must flip exactly one of
the two relevant bits, which happens with probability 2- p/2-(1 — p/2) < p. Since these

events are independent, in this case
Pr[Ais an alignment] < pPL/16,

Now we consider the case when |My| < pL/16, and assume that the event £ occurs.
Then the number of mismatches after perturbing only xf, ; ,;, that is, number of
k € A"Y([L]) such that x;_1, # X1 ag 18 at least pL/4 — | My — |A-Y(1)| > pL/16.
For Atobe an actual alignment between the two perturbed blocks, all the corresponding
positions j — 1 + A(k) must also be flipped by the perturbation. Since each of these
happens with probability p/2 and they are independent,
Pr[Ais an alignment | £] < (p/2)PL/16 < ppPL/16,

ACM Transactions on Algorithms, Vol. 8, No. 4, Article 44, Publication date: September 2012



The Smoothed Complexity of Edit Distance 44:9

The number of potential alignments of cost apL is exactly (as one needs to determine
the unaligned positions in each block)

2 apL apL
(B = () = () 2o
sapL ap aZp

Finally, we apply (2.1) with events F; corresponding to all potential alignments A.
Choosing a > 0 to be a sufficiently small constant independent of p, we obtain that

16 pL/16
Prled(xyiiz-11, %(j:j1-1) < apL] < e P 4 ((ﬁ) ~13) < e pD)
which proves part (a) in the case |j —i| > L.

This proof immediately extends to the case |j —i| > L/4 (the constant 1/4 is arbitrary
here). Indeed, consider in each block the initial segment of length ¢ = | j—i|, which do not
overlap. By this argument, with high probability ed(xj;.i+1—17. X{j:j1e—11) = Q2(pt) = Q(pL),
implying a similar lower bound for the two blocks of length L.

Next we prove part (a) in the remaining case where ¢ = |j —i| < L/4. Note that in
this slightly harder case, the blocks xj.;4+7—1) and xj;.;+z—1) have a large overlap and
thus we do not have the easy independence from before.

Assume without loss of generality that i < j. As before, consider a potential align-
ment A : [L] — [L] U {L} of cost o - min{pL, t} for a constant 0 < « < 1/16 to be deter-
mined later. Observe that for every £ € A~1([L]), we have |k — A(k)| < % cost(A) < %at,
thusi — 1+ % # j — 1+ A(k), and in particular these two positions are perturbed
independently of each other.

Define My as in Eq. (2.2), and consider the case where |My| > pL/64. Then, for A to
be an actual alignment, for every & € M4 the event x[i — 1+ k] = x[j — 1 + A(k)] must
hold, that is, exactly one of the two relevant bits must be flipped by the perturbation.
These events might not be independent, but we can easily find at least 1/3 of them
that are independent (here is a simple nonoptimized argument: every bit x[/] appears
in at most two such events, so if we take a subset of the events greedily, for every event
taken, at most two need to be discarded). Thus, in this case,

Pr[Ais an alignment] < pPL/192,

Next suppose that |[M4| < pL/64. Partition the interval [i : i + L — 1] into subintervals
of length ¢/2, and take every fourth subinterval starting from the first one, namely
I=1[ :i—i—%—1]U[i+2t:i—i—%—1]U....Wedeﬁneé’tobetheeventthatatleast
pL/16 positions in I are flipped by the perturbation. Notice that this event does not
depend on the choice of A, and that by a Chernoff bound, Pr[£] < e~PD), As before, we
shall assume that the event £ occurs. Observe that, if e € A~1([L]) andi — 1+ € I, then
J— 1+ A(k) ¢ I (because the difference between these two positions is j —i + A(k) — &,
which falls in the range [t — %at, t+ %ozt]). After conditioning on the outcomes of the
perturbations inside I (only), the number of such % for which x; 1,z # xE‘]._l LA 1s at
least pL/16 — |[My| — |A"1(L)| > pL/64. For A to be an actual alignment between the
two perturbed blocks, all the corresponding positions j — 1 + A(k) must also be flipped
by the perturbation. Since each of these happens with probability p/2 and they are
independent,

Pr[Ais an alignment | £] < (p/2)PL/64 < ppL/64,

The number of potential alignments of cost « - min{pL, t} < apL is at most (ﬁ)“ﬂ by
Eq. (2.3). Hence, applying (2.1) with events F; corresponding to all potential alignments
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A, and choosing ¢ > 0 to be a sufficiently small constant independent of p, we have
Prled(xjii+1-11, *j:j+L-11) < a-min{pL, t}] < e~*PL) This completes the proof of part (a).

Before continuing to parts (b) and (c), we prove the claim below, which will be used
in both parts. It is a variant of the argument from above for alignments between blocks
of x and y.

Cramm 2.3. Fixi,jeld—L+1],andlet0 < <land a < m. Suppose that
for every potential alignment A : [L] — [L] U {1} between xj;.; 1111 and yij.j+1-1) of cost
at most apL, there is S C [L] of size |S| = BL, such that for all k € S\ A~'(L) we have
J+HAR) —1#£AGC+k—1) (ie, Aand A* map positions in S differently). Then

Prled(xi+r-11, ¥j:j+L-1) < apL] < e PPD),

Proor. Fix a potential alignment A of cost apL. First, we can pick a subset S C S,
such that all events x[i — 1 + %] = ylj — 1+ A®)] for k € S\ AX(L) are independent.
Formally, S is such that A*G — 1+ 8\ A (L) N (j + AS)\ A~X(L)) = @. The largest
such set has size |S| > |S|/2.

Define My < S to be those positions in S which are nonmatching positions under A
in x*, y*:

My=the ANINNS : iy £ ¥y1am)

First, suppose Ms > 45 BL. Then, for each k € My, the event x; 115 = yj-1+axk)
happens only with probability at most p. Since all these events are independent (due
to that fact that My < S), we conclude that A is a valid alignment with probability at
most pMal < ppAL/32,

Now suppose Ma < 23BL. Define £ to be the event that there are at least £8L
positions & € S that are flipped: x[i +% — 1] # x*[i + £ — 1]. Note that Pr[£] < e~ %P1 by
Chernoff bound. Now we condition on the event £. Consider the positions 2 € S\ A~1(L)
such that x[i + £ — 1] # y*[j + A(k) — 1]; the number of such positions is at least
2BL — |My| — |A7X(L)] > EBL. For each such position %, the event x[i + k — 1] =
ylj + A(k) — 1] happens with probability p/2 < p. Furthermore, all such events are
independent, even after we condition on £, and thus A is a valid alignment with
probability at most pPFL/16,

The number of alignments of cost apL is at most (ﬁ)"‘I’L by Eq. (2.3). Finally, apply-
ing (2.1), we obtain that

Prled(xiisz 11, Yij-j+z-1)) < apL] < e PPL) | pPAL/IG . (aTlp)“pL.

The conclusion follows as long as o < m. This completes the proof of Claim 2.3. 0O

Part (b) now follows easily from this claim. In particular, suppose
eda- (i, 1 1y, ¥{j.j42-1)) = BL for some B > 0. Let

U=lkelll : AG+k-1¢j:j+L-1]}

be the set of positions in xj;,; ;; not matched into yf; . ; ; under A*. Note that
|U| = BL. Then just apply Claim 2.3 with S = U.

We proceed to proving part (c). Suppose BL = eda-(x{;, 1 11> ¥pprir1)) = L/4. Then
eda(x ;7 1) ¥j.j 1)) cannot be smaller, and the proof follows by applying part (b). So
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assume henceforth that BL < L/4. Now if |j —k*| > L/2, then eda-(xf, . ; 1), yE/’:j+L—1]) >

L/2 — L/4, and the again the proof follows by applying part (b).
It remains to deal with the case that |j — k*| < L/2 (and BL < L/4). We use the
triangle inequality to deduce that

ed(x(irr-11, Yijijri-11) = €AW et 1-11, Yijj+L-11) — €dX 111, Ve b+ L-11)-

Thus, by part (a), and using the fact that ed(xjii+r-11, Y +-11) < 2eda(xf; 1 gy
Vipesr—1) = 2BL, we have

ed(Xjii+L-11, Yj:j+L-11) = Ca - min{pL, |j — k*|} — 2BL.
If BL < % pL, then we are done:

ed(xgi L1, Yj:j+L-11) = min{% pL,c, - |j — k*| — 2BL}.

We are thus left with the case CZ“ pL < BL < L/4. We may further assume that
lj — k| > % - BL, as otherwise, the inequality we need to prove is trivial (asserting
some edit distance is at least some negative number). Assuming this last condition,
we shall prove that ed(x;;11-11, ¥j:j+2-11) = Q(pL). Recall that c. > 0 is a sufficiently
small absolute constant.

We now want to show that we can apply Claim 2.3. Without loss of generality, suppose
k* < j.Consider a potential alignment A : [L] — [L]U{L}between x;.;+1—1) and y[;.j+1-1]
of cost apL for a < O(m) (in particular o < B/4). Let S be the set of positions in
x[i : i + L — 1] that A matches to y[k* : &* + L — 1], formally

S={zelll: AR el[l:k" —j+ Ll}

For each z € S, the alignments A and A* cannot map x[i +z— 1] to the same symbol in y,
formally, j + A(z) — 1 # A*(i +2z—1), because j+ A(z) —1 > j+(z—apL/2)—1 and at the
same time A*(i+z—1) < k*+z—1+BLor A*(z) = L (recall j—k* > %-,BLandap <a=<p.
Moreover, by definition of S we have |S| > (&* — j + L) — %cost(A) > L/4 > BL (recall
|j —k*| < L/2). We are thus in position to apply Claim 2.3, and this completes the proof
of part (c) and of the entire Lemma 2.2.

3. NEAR-LINEAR TIME DISTANCE ESTIMATION

Our first algorithm is guaranteed to give a correct answer for any input strings,
but has an improved runtime for smoothed inputs, coming from a distribution
Smoothp(x*, y*, A*).

THEOREM 3.1. For every ¢ > 0 and p > 0 there is a deterministic algorithm that,
given as input two strings x, y € {0, 1}, approximates ed(x, y) within factor O(i log %),
and on a p-smoothed instance, with high probability its running time is O(d'*¢).

Before proving the theorem, we present two lemmas that establish useful properties
of the edit distance between two strings and lead us to the algorithm. These lemmas
are driven by the basic approach of the algorithm—to break the two input strings into
blocks (short substrings later chosen to be of logarithmic length), and rely only on
distances between blocks, by essentially finding for every block in x its best match in
y, with no attempt to “coordinate” the decisions for successive blocks in x. We show
that this crude information is enough for estimating the edit distance between the
two strings, up to a constant factor. We believe these lemmas may be useful in other
scenarios as well.
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3.1. Structural Lemmas

The first lemma gives properties of an optimal alignment between two (worst-case)
strings and, as such, does not deal with smoothed instances. In this section, we will
only need the first two parts of the lemma, which are easier to state, but in Section 4
we will use all four parts. We shall use the notation match4(-) and related definitions
of block matches from Section 1.3.

Let us briefly outline the intuition behind this lemma. Consider an optimal alignment
A between two strings x, y and fix a block-length L. Suppose we partition x into d/L
such blocks, each starting at a position i — 1)L + 1 for i € [d/L]. We would like to find,
for each such block X; = xjj1—r+1:i1], @ corresponding block in y, denoted Y; = ys:5,+L-11,
such that the alignment A between x and y is largely contained inside the pairs (X;, Y;)
(i.e., only a small part of A maps a position in X; to a position in Y; for j # i). Indeed,
part (a) shows that, for an appropriate choice of Y;’s, this can be accomplished without
increasing too much the cost of the alignment (equivalently, the edit distance between
the two strings). Furthermore, part (b) shows that if we remove from A matches within
pairs (X;, Y;) that are at a large edit distance, then the cost of the resulting alignment
will not increase too much. Finally, parts (¢) and (d) describe the relative positions
of the blocks Y;, namely that the blocks Y; do not have much overlap. This property
will be needed in Section 4, where an alignment between x and y is not constructed
explicitly (in full), and we need to ensure that any single position in y contributes to
the alignment of at most one pair (X;, Y;).

LemmA 3.2. Fix an optimal alignment A between two strings x,y € {0,1}% Let L €
[d] divide d. Partition x into successive blocks of length L, denoted (X; )d/ L, and let
Y, = matcha(X;). Let V be the set of i for which eda(X;,Y;) < L. Then, the following

holds.

(1) ¥y eda(X, Y;) < 2ed(x, y).

(2) Fore > 0, let B, = {i € [d/L] : ed(X;,Y;) > eL}. Then |B,| < % - ed(x, y).

(8) Fori € [d/L], let s; be the starting position of Y;. Then, for alli,i’ € V and i <1/, we
have

sy — 8 > L —eda(X;, Y;) — eda(X;, Yy).

(4) Fori € [d/L], let S; be the positions in Y; = yjs,.5,+1-1] that appear also in some block
Y, fori’ #1i. Then Zie[d/u 1S;| < 2ed(x, y).

Proor. For i € [d/L], let MIN; and MAX;, respectively, be the positions of the first
and last aligned symbol in X;, that is, MIN; = min{j € lL— L+ 1 :iL] | A(j) € [d]}
and similarly for MAX;. It could be that MIN; and MAX; are undefined, when A(j) =
for all j € L — L+ 1 :iL], in which case, abusing the notion, we define A(MIN;) = 0
and AMAX;) = —1. Let uf be the number of unaligned positions in X; = xpL-r+141),
thatis, uf = [{j € iL— L+1:iL] | A(j) = L}|. Also, let &} be the number ofunaligned
pOSlthl’lS in Y[AMIN;): AMAX;)] - If MINL, MAX are undeﬁned then set u = L and u =0.

If AMAX;) — A(MIN ) < L, then eda(X;,Y;) = u}. If A(MAX ) — A(MIN ) > L then
eda(X;,Y;) < uf +u. Observing that each of >, «f and ) ; «} is bounded by ed(x, y)
proves part (a).

To prove part (b), notice that if ed(X;, Y;) > ¢L, then eda(X;, Y;) > % ed(X;,Y;) > %eL.
By previous part, there could be at most % such blocks, and thus the claimed bound on
the size of B,.
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For part (c), note that, since AMAX;) < A(MIN; ), we have
si < AMAX;) +1— (L —eda(X;,Y;))
AMIN;) — L+ eda(X;, Y)).

We also observe that s; > AMIN;) — eda(X;/, Y;/). Taking s;; — s; implies the inequality.

Finally, we prove part (d). Fori € [d/L], define r] to be the number of jels:si+L-1]
such that j ¢ [AMIN;) : AMAX;)]. Then, we argue that 2} ;. r/ > >,y |Si|. We
charge all contribution in ZLEV |S;| to the positions j € [s; : s;+L—1] with j & [A(MIN ):
AMAX;)]. Any such pos1t10n J contributes at most twice to the sum },_, |S;|: at most
once in |S;| and once in |Sg| for £ € V such that j € [AIMIN,) : AMAX,)].

We conclude that >, ;7 1Sil < 2ed(x,y). We upper bound r; by u;. Indeed,
if AMAX;) — AMMIN;) > L, then r/ = 0. If AMAX;) — AMMIN;) < L — 1, then
r; = L—1- (AMAX;) — AMIN;)) < uf. Also, for i ¢ V, we have that |S;| < L = u}.
Thus, > e 1Sil <23 v+ L-(d/L—|V]) =23 uf <2ed(x,y). O

The next lemma proves a converse to the previous lemma, and applies to smoothed
instances only. The previous lemma essentially said that, for a typical block X; in x,
there exists a block Y; in y that contains most of the alignment of X; and hence is “close”
in edit distance to X;. The next lemma says that, after the smoothing operation, the
block X; is also far from all “other” blocks of y (those that do not overlap with Y;).

Lemma 3.3. Let C > 1 and 0 < ¢’ < 1 be sufficiently large and sufficiently small
constants, respectively, and let L = %logd. Let A* be a maximum-length alignment
between x*,y* € {0,1}%. Then, for every i € [d] there is j € [d] such that, for (x,y) €
Smooth,(x*, y*, A%), with probability at least 1 —d~2, for all j with |j — ji| > L, we have
ed(xy.i+1-11, Yij:j+L-11) > ¢ pL.

IA

Proor. Take j = matcha(xf,; ; ;). Ifeda(xf, 7y yfj_*:j_* +1-1)) < L/4, then for all
J with |j — j*| > L we have eda(x{,; . ; 4, y[’fj:jJrL_l]) > L — L/4. Otherwise, for all j we
have eda-(xf;.; 1, Vi +1-1) = L/4. In both cases, the conclusion results by applying

Lemma 2.2(b). O

3.2. A Near-Linear Time Algorithm for Smoothed Instances

Having established the two structural lemmas, we proceed to present our near-linear
time algorithm. We will need the following algorithmic result, which can be seen as a
generalization of the Patience Sorting algorithm for computing the edit distance be-
tween two nonrepetitive strings (such as permutations), to handle (worst-case) strings
with only mild repetitions. For a cleaner statement, we give a graph-theoretic inter-
pretation, where edges of a bipartite graph should be viewed as potential matches
between positions in the two strings. In this language, nonrepetitive strings imply that
the number of edges in the graph is |E| < d.

Lemma 3.4. Consider a bipartite graph G = ([d], [d], E), and call two edges (i, j) € E
and (k,1) € E intersecting if ( — k)(j — 1) < 0. Then, a maximum-cardinality subset of
non-intersecting edges can be found in time O(d + |E|logd) by reducing the problem to
Patience Sorting.

Proor. Construct a string z of length |E| via the following procedure. Start with
an empty string. For each node i = 1,...,d, we append to the end of z the list of
characters (ji, —i), ..., (jg, —1), where j; > jo > --- > jp are the neighbors of i, that is,
{j1,...,Je} = {J € [dl : @, j) € E}. Notice that ji, ..., jr are appended in decreasing
order.
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ALGORITHM 1: Matching(edge set E Cc {1,...,d} x {1,...,d})

// Finds a maximum subset of non-intersecting edges
1 Set z to be an empty string
2 fori=1...ddo
3 L Let j1 > - -+ > ji be the neighbors of i in the edge set E
4
5

Append to the end of z the characters (j;, —1), ... (Jr, —1)
Find a longest increasing subsequence of z using Patience Sorting (where tuples are ordered
lexicographically), and denote it by (j1, —i1), ... (ji, —i;)
return {(j1,i1), ..., (i, @)}

=2

It should now be clear that the longest increasing subsequence of x gives a maximum
subset of nonintersecting edges (the order of symbols (j, —i) is the lexicographic one).
More precisely an increasing sequence (ji, —i1) < --- < (j;, —i;) forms a nonintersecting
set (i1, j1), (2, Jo), ... (i, ;) and vice-versa.

The string z has length |E|, and thus, using Patience Sorting (or just straightfor-
ward dynamic programming), we can find the longest increasing subsequence of z
in O(z|log|z]) = O(|E|logd) time. The complete procedure is given below as Algo-
rithm 1. O

We now prove Theorem 3.1. The main algorithm follows the intuition built up by
the structural lemmas. Consider a smoothed instance (x, y) = Smooth,(x*, y*, A*). We
partition the string x into blocks X; = xj;z_r+1.1), and for each X; we find all the blocks
(substrings) of y that are close to X; in edit distance, and treat them as potential
candidate matches for positions in X;. Using Lemma 3.2, we know that we will discover
in this fashion most of the original alignment A*. Furthermore, Lemma 3.3 predicts
that the number of such potential candidates is small, and hence we can apply the
algorithm from Lemma 3.4. An important step of the algorithm is to find, for each X;,
the substrings of y that are at a small edit distance. While a naive implementation
of this step would take a quadratic time, we can obtain a near-linear time by using a
Near Neighbor data structure, in the case where the block length L is logaritmic. This
step is the only one using the fact that the strings are a smoothed instance. Full details
follow below.

Proor oF THEOREM 3.1. Our algorithm uses as a building block a Near Neighbor
(NN) data structure under edit distance, defined as follows. Preprocess a database of m
strings each of length L, so that given a query string, the algorithm returns all database
strings at distance < ¢L from the query. We will construct such data structure at the
end, and for now assume it can be implemented with preprocessing P(m, L) and query
time @ (m, L) + O(loutput|), where output is the list of points reported by the query.

Let C > 1 and L be as in Lemma 3.3 and assume ¢ < ¢’p. Our algorithm proceeds in
two stages. The first one uses the NN data structure to find, for each position in x, a
few “candidate matches” in y, presumably including the correct match (under optimal
alignment) for a large fraction of positions in x. The second stage views the candidate
matches between positions in x and in y as the edge-set E of a bipartite graph and
applies the algorithm from Lemma 3.4, thereby reconstructing an alignment.

Let us describe the algorithm in more detail. The first stage builds an NN data
structure on all the substrings of length L in y. Then, it partitions x into successive
blocks xj;1—r+1:11 for i € [d/L], and for each such block, queries the NN data structure
to identify all blocks in y that are within edit distance ¢L. For each such block in y,
collect all the character matches between the two blocks, that is, every zero in the block
in x with every zero in the block in y, and similarly for ones. Let E be the resulting list
of all candidate matches. The second stage simply applies Lemma 3.4 to this list E to
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ALGORITHM 2: EDIT(strings x, y € {0, 1}¢, reals p, ¢ € (0, 1))
// Approximates edit distance on a smoothed instance (x,y) € Smoothp(x*,y*,A*).
1 L« % logd, where C is the constant from Lemma 3.3

NNS-Preprocess (all length L substrings of y, ¢)
E<~9¢

fori < 1ton/Ldo

L Q < NNS-Query(xiz—r+1:11)

SOk W N

foreach y;.; ;-1 € Q do add to E all the pairs of the form (a, b), such that x[a] = y[b]
andae [L—L+1:iLl,belj:j+L—-1]

7 M < Matching(E)
8 return 2(d — |M|)

retrieve an alignment between x and y. The reported approximation to ed(x, y) is then
twice the cost of this alignment. We present the complete algorithm as Algorithm 2.

Next, we argue the correctness of the algorithm. Consider an optimal alignment
A between x and y. Lemma 3.2 guarantees that for all but 4 ed(x, y)/¢L blocks from
x, there exists a corresponding block yis5,+1-1) at distance < ¢L. Since the algorithm
detects all pairs of blocks at distance < ¢L, the lemma implies that all but O(%) ed(x, y)
of aligned pairs from the alignment A will appear in the list of candidate matches. The
algorithm will then compute an alignment A’ that has at least d — O(%) ed(x, y) aligned
pairs. Concluding, the algorithm will output a distance D such that ed(x,y) < D <
O(})ed(x, y).

Next, we show that, with high probability, the running time of the algorithm is
O(dLlogd+P(d, L)+ 2.Q(d, L)). Indeed, by Lemma 3.3, for each query block x;z_11:i1,
only blocks yi;.j+r-1 f%)r |J = Ji7_141] < L can be at distance ¢ L. Thus, for each position
in x;7-r11:41], we have at most 3L candidate matches, hence |E| < O(dL).

We can now conclude that the first stage runs in O(P(d, L) + d/L - (Q(d, L) + L?)),
where O(L?) is the time to compute all the character matches between a block in x
and the corresponding 3L positions in y. The second stage runs in time O(|E|logd) =
O(dLlogd).

Finally, it remains to describe the NN data structure. We achieve preprocessing time
P(m,L) = m - 2L-0Clogl/e) and query time Q(m, L) = O(L). The data structure simply
prepares all answers in advance: for each string o in the database and every string t
at edit distance < ¢L from o, store the pair (7, o) in a trie (we can also use a hash table
if we allow a randomized algorithm). To query a string g, the algorithm uses the trie to
find all pairs (q, n), where n € {0, 1}£, and, for each such pair, reports the string . The
complete description of the data structure is presented as Algorithm 3.

Recall that a trie with ¢ strings of length L, has query time O(L), and preprocessing

time O(tL). Thus, Q@(m, L) < O(L) and since there are at most (ff)g strings at edit
distance < ¢L from a given string (the exponent 3 provides a crude bound on the

. . . . . 3
number of deletions, insertions of zeros, and insertions of ones), we have ¢ < m(fi) and

2L
eL
The overall running time for O(1/¢) approximation is (with high probability)

di+0w elog/e) T complete the proof with respect to a given ¢ > 0, apply the en-
tire analysis shown so far to a smaller ¢’ = ©(ep/ log é). The resulting running time is

3
P(m, L) < o(m - ( > L)<m- 2L~O(510g(1/8)).

now d'** and the approximation factor is O(1/¢') = O(% log %). |
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ALGORITHM 3: Data structure for Near Neighbors within edit distance ¢L

NNS-Preprocessing(set S of m strings in {0, 1}%, real 0 < & < 1):
1 Compute all tuples (z, 0) € {0, 1}X x {0, 1}X where o € S and ed(r, o) < eL
2 Construct a trie on this set

NNS-Query(string q € {0, 1}%):
1 Retrieve from the trie all tuples of the form (g, n) where 5 € {0, 1}*
2 For each such tuple (g, n), report n

4. SUBLINEAR-TIME DISTANCE ESTIMATION

We now present a sublinear-time algorithm that estimates the edit distance of a
smoothed instance (x, y) within a constant factor. The precise guarantees are stated in
the following theorem. As before, we assume that (x, y) € Smooth,(x*, y*, A*), where A*
is the optimal alignment between two strings x*, y* € {0,1}¢, and 0 < p < 1.

THEOREM 4.1. Forevery s > 0and p > 0, there is a randomized algorithm that, given
as input (x,y) € Smooth,(x*, y*, A*), approximates ed(x, y) within factor O(é log %) in

time (Vd + d/ ed(x, y)) - (%)0(1), with success probability at least 1 — d~? (over the
randomness in the smoothing operation and the algorithm’s coins).

The high-level approach is to map the smoothed instance (x, y) to a pair of permuta-
tions (P, @), such that the edit distance between x and y is approximately equal to the
Ulam distance between P and @. We can then estimate the Ulam distance between P
and @ using an off-the-shelf sublinear algorithm for estimating Ulam distance. Specif-
ically, we use the following algorithm of Andoni and Nguyen [2010b].6 We use O(f(d))
as a shorthand for O(f(d) - (logd)°V).

THEOREM 4.2. [ANDONI AND NGUYEN 2010]. There exists a randomized algorithm that,
given access to two permutations P, @ of length d, approximates ed(P, Q) within a
constant factor in time O(V/d + d/ ed(P, Q)), with success probability at least 2/3.

We remark that this algorithm is based on adaptive sampling, that is, query positions
depend on the outcome of earlier queries. As mentioned earlier, a direct application of
this theorem implies a much weaker version of Theorem 4.1, with approximation factor
O(log d), by employing the mapping of Charikar and Krauthgamer [2006, Theorem 3.1],
which views each block (with overlaps) in x or y as a symbol in a large alphabet {0, 1}~.
Thus, the main challenge we face is to obtain O(1)-approximation.

A key observation is that the algorithm in Theorem 4.2 (for Ulam distance estimation)
works exactly the same way regardless of any relabeling of the symbols used in P, Q.
More precisely, when the algorithm queries some position i in P, the value of P[i] is
used only to check whether P[i] is equal to any previously queried character @[], and
vice versa. Other than the value of j, and the information whether such j exists, the
name of the read symbol is not important.” This observation can be leveraged in the
following way: if the algorithm is about to query P[], and the matching character @ [/]
(i.e. position j such that P[] = @I[j]) was not queried yet, then we may relabel this

6We note that the original conference version used the earlier result of Andoni et al. [2009], whose runtime
is O(d/\/ed(P, @), and hence led to a O(d'*¢/,/ed(P, ) time algorithm for smoothed instances.

"In fact, it is plausible that every algorithm for Ulam distance estimation can be assumed, in effect, to satisfy
this property, by a simple transformation that incurs no loss in approximation factor and query complexity.
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unread symbol, changing both P[i] and @[] to an arbitrary other symbol that does not
appear anywhere at all. (Of course, such @ [j] might not exist or might not be queried
at all by a sublinear algorithm.) For the sake of analysis (but not in the algorithm) we
may further assume, again by relabeling symbols, that @ is a fixed permutation, say
the identity, that is, @[j] = j for all j € [d]. In what follows, the permutations P, @
will always be of length d and over the alphabet ¥ = [2d].

Our algorithm constructs P, @ (from x, y) based on the following principle. Let A
be an alignment between x and y, say of near-optimal cost O(ed(x, y)). Then we can
construct P (while @ is the identity) so that A is an optimal alignment between P and
Q, as follows: set P[i] = Q[A(G)] whenever A(Z) € [d], and set P[i] = d + i whenever
A() = L. For our purpose, A has to be computable “on the fly”. More precisely we
require that, for every two queried positions i, j in P, @ respectively, we can determine
whether A() = j by querying x and y only at (or near) positions i and j, respectively;
in particular, it is independent of the rest of the strings x, y. We term this property
locality, and ensuring it is the main technical part of our proof. We note that for
worst-case strings (x, y), constructing a near-optimal alignment A that satisfies the
locality property seems hard; for a smoothed instance, on the other hand, we show
this is possible, largely due to Lemmas 2.2 and 3.2. In our presentation below, we will
not describe the alignment A explicitly, but instead construct P directly. The actual
construction of P, @ will differ from this description in that it will actually work with
whole blocks rather than single characters.

4.1. Block Structure Lemma

We now prove a lemma that provides further structural properties of the edit distance
between two smoothed strings. These properties have a local nature, based on the
substrings of x and y, and will be useful later when we design our reduction. Namely,
the lemma guarantees that our local operations in reducing to permutations result in
a correct (global) edit distance.

This lemma should be seen as an extension of Lemma 3.2 for the more restricted case
of smoothed instances. As before, we assume that (x, y) € Smooth,(x*, y*, A*), where A*
is the optimal alignment between two strings x*, y* € {0, 1}¢, and 0 < p < 1. Intuitively,
Lemma 3.2 shows that after partitioning the string x into blocks X;, for each such block
X; there is a “good” matching block Y; in y. In contrast, the lemma below shows how to
efficiently find such a block Y; without knowledge of the original optimal alignment A*.
Indeed, in the case of a smoothed instance, it is essentially enough to choose Y; to be the
substring of y that minimizes the edit distance to X; (more precisely Y; = match(X;)).
For this choice of Y;’s, we prove essentially the same properties as in Lemma 3.2.

Lemma 4.3. Consider a smoothed instance (x,y) € Smoothp(x*,y*, A*). Let L =

%1ogd for a sufficiently large constant C > 0. Partition x into successive blocks of

length L, denoted X1, Xo, ..., Xq/1, and let Y = match(X,) for k € [d/L]. For sufficiently

small ¢ > 0, let M = {k € [d/L] : ed(Xy,Y:) < epL}. Then, with probability at least

1 —d %9 we have:

(1) Y pepred(Xe, Yz) < 4 - ed(x*, y*).

(2) d/L - M| < gpiL -ed(x, y).

(3) For k € [d/Ll, let Sy, be the set of positions in Y}, that appear also in some block Y},
for B € M\ {k}; then D ; 3, 1Sl < O(1) - ed(x*, y*).

(4) The starting positions of blocks Yy, for k € M, are in a strictly increasing order, and
moreover the distance between two consecutive such positions is greater than L/2.

Proor. We start by proving part (a). Let Xj, Y, denote the blocks from x*, y* that
correspond to (i.e., have the same positions as) blocks X;, Yz, respectively. Let s =

ACM Transactions on Algorithms, Vol. 8, No. 4, Article 44, Publication date: September 2012.



44:18 A. Andoni and R. Krauthgamer

match4-(X}) for all £ € [d/L]. The following inequality is immediate.
ed(X;, Yp) < ed(Xp, yisps+2-11) < ed(XE, Yoo i1 1))- (4.1)

Combining Eq. (4.1) with Lemma 3.2(a) and using an immediate relation between ed
and ed 4, we obtain

Y edXe, Y <2 ) eda (X, ygir 1) < 4-ed@®, y7).
keld/L) keld/L)

We now prove part (b). The upper bound on d/L — |M]| follows from Lemma 3.2(b)
applied to the strings x, y, since B,, in the language of that lemma is precisely [d/L]\ M.

Next, we turn to part (c), but before bounding } ,_,, |Sz| itself, we prove the following
two claims. Let j, denote the starting position of Y}, and let 0 < ¢, < 1 be the constant
from Lemma 2.2. The first claim bounds the distance between the starting position of
the empirical match of X, namely Y}, and the starting position of the “ideal” match of
X under the original alignment A*, namely matcha.(Xj).

Cramv 4.4. With probability at least 1 —d=%©), for all k € M:
e — sil < & - eda (X5, Yispsp+L-11)- (4.2)
Proor. Fix k£ € M and notice that, by Lemma 2.2(c), with high probability,
ed(Xj. Yp) = minc, - pL. ¢ - s — f] — 2eda (X sz o111
For £ € M and assuming ¢ < min{cp, ¢}, the minimum must be attained by the second
term, hence |j, — sf| < é(ed(Xk, Yr) + 2 eda- (X, yi‘jggzs]:+L71])). Finally, by Eq. (4.1),
ed(Xy, Y3) < ed(Xy, ¥ p-1y) < 2eda (X, Vi 1-11)-

and altogether this proves Claim 4.4. O

The second claim proves that the sum to be estimated, ) ,_;,1Sz| (corresponding to
empirical matches of X},), is composed of two parts: the analogous sum corresponding
to “ideal” matches under A*, plus (twice) the deviation in the starting positions of
empirical matches Y}, versus the “ideal” matches Y. Specifically, define S; to be the
positions in 3/[’f9;§:s;g +1—1 that appear also in some block y[*s;/:s; +p-q for K € M\ {k}. We

have the following claim.

Cram 4.5.  With probability at least 1 — d=%C, we have Y, /IS <
Yrem (1851 + 2ls; — il)-

Proor. Consider &,k € M with & < k. Observe that eds. (X, y[*s]::sz +L71]) and
eda (X, yfksg, o 1)) must be at most g5 - L, or otherwise, by Lemma 2.2(b), with high
probability, ed(X;, Y) or ed(Xy, Y ), respectively, is at least ¢y, - ce/32 pL, and thus &

log 64 /c,
or k', respectively, is not in M.
We can now apply Lemma 3.2(c) to obtain that

sp —sp = L—eda (X5, ¥ir12-11) — eda (X5, y[“;}:,:s;%_l])
and this, together with Claim 4.4, yields
Je = Jk = S — S, — lJr — S| — ljr — syl
> L- cé -[eda (X5, ¥ispip22-17) +edar (XZ”yfks;;,:s;,ﬁLL—l])]-

\
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Concluding, since eda-(Xj, yEs;;sg +r-1) and eda«(Xj,, ¥t .. .7 1)) are at most 35 - L, we
. k/' k/
have
Jr — Jr > L/2. (4.3)

Thus, every position in Y, for £ € M can appear in at most one other block Y for
k € M\ {k}. It not difficult to see that > ,_,; ISkl < Y, (IS;I + 2Isi — Jil), since every
position in S, either contributes also to S}, or to [s; — ji|, or to some |[s; — ji|, for
kK € M, and furthermore the contributions of the same type are all distinct. Claim 4.5
follows. O

We can now prove part (¢) by combining all the above. Specifically, applying Claim
4.5, then Lemma 3.2(d) and Claim 4.4, and finally Lemma 3.2(a), we have

D ISk < Y (USkI+2Isi i) < 2ed(x*, y)+ 0D eda (X3, ¥y iz 17) < Oled(x™, y).
keM keM keM

Part (d) of the lemma follows directly from Eq. (4.3).

4.2. Reducing a Smoothed Instance to an Ulam Instance

Next we show how to efficiently translate a smoothed instance of edit distance into an
instance of Ulam’s distance, while distorting the distance by only a constant factor. As
mentioned earlier, for the sake of analysis we may set @ to be the identity permutation,
and construct P as a function of x and y. Lemma 4.6 defines P in its entirety, while
ensuring the locality property: that every character in P can be computed from local
information. (As we shall see later, the algorithm uses this locality property to compute
“on the fly” the same P, @, up to relabeling of the symbols.)

The basic idea appears simple. First, we partition x into blocks of length L =
O(% logd). Then, each such block xpz_r.1.£1; is matched to its closest block in y,
say ypi+r-1, and then Ppr r.1.xr) is defined in a simple way that depends only
on Qpiirz-1 and on ed(xpr_ri1:kL), Yii+L-11), and satisfies ed(Prr—ry1:41), Quivr-11) =
ed(x(rz_r11:211, Yii+L-11)- This reduction preserves the edit distance locally (at the block
level), although it is not clear it is true also globally (for the entire strings). We in-
deed prove the latter, that is, that ed(P, @) approximates ed(x, y), using the technical
machinery developed in Lemma 4.3.

The main challenge we face in implementing this basic idea is that characters may
repeat in P, because the blocks we match against in y may overlap with each other.
A straightforward fix to this issue could be to change these repetitions to completely
new symbols (distinct symbols that do not appear in @). This fix increases ed(P, @),
although, as we show, only by a small factor. Unfortunately, this fix also introduces
dependencies between different blocks in P, violating the locality requirement. We
thus refine this fix by going through two smaller transformations of P, which reduces
the dependencies of a position to only the nearby blocks (in x and in y).

LemMmA 4.6 (REpucTION TO ULAM). Fix ¢ > 0, let (x,y) € Smoothy(x*, y*, A*) and L =
% logd for a sufficiently large constant C > 0. Then, there exist two permutations P and

Q= (1,2,...,d) such that, with probability at least 1 — d~*C), the following holds.

—Distance: (1) - ed(x, y) < ed(P, Q) < 0(% + é) -ed(x, y); and

—Locality: For all k € [d/L], j € [kRL — L+ 1: kL], and sp = match(xz_r+1.21)):
(1) Plj] can be computed in time O(L?), using only sp, XxL—2L+1:kL)> ANd Vis,—6L:spt L—1]-
Furthermore, either P[jl € [d] or Pljl =d + j.
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(2) Foralll € [d — L+ 1] such that |l — sp| > 2L, we have ed(xppr_r11:41)> YidsL-11) >
Q(pL). Furthermore, if P[j] € [d], then necessarily ed(Xpr—L+1:£L]s VispsptL—11) <
epL.

Proor. We shall say that position j € [d] (in P) is invalidated if it is set to the
symbol d + j. All other positions will be set to symbols in the range [d]. Recall that the
alphabet is © = [2d] and that @ is the identity, hence invalidated positions in P match
no character in @. We first give a complete description of the construction of P, and
then prove its properties (distance and locality).

The permutation P is constructed by first defining a string P!, then invalidating
some positions to obtain P?, and then invalidating more positions to obtain the final
P. The intermediate strings P! and P? might not be permutations. We now describe
these three stages and a preceding setup stage.

Setup. Partition x into d/L blocks of length L, denoted X3, and for each & € [d/L]
let Y, = match(X3). Let s, be the starting position of Y and let ¢; = ed(X;, Y;). Let
M={keld/L]: ed(Xy, Yr) < spL}.

P'. For every k € M, set P}, ;... tobe equal to the block Qs +z-1), €xcept that
the first ¢;, symbols are invalidated (thus ensuring ed(P[}ZL L1k’ Qs,:5+1-1]) = cx). For
each k € [d/L] \ M, invalidate the entire block P[}eb LilkD)-

P2.Let F C M be the following set. For eachk € M,k > 1, put kinto Fif i) k—1 ¢ M;
or (ii) k— 1 € M and s, — sp—1 > 2L. We obtain P? by invalidating all blocks Pj; ;. ..,
with & € F.

P. Invalidate all positions j € [d] for which the symbol P2[j] occurs previously in P?
to the left of the position j. That is, for each symbol, we invalidate all its occurrences
except the very first one.

It should be evident why we invalidate the entire blocks X, for £ ¢ M. The reason we
further invalidate blocks X, for 2 € F during the construction of P? is to ensure that
the computation of the last step (P) is local. In particular, for a particular symbol P1[;],
we need to be able to check whether the symbol has occured to the left of j in P!. In
particular, it is possible that there is some j’ satisfying P1[j'] = P[j]with j—j’ > Q(L),
and hence hard to find locally. However, such a situation—where j — j' > Q(L)—may
be possible only when 2 — 1 ¢ M. Hence, we invalidate all blocks & with 2 — 1 ¢ M,
which is condition (i) in the definition of F. Checking condition (i) by itself may also
not be a local operation, and this concern is rectified by condition (ii), because checking
the combination of (i) or (ii) is now a local operation.

We proceed to prove the distance property, using two claims that provide a lower
bound and an upper bound on ed(P, @), respectively.

Cram 4.7. ed(x,y) < 6-ed(P, Q).

Proor. First, observe that ed(P!, @) < ed(P, @) because invalidating some positions
can only increase the eo'l~it distance. We proceed to show that ed(x, y) < 6-ed(P!, Q). Fix
an optimal alighment A between P! and @, and construct an alignment A between x
and y as follows. For each & € [d/L], consider the block X;. If £ ¢ M (i.e., ¢, > ¢pL), then
the corresponding block in P! has only invalidated positions, which cannot be aligned to
@, hence the same alignment is valid for x on these blocks. Otherwise, by construction,
ed(XL—L41:4L) VissrL-11) = Cx = ed(Py; ;1.5 Qlges+L-11)- Let # be the number of
nonaligned positions in the kth block of P! under A. Clearly, #, > ¢}, since the & block
of P! has c;, invalidated positions that cannot match any position in @. We construct A
by aligning the corresponding kth block in x against only the middle L — 2#, symbols
in y[s,:s,+L—1], in the best possible way. The number of unaligned positions in X .+1:x1)
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is at most ¢, + 2, < 3, and thus ed(x, y) < 2edalx,y) < 2>, 3% = 6edA(P1, Q) <
6ed(P, Q.

It remains to show that A is a valid alignment. It suffices to consider &, ¥ € M with
k < F/, and prove that matches under A from the kth block are to the left of those from
the %£'th block. If it were true that s, + L — 1 < sp, we would have been done; but this is
not generally true. Instead, by definition of #, we must have (s, + L — 1) —#, < sp + t:
as A (a valid alignment between P and ) must align a position from the kth block to
character of value at least s, + L — 1 — #, and, at the same tie, A must align a position
from the £’th block to a character of value at most s + #. Since our construction of
A is limited to the middle L — 2¢, symbols in each y,.5,+1-1], We get that A is indeed
monotonically increasing on A~X([d]). O

Cuam 4.8. With high probability, ed(P, @) < O(*BL2 4 L)ed(x, y).

Proor. First, we argue that the noninvalidated positions of P(in any of the three
stages) form an increasing sequence, and thus %ed(P, @) is upper bounded by the
number of the invalidated positions. Note that we are precisely in the conditions of
Lemma 4.3. We use the notation from that lemma for the rest of this proof, and assume
that the high-probability event holds (i.e., all conclusions hold). The lemma says that
the starting positions of Yz, for k£ € M, are strictly increasing and moreover increase by
> L/2 each time. Thus, after the invalidations, a block Pj.z_r+1.21) is either completely
invalidated (if £ ¢ M\ F), or its invalidated positions form a contiguous sequence at the
beginning of the block. Furthermore, in the latter case, the symbol in the position of 2L
is smaller than any non-invalidated symbol in Ppr.1.q). Thus, all the non-invalidated
position of P form an increasing sequence.

We now upper bound the number of invalidated positions in the construction of P,
in the transformation to P2, and in the transformation to P. The number of positions
invalidated in the construction of Pl is L. (d/L — |[M|) + Y 4. - The number of
positions invalidated in the transformation to P2 is at most L - |F|. The number of
positions invalidated in the transformation to P is at most ), |S;|, because the number
of positions in Py .11 invalidated in this step is at most |S;|. Lemma 4.3 bounds
all these quantities, except for |F|.

We now bound L - |F|. Notice that each & € F corresponds either to a block 2 — 1 €
[d/L] \ M (case (i) in the definition of F) or to some block of length L strictly between
the blocks Y;_; and Y}, (case (ii)). Positions appearing in blocks of the latter type do not
belong to any Y}, for £ € M, and thus their number is at most L - (d/L — |M|) plus the
number of positions that appear in two blocks Y3, Y, for distinct %, £ € M. Since the
number of such latter positions is at most ), |Sx| by the definition of S;, (in Lemma 4.3),
the total comes outto L- |F| < L-(d/L— |M|)+ (L-(d/L—|M|)+ >, ISkD.

Concluding, using Lemma 4.3, we get that, with high probability,

1ed(P.@ < Y cp+L-@/L—M)+L-|F|+ > IS

keM keM

< Y ed(X,. Yo +3L-(d/L—MD+2) S|
keM keM

< 0(1) - ed(x*, y) + O <$) ed(x, y).

Futhermore, using Theorem 2.1, we conclude that ed(P, @) < O(w + é) ed(x,y). O

We proceed to proving the locality property. In our language, j is inside the block
X;, and we need to prove that P[j] depends only on the blocks X;, Y together with
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regions of 6L positions preceding them. The algorithm for computing P[] follows the
description of the construction of P.

Specifically, we compute P[j] in a local manner as follows. For Y, = match(X;)
starting at s;, in y, we set P[j] = s, + j — (KL — L+ 1), unless it is invalidated according
to the following procedure, in which case P[j] = d + j. If ed(X3, Y3) > ¢pL, then j in
invalidated (stage 1 invalidation). Also, if kL—L+1+ed(Xz, Y) > j, then jisinvalidated
(stage 1 invalidation). In case £ > 1, we consider the block X;_; and define s, ; to be the
position s € [s;, — 4L : s3] that minimizes ed(X;_1, ¥js:sir-11). If ed(Xp_1, y[S};—l:s/LlJ"L_l]) >
epLorifs, —s, ; > 2L, then j is invalidated (stage 2 invalidation). Next, we take

Sl/a_2 = argmin ed(Xk—Za Yis:s+L—1] ).
sels, ;—4L:s, ]

Ifk =2 ored(Xy-2, yis; 5, ,+L-11) < epLands;,_;—s, , <2L,andalsoif j—(kL—-L+1) <
(s,_; + L) — s, then j is invalidated (stage 3 invalidation).

The correctness of this algorithm follows from the claim that P[] is invalidated in
this procedure if and only if it is invalidated in the original three-stages construction.
We argue this claim next. It is easy to see that stage 1 invalidations are correct. Next,
suppose £ > 1 and j is not invalidated in stages 1 or 2 of the original construction,
which happens if 2 — 1 € M and s, — s;_1 < 2L. In this case, our algorithm will obtain
s, 1 = Sk-1, and thus P[j] will not be invalidated in stage 2 of the above algorithm.
Conversely, ifk—1 ¢ M, then we have ed(X;,_1, y[S;LliS;;fﬁL—l]) > ¢pL,orelses,—s;_1 > 2L,
and then s, ; < max{s;_1,s, — 4L+ (2L — 1)} < s, — 2L (namely, if s,_1 < s — 4L, then
ed(Xp 1, Yssar-11) > epL for all s > s, — 2L by Lemma 2.2(c)). In both cases, the
algorithm invalidates P[j]. Finally, if P[j] was not invalidated in stages 1 or 2, P[j]
can be invalidated in the third stage if Y}, intersects with Y;,_; (when k-1 € M\ F).
To check the intersection with Y;_1, the algorithm checks additionally that 2 — 2 € M
(unless £ = 2) and sp_g — 531 < 2L (implying £ — 1 € M \ F). If this condition passes,
then we invalidate P[j] iff symbol P[j] = s; + j — (kL — L + 1) is in the intersection of
Y, and Y1 (note that the matching symbol P[j — L —s;,+s;_1] in Ppr_or1:4-1) cannot
have been invalidated in stages 1 and 2).

We now prove the second part of the locality property. By construction, P[j] = d+j if
ed(Xpr—r+1:210 Vispsi+L-11) > €pL. Now, let £* = matcha« (i, L), and let ¢, be the constant
from Lemma 2.2. If eda-(xf,;, ;1 Yjprsr_1) = 5L, then, for alll € [d — L + 1], we
have ed(xjrz—r+1:211, Yizz+r-11) = SQ(pL) by Lemma 2.2(b), and we reach the desired
conclusion. Next, suppose that eda:(x,;_; 1471 Vipsesr—1)) < 5L Then, for every [ €
[d — L + 1] such that |l — £*| > L, we have that ed(xxr 1201, Yuurr-1) = Q(pL) by
Lemma 2.2(c). If ed(Xjpr—r+1:211, YispsitL-11) < €pL, then |sp — k*| < L, and thus, for
alll € [d — L+ ]_] s.t. |l — Sk| > 2L, we have ed(x[kL_L+1;kL], y[l:l+L_1]) > Q(pL) But if
ed(X[rr—L+1:21]> Vispsi+L-11) > €pL then there is nothing to prove since, by definition, s is
the [ that minimizes ed(xpr—r+1:21], Yi1+1—11)- This completes the proof of Lemma 4.6.

4.3. The Sublinear-Time Algorithm for Smoothed Instances

We now describe the sublinear algorithm for the smoothed instance Smooth,(x*, y*, A*)
and thus prove Theorem 4.1. The algorithm basically performs a reduction to a similar
problem (distance estimation) under the Ulam metric, and solves the latter using the
algorithm of Andoni and Nguyen [2010] in a black-box fashion.

Proor oF THEOREM 4.1. We will use the sublinear algorithm from [Andoni and
Nguyen 2010] as a black box. We call their algorithm A and note that A makes
O(J/d + d/ed(P, @) queries to P, @ and has the same running time, while succeed-
ing with constant probability. For completeness, we note that the algorithm A reduces
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the problem to several decision version problems of distance estimation, and then
solves the decision version problem. More precisely, the decision version is, for a given
threshold R € [d], to decide whether the distance is ed(P, @) < R or ed(P, @ > oR for
approximation factor « = O(1). The algorithm of Andoni et al. [2009] for the decision
version runs in time O(v/d + d/R).

We would like to run A on the permutations P, @ obtained from applying Lemma 4.6
to our input (x, ¥). Since we cannot afford to compute the entire P, our reduction will
generate on the fly (and feed them into .4) two permutations that are equivalent to P
and @, up to a relabeling of the symbols. As explained at the beginning of section 4,
the algorithm A is independent of the actual names of the symbols, hence its output is
invariant under this relabeling.

We describe here our reduction, viewing it as a data structure that has random
access to x and y, and provides a random access interface to the permutations P and
@ (modulo relabeling). This data structure will be used by the algorithm A. Let L be
defined as in Lemma 4.6, and assume that the high-probability event described in the
lemma holds.

Our reduction keeps for each of P and @ two data structures, one to keep track of the
relabeling and one to keep track of the blocks. Let P store the relabeling of P, namely,
P(i) for a position i € [d] represents the new symbol given to P[i] by the relabeling, or
the value L if position i in P has not been queried yet. We assume P is implemented so
as to support fast inverse search, that is, given a symbol a € [2d] it can report P~1(a).
Let T'p be a trie (or another data structure implementing a dictionary) that stores the
substrings xpr_ri1.xr) for all 2 € [d/L] such that at least one of the positions among
[kL— L+1: kL] was queried in P. We define @ for @ analogously to P; note that if P[i]
and Q[j] have already been queried, then P(i) = Q(j) if and only if P[i] = Q[j] = j.
Finally, the trie T for @ stores:

(1) all substrings yp;.r_1) where at least one queried position j € [d] in @ satisfies
Il —jl < L; and
(2) all length L strings within edit distance epL from such yy;i7-1-

The query to a position P[i] works as follows. If P(i) # L, return P(i). Otherwise,
add the substring X;, = xjzz_r1 1211, Where i € [kL — L+ 1 : kL], into the trie Tp (unless
it is already present there). Then, check whether X, is present in the trie Tg; if it is
not, then assign a new symbol to P[i], update P(i) accordingly, and return this symbol
P(i). Suppose now that Xj, is present in Tg, that is, it matches a string at edit distance
at most epL from a block yj;;111). Then, apply the locality algorithm from Lemma 4.6,
and compute P[i]. More precisely, compute s;, with |[ — s;| < 2L, that minimizes
ed(X[kL—L+1:2L], Visese+L—1))- Note that this s, indeed satisfies s, = match(xpr—r+1:£21) by
Lemma 4.6, Locality-2 property. Applying the algorithm from Lemma 4.6, we compute
P[il and store the value in P. If P[i] ¢ [d], assign a new symbol to P[i] and add it
to P. Otherwise (i.e., P[i] € [d] and thus P[i] = Q[j] = j for some j), check whether
the position P[i] has been queried in @ by checking whether @ (P[i]) # L. If indeed
Q(P[i]) # L, then update accordingly P() = Q(P[i]). And if Q(P[i]) = L, then assign
a new symbol to P[i] and update P(i) accordingly. In the end, return the symbol P@).

The query to a position @[;] is almost analogous, with the obvious modifications to
account for the asymmetry in the two tries Tp and Tq. Namely, if € already holds a
symbol for @[], return it. Otherwise, add every substring yj;.r-15, where |[ — j| < L,
together with all the length L strings at edit distance < e¢pL, into the trie Tg. For each
added string, check whether the string is present in T'p; if it is, that is, the added string
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matches some X} stored in T'p, then compute all of P11 1.1 using Lemma 4.6, and if
for any of the computed position i we have P[i] = j and P(i) # L, then the new symbol
for @[] is that symbol, that is, set @(j) = P(@). If, at the end, Q(j) is still L, then we
assign Q[j] with a new symbol, and update Q(j) accordingly. Either way, return the
symbol Q ().

The correctness of the algorithm then follows immediately from the Locality part of
Lemma 4.6. In particular, essentially by construction, P, @ form a consistent relabeling
of P, @, respectively, although a partial one in the sense that some of the values are
replaced by L.

To obtain the stated bounds on query complexity and runtime, we note that the
overhead on each query to P or @ is O(L) queries to x, y and O(LOVd0¢10g1/9) time,
where d9¢1g1/) i an upper bound on the number of strings at distance < epL from
any single string (of length L). To obtain the claimed dependence on ¢, we replace the
¢ used in this algorithm with ¢’ = O(¢/ log sl). ]

5. CONCLUSIONS

It seems challenging to obtain a distance estimation algorithm whose smoothed run-
ning time is quasi-linear, that is, d-(log )V, or whose approximation is independent of
the smoothing parameter p at the expense of increasing the runtime only by an O(1/p)
factor. Perhaps it is more important to extend the smoothed analysis framework to
other problems, such as nearest neighbor search (or pattern matching). One may hope
to match the O(log log d) approximation that was obtained for the Ulam metric [Andoni
et al. 2009].
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