Constant Factor Approximation of Vertex-Cuts
in Planar Graphs

[Extended Abstract]

Eyal Amir
Computer Science Division
University of California
Berkeley, CA 94720.

eyal@cs.berkeley.edu

ABSTRACT

We devise the first constant factor approximation algorittom
minimum quotient vertex-cuts in planar graphs. Our aldonit
achieves approximation ratiot 3 (1+¢) with running timeO (W -
n3+2/¢) whereW is the total weight of the vertices. The approxi-
mation ratio improves t¢ (1+ €+ o(1)) if there is an optimal quo-
tient vertex-cut A*, B*, C*) where the weight of* is of low or-
der compared to those df* and B*; this holds, for example, when
the input graph has uniform weights and costs. The ratibéuim-
proves tal +e+o(1) if, in addition, min{w(A*), w(B*)} < 1W.

We use our algorithm for quotient vertex-cuts to achievefitise
constant-factor pseudo-approximation for vertex sepsesan pla-
nar graphs.

Our technical contribution is two-fold. First, we prove aust
tural theorem for planar graphs, showing the existence afaa-n
optimal quotient vertex-cut whose high-level structuréhist of a
bounded-depth tree. Second, we develop an algorithm that op
mizes over such complex structures in running time that gpe
(exponentially) not on the size of the structure, but rathdy on
its depth. These techniques may be applicable in other gmubl

Categories and Subject Descriptors

F.2.0 [Theory of Computation]: Analysis of algorithms and prob-
lem complexity—&General

General Terms
Algorithms, Theory

Keywords

Approximation algorithms, balanced cut, planar graphnatasep-
arator, quotient cut, vertex separator

*Supported in part by NSF grants CCR-9820951 and CCR-
0121555 and DARPA cooperative agreement F30602-00-2:0601

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

STOC'03,June 9-11, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-674-9/03/0006$5.00.

*
Robert Krauthgamer
Computer Science Division
University of California
Berkeley, CA 94720.

robi@cs.berkeley.edu

Satish Rao
Computer Science Division
University of California
Berkeley, CA 94720.

satishr@cs.berkeley.edu

1. INTRODUCTION

Graph partitioning is extensively used in many areas, tfioly
scientific computing, VLSI design, task scheduling, maehi
sion, and automated reasoning, see e.g. [21, 12, 23, 4, 1& On
important graph partitioning problem that emerges nalyial a
variety of applications is the vertex-separator problerfinde as
follows. Let G(V, E) be ann-vertex graph with vertex costs :

V — N and vertex weights : V' — N. A vertex-cutof G is a
partition of V' into three disjoint setsl, B, C' such that no edge in
E has one endpoint il and one inB. The cost of the vertex-cut
is ¢(C') where, throughout(S) := >~ s c(v) for S C V.

A vertex-cut is called aertex-separatofaka2/3-balanceq if
max{w(A),w(B)} < 2w(V) where, throughout, fos C V we
write w(S) = Y csw(v), andW := w(V) denotes the total
weight of the vertices. Theertex-separator probleris to find a
minimum-cost vertex separator in an input graphThis problem
was shown to be NP-hard even in graphs of degree 3 by Bui and
Jones [5]. Leighton and Rao [13, 14] give @tflog n) pseudo-
approximation algorithm for this problem in general grapha
closely related problem is the quotient vertex-cut problefine
quotient casbf the vertex-cut is defined as

c(C)
min{w(A),w(B)} +w(C)"

The minimum quotient vertex-cut probleis to find a vertex-cut
with minimum quotient in an input graph. Also this problem is
NP-hard (see below), and the best approximation ratio knfmwvn
this problem isO(log n), due to [14].

For planar graphs, the celebrated Planar Separator Theduem
to Lipton and Tarjan [15] (see also [2, 16, 25]), shows thargv
planar graph has a vertex-separdtdr B, C') with |C| = O(y/n).
(This corresponds to the uniform cost cage) = 1 for all v €
V). Furthermore, they give efficient algorithms for findingclku
a vertex-separator. However, these methods are only geadhn
to find separators of siz@(y/n). Many planar graphs have much

q(A,B,C) =

A p-approximation algorithmfor a minimization problem is a
polynomial-time algorithm that outputs, for a problem arste,
a solution whose cost is at mgsttimes that of a minimum-cost
solution for the instance. Aseudo-approximatiomlgorithm for
2/3-balanced cuts is allowed to output, sap,/d-balanced cut (its
cost is still compared to that of2y3-balanced cut).

2Notice the termu(C) in the denominator of the quotient. In gen-
eral, we can expect the(C') to be small compared to(A), w(B)
in cuts of small quotient; this natural assumption is proyahie
for planar graphs with uniform weights and uniform costs. di¢e
cuss this issue in more detail in Section 2.2.

smaller separators, so for any particular graph theseittigts may
find separators that are far from optimal. We address thisiss
by devising a constant factor pseudo-approximation fovereex-
separator problem in planar graphs. No approximation bttémn
that for general graphs was previously known for the probéém
vertex-separators in planar graphs, even in the uniforrghtsiand
costs case; Interestingly, this problem is not known to behisdfl.

1.1 Related work

Vertex-cut variants of graph partitioning problems arealisu
closely related to the edge-cut variants of the same prablétar
instance, an edge-cut variant (either directed or undithcof a
problem frequently reduces to a vertex-cut variant of timeesprob-
lem by replacing every edge by a path of length two, lettirgrtew
vertex have zero weight and the same cost as the edge itesplac
Notice that this reduction preserves planarity of the ingnaph.
There is also a well-known reduction from the (say undirdkcte
vertex-variant to the directed edge-cut variant, see [Htjwever,
this reduction does not preserve planarity.

There is a significant amount of research on approximating va
ous graph partitioning problems, and many of these resxiend
from one variant of the problem to another by using the afore-
mentioned general reductions. AK(log n)—approximation for the
minimum quotient edge-cut problem (aka sparse cut) in ectid
graphs was first devised in [13]. Their results and techriquere
expanded and extended to other graph partitioning problese
e.g. [24, 14] and the references therein.

For planar graphs, significantly better approximationostre
usually known. Park and Phillips [18] devise a pseudo-partyial
time algorithm for solving (exactly) the minimum quotierdge-
cut problem (improving over a constant factor approxinratio
[19, 20]). Klein, Plotkin and Rao [11] give a constant facam-
proximation for the directed version of this problem. These
sults immediately imply a constant factor pseudo-appraxiom
for edge-separators, see e.g. [19, 24, 14]. Garg, Saran arid V
rani [9] give factor 2 (true) approximation for edge-separs (i.e.,
2/3-balanced cuts). Feige and Krauthgamer [8] give_diog n)
(true) approximation for minimum-bisection.

As mentioned before, these results do not translate to aimil
approximation ratios for quotient vertex-cuts, since tled\known
reduction of vertex-cut problems to edge-cut problems iaaied
graphs might create nonplanar graphs even if the origiregityis
planar. It was erroneously claimed in [20] that the techegthat
were devised there for approximating quotient edge-cutenexto
a3/2—approximation for quotient vertex-cuts, but these tegphes
do not tackle the most basic problem, as is discussed indPez:3.

1.2 Ourresults

We devise the first constant factor approximation algorifom
minimum quotient vertex-cuts in planar graphs. Our aldonit
achieves approximation ratiot 3 (1+¢) with running timeO (W -
n3+2/¢). The approximation ratio improves4g3- (1+e+o(1)) if
in a vertex-cut(A*, B*, C”™) of optimal quotient costC'* has rel-
atively small weight compared td* and B* (namely,w(C*) <
emin{w(A*),w(B*)}); this holds, for example, when the input
graph has uniform (or close to uniform) weights and costsinlf
addition,min{w(A*), w(B*)} < 1W then the approximation ra-
tio further improves td + € + o(1).

We also achieve the first constant factor pseudo-approidmat
for vertex-separators in planar graphs. This follows frém ap-
proximation for quotient vertex-cuts by extending a weibiun
technique (see [19, 24, 14]) from edge-cuts to vertex-cuts.

1.3 Techniques

No constant-factor approximation was known previouslytfiar
problem of minimum-quotient vertex-cuts in planar grapbsnein
the uniform weight uniform cost weight case. This is, peghaue
to subtle but fundamental differences between minimumigobt
edge-cuts and vertex-cuts. The results for finding optirmatignt
edge-cuts rely on a well-known lemma [17, 20] that there is an
optimal quotient edge-cut which divides a graph into tworenied
graphs. For planar graphs, this implies that there is a sidmidan
curve in the plane that corresponds to an optimal quotiege-@dit.
The algorithms proceed by searching for simple cycles irdtred
of the planar graph. In particular, Park and Phillips [18fite a
cost and weight for each edge in the dual graph such that ste co
of any simple cycle in the dual graph is equal to the cost of the
corresponding cut in the input graph, and the weight of thaecy
corresponds to the weight that the cut separates. Then,ctrey
modify methods for finding minimum mean cycle, due to [10], to
find the best such cycle.

Figure 1: Jordan curve in the plane corresponding to an opti-
mal quotient vertex-cut (A, B, C).

In contrast, an optimal quotient vertex-cut in a graph mijht
vide the graph into an arbitrary number of connected compisne
In fact, both sides of the cut can be an arbitrary set of coraptan
(consider, e.g., a star). For planar graphs, the “Jordanjecin
the plane corresponding to an optimal (or near-optimaljtiqgnd
vertex-cut might be quite complex. See e.g. Figure 1 and Sec-
tion 2.3.

We partially address this difference by showing that in alanpe
graph there exists a vertex-cut whose quotient cost is mitf of
optimal, and in whictoneside is connected in the plane. We then
show that such a separator must correspond to a Jordandyype ¢
that is essentially a tree of cycles, see e.g. Figure 2.

Still, this structure is more complex than a simple cycley an
walk along the structure visits many vertices numerousgiwigere
any revisits ardreein terms of the cost of the walk. Thus, standard
reductions to the minimum mean cycle problem do not work. To
address this, we show that there is a near-optimal quotienmex-
cut whose associated tree of cycles has constant depth.

Of course, one can easily extend the mean cycle methods to
“guess” a constant number of vertices that are allowed t@bis+
ited. Thus, if a near-optimal walk has a simple structure @migt
revisits a constant number of vertices, we could find it. Wiofo
nately, this is not true even for a bounded-depth tree ofesydror
example, the walk separating the tree of cycles in Figurevigite
Q(n) vertices.

Hence, we need to work a bit more. We consider a walk “around”

Figure 2: A tree of cycles corresponding to a near-optimal qo-
tient vertex-cut. Midway through a walk around it, v; is com-
pletely visited, v2, vs are partially visited, and vs, vs have not
been visited yet.

a tree of cycles, and notice that at any point in the walk eactex
is either completely visited, has yet to be visited at allhas been
visited and will be visited again. However, the number otices
in this partially visited state is bounded by the depth ofttiee of
cycles (see Figure 2). Thus, we devise an algorithm thatmipdis
over walks of this form. The algorithm needs only “remember”
constant number of vertices at a time (the partially visibees).
Hence, it has a polynomial running time.

This outline is a simplification of our methods. We need t@als
enforce some topological conditions due to the relatigndie-
tween the edge weight of our walk and the vertex weight sepdra
In the technical sections, we also discuss the case wheseplaga-
tor vertices themselves have a significant amount of weaghtvell
as some generalizations of our structure theorems that lievée
will lead to the removal of the/3 factor in our approximation.

Organization. Section 2 presents background notions and con-
cepts; Section 3 shows that restricting the search for gutiertex-
cuts to trees of cycles in an appropriately defined triartgpiizof

the input plane graph guarantees constant factor apprtirima
Section 4 presents an algorithm based on dynamic progragnmin
that searches for quotient vertex-cuts that form a tree desy fi-
nally, Section 5 combines these results to present a cdrfator
approximation for quotient vertex-cuts and, in turn, to aymo-
approximation for the vertex separator problem.

2. PRELIMINARIES

Throughout this paper we denote Gthe input planar graph, by
G) its plane graph and b/ its face-vertex graph (see Section 2.1
for definitions). We assume without loss of generality fiafand
thusG)o) have no parallel edges or self-loops. Notice, howevet, tha
G may have parallel edges (e.qg.(ifis a tree).

A (directed)cyclein a graphG is a sequence of edges, denoted
(uo7 ’Uo)7 ey (ukfl, Uk71), such thav; = U(i4+1)mod k forall: <
k. A cycle issimpleif it containsk distinct vertices and distinct
edges. Note that two parallel edges define a simple cyclengthe
2.

2.1 Planar and plane graphs

A graph G is planar if it can be drawn in the plan&? such
that no two edges intersect, except possibly, at their @ntipoA
plane graphis a planar graph together with a particular drawing of
it. A plane graphG partitionsR? \ G into faces a face is a region
that can be linked by an arc ®* \ G. Theboundaryof a face is
the subgraph whose point set in the drawing is the frontighef

face. The boundary of a face is not necessarily a simple cfde
example, ifG is a tree then the boundary of the outer face (the only
face ofG) is not a simple cycle (but rather traverses every edge of
G once in each direction).

A plane graph is callettiangular if the boundary of every face
in it consists of three distinct edges.

Adjacency and connectivity of faceBwo faces of a plane
graph G are adjacentif their boundaries have a common edge.
Note that non-adjacent faces may contain a common vertéein t
boundaries.

DEFINITION 2.1. Let R be a set of faces of a plane graph A
faces-path ik between two faceg f' € R is a sequence of faces
f=fi,..., fr = f allfrom R such that for all < & the facesf;
and f;4+1 are adjacent. We say that the set of faéess connected
if there is a faces-path i between every two facgs f' € R. A
connected set of faces is also calledannected regian

Notice that every two faces in a connected regidare linked by
a path in the plan®? that goes only through faces &fand edges
of G (that are on the boundary of two distinct facesi)f without
going through any vertex off. A maximal connected subset of
a set of faced" is called aconnected componeof F'. Clearly,
any set of face$” can be partitioned (uniquely) into its connected
componentds, ..., Fy; weletCC(F) := {Fi,..., F;} be the set
of connected components 6.

Face-Vertex Graphswe create a triangular graph (every face
has exactly three distinct edges in its boundary) that estéry,
and call this graph thface-vertex graplof Gy (in fact, every trian-
gular extension o, will do; in particular, if G is triangular, we
can assume the face-vertex graplisitself).

Let Go(Vo, Eo) be a plane graph. face-vertex graplof G is
a plane grapltzr (Vr, Er) that is obtained fron@zo by adding for
each facef of Go a new vertex (placed insid@ and connecting (in
the plane) this new vertex to every vertex in the boundary @fy
order of their appearance on the boundary). NoticethaD 14
andEr D Vp, and thatGr may contain parallel edges (e.g.(¥
is a tree). An example of a plane graph and its face-vertephgisa
shown in Figure 2.1(A),(C).

(A) (B)

Figure 3: (A) A plane graph, (B) its dual, and (C) its face-vetex
graph.

We extend any vertex weights and vertex cost&/gfto G by
letting the weight and cost of every vertexidf \ Vo be0. (Vertices
of Vi have the same weight and costiiy as inGy.) It is easy to
see that any vertex-cut @¥, corresponds to a vertex-cut
with the same weights and costs, and vice versa. Howéver,
has some structural properties (such as being triangastated
in the easy to verify proposition below. Our results in Satt8
use these properties to show that for the purpose of findiag ne
optimal quotient vertex-cuts, one may focus on vertex-tutsced
by certain (not necessarily simple) cycles. It is straigivfard to
see that ifGy is already triangular, then every vertex-cut (&f)

that is induced by a cycle i+ there is a corresponding cycle in
G that induces the same cut (6%), and thus one may apply the
algorithm of Section 4 directly ot (instead ofGr).

By the definition of the face-vertex graph, we have the foliayv
properties.

PROPOSITION 2.2. Let G be a face-vertex graph of a plane
graphGo. If Go has no parallel edges or self-loops then:
(1) The boundary of every face 6fr is a cycle of length 3 con-
taining one edge fronkly and two edges fronur \ Fo.
(2) Every edge irEr \ Eq has exactly one of its endpoints ¥.
(In particular, this edge is not a self-loop.)

REMARK. The face-vertex graph of a plane graph is notlital
(in the classical sense, see e.g. [7, 6]). It is well-knowat thin-
imal edge-cuts in a plane graph correspond to simple cyolései
dual (plane) graph; this correspondence was exploited9n 20,
18] to devise algorithms that find approximate (or even ogkjm
quotient edge-cuts and edge-separators in planar graphsont
trast, there is no exact correspondence between simplesaynd
and vertex-cuts iii7y (see e.g. Section 2.3). The goal of Section 3
is to provide a partial analogue to the well-known corresjsmte
in edge-cuts.

2.2 Balanced and quotient vertex-cuts

In the rest of this paper we allow a vertex-cut totheial, i.e.,
to have eitherd or B empty. This is convenient for our purposes,
and does not affect applications, as will be seen later ipéper.

Balanced vertex-cutst will be convenient to define the bal-
ance of a vertex-cut with respect to two parameters,« < 1 and
0 < b < 1. We say that a vertex-ct4, B, C) is («, b)-balanced
if

min{w(A),w(B)} + aw(C) > bW.

wherelV := w(V) is the total weight of the vertices. For example,
the casex = 1 andb = 1/3is equivalent tanax{w(A), w(B)} <
2w(V), the classical balance condition mentioned in Section 1.
Quotient vertex-cutswe define the quotient cost of a vertex-
cut with respect to some parametet> 0. The a-quotient cosof

avertex-cut4, B,C) is

c(C)
min{w(A),w(B)} + a-w(C)’

q“(A,B,C) :=

Theb-limited a-quotient cosbf a vertex-cut(A, B, C) is

(C) |
min{w(A) + aw(C),w(B) + aw(C), bW}

Notice thay{ (A, B, C) = ¢ (A, B, C) forall «. Throughout, the
quotient is defined to beo whenever the denominator@geven if
the numerator is als®). We will use the following relationships be-
tween different quotient costs later in the paper. In paldic they
allow us to translate results achieved for one quotientantather.

4 (A,B,C) =

LEMMA 23.Let0 < a < o andb < 1. Suppose that
(A*, B*,C™*) is a vertex-cut of7 with the minimunb-limited o’-
quotient cost such that (A*), w(B*) > X\ - w(C™) for somex >
0. If the b-limited a-quotient cost of some vertex-q, B, C) is
at mostp times the minimum (for such cuts)a@h then they-limited
o/-quotient cost of 4, B, C) is at mostp - (1 + ‘;:5) times the
minimum (for such cuts) i6:.

Our typical application of this lemma argues that a verteix-c
(A, B,C) having near-optimatkv = 0 quotient cost must also
have near-optimab’ = 1 quotient cost. One interesting spe-
cial case is that of unit costs and weights in planar graphgrev
the Lipton-Tarjan theorem guarantees the existence oftexreut
with 1-quotient costO(1/4/n), and hence any optimaktquotient

cost vertex-cu{ A*, B*, C*) must satisfymi“{‘f“*‘vc‘ﬁ*\}ﬂc*‘ >

Q(y/n). The next lemma shows that in this case, there is negligible
difference between these two quotients.

LEMMA 2.4. Leta’ > o > 0. Given a vertex-cuA, B, C)
whoseb-limited a-quotient cost is within factop of the minimum,
one can find a vertex-cyd’, B', C") whoseb-limited o’-quotient
cost is within factorp + 1 of the minimum. (In fact,A’, B’, C") is
either the given cutA, B, C) or some trivial cut withC’| = 1.)

2.3 Where is the problem?

The algorithms of [19, 20, 18] for finding (or approximatireay)
edge-cut of minimum quotient all rely on the correspondenee
tween minimum quotient edge cuts and simple cycles in thé dua
In the vertex-cut problem such a correspondence does ndt hol
Specifically, we now exemplify that limiting ourselves tortex-
cuts that correspond to simple cycles leads to vertex-ctissa/
quotient is arbitrarily far from the optimal. Consider thaygh pre-
sented in Figure 4 and divide the vertices in this graph iota f
types,ti,t2,ts, ta. If our graph hasi cycles touching the center
vertex, then we seb(t1) = 25, w(tz) = 0, w(ts) = (1 — b)W,
w(ts) = 0, c(t1) = o0, c(t2) = 10, ¢(t3) = oo, andc(ts) = 0.
This graph is triangular, so taking the face-vertex graphhig
graph does not add any new cycle-induced vertex-cuts. Ig|¢ae
optimal weight is given when vertices of typeare in one side of
the cut and that of typg; is in the other side. Vertices of types ts
cannot be in the cut because of their large cost. The optinna g
tient is achieved by selecting the vertices on the the cyolashing
the center vertex. Any simple cycle in this graph separatesoat
one of the vertices of typg from the rest, thus separating a factor
d less weight at the same cost as the optimal quotient vertex-c

Figure 4: An example where any vertex-cut defined by a simple
cycle has quotient cost that is arbitrarily far from the opti mum.

3. STRUCTURAL THEOREM

The main result of this section is that in every plane gréph
there is a vertex-cut that is nearly optimal in terms of certi
cost and also has a certain “nice” structure. Informallis #truc-
ture means that the vertex-cut corresponds to a collectiafi-o
rected cycles inGr that are arranged in a tree-like structure of

constant depth; in short, we shall call it CAST (Cycles Ageah
in a Shallow Tree). The intuition behind this structure igegi in
Section 2.3.

The precise statement of our basic structural theorem amd th
relevant definitions (including CAST) are given in Sectiof.3ts
proof is then given in Section 3.2. Finally, we devise vasiedten-
sions and examine special cases in Section 3.3.

3.1 Definitions and basic structural theorem

A face f (vertexv) of Gr is said to beenclosedby a directed
simple cycleD (in G) if f (respectively,v) is contained in the
region ofR? \ D that is to the left of one (and thus all) of the edges
in D. A setD of directed simple cycles (i6'r) is properif every
face of Gr is enclosed by at most one cycleth Such a proper
setD = {D,,..., D} defines a vertex-cutA4, B, C) of Go, as
follows. LetC; be the vertices of/} that appear in the cycl®;,
and letB; be the vertices of} that are enclosed hip;. Then, let
C:=U"C;, B:= (U, B;)\CandA := V5 \ (CUB). Tosee
that(A, B, C) is a vertex-cut, observe that an edgein between
a vertex of A and a vertex ofB must have its two endpoints in
different regions oR? \ D; for somei. Also, B N C' = () because
D is proper.

Theauxiliary graphof a proper seD (of directed simple cycles)
is the bipartite graptG(V4, V2, E) whereV; := D, Vi := Vr,
andE := {(d,v) : v € Vr belongs to the cycld € S}. Such a
proper seD is called ad-CASTIf its auxiliary graph(is a forest
(i.e. contains no cycles) and each of its connected compenen
a tree that can be rooted at some ventex V> = Vr so that its
depth is at mos2d. For example, the cycles drawn in Figure 4 form
al-CAST. AnO(1)-CAST is called in short a CAST.

The following theorem is proved in Section 3.2. This resak-e
ily extends tax-quotient cost for arbitrary by applying Lemma 2.4,
and then the factor becomgs= + 1.

THEOREM3.1 (BASIC STRUCTURAL THEOREM). In every
plane graphGy there is a vertex-cut that is defined byl €CAST in
Gr and its0-gquotient cost (i.ece = 0) is within a factor of3 <
from the minimum (over all vertex-cuts)@y.

Figure 5: 4/3 is tight

We note that the constad/3 is tight, as shown by Figure 5
(t1,t2, ts, t4 have costo and the noted weightgg has costl and
weight0, and all other vertices have casand weigh0). However,
we can improve over this constant by allowing a more comf#ita

structure than a CAST. We can also show that the constant loss

in the a-quotient cost fore > 0 can be improved by relying on
certain assumptions that include the uniform weight unif@ost
case. Infact, in the uniform cost case the CAST structurédeae-
placed with just one simple cycle (@ 7) at the expense of a larger
constant tharl/3. These extensions are described in Section 3.3.

3.2 Proof of basic structural theorem

The proof of Theorem 3.1 consists of three steps, as follbes.
(A, B, C) be any vertex-cut in a plane gragh (e.g., a minimum
quotient cut). We first show in Section 3.2.1 that there existzo
avertex-cu{ A’, B’, C') that has nearly the same quotient cost and
for which A’ corresponds to some “connected region” in the plane.
We then prove in Section 3.2.2 th&t must correspond to a union
of “connected regions” in the plane, each described by alsidlip
rected cycle (irGr), with the important property that these simple
cycles form a forest (in a sense to be defined). Using avegagin
arguments, we show in Section 3.2.3 that every such forest mu
contain a shallow subtree (namely, subtree of constanhjiéipat
defines a vertex-cutA”, B”,C") whose quotient cost is nearly
the same.

Letting (A, B, C') be a minimum quotient cut it, the three
steps above yield a cutd”, B”,C") that has a nearly optimal
quotient cost and also has a CAST structure, thus provinghtie
result of this section. The three steps above applyfquotient
cost (i.e. « = 0), but the results easily extend tequotient cost
(i.e.,a = 1) by applying Lemma 2.4.

3.2.1 A connected region in the plane

The first step in the proof of the basic structural theorero &xt
hibit in G, a vertex-cuf A’, B’, C") that has nearly the same quo-
tient cost agA, B, (') and for whlchA’ corresponds to some “con-
nected region” in the plane. Intuitively, the vertex-cut, B, C)
partitions the plane into connected regions, each associaith
one of A, B, C; a careful rearrangement of the connected regions
associated withl and B yields the desired vertex-c@d’, B',).
Below we give the formal argument.

We start by labeling each face 6f by A if its boundary con-
tains a vertex ofi, by B if its boundary contains a vertex &f, and
by C if neither event happens. It is easy to verify that every faice
G has exactly one label.

Let CC(A) denote the set of connected components of the faces
labeledA (recall Definition 2.1), and similarly fo3 andC. Let
CC(Gr) := CC(A)UCC(B)UCC(C) be the set of all these con-
nected regions. Each connected regide CC(Gr) corresponds
to a set of vertices iy, namely,

V(R) := {v € Vy : visinthe boundary of a face iR}. (1)

We define theweight of a connected regioR to be @w(R) :
2vev(rc w(v). Notice thatignoring the weight of vertices from
C corresponds t@-quotient cost (i.e.o« = 0). For a setS of
connected regions, defirné(S) := UResV() andw(S) :
> res W(R). We say that a facg is in S if f € R for some
connected regioi € S. Itis easy to verify that

@(CC(A)) = w(4), @(CC(B)) = w(B), @(CC(C)) =0,
and it then immediately follows thait(CC(G)) = B (CC(A)) +

@(CC(B)) + w(CC(C)) = w(AU B).

PROPOSITION 3.2. There is a partitionCC(Gr) = SUS such

that the faces of form a connected region and the balance be-
tweens, S corresponds to the balance betwednB as follows:

min{w(S), w(S)}> min{w(A)w(B)}

PROOF. Without loss of generality assume thatA) > w(B)
and let3 := w(B)/w(A U B) < }. We say that two connected
regionsR1, R, areadjacentif they contain two faces: € R,
f2 € R that are adjacent it7. Apply the following proce-
dure onCC(Gr). Start withS1 = {Rmax} Where Ruax :

argmaxpecc(g,) W(R)} If B > %w(/l U B) then letS; =
{Rinax } WhereRy,,,, := argmax pcco(ap s, W(R)}; otherwise,
setS2 = @, thus ignoring it throughout this procedure. Now re-
peatedly add to eithef; or S» a connected regioR € CC(Gr) \
(S1 U S2) that is adjacent to at least one connected regio.ﬁlin
or Sg, respectively Stop this iterative process whefqs;) >
max{52, L + Z1w(AU B) for somei € {1,2}, letting S := S;
andS := CC(Gr) \ S. By construction, the faces ifi forms a
connected region.

We first claim that at every iteration there exists a conrteote
gion R € CC\(S1 U S2) that is adjacent to some connected re-
gion in eitherS; or S.. To this end, observe that < 5 < 1,
so wheneveri(S1), w(S2) < max{52, % + Zlw(AU B), we
also have thai(S1) +@(S2) < max{1— 4, +slw(AUB) <
w(CC(Gr)), and thusCC(Gr) \ (S1US2) is not empty, i.e., con-
tains at least one connected region. lfdie a face in such a con-
nected region o€C \ S, and letf’ be a face in a connected region
of Si1. Since the set of all faces i1 is connected (in the sense of
Definition 2.1), there is a sequence of fages- fi,..., fx = f’
such thatf; and f;+1 are adjacent for all < k. It follows that there
must exist two successive facgsin CC\(S1 U S2) and fiy1 in
eitherS; or S2. The claim follows.

The above procedure always terminates since the numberof it
ations is bounded by the number of connected regiol¥10G),
and in turn, by the (finite) number of facesGfr-. Finally, some cal-
culation shows thatin{w(S),w(S)} > 2 min{w(A), w(B)}.

In fact, if 3 < 1 then the stronger result thatin{@(5), w(S5)} >

w(B)} holds. O

min{w(A),

Finally, letS, S be as in Proposition 3.2. We use (1) to define the
following subsets o¥:
A =V (9\V(S), B :=V(S)\V(S), ¢ :=V(S)NV(S).
@

The next easy to verify proposition summarizes the first step
the proof of the basic structural theorem.

PROPOSITION 3.3. (A’, B/, (") is a vertex-cut ofo with C’ C
C and min{w(A’),w(B)} > 3 min{w(A), w(B)}, where A’
corresponds to the connected regién

3.2.2 Aforest of simple cycles

The second step in the proof of the basic structural theosem i
to show thatB’ corresponds to a union of connected regions in the
plane, each described by a simple cycle@m), with the impor-
tant property that these simple cycles form a “forest”. Rebat
A’ and B’ are defined in (2) so that they essentially correspond to
S andS, respectively. We show that sinéeis a connected region
(by construction), the connected regionsSaire arranged in a “for-
est”. Below we give the formal argument. (Recall the defimisi in
Section 3.1.)

Slightly abusing notation, we denote the set of connectea-co
ponents of all the faces in the connected regions lny CC(S) :=
CC(UREs CC(R)). It can be shown that for every connected re-
gion R € CC(S) there is a directed simple cycler such that?
is exactly the set of faces (@¥r) that are enclosed bPpr. (We
remark that the fact that each cycle is simple reliesSobeing a
connected region.) LéD(S) be the set of directed simple cycles
Dr that enclose the connected regidisc CC(S). It is easy to
verify thatD(S) is a proper set of cycles that defines (in the sense
of Section 3.1) the vertex-c@td’, B’, C) described in (2).

The description of the cutd’, B’, ") using the directed cycles

the plane, and prove the following proposition. The mairaiée
that the existence of a “cycle of cycles” implies ttfatontains at
least two connected regions (see Figure 6).

PROPOSITION 3.4. LetG(V4, Va, E) be the auxiliary graph of
D(S). Then,G is a forest (i.e., contains no cycles).

.
(o))
N\

Figure 6: Cycle of cycles

3.2.3 A sshallow tree of simple cycles

The third step in the proof of the basic structural theorenois
show that the forest: must contain a subtree that is shallow (i.e.,
has small depth) and its cycles define a vertex-cut whoséentot
cost is nearly the same (as that(of’, B’,C’)). The main idea
here is to remove ever3d-th level in the forests (so that we lose
at mostl /d of the cut’s weight and do not increase its cost) and then
apply averaging arguments on the resulting connected coemps.

We can thus prove the following proposition.

PROPOSITION 3.5. Letd > 1 be an integer. Then, there is
a d-CAST inD(S) that defines a vertex- -cyitd” B” ,C") whose
0-quotient cost (i.e.a = 0) is at most(1 + %) times that of

(A", B',C").
We can now prove Theorem 3.1.

PROOF OFTHEOREM3.1. Let(4, B, C) be a vertex-cut of min-
imum 0-quotient cost (i.e.x = 0). The result then follows from
Propositions 3.3 and 3.5.01

3.3 Extensions

We can extend Theorem 3.1 in various directions. First, asme
tioned just prior to Theorem 3.1, fax > 1 we get a factor of
‘§ 41l 1 1 in the general case. The loss in the quotient cost is ac-
tuaIIy smaller, if there exists an optimal quotient ¢dt", B*, C*)
with w(C™) <« w(A™),w(B"); in particular, in the uniform weight
uniform cost case there is always a ¢dt*, B*, C*) with optimal
quotient such thatw(C*) < O(1/4/n) < min{w(A*),w(B*)}
(see Section 2.2), and thus the loss in thguotient cost (i.e., for
a = 1) becomes arbitrarily close t4/3. This result follows by
combining Theorem 3.1 and Lemma 2.3.

Second, for general weights we reduce the loss in the quotien
cost tol + ¢, for arbitrary fixede > 0, by somewhat relaxing the
structural requirement and allowing a more complicatedcstire
than a CAST. Technically, we generalize Proposition 3.3llpna
ing A’ (and S) to correspond t@(1/¢) connected regions. The
proof is a maodification of that of Proposition 3.2 that digtiishes
between large weight and small weight connected regions.

Third, we show for the uniform cost case that the CAST stmectu

D(S) allows us to investigate the arrangement of these cycles in can be replaced with just one simple cycle G) at the expense

of a larger constant factor loss in the quotient cost. Tesallyi we
replace al-CAST structure with one of its simple cycles.

Finally, we considem-limited quotient cuts and show that in
the uniform weight uniform cost case the loss in thiémited 1-
quotient cost is arbitrarily close th

PrRoPOSITION 3.6. If (A*, B*,C™) is an optimala-quotient
cut for Go with Aw(C™*) < w(A*), w(B*) for someX > 0, then
the factor in Theorem 3.1 can be improvedité! (1 + &).

PROPOSITION 3.7. There exists a vertex-c(l’, B, C") of G
where A’ corresponds ta)(1/¢) connected regions,” C C and
min{w(A’), w(B’')} > (1 —) min{w(A), w(B)}.

PROPOSITION 3.8. Leta > 0. Then, every uniform cost planar
graph Gy has a vertex-cut that is either defined by a directed cycle
or is trivial such that itsa-quotient cost is within a factor cﬁ%
from the minimum foex > 0.

ProPOSITION 3.9. Letd < % a > 0. If (A*,B*,C")is an
optimal b-limited a-quotient cut with\w(C™*) < w(A*),w(B™)
for some\ > 0 for Gy, then the factor in Theorem 3.1 can be
improved to¥2 (1 +) for b-limited a-quotient cost.

4. ALGORITHMFORSTRUCTURED CUTS

In this section we use the structural theorems of Section 3 to
devise an algorithm for finding in planar graphs a cut withrnea
optimal 1-quotient cost (i.e.¢ = 1). Given a planar input graph
G, we first fix an embeddingzy of it in the plane and compute
its face-vertex graplizr (see Section 2). By applying the algo-
rithm described below we then, roughly speaking, searcla tbr
CAST structure inGr (see Section 3.1 for definition) with mini-

This family of walks (defined in Section 4.3) has three imaott
properties. First, for any-CAST there is in this family a corre-
sponding walk whose weight and cost are equal to that ofithe
CAST (Section 4.4). Second, we can efficiently optimize tbstc
to weight quotient over this family using dynamic programgni
(Section 4.5). However, this family contains also walks tlanot
correspond to a CAST, so the third important property is fitzah
any walk in this family we can extract efficiently a vertext¢tnat
need not be @-CAST) whose quotient cost is no larger than that
of the whole walk (Section 4.6).

Our algorithm is inspired by those of [19, 20, 18] for findirgg (
approximating) the minimum quotient edge-cut, and we potrit
some of the similarities and differences throughout thegieson.

4.1 Assigning weight to faces

We now translate vertex weights into face weights@n), by
distributing the weight of every vertex froir (or actually, V)
equally among the faces 6fr incident to it. Formally, the weight
of face f of Gris }_, . ; w(v)/deg(v), wheredeg(v) is the de-
gree ofv in Gr. The analogous transformation for edge-quotient
cuts [19, 20, 18] is simpler, since there each face in the ouél
corresponds to a vertex iip, and is thus assigned the weight of
that vertex. The next proposition shows that the weightsficima-
tion allows, in principle, to approximate the total weight by a
cycle (i.e. by a cut that is defined using a cycle) by using ¢l t
weight of the faces that are cut by this cycle.

PROPOSITION 4.2. Let D be a (not necessarily simple) cycle
in G and letC denote the set of vertices on it. Lietlenote the
number of regions ifR2 \ D, and letV; and F; denote the sets of
vertices and faces, respectively, in thie region. Then, for all C
{1, .. .,l}, we havew(uieﬂ/;) < w(uigFi) < w(UieIVi) +
w(C).

mum a-quotient. The structural theorems guarantee that a search4.2 The Search Graph

restricted tod-CASTs will find a vertex-cut whoseé-quotient is
within a small constant factor of the minimum. Formally, weye
the following theorem.

THEOREM 4.1. Letd > 1 and letGy be a plane graph. Then,
there is an algorithm that runs in tim@ (W - n3+2¢) and finds a
vertex-cut(A’, B, C") in Go whosel-quotient cost (i.ea = 1)
is at most thed-quotient cost of any vertex-cg#, B, C') that is
defined by al-CAST inGr, i.e.,

c(Ch
min{w(A’), w(B")} + w(C") ~

0
min{w(A),w(B)}

Algorithm outline.We start by translating vertex weights in
G to face weights irGr (Section 4.1); these face weights are de-
fined so that the total weight of the faces enclosed by anylsidip
rected cycle approximates the total weight of the verticedosed
by this cycle; actually, the same holds for any proper setuchs
cycles. Now, similarly to [18], we construct a search graph
which is just a directed version ¢ with edge weights (Section
4.2); these edge weights are defined so that the total weigheo
edges on the cycle on any simple directed cycle is equal ttothe
tal weight of the faces that this cycle encloses. Finally, main
routine finds among a certain family of closed walks (i.ecley,
but not necessarily simple ones) @, a walk that has minimum
cost to weight quotient; here, the weight of a walk is the sfithe
weights of its edges and the cost of a walk is (in principle)ghm
of the costs of the vertices it visits.

Similar to [18], we define theearch graphZ to be the digraph
obtained fromGr by replacing every undirected edge, v) by a
pair of directed edge@:, v) and(v, u). Let the vertices ofZs have
the same cost they have @#r. In the rest of this subsection we
associate weight with the (directed) edge&:of

Let T be any spanning tree of the graph-. Choosing any ver-
tex r on the outer face as a root, orient the tree according to this
embedding. That is, order the children of any vertex in a t&n
clockwise direction; for the root vertexstart with the outer face,
and for any other vertex start with the edge leading to iteipar

The tree edges incident to a vertexdivide the plane immedi-
ately surrounding into deg(v) regions. We give each such region
a unique labeling as follows: Starting at the root, travéhsetree
in a Depth First Search manner, using the order on childrénete
above. Each step in this traversal corresponds to visitingreex
from either its parent or from a child. Thus, stefs visiting the
root, step2 is visiting the root’s first child and so on. Each time
a vertex is visited in this traversal, one immediate regiosuad
v, namely, the one between the edges used to enter and to, exit
is labeled with the traversal’'s step number. Formally, forea-
tex v let e; be the edge to its parent and et . . ., eqeq,. () DE
edges to its children, whereg.(v) is the degree of in the tree
T. We then label the region betweenande 1) mod degy(v)
by the step of traversal at which vertexs visited for theith time,
denoted (v, 7). See for example Figure 7.

We give weight to every directed edde, v) in G, as follows.

If the underlying undirected edge belongs to the ffeeve define
w(u,v) = 0; otherwise(u, v) is embedded in some region relative
to each of its endpoints. Le{w,:) andt(v,;) be the labels of

(ur,v1)

Figure 7: Labeling the regions of the treeT.

these regions. Assume without loss of generality ttat:) <
t(v,7), and letw(u, v) be the total weight of the faces enclosed
by the simple cycle thatu, v) closes in the tre€” (i.e., take the
unique path ifl" betweeru andv and add to it the edg, v)); let
w(v,u) = —w(u,v). Thus, edges going left-to-right have positive
weight and their reverse edges have negative weight.

Park and Phillips [18] showed that the weight of a simple ¢ern
clockwise (respectively clockwise) cycle (&, is equal to (respec-
tively, minus) the weight of the faces enclosed by the cycle.

4.3 Walks with pebbles

We now define the family of walks that will be used to prove
Theorem 4.1. We shall also define for each such walk certan-qu
tities such as total weight, true cost, total cost and caliobst.

A walkof lengthk in G, is a sequencéui, v1), . .., (uk, vk) Of
(directed) edges, such that = u;1, forall 1 < < k. The walk
is closedif v = u1. (Notice that a closed walk is just a directed
cycle.) A closed walk isimpleif it contains & distinct edges and
k distinct vertices; A non-closed walk smpleif it contains &
distinct edges anél + 1 distinct vertices. For a walk, let ., (for
it = 1,...,k) denote theth edge in the walk (namelyu;, v;)),
and letr; (fori = 1,...,k + 1) denote theth vertex in the walk
(namely,u; = v;—1). Thetotal weightof a walk 7 of lengthk is
w(r) = SF_ w(r.,), and itstotal costis 3°%_, ¢(;). Notice
that in these definitions, if the walk is not simple then sorosts
and weights may be counted more than once. We definactuel
costof a walk 7 of lengthk as the sum of costs of all thdistinct
vertices in{m1,...,m}. For edge quotient cuts, the total (edge)
cost is used in [18], since there it suffices to seek a simpiéecy
in G, and for such a walk the total cost is clearly equal to the
actual cost. In contrast, for vertex-cuts we shall seek & Wit
corresponds to a CAST, and thus might visit some verticeemor

than once. For such a walk, the total cost might be a poor upper
bound on the actual cost. We thus define below a family of walks

that allows, for a limited number of vertices, additionasits to
these vertices at no additional cost; however, we shalt lingse
free visits to be in a counter-clockwise order, without ctetipg a
full cycle.

A d-pebble walkis a walk that uses at mosgtpebbles as fol-
lows. In the beginning of the walk all pebbles are unassigned,

vertex. However, the pebbles allow for a tighter upper boafritie
actual cost of the walk, as follows. Let us call a visit to atgrithat
already has a pebble (assigned to ifjee visit and let thecounted
costof a walkt be Y ¢(m;), where the summation is over all the
non-free visitsl < i < k. Clearly, the counted cost of a walk is
always an upper bound on its actual cost.

In d-pebble walks we restrict the free visits to have a certain or
der in the plane. Specifically, between the moment that alpebb
is assigned t@ and the moment in which it is unassigned from
the walk uses edges incidentd@nly in a counter-clockwise order
aroundv without completing a full cycle (this includes both incom-
ing and outgoing edges). Formally, every pebble is reptesdny
atuple (v, esrst, €1ast), Wherev is the vertex to which the pebble is
assignedes,s; is the incoming edge to that was used by the walk
to assign the pebble to, andei.; is the last edge that was used
by the walk among all edges incidentddincoming and outgoing
edges). An unassigned pebble is represented by an empéyjupl

4.4 A CAST yields a pebble walk

We next show that eveng-CAST yields ad-pebble walk with
a certain correspondence between their weights and costiceN
that a directed cycle (in the CAST) may enclose the infinite fia
G, and then the total weight of a walk along this cycle is negati

ProPOSITION 4.3. Let (A, B, C) be a cut corresponding to a
d-CAST, for somel > 1. Then, there exists & + 1)-pebble
walk with counted cost(C) and with total weightwy such that
min{|wo|, W — |wo|} > min{w(A),w(B)}. Furthermore, the
length of this walk is at mosEr| < 9n and the total weight up to
any point in the walk is always in the range W, W1.

4.5 A dynamic programming algorithm

We now use dynamic programming to find a walk of minimum
counted cost among alld + 1)-pebble walks of length at most
|Er| < 9n and total weightw € {—W,...,W}. Formally, we
define the following dynamic programming table We define
T(,s,t,{p1,...,pat+1}, w) to be the minimum cost of & + 1)-
pebble walk of lengtth < I < |Er| that starts at, ends at,
its pebble assignments (at the end of the walk)mare. ., pa+1,
and its total weight is exactly € {—W,...,W}. Recall that
each pebble; is represented by a tuple that takes onedgh?)
different values.

PROPOSITION 4.4. Every entry forl = 0 can be computed in
time O(1), and every entry of” for [+ 1 can be computed from
(some of the) entries @f for [in timeO(n). Thus, we can compute
all entries of the formI’(l, v, v, {{v, €first, €last) ()5 -+,) }, w)
withl < I < |Er|andw € {=W,..., W}intimeO(W -n4+°),

REMARK. The running time can be improved by using specific
properties of the walk guaranteed by Proposition 4.3 in otde
avoid redundancies in the talilé For instance, the starting vertex
s can be encoded by the first pebble, and the end vertex en-
code the last (currently used) pebble. This results in aorihgn
that takesO(W - n??*3) time. The algorithm can be made even
faster by using Dijkstra’s shortest path algorithm, but depen-

and during the walk a pebble may be assigned (to some ventex) o dency of the running time od remains the same. The full details

unassigned only according to these rules: (i) when the watlrs a

are omitted from this version of the paper and resemble arans

vertexv that has no pebble (assigned to it), the walk must assign to tion in [18].

v one of the unassigned pebbles; (ii) when the walk leavestaxer
v that has a pebble (assigned to it), the walk may, but doesavet h
to, unassign the pebble from Of course, one pebble allows to
“traverse” any walk, by simply assigning the pebble upomamte
to a vertex and then immediately unassigning it when leattireg

When the tablg” is complete, we take the entry that minimizes
T(l,v,v,0,w)/ min{|w|, W — |w|} over allv € Vr and—W <
w < W. We can compute from this entrydapebble walkr that
has total weightv and counted co&t (I, v, v, 0, w)/ min{|w|, W —

wl}.

4.6 A pebble walk yields a vertex-cut

We now show that any pebble walk (and, in particular, the one
found in the dynamic program) gives rise to a vertex-cut wihal
or smaller quotient. The main hurdle here is that a pebbld wal
need not correspond directly to a CAST or any vertex-cutneive
it does, the total weight of the walk need not correspondedatal
weight that this cut separates. For instance, if the walkeésinion
of several directed simple cycles, some faces may be enclpse
more than one of these (counter-clockwise) cycles.

We shall prove that any pebble walk can be decomposed into
sub-walks such that the counted cost and total weight decsenp
in an appropriate way. A careful averaging argument due 8 [1
then shows that the quotient in at least one of these subswalist
be not larger than that of the complete walk. This decomjuosit
also ensures that every sub-walk corresponds to a vertefwith
the suitable weight and cost). In fact, this decompositian be
found efficiently, and thus one can extract from the walk fbim
the dynamic program a vertex-cut of small quotient cost. delore
quotient cuts, the total (edge) cost is used in [18] and then a
decomposition of the walk into sub-walks clearly decompabe
total cost appropriately. For quotient vertex-cuts we neeghake
sure that the counted cost is decomposed appropriately.

Thenet-counof afacef by awalkr (in G;), denotedhc (f), is
the (net) number of times that the weight of the fgceontributes
to w(w), the total weight ofr. (See Section 4.3 for definition of
w(m).) Thenumber of visitof a walk 7 to a directed edge (of
G), denotednv(e), is the number of times thatappears in the
walk 7.

For a setA of integers, letA(A) := max A — min A. For a
closed walkr, let A (Gs) := A({ncx(f) : f afaceinGs}). For
a vertexv, let A (v) be the difference between the least-counted
face and the most-counted face among those incident ice.,
Ar(v) == A({ncx(f) : f € F,}) whereF, is the set of faces
of G incident onv.

Our procedure for decomposing a pebble closed walk inteedlos
sub-walks can be sketched as follows. First, we label eamhffa
of G with nc.(f). Then, we create a sétthat includes all faces
of G, that have the highest label. Viewirfgas a cut (every vertex
incident with a face inS is either inC or A, and everything else
is in B) we check if its quotient is no higher than that found for
min T. If so, then we are done5(defines the sought cut). If the
quotient of S is worse, then we decrease the labels of faceS in
by 1. Now we repeat the process by selecting a newSsetthe
resulting graph and so forth.

We next argue in Proposition 4.5 about two properties of this
decomposition procedure. Then, the first property and Riepo
tion 4.6 together imply that the counted cost of the walk isothe-
posed appropriately to the sub-walks. (The appropriaterdposi-
tion of the total weight is immediate.) Finally, the secomdperty
and Proposition 4.7 together imply that every such sub-waike-
sponds to a vertex-cut.

PrROPOSITION 4.5. Every closed pebble watk in G, is the
union of closed (but not necessarily pebble) watkssuch that (i)
every vertexw appears in at mosf\ . (v) of these walks, and (ii)
AL (Gs) < 1 for every walkr? .

PROPOSITION 4.6. Letn be a closed pebble walk. Then, every
vertexv contributes its cost to the counted costradit leastA - (v)
times.

PROPOSITION 4.7. Every walkr with A, (Gs) < 1 defines a
vertex-cut(A, B, C) such thatc(C) is the actual cost ofr and
min{w(A),w(B)} + w(C) > min{w(n), W —w(n)}.

By combining the three propositions above and the averaging
arguments of Park and Phillips [18, Theorem 2.2] we obta& th
next corollary.

COROLLARY 4.8. Letr be a closed pebble walk with total weight
w'" and counted cost’. Then, there is ii a vertex-cut whosg-
quotient cost (i.eq = 1) is at most

C
i (/] W =T} -

Finally, we prove Theorem 4.1.

PROOF OFTHEOREM4.1. Let(A, B,C) be a cut defined by
a d-CAST and consider the algorithm described throughout Sec-
tion 4. By Proposition 4.3 there existd@ -+ 1)-pebble walkr of

total weightw, and counted cosb, such thatm <
c(C)

TTe (A w BT By the definition of the dynamic programming
table, there is € Vr andl! < |Er| such thatl'(l,v, v, 0, wo) <

¢(C). Letn' be the(d + 1)-pebble walk found by the dynamic
program, and denote its total weight by and its counted cost by

’ <’ co
c’. Then, we have that——— o7 < mmmeer v —Taoy - W

conclude by Corollary 4.8 that the algorithm findsGir a vertex-
cut whosel-quotient cost is at mosrgm, and in par-

ticular is at mostl + + times that of(A, B,C). O

5. IMPLICATIONS AND APPLICATIONS

5.1 Quotient vertex-cuts

Combining Theorem 3.1, and Theorem 4.1 we obtain the follow-
ing result.

THEOREM 5.1. There is an algorithm that runs in tim@(W -
n*T24) and finds in plane graphs a vertex-cut whadsguotient
cost is within a factor ofl + 2 <t from the minimum. If, in ad-
dition, there is a minimun-quotient cost vertex-ctA*, B*, C"*)
with Aw(C™) < min{w(A"),w(B*)} then the factor is at most

121+ 3).

PROOF Let(A*, B*,C™) be avertex-cut of minimurb-quotient
cost. We start by proving the second part of the theorem. rAssu
that \w(C*) < min{w(A*), w(B*)}. Then, this cut'¥)-quotient

: c(C*) (1+1/X)e(C™) _
cost ISmin{w(A*),w(B*)} S min{w(A*),w(B*)}+w(C)’ SO by Theo

rem 3.1 there is a vertex-c(fl, B, C) that is defined by d&-CAST

in G and its0-quotient cost is at mosg 441 (€.

Theorem 4.1 then guarantees that the algorithm of Sectiamd4 fi
a vertex-cut whosé-quotient cost is not larger, namely, at most
4dil() 4 1y c(C”)
3 d A mif){w(A*),u{(B*)}«kw(C) '

Now, for the first part, if\w(C*) > min{w(A*), w(B*)} then

there is atrivial cut(A, B, C), of 1-quotient costl% < % <

(1+N)e(CT) ; ;
TR (A)0 (B T Ta 0 and an exhaustive search finds such a cut

intime O(n). If Aw(C™) < min{w(A*),w(B*)} then the above
algorithm finds a cut whosg-quotient cost is within a factor of
341(1 + 1) from the minimum.

Therefore, for any\ > 0, we can approximate the minimum
quotient cost within a factor ahax{1 + X, 3 <2 (1+ 1)}. To
minimize this term we choosk = % didl, and then the approxima-
tion ratio we obtain is + 4 41,

O

Theorem 5.1 can be extended as follow$-omited a-quotient
cuts using Proposition 3.9 and extensions to Corollary AdBTehe-
orem 4.1,

THEOREM 5.2. Letd < % There is an algorithm that runs in
time O(W - n*+2%) and finds in plane graphs a vertex-cut whose

b-limited 1-quotient cost is within a factor df+ ‘%1 from the min-
imum. If, in addition, there is a minimutrlimited 1-quotient cost
vertex-cut(A*, B*, C*) with Aw(C™*) < min{w(A"),w(B")}
then the factor is at most (1 +).

5.2 From quotient cuts to separators

The following shows that we can find a pseudo-approximation t
a vertex separator using an approximation algorithm forrammim-
quotient vertex-cut.

THEOREM 5.3. Letl1 > b > b > 0and0 < o < 1 such that
b'/a < min{%,b}. Given ap-approximation algorithm for min-
imumb-limited a-quotient cost vertex-cuts one can find, a)-
balanced cut that is within a factor gf—7— from the minimum

(b, a)-balanced cut.

As a simple result, for uniform weight uniform cost planaagjns,
settingar = 1, b = 3 andb’ = 3, we obtain a2-balanced cut
whose cost is within a factor af%t%(1 &Wlb)) from the opti-
mal2/3-balanced separator. This is done using our algorithm from
Section 4 with total running tim@(n2*+%).

6. CONCLUDING REMARKS

In most of this paper we restricted ourselves to finding a Hedn
depth tree of cycles (a CAST), which gave rise to a factof; afi
our approximation (see Theorem 3.1). However, Propos@idn
suggests that a more general structure allows to discasdiabt
tor. We suspect that this structural result can be explailgd-
rithmically by a suitable extension of our dynamic prograimgn
algorithm, yielding a polynomial-time approximation sofe for
the problem of minimum quotient vertex-cuts in planar geaph
uniform cost and uniform weight. We hope to present such an al
gorithm in the full version of this paper.

One application known for approximate vertex separatots an
quotient vertex-cuts are closely related to minimum widéetde-
compositions (of a graph) (aka treewidth) [21]. A known noeth
for finding a tree decomposition of near optimal width is toue
sively use a balanced vertex-cut algorithm, see e.g. [BIndJthis
technique and Proposition 3.8 we can can find for planar graph
tree decomposition whose width is within a constant factomf
the optimal. The constant factor that we achieve is worse tha
1.5 given by an algorithm of [22], but we suspect that its running
time can be made better than tB¢n*) that is reported in [22]. We
hope to present such a result in the full version of this paper

7. REFERENCES
[1] C. Ababei, N. Selvakkumaran, K. Bazargan, and G. Karypis

Multi-objective circuit partitioning for cutsize and

path-based delay minimization. International Conference

on Computer-Aided Desigpages 181-186, 2002.

N. Alon, P. Seymour, and R. Thomas. Planar separators.

SIAM J. Discrete Math.7(2):184-193, 1994.

E. Amir. Efficient approximation for triangulation of

minimum treewidth. IrProc. Seventeenth Conference on

Uncertainty in Artificial Intelligence (UAI '01)pages 7-15.

Morgan Kaufmann, 2001.

E. Amir and S. Mcllraith. Partition-based logical reagm.

In Proc. 7th Int'l Conference on Principles of Knowledge

Representation and Reasonjmpgges 389—400. Morgan

Kaufmann, 2000.

[5] T.N. Buiand C. Jones. Finding good approximate vertek an
edge partitions is NP-harthform. Process. Lett.
42(3):153-159, 1992.

(2]
(3]

[4]

[6] R. Diestel.Graph theory Springer-Verlag, New York,
second edition, 2000.

[7] S. Even.Graph algorithmsComputer Science Press Inc.,

1979.

U. Feige and R. Krauthgamer. A polylogarithmic

approximation of the minimum bisectio8IAM J. Comput.

31(4):1090-1118, 2002.

N. Garg, H. Saran, and V. V. Vazirani. Finding separatatsc

in planar graphs within twice the optim&IAM J. Comput.

29(1):159-179, 1999.

R. M. Karp. A characterization of the minimum cycle mean

in a digraph Discrete Mathematic23:309-311, 1978.

P. Klein, S. A. Plotkin, and S. Rao. Excluded minors,

network decomposition, and multicommaodity flow.26th

Annual ACM Symposium on Theory of Computjmages

682-690, May 1993.

S. L. Lauritzen and D.J. Spiegelhalter. Local compotet

with probabilities on graphical structures and their

application to expert system&.Royal Statistical Society, B

50(2):157-224, 1988.

F. T. Leighton and S. Rao. An approximate max-flow

min-cut theorem for uniform multicommodity flow problems

with applications to approximation algorithms.28th

Annual Symposium on Foundations of Computer Science

pages 422-431, October 1988.

T. Leighton and S. Rao. Multicommodity max-flow min-cut

theorems and their use in designing approximation

algorithms.J. ACM 46(6):787-832, 1999.

[15] R.J. Lipton and R. E. Tarjan. A separator theorem fonata
graphsSIAM J. Appl. Math.36(2):177-189, 1979.

[16] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis.
Separators for sphere-packings and nearest neighborsggraph
J. ACM 44(1):1-29, 1997.

[17] B. Mohar. Isoperimetric numbers of graplsCombin.
Theory Ser. B47(3):274-291, 1989.

[18] J. K. Park and C. A. Phillips. Finding minimum-quotienits
in planar graphs. 125th Annual ACM Symposium on Theory
of Computingpages 766—775, May 1993.

[19] S. Rao. Finding near optimal separators in planar ggalph
28th Annual Symposium on Foundations of Computer
Sciencepages 225-237. IEEE, 1987.

[20] S. Rao. Faster algorithms for finding small edge cuts in
planar graphs. 124th ACM Symp. on Theory of Computing
pages 229-240. ACM, 1992.

[21] N. Robertson and P. D. Seymour. Graph minors. Il
algorithmic aspects of treewidth. Algorithms 7:309-322,
1986.

[22] P. D. Seymour and R. Thomas. Call routing and the
ratcatcherCombinatorica 14(2):217-241, 1994.

[23] J. Shiand J. Malik. Normalized cuts and image

segmentationEEE Trans. Pattern Analysis and Machine

Intelligence 22(8):888-905, 2000.

D.B. Shmoys. Cut problems and their applications to

divide-and-conquer. In D. Hochbaum, editApproximation

Algorithms for NP-Hard Problem$WS Publishing

Company, 1997.

D. A. Spielman and S.-H. Teng. Spectral partitioning ke

Planar graphs and finite element meshe&7th Annual

Symposium on Foundations of Computer Sciepages

96-105. IEEE, 1996.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[24]

[25]

