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ABSTRACT
We devise the first constant factor approximation algorithmfor
minimum quotient vertex-cuts in planar graphs. Our algorithm
achieves approximation ratio1+ 4

3
(1+ε) with running timeO(W ·

n3+2/ε), whereW is the total weight of the vertices. The approxi-
mation ratio improves to4

3
(1+ε+o(1)) if there is an optimal quo-

tient vertex-cut(A∗, B∗, C∗) where the weight ofC∗ is of low or-
der compared to those ofA∗ andB∗; this holds, for example, when
the input graph has uniform weights and costs. The ratio further im-
proves to1+ε+o(1) if, in addition,min{w(A∗), w(B∗)} ≤ 1

3
W .

We use our algorithm for quotient vertex-cuts to achieve thefirst
constant-factor pseudo-approximation for vertex separators in pla-
nar graphs.

Our technical contribution is two-fold. First, we prove a struc-
tural theorem for planar graphs, showing the existence of a near-
optimal quotient vertex-cut whose high-level structure isthat of a
bounded-depth tree. Second, we develop an algorithm that opti-
mizes over such complex structures in running time that depends
(exponentially) not on the size of the structure, but ratheronly on
its depth. These techniques may be applicable in other problems.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of algorithms and prob-
lem complexity—General

General Terms
Algorithms, Theory

Keywords
Approximation algorithms, balanced cut, planar graph, planar sep-
arator, quotient cut, vertex separator
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1. INTRODUCTION
Graph partitioning is extensively used in many areas, including

scientific computing, VLSI design, task scheduling, machine vi-
sion, and automated reasoning, see e.g. [21, 12, 23, 4, 1]. One
important graph partitioning problem that emerges naturally in a
variety of applications is the vertex-separator problem defined as
follows. Let G(V, E) be ann-vertex graph with vertex costsc :
V → N and vertex weightsw : V → N. A vertex-cutof G is a
partition ofV into three disjoint setsA, B,C such that no edge in
E has one endpoint inA and one inB. The cost of the vertex-cut
is c(C) where, throughout,c(S) :=

∑
v∈S c(v) for S ⊆ V .

A vertex-cut is called avertex-separator(aka2/3-balanced) if
max{w(A), w(B)} ≤ 2

3
w(V ) where, throughout, forS ⊆ V we

write w(S) :=
∑

v∈S w(v), andW := w(V ) denotes the total
weight of the vertices. Thevertex-separator problemis to find a
minimum-cost vertex separator in an input graphG. This problem
was shown to be NP-hard even in graphs of degree 3 by Bui and
Jones [5]. Leighton and Rao [13, 14] give anO(log n) pseudo-
approximation algorithm for this problem in general graphs.1 A
closely related problem is the quotient vertex-cut problem. The
quotient castof the vertex-cut is defined as2

q(A, B, C) :=
c(C)

min{w(A), w(B)} + w(C)
.

The minimum quotient vertex-cut problemis to find a vertex-cut
with minimum quotient in an input graph. Also this problem is
NP-hard (see below), and the best approximation ratio knownfor
this problem isO(log n), due to [14].

For planar graphs, the celebrated Planar Separator Theorem, due
to Lipton and Tarjan [15] (see also [2, 16, 25]), shows that every
planar graph has a vertex-separator(A, B, C) with |C| = O(

√
n).

(This corresponds to the uniform cost casec(v) = 1 for all v ∈
V ). Furthermore, they give efficient algorithms for finding such
a vertex-separator. However, these methods are only guaranteed
to find separators of sizeO(

√
n). Many planar graphs have much

1A ρ-approximation algorithmfor a minimization problem is a
polynomial-time algorithm that outputs, for a problem instance,
a solution whose cost is at mostρ times that of a minimum-cost
solution for the instance. Apseudo-approximationalgorithm for
2/3-balanced cuts is allowed to output, say, a3/4-balanced cut (its
cost is still compared to that of a2/3-balanced cut).
2Notice the termw(C) in the denominator of the quotient. In gen-
eral, we can expect thew(C) to be small compared tow(A), w(B)
in cuts of small quotient; this natural assumption is provably true
for planar graphs with uniform weights and uniform costs. Wedis-
cuss this issue in more detail in Section 2.2.



smaller separators, so for any particular graph these algorithms may
find separators that are far from optimal. We address this issue
by devising a constant factor pseudo-approximation for thevertex-
separator problem in planar graphs. No approximation better than
that for general graphs was previously known for the problemof
vertex-separators in planar graphs, even in the uniform weights and
costs case; Interestingly, this problem is not known to be NP-hard.

1.1 Related work
Vertex-cut variants of graph partitioning problems are usually

closely related to the edge-cut variants of the same problems. For
instance, an edge-cut variant (either directed or undirected) of a
problem frequently reduces to a vertex-cut variant of the same prob-
lem by replacing every edge by a path of length two, letting the new
vertex have zero weight and the same cost as the edge it replaces.
Notice that this reduction preserves planarity of the inputgraph.
There is also a well-known reduction from the (say undirected)
vertex-variant to the directed edge-cut variant, see [14].However,
this reduction does not preserve planarity.

There is a significant amount of research on approximating vari-
ous graph partitioning problems, and many of these results extend
from one variant of the problem to another by using the afore-
mentioned general reductions. AnO(log n)–approximation for the
minimum quotient edge-cut problem (aka sparse cut) in undirected
graphs was first devised in [13]. Their results and techniques were
expanded and extended to other graph partitioning problems, see
e.g. [24, 14] and the references therein.

For planar graphs, significantly better approximation ratios are
usually known. Park and Phillips [18] devise a pseudo-polynomial
time algorithm for solving (exactly) the minimum quotient edge-
cut problem (improving over a constant factor approximation in
[19, 20]). Klein, Plotkin and Rao [11] give a constant factorap-
proximation for the directed version of this problem. Thesere-
sults immediately imply a constant factor pseudo-approximation
for edge-separators, see e.g. [19, 24, 14]. Garg, Saran and Vazi-
rani [9] give factor 2 (true) approximation for edge-separators (i.e.,
2/3-balanced cuts). Feige and Krauthgamer [8] give anO(log n)
(true) approximation for minimum-bisection.

As mentioned before, these results do not translate to similar
approximation ratios for quotient vertex-cuts, since the well-known
reduction of vertex-cut problems to edge-cut problems in directed
graphs might create nonplanar graphs even if the original graph is
planar. It was erroneously claimed in [20] that the techniques that
were devised there for approximating quotient edge-cuts extend to
a3/2–approximation for quotient vertex-cuts, but these techniques
do not tackle the most basic problem, as is discussed in Section 2.3.

1.2 Our results
We devise the first constant factor approximation algorithmfor

minimum quotient vertex-cuts in planar graphs. Our algorithm
achieves approximation ratio1+ 4

3
(1+ε) with running timeO(W ·

n3+2/ε). The approximation ratio improves to4/3·(1+ε+o(1)) if
in a vertex-cut(A∗, B∗, C∗) of optimal quotient cost,C∗ has rel-
atively small weight compared toA∗ andB∗ (namely,w(C∗) ≤
ε min{w(A∗), w(B∗)}); this holds, for example, when the input
graph has uniform (or close to uniform) weights and costs. If, in
addition,min{w(A∗), w(B∗)} ≤ 1

3
W then the approximation ra-

tio further improves to1 + ε + o(1).
We also achieve the first constant factor pseudo-approximation

for vertex-separators in planar graphs. This follows from the ap-
proximation for quotient vertex-cuts by extending a well-known
technique (see [19, 24, 14]) from edge-cuts to vertex-cuts.

1.3 Techniques
No constant-factor approximation was known previously forthe

problem of minimum-quotient vertex-cuts in planar graphs even in
the uniform weight uniform cost weight case. This is, perhaps, due
to subtle but fundamental differences between minimum quotient
edge-cuts and vertex-cuts. The results for finding optimal quotient
edge-cuts rely on a well-known lemma [17, 20] that there is an
optimal quotient edge-cut which divides a graph into two connected
graphs. For planar graphs, this implies that there is a simple Jordan
curve in the plane that corresponds to an optimal quotient edge-cut.
The algorithms proceed by searching for simple cycles in thedual
of the planar graph. In particular, Park and Phillips [18] define a
cost and weight for each edge in the dual graph such that the cost
of any simple cycle in the dual graph is equal to the cost of the
corresponding cut in the input graph, and the weight of the cycle
corresponds to the weight that the cut separates. Then, theycan
modify methods for finding minimum mean cycle, due to [10], to
find the best such cycle.
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Figure 1: Jordan curve in the plane corresponding to an opti-
mal quotient vertex-cut (A, B, C).

In contrast, an optimal quotient vertex-cut in a graph mightdi-
vide the graph into an arbitrary number of connected components.
In fact, both sides of the cut can be an arbitrary set of components
(consider, e.g., a star). For planar graphs, the “Jordan” curve in
the plane corresponding to an optimal (or near-optimal) quotient
vertex-cut might be quite complex. See e.g. Figure 1 and Sec-
tion 2.3.

We partially address this difference by showing that in any plane
graph there exists a vertex-cut whose quotient cost is within 4/3 of
optimal, and in whichoneside is connected in the plane. We then
show that such a separator must correspond to a Jordan-type curve
that is essentially a tree of cycles, see e.g. Figure 2.

Still, this structure is more complex than a simple cycle; any
walk along the structure visits many vertices numerous times where
any revisits arefree in terms of the cost of the walk. Thus, standard
reductions to the minimum mean cycle problem do not work. To
address this, we show that there is a near-optimal quotient vertex-
cut whose associated tree of cycles has constant depth.

Of course, one can easily extend the mean cycle methods to
“guess” a constant number of vertices that are allowed to be revis-
ited. Thus, if a near-optimal walk has a simple structure andonly
revisits a constant number of vertices, we could find it. Unfortu-
nately, this is not true even for a bounded-depth tree of cycles. For
example, the walk separating the tree of cycles in Figure 2 revisits
Ω(n) vertices.

Hence, we need to work a bit more. We consider a walk “around”
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Figure 2: A tree of cycles corresponding to a near-optimal quo-
tient vertex-cut. Midway through a walk around it, v1 is com-
pletely visited, v2, v3 are partially visited, and v5, v6 have not
been visited yet.

a tree of cycles, and notice that at any point in the walk each vertex
is either completely visited, has yet to be visited at all, orhas been
visited and will be visited again. However, the number of vertices
in this partially visited state is bounded by the depth of thetree of
cycles (see Figure 2). Thus, we devise an algorithm that optimizes
over walks of this form. The algorithm needs only “remember”a
constant number of vertices at a time (the partially visitedones).
Hence, it has a polynomial running time.

This outline is a simplification of our methods. We need to also
enforce some topological conditions due to the relationship be-
tween the edge weight of our walk and the vertex weight separated.
In the technical sections, we also discuss the case where thesepara-
tor vertices themselves have a significant amount of weight,as well
as some generalizations of our structure theorems that we believe
will lead to the removal of the4/3 factor in our approximation.

Organization.Section 2 presents background notions and con-
cepts; Section 3 shows that restricting the search for quotient vertex-
cuts to trees of cycles in an appropriately defined triangulation of
the input plane graph guarantees constant factor approximation;
Section 4 presents an algorithm based on dynamic programming
that searches for quotient vertex-cuts that form a tree of cycles; fi-
nally, Section 5 combines these results to present a constant factor
approximation for quotient vertex-cuts and, in turn, to a pseudo-
approximation for the vertex separator problem.

2. PRELIMINARIES
Throughout this paper we denote byG the input planar graph, by

G0 its plane graph and byGT its face-vertex graph (see Section 2.1
for definitions). We assume without loss of generality thatG (and
thusG0) have no parallel edges or self-loops. Notice, however, that
GT may have parallel edges (e.g., ifG is a tree).

A (directed)cyclein a graphG is a sequence of edges, denoted
(u0, v0), . . . , (uk−1, vk−1), such thatvi = u(i+1)mod k for all i <
k. A cycle issimpleif it containsk distinct vertices andk distinct
edges. Note that two parallel edges define a simple cycle of length
2.

2.1 Planar and plane graphs
A graph G is planar if it can be drawn in the planeR2 such

that no two edges intersect, except possibly, at their endpoints. A
plane graphis a planar graph together with a particular drawing of
it. A plane graphG partitionsR

2 \ G into faces; a face is a region
that can be linked by an arc inR2 \ G. Theboundaryof a face is
the subgraph whose point set in the drawing is the frontier ofthe

face. The boundary of a face is not necessarily a simple cycle. For
example, ifG is a tree then the boundary of the outer face (the only
face ofG) is not a simple cycle (but rather traverses every edge of
G once in each direction).

A plane graph is calledtriangular if the boundary of every face
in it consists of three distinct edges.

Adjacency and connectivity of faces.Two faces of a plane
graphG are adjacent if their boundaries have a common edge.
Note that non-adjacent faces may contain a common vertex in their
boundaries.

DEFINITION 2.1. LetR be a set of faces of a plane graphG. A
faces-path inR between two facesf, f ′ ∈ R is a sequence of faces
f = f1, . . . , fk = f ′ all from R such that for alli < k the facesfi

andfi+1 are adjacent. We say that the set of facesR is connected
if there is a faces-path inR between every two facesf, f ′ ∈ R. A
connected set of faces is also called aconnected region.

Notice that every two faces in a connected regionR are linked by
a path in the planeR2 that goes only through faces ofR and edges
of G (that are on the boundary of two distinct faces ofR), without
going through any vertex ofG. A maximal connected subset of
a set of facesF is called aconnected componentof F . Clearly,
any set of facesF can be partitioned (uniquely) into its connected
componentsF1, . . . , Ft; we letCC(F ) := {F1, . . . , Ft} be the set
of connected components ofF .

Face-Vertex Graphs.We create a triangular graph (every face
has exactly three distinct edges in its boundary) that extends G0,
and call this graph theface-vertex graphof G0 (in fact, every trian-
gular extension ofG0 will do; in particular, ifG0 is triangular, we
can assume the face-vertex graph isG0 itself).

Let G0(V0, E0) be a plane graph. Aface-vertex graphof G0 is
a plane graphGT (VT , ET ) that is obtained fromG0 by adding for
each facef of G0 a new vertex (placed insidef ) and connecting (in
the plane) this new vertex to every vertex in the boundary off (by
order of their appearance on the boundary). Notice thatVT ⊇ V0

andET ⊇ V0, and thatGT may contain parallel edges (e.g., ifG0

is a tree). An example of a plane graph and its face-vertex graph is
shown in Figure 2.1(A),(C).

(A) (B) (C)

Figure 3: (A) A plane graph, (B) its dual, and (C) its face-vertex
graph.

We extend any vertex weights and vertex costs ofG0 to GT by
letting the weight and cost of every vertex ofVT \V0 be0. (Vertices
of V0 have the same weight and cost inGT as inG0.) It is easy to
see that any vertex-cut ofG0 corresponds to a vertex-cut inGT

with the same weights and costs, and vice versa. However,GT

has some structural properties (such as being triangular),as stated
in the easy to verify proposition below. Our results in Section 3
use these properties to show that for the purpose of finding near-
optimal quotient vertex-cuts, one may focus on vertex-cutsinduced
by certain (not necessarily simple) cycles. It is straightforward to
see that ifG0 is already triangular, then every vertex-cut (ofG0)



that is induced by a cycle inGT there is a corresponding cycle in
G0 that induces the same cut (ofG0), and thus one may apply the
algorithm of Section 4 directly onG0 (instead ofGT ).

By the definition of the face-vertex graph, we have the following
properties.

PROPOSITION 2.2. Let GT be a face-vertex graph of a plane
graphG0. If G0 has no parallel edges or self-loops then:
(1) The boundary of every face ofGT is a cycle of length 3 con-
taining one edge fromE0 and two edges fromET \ E0.
(2) Every edge inET \ E0 has exactly one of its endpoints inV0.
(In particular, this edge is not a self-loop.)

REMARK . The face-vertex graph of a plane graph is not itsdual
(in the classical sense, see e.g. [7, 6]). It is well-known that min-
imal edge-cuts in a plane graph correspond to simple cycles in the
dual (plane) graph; this correspondence was exploited in [19, 20,
18] to devise algorithms that find approximate (or even optimal)
quotient edge-cuts and edge-separators in planar graphs. In con-
trast, there is no exact correspondence between simple cycles inGT

and vertex-cuts inG0 (see e.g. Section 2.3). The goal of Section 3
is to provide a partial analogue to the well-known correspondence
in edge-cuts.

2.2 Balanced and quotient vertex-cuts
In the rest of this paper we allow a vertex-cut to betrivial , i.e.,

to have eitherA or B empty. This is convenient for our purposes,
and does not affect applications, as will be seen later in thepaper.

Balanced vertex-cuts.It will be convenient to define the bal-
ance of a vertex-cut with respect to two parameters,0 ≤ α ≤ 1 and
0 ≤ b ≤ 1. We say that a vertex-cut(A,B, C) is (α, b)-balanced
if

min{w(A), w(B)} + αw(C) ≥ bW.

whereW := w(V ) is the total weight of the vertices. For example,
the caseα = 1 andb = 1/3 is equivalent tomax{w(A), w(B)} ≤
2
3
w(V ), the classical balance condition mentioned in Section 1.

Quotient vertex-cuts.We define the quotient cost of a vertex-
cut with respect to some parameterα ≥ 0. Theα-quotient costof
a vertex-cut(A,B, C) is

qα(A, B, C) :=
c(C)

min{w(A), w(B)} + α · w(C)
.

Theb-limitedα-quotient costof a vertex-cut(A, B, C) is

qα
b (A,B, C) :=

c(C)

min{w(A) + αw(C), w(B) + αw(C), bW} .

Notice thatqα
1 (A,B, C) = qα(A,B, C) for all α. Throughout, the

quotient is defined to be∞ whenever the denominator is0 (even if
the numerator is also0). We will use the following relationships be-
tween different quotient costs later in the paper. In particular, they
allow us to translate results achieved for one quotient intoanother.

LEMMA 2.3. Let 0 ≤ α < α′ and b ≤ 1. Suppose that
(A∗, B∗, C∗) is a vertex-cut ofG with the minimumb-limitedα′-
quotient cost such thatw(A∗), w(B∗) ≥ λ · w(C∗) for someλ >
0. If the b-limited α-quotient cost of some vertex-cut(A,B, C) is
at mostρ times the minimum (for such cuts) inG, then theb-limited
α′-quotient cost of(A,B, C) is at mostρ · (1 + α′−α

λ+α
) times the

minimum (for such cuts) inG.

Our typical application of this lemma argues that a vertex-cut
(A, B, C) having near-optimalα = 0 quotient cost must also
have near-optimalα′ = 1 quotient cost. One interesting spe-
cial case is that of unit costs and weights in planar graphs, where
the Lipton-Tarjan theorem guarantees the existence of a vertex-cut
with 1-quotient costO(1/

√
n), and hence any optimal1-quotient

cost vertex-cut(A∗, B∗, C∗) must satisfymin{|A∗|,|B∗|}+|C∗|
C∗| ≥

Ω(
√

n). The next lemma shows that in this case, there is negligible
difference between these two quotients.

LEMMA 2.4. Let α′ > α ≥ 0. Given a vertex-cut(A, B, C)
whoseb-limitedα-quotient cost is within factorρ of the minimum,
one can find a vertex-cut(A′, B′, C′) whoseb-limitedα′-quotient
cost is within factorρ + 1 of the minimum. (In fact,(A′, B′, C′) is
either the given cut(A,B, C) or some trivial cut with|C′| = 1.)

2.3 Where is the problem?
The algorithms of [19, 20, 18] for finding (or approximating)an

edge-cut of minimum quotient all rely on the correspondencebe-
tween minimum quotient edge cuts and simple cycles in the dual.
In the vertex-cut problem such a correspondence does not hold.
Specifically, we now exemplify that limiting ourselves to vertex-
cuts that correspond to simple cycles leads to vertex-cuts whose
quotient is arbitrarily far from the optimal. Consider the graph pre-
sented in Figure 4 and divide the vertices in this graph into four
types,t1, t2, t3, t4. If our graph hasd cycles touching the center
vertex, then we setw(t1) = bW

d
, w(t2) = 0, w(t3) = (1 − b)W ,

w(t4) = 0, c(t1) = ∞, c(t2) = 10, c(t3) = ∞, andc(t4) = 0.
This graph is triangular, so taking the face-vertex graph ofthis
graph does not add any new cycle-induced vertex-cuts. Clearly, the
optimal weight is given when vertices of typet1 are in one side of
the cut and that of typet3 is in the other side. Vertices of typest1, t3
cannot be in the cut because of their large cost. The optimal quo-
tient is achieved by selecting the vertices on the the cyclestouching
the center vertex. Any simple cycle in this graph separates at most
one of the vertices of typet1 from the rest, thus separating a factor
d less weight at the same cost as the optimal quotient vertex-cut.

t1t1

t1

t1 t1

t1

t2 t3

t4

t4

...

...

Figure 4: An example where any vertex-cut defined by a simple
cycle has quotient cost that is arbitrarily far from the opti mum.

3. STRUCTURAL THEOREM
The main result of this section is that in every plane graphG0

there is a vertex-cut that is nearly optimal in terms of quotient
cost and also has a certain “nice” structure. Informally, this struc-
ture means that the vertex-cut corresponds to a collection of di-
rected cycles inGT that are arranged in a tree-like structure of



constant depth; in short, we shall call it CAST (Cycles Arranged
in a Shallow Tree). The intuition behind this structure is given in
Section 2.3.

The precise statement of our basic structural theorem and the
relevant definitions (including CAST) are given in Section 3.1. Its
proof is then given in Section 3.2. Finally, we devise various exten-
sions and examine special cases in Section 3.3.

3.1 Definitions and basic structural theorem
A face f (vertexv) of GT is said to beenclosedby a directed

simple cycleD (in GT ) if f (respectively,v) is contained in the
region ofR2 \D that is to the left of one (and thus all) of the edges
in D. A setD of directed simple cycles (inGT ) is proper if every
face ofGT is enclosed by at most one cycle inD. Such a proper
setD = {D1, . . . , Dk} defines a vertex-cut(A,B, C) of G0, as
follows. Let Ci be the vertices ofV0 that appear in the cycleDi,
and letBi be the vertices ofV0 that are enclosed byDi. Then, let
C := ∪k

i=1Ci, B := (∪k
i=1Bi)\C andA := V0 \(C∪B). To see

that(A,B, C) is a vertex-cut, observe that an edge inG0 between
a vertex ofA and a vertex ofB must have its two endpoints in
different regions ofR2 \ Di for somei. Also,B ∩ C = ∅ because
D is proper.

Theauxiliary graphof a proper setD (of directed simple cycles)
is the bipartite graph̃G(Ṽ1, Ṽ2, Ẽ) whereṼ1 := D, Ṽ2 := VT ,
and Ẽ := {(d, v) : v ∈ VT belongs to the cycled ∈ S}. Such a
proper setD is called ad-CASTif its auxiliary graphG̃ is a forest
(i.e. contains no cycles) and each of its connected components is
a tree that can be rooted at some vertexv ∈ Ṽ2 = VT so that its
depth is at most2d. For example, the cycles drawn in Figure 4 form
a1-CAST. AnO(1)-CAST is called in short a CAST.

The following theorem is proved in Section 3.2. This result eas-
ily extends toα-quotient cost for arbitraryα by applying Lemma 2.4,
and then the factor becomes4

3
d+1

d
+ 1.

THEOREM 3.1 (BASIC STRUCTURAL THEOREM). In every
plane graphG0 there is a vertex-cut that is defined by ad-CAST in
GT and its0-quotient cost (i.e.α = 0) is within a factor of4

3
d+1

d
from the minimum (over all vertex-cuts) inG0.

t0t1t2t3t4
1
4

1
4

3
8

1
8

Figure 5: 4/3 is tight

We note that the constant4/3 is tight, as shown by Figure 5
(t1, t2, t3, t4 have cost∞ and the noted weights,t0 has cost1 and
weight0, and all other vertices have cost0 and weight0). However,
we can improve over this constant by allowing a more complicated
structure than a CAST. We can also show that the constant loss
in the α-quotient cost forα > 0 can be improved by relying on
certain assumptions that include the uniform weight uniform cost
case. In fact, in the uniform cost case the CAST structure canbe re-
placed with just one simple cycle (inGT ) at the expense of a larger
constant than4/3. These extensions are described in Section 3.3.

3.2 Proof of basic structural theorem
The proof of Theorem 3.1 consists of three steps, as follows.Let

(Â, B̂, Ĉ) be any vertex-cut in a plane graphG0 (e.g., a minimum
quotient cut). We first show in Section 3.2.1 that there exists inG0

a vertex-cut(Â′, B̂′, Ĉ′) that has nearly the same quotient cost and
for which Â′ corresponds to some “connected region” in the plane.
We then prove in Section 3.2.2 thatB̂′ must correspond to a union
of “connected regions” in the plane, each described by a simple di-
rected cycle (inGT ), with the important property that these simple
cycles form a forest (in a sense to be defined). Using averaging
arguments, we show in Section 3.2.3 that every such forest must
contain a shallow subtree (namely, subtree of constant depth) that
defines a vertex-cut(Â′′, B̂′′, Ĉ′′) whose quotient cost is nearly
the same.

Letting (Â, B̂, Ĉ) be a minimum quotient cut inG0, the three
steps above yield a cut(Â′′, B̂′′, Ĉ′′) that has a nearly optimal
quotient cost and also has a CAST structure, thus proving themain
result of this section. The three steps above apply for0-quotient
cost (i.e. α = 0), but the results easily extend to1-quotient cost
(i.e.,α = 1) by applying Lemma 2.4.

3.2.1 A connected region in the plane
The first step in the proof of the basic structural theorem is to ex-

hibit in G0 a vertex-cut(Â′, B̂′, Ĉ′) that has nearly the same quo-
tient cost as(Â, B̂, Ĉ) and for whichÂ′ corresponds to some “con-
nected region” in the plane. Intuitively, the vertex-cut(Â, B̂, Ĉ)
partitions the plane into connected regions, each associated with
one ofÂ, B̂, Ĉ; a careful rearrangement of the connected regions
associated witĥA andB̂ yields the desired vertex-cut(Â′, B̂′, Ĉ′).
Below we give the formal argument.

We start by labeling each face ofGT by Â if its boundary con-
tains a vertex of̂A, by B̂ if its boundary contains a vertex of̂B, and
by Ĉ if neither event happens. It is easy to verify that every faceof
GT has exactly one label.

Let CC(Â) denote the set of connected components of the faces
labeledÂ (recall Definition 2.1), and similarly for̂B andĈ. Let
CC(GT ) := CC(Â)∪CC(B̂)∪CC(Ĉ) be the set of all these con-
nected regions. Each connected regionR ∈ CC(GT ) corresponds
to a set of vertices inG0, namely,

V (R) := {v ∈ V0 : v is in the boundary of a face inR}. (1)

We define theweight of a connected regionR to be w̃(R) :=∑
v∈V (R)\C w(v). Notice that ignoring the weight of vertices from

C corresponds to0-quotient cost (i.e.,α = 0). For a setS of
connected regions, defineV (S) := ∪R∈SV (R) and w̃(S) :=∑

R∈S w̃(R). We say that a facef is in S if f ∈ R for some
connected regionR ∈ S. It is easy to verify that

w̃(CC(Â)) = w(Â), w̃(CC(B̂)) = w(B̂), w̃(CC(Ĉ)) = 0,

and it then immediately follows that̃w(CC(GT )) = w̃(CC(Â))+

w̃(CC(B̂)) + w̃(CC(Ĉ)) = w(Â ∪ B̂).

PROPOSITION 3.2. There is a partitionCC(GT ) = S∪S̄ such
that the faces ofS form a connected region and the balance be-
tweenS, S̄ corresponds to the balance betweenÂ, B̂ as follows:
min{w̃(S), w̃(S̄)} ≥ 3

4
min{w(Â), w(B̂)}.

PROOF. Without loss of generality assume thatw(Â) ≥ w(B̂)

and letβ := w(B̂)/w(Â ∪ B̂) ≤ 1
2
. We say that two connected

regionsR1, R2 areadjacentif they contain two facesf1 ∈ R1,
f2 ∈ R2 that are adjacent inGT . Apply the following proce-
dure onCC(GT ). Start with S1 = {Rmax} whereRmax :=



argmaxR∈CC(GT ) w̃(R)}. If β > 3
8
w(Â ∪ B̂) then letS2 =

{R′
max} whereR′

max := argmaxR∈CC(GT )\S1
w̃(R)}; otherwise,

setS2 = ∅, thus ignoring it throughout this procedure. Now re-
peatedly add to eitherS1 or S2 a connected regionR ∈ CC(GT )\
(S1 ∪ S2) that is adjacent to at least one connected region inS1

or S2, respectively. Stop this iterative process whenw̃(Si) ≥
max{ 1−β

2
, 1

8
+ β

2
}w(Â∪ B̂) for somei ∈ {1, 2}, lettingS := Si

and S̄ := CC(GT ) \ S. By construction, the faces inS forms a
connected region.

We first claim that at every iteration there exists a connected re-
gion R ∈ CC \(S1 ∪ S2) that is adjacent to some connected re-
gion in eitherS1 or S2. To this end, observe that0 ≤ β ≤ 1

2
,

so whenever̃w(S1), w̃(S2) < max{ 1−β
2

, 1
8

+ β
2
}w(Â ∪ B̂), we

also have that̃w(S1)+ w̃(S2) < max{1−β, 1
4

+β}w(Â∪ B̂) ≤
w̃(CC(GT )), and thusCC(GT )\(S1∪S2) is not empty, i.e., con-
tains at least one connected region. Letf be a face in such a con-
nected region ofCC \S, and letf ′ be a face in a connected region
of S1. Since the set of all faces inGT is connected (in the sense of
Definition 2.1), there is a sequence of facesf = f1, . . . , fk = f ′

such thatfi andfi+1 are adjacent for alli < k. It follows that there
must exist two successive facesfi in CC \(S1 ∪ S2) andfi+1 in
eitherS1 or S2. The claim follows.

The above procedure always terminates since the number of iter-
ations is bounded by the number of connected regions inCC(GT ),
and in turn, by the (finite) number of faces inGT . Finally, some cal-
culation shows thatmin{w̃(S), w̃(S̄)} ≥ 3

4
min{w(Â), w(B̂)}.

In fact, if β ≤ 1
3

then the stronger result thatmin{w̃(S), w̃(S̄)} ≥
min{w(Â), w(B̂)} holds.

Finally, letS, S̄ be as in Proposition 3.2. We use (1) to define the
following subsets ofV0:

Â′ := V (S)\V (S̄), B̂′ := V (S̄)\V (S), Ĉ′ := V (S)∩V (S̄).
(2)

The next easy to verify proposition summarizes the first stepin
the proof of the basic structural theorem.

PROPOSITION 3.3. (Â′, B̂′, Ĉ′) is a vertex-cut ofG0 with Ĉ′ ⊆
Ĉ and min{w(Â′), w(B̂′)} ≥ 3

4
min{w(Â), w(B̂)}, whereÂ′

corresponds to the connected regionS.

3.2.2 A forest of simple cycles
The second step in the proof of the basic structural theorem is

to show thatB̂′ corresponds to a union of connected regions in the
plane, each described by a simple cycle (inGT ), with the impor-
tant property that these simple cycles form a “forest”. Recall that
Â′ andB̂′ are defined in (2) so that they essentially correspond to
S andS̄, respectively. We show that sinceS is a connected region
(by construction), the connected regions ofS̄ are arranged in a “for-
est”. Below we give the formal argument. (Recall the definitions in
Section 3.1.)

Slightly abusing notation, we denote the set of connected com-
ponents of all the faces in the connected regions inS̄ by CC(S̄) :=
CC(∪R∈S̄ CC(R)). It can be shown that for every connected re-
gion R ∈ CC(S̄) there is a directed simple cycleDR such thatR
is exactly the set of faces (ofGT ) that are enclosed byDR. (We
remark that the fact that each cycle is simple relies onS being a
connected region.) LetD(S̄) be the set of directed simple cycles
DR that enclose the connected regionsR ∈ CC(S̄). It is easy to
verify thatD(S̄) is a proper set of cycles that defines (in the sense
of Section 3.1) the vertex-cut(Â′, B̂′, Ĉ′) described in (2).

The description of the cut(Â′, B̂′, Ĉ′) using the directed cycles
D(S̄) allows us to investigate the arrangement of these cycles in

the plane, and prove the following proposition. The main idea is
that the existence of a “cycle of cycles” implies thatS contains at
least two connected regions (see Figure 6).

PROPOSITION 3.4. Let G̃(Ṽ1, Ṽ2, Ẽ) be the auxiliary graph of
D(S̄). Then,G̃ is a forest (i.e., contains no cycles).

S

S

S̄

S̄

S̄

S̄

S̄

S̄

S̄

Figure 6: Cycle of cycles

3.2.3 A shallow tree of simple cycles
The third step in the proof of the basic structural theorem isto

show that the forest̃G must contain a subtree that is shallow (i.e.,
has small depth) and its cycles define a vertex-cut whose quotient
cost is nearly the same (as that of(Â′, B̂′, Ĉ′)). The main idea
here is to remove every2d-th level in the forest̃G (so that we lose
at most1/d of the cut’s weight and do not increase its cost) and then
apply averaging arguments on the resulting connected components.
We can thus prove the following proposition.

PROPOSITION 3.5. Let d ≥ 1 be an integer. Then, there is
a d-CAST inD(S̄) that defines a vertex-cut(Â′′, B̂′′, Ĉ′′) whose
0-quotient cost (i.e.,α = 0) is at most(1 + 1

d
) times that of

(Â′, B̂′, Ĉ′).

We can now prove Theorem 3.1.

PROOF OFTHEOREM 3.1. Let(Â, B̂, Ĉ) be a vertex-cut of min-
imum 0-quotient cost (i.e.,α = 0). The result then follows from
Propositions 3.3 and 3.5.

3.3 Extensions
We can extend Theorem 3.1 in various directions. First, as men-

tioned just prior to Theorem 3.1, forα > 1 we get a factor of
4
3

d+1
d

+ 1 in the general case. The loss in the quotient cost is ac-
tually smaller, if there exists an optimal quotient cut(A∗, B∗, C∗)
with w(C∗) � w(A∗), w(B∗); in particular, in the uniform weight
uniform cost case there is always a cut(A∗, B∗, C∗) with optimal
quotient such thatw(C∗) ≤ O(1/

√
n) ≤ min{w(A∗), w(B∗)}

(see Section 2.2), and thus the loss in the1-quotient cost (i.e., for
α = 1) becomes arbitrarily close to4/3. This result follows by
combining Theorem 3.1 and Lemma 2.3.

Second, for general weights we reduce the loss in the quotient
cost to1 + ε, for arbitrary fixedε > 0, by somewhat relaxing the
structural requirement and allowing a more complicated structure
than a CAST. Technically, we generalize Proposition 3.3 by allow-
ing Â′ (andS) to correspond toO(1/ε) connected regions. The
proof is a modification of that of Proposition 3.2 that distinguishes
between large weight and small weight connected regions.

Third, we show for the uniform cost case that the CAST structure
can be replaced with just one simple cycle (inGT ) at the expense



of a larger constant factor loss in the quotient cost. Technically, we
replace a1-CAST structure with one of its simple cycles.

Finally, we considerb-limited quotient cuts and show that in
the uniform weight uniform cost case the loss in theb-limited 1-
quotient cost is arbitrarily close to1.

PROPOSITION 3.6. If (A∗, B∗, C∗) is an optimalα-quotient
cut for G0 with λw(C∗) ≤ w(A∗), w(B∗) for someλ > 0, then
the factor in Theorem 3.1 can be improved to4

3
d+1

d
(1 + α

λ
).

PROPOSITION 3.7. There exists a vertex-cut(Â′, B̂′, Ĉ′) ofG0

whereÂ′ corresponds toO(1/ε) connected regions,̂C′ ⊆ Ĉ and
min{w(Â′), w(B̂′)} ≥ (1 − ε) min{w(Â), w(B̂)}.

PROPOSITION 3.8. Letα ≥ 0. Then, every uniform cost planar
graphG0 has a vertex-cut that is either defined by a directed cycle
or is trivial such that itsα-quotient cost is within a factor of6 1

3
from the minimum forα ≥ 0.

PROPOSITION 3.9. Let b ≤ 1
3
, α ≥ 0. If (A∗, B∗, C∗) is an

optimal b-limited α-quotient cut withλw(C∗) ≤ w(A∗), w(B∗)
for someλ > 0 for G0, then the factor in Theorem 3.1 can be
improved tod+1

d
(1 + α

λ
) for b-limitedα-quotient cost.

4. ALGORITHM FOR STRUCTURED CUTS
In this section we use the structural theorems of Section 3 to

devise an algorithm for finding in planar graphs a cut with near-
optimal 1-quotient cost (i.e.,α = 1). Given a planar input graph
G, we first fix an embeddingG0 of it in the plane and compute
its face-vertex graphGT (see Section 2). By applying the algo-
rithm described below we then, roughly speaking, search fora d-
CAST structure inGT (see Section 3.1 for definition) with mini-
mum α-quotient. The structural theorems guarantee that a search
restricted tod-CASTs will find a vertex-cut whose1-quotient is
within a small constant factor of the minimum. Formally, we prove
the following theorem.

THEOREM 4.1. Let d ≥ 1 and letG0 be a plane graph. Then,
there is an algorithm that runs in timeO(W · n3+2d) and finds a
vertex-cut(A′, B′, C′) in G0 whose1-quotient cost (i.e.α = 1)
is at most the0-quotient cost of any vertex-cut(A, B, C) that is
defined by ad-CAST inGT , i.e.,

c(C′)

min{w(A′), w(B′)} + w(C′)
≤ c(C)

min{w(A), w(B)} .

Algorithm outline.We start by translating vertex weights in
GT to face weights inGT (Section 4.1); these face weights are de-
fined so that the total weight of the faces enclosed by any simple di-
rected cycle approximates the total weight of the vertices enclosed
by this cycle; actually, the same holds for any proper set of such
cycles. Now, similarly to [18], we construct a search graphGs,
which is just a directed version ofGT with edge weights (Section
4.2); these edge weights are defined so that the total weight of the
edges on the cycle on any simple directed cycle is equal to theto-
tal weight of the faces that this cycle encloses. Finally, our main
routine finds among a certain family of closed walks (i.e., cycles,
but not necessarily simple ones) inGs, a walk that has minimum
cost to weight quotient; here, the weight of a walk is the sum of the
weights of its edges and the cost of a walk is (in principle) the sum
of the costs of the vertices it visits.

This family of walks (defined in Section 4.3) has three important
properties. First, for anyd-CAST there is in this family a corre-
sponding walk whose weight and cost are equal to that of thed-
CAST (Section 4.4). Second, we can efficiently optimize the cost
to weight quotient over this family using dynamic programming
(Section 4.5). However, this family contains also walks that do not
correspond to a CAST, so the third important property is thatfrom
any walk in this family we can extract efficiently a vertex-cut (that
need not be ad-CAST) whose quotient cost is no larger than that
of the whole walk (Section 4.6).

Our algorithm is inspired by those of [19, 20, 18] for finding (or
approximating) the minimum quotient edge-cut, and we pointout
some of the similarities and differences throughout the description.

4.1 Assigning weight to faces
We now translate vertex weights into face weights (inGT ), by

distributing the weight of every vertex fromVT (or actually,V0)
equally among the faces ofGT incident to it. Formally, the weight
of facef of GT is

∑
v∈f w(v)/deg(v), wheredeg(v) is the de-

gree ofv in GT . The analogous transformation for edge-quotient
cuts [19, 20, 18] is simpler, since there each face in the dualof G0

corresponds to a vertex inG0, and is thus assigned the weight of
that vertex. The next proposition shows that the weight transforma-
tion allows, in principle, to approximate the total weight cut by a
cycle (i.e. by a cut that is defined using a cycle) by using the total
weight of the faces that are cut by this cycle.

PROPOSITION 4.2. Let D be a (not necessarily simple) cycle
in GT and letC denote the set of vertices on it. Letl denote the
number of regions inR2 \ D, and letVi andFi denote the sets of
vertices and faces, respectively, in theith region. Then, for allI ⊆
{1, . . . , l}, we havew(∪i∈IVi) ≤ w(∪i∈IFi) ≤ w(∪i∈IVi) +
w(C).

4.2 The Search Graph
Similar to [18], we define thesearch graphGs to be the digraph

obtained fromGT by replacing every undirected edge(u, v) by a
pair of directed edges(u, v) and(v, u). Let the vertices ofGs have
the same cost they have inGT . In the rest of this subsection we
associate weight with the (directed) edges ofGs.

Let T be any spanning tree of the graphGT . Choosing any ver-
tex r on the outer face as a root, orient the tree according to this
embedding. That is, order the children of any vertex in a counter-
clockwise direction; for the root vertexr start with the outer face,
and for any other vertex start with the edge leading to its parent.

The tree edges incident to a vertexv divide the plane immedi-
ately surroundingv into deg(v) regions. We give each such region
a unique labeling as follows: Starting at the root, traversethe tree
in a Depth First Search manner, using the order on children defined
above. Each step in this traversal corresponds to visiting avertex
from either its parent or from a child. Thus, step1 is visiting the
root, step2 is visiting the root’s first child and so on. Each time
a vertex is visited in this traversal, one immediate region around
v, namely, the one between the edges used to enter and to exitv,
is labeled with the traversal’s step number. Formally, for aver-
tex v let e1 be the edge to its parent and lete2, . . . , edegT (v) be
edges to its children, wheredegT (v) is the degree ofv in the tree
T . We then label the region betweenei ande(i+1) mod degT (v)

by the step of traversal at which vertexv is visited for theith time,
denotedt(v, i). See for example Figure 7.

We give weight to every directed edge(u, v) in Gs as follows.
If the underlying undirected edge belongs to the treeT , we define
w(u, v) = 0; otherwise,(u, v) is embedded in some region relative
to each of its endpoints. Lett(u, i) and t(v, j) be the labels of
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Figure 7: Labeling the regions of the treeT .

these regions. Assume without loss of generality thatt(u, i) <
t(v, j), and letw(u, v) be the total weight of the faces enclosed
by the simple cycle that(u, v) closes in the treeT (i.e., take the
unique path inT betweenu andv and add to it the edge(u, v)); let
w(v, u) = −w(u, v). Thus, edges going left-to-right have positive
weight and their reverse edges have negative weight.

Park and Phillips [18] showed that the weight of a simple counter-
clockwise (respectively clockwise) cycle inGs is equal to (respec-
tively, minus) the weight of the faces enclosed by the cycle.

4.3 Walks with pebbles
We now define the family of walks that will be used to prove

Theorem 4.1. We shall also define for each such walk certain quan-
tities such as total weight, true cost, total cost and counted cost.

A walkof lengthk in Gs is a sequence(u1, v1), . . . , (uk, vk) of
(directed) edges, such thatvi = ui+1 for all 1 ≤ i < k. The walk
is closedif vk = u1. (Notice that a closed walk is just a directed
cycle.) A closed walk issimpleif it containsk distinct edges and
k distinct vertices; A non-closed walk issimple if it contains k
distinct edges andk + 1 distinct vertices. For a walkπ, letπei

(for
i = 1, . . . , k) denote theith edge in the walk (namely,(ui, vi)),
and letπi (for i = 1, . . . , k + 1) denote theith vertex in the walk
(namely,ui = vi−1). The total weightof a walkπ of lengthk is
w(π) =

∑k
i=1 w(πei

), and itstotal cost is
∑k

i=1 c(πi). Notice
that in these definitions, if the walk is not simple then some costs
and weights may be counted more than once. We define theactual
costof a walkπ of lengthk as the sum of costs of all thedistinct
vertices in{π1, . . . , πk}. For edge quotient cuts, the total (edge)
cost is used in [18], since there it suffices to seek a simple cycle
in Gs, and for such a walk the total cost is clearly equal to the
actual cost. In contrast, for vertex-cuts we shall seek a walk that
corresponds to a CAST, and thus might visit some vertices more
than once. For such a walk, the total cost might be a poor upper
bound on the actual cost. We thus define below a family of walks
that allows, for a limited number of vertices, additional visits to
these vertices at no additional cost; however, we shall limit these
free visits to be in a counter-clockwise order, without completing a
full cycle.

A d-pebble walkis a walk that uses at mostd pebbles as fol-
lows. In the beginning of the walk alld pebbles are unassigned,
and during the walk a pebble may be assigned (to some vertex) or
unassigned only according to these rules: (i) when the walk enters a
vertexv that has no pebble (assigned to it), the walk must assign to
v one of the unassigned pebbles; (ii) when the walk leaves a vertex
v that has a pebble (assigned to it), the walk may, but does not have
to, unassign the pebble fromv. Of course, one pebble allows to
“traverse” any walk, by simply assigning the pebble upon entrance
to a vertex and then immediately unassigning it when leavingthe

vertex. However, the pebbles allow for a tighter upper boundof the
actual cost of the walk, as follows. Let us call a visit to a vertex that
already has a pebble (assigned to it) afree visit, and let thecounted
costof a walkπ be

∑
c(πi), where the summation is over all the

non-free visits1 ≤ i ≤ k. Clearly, the counted cost of a walk is
always an upper bound on its actual cost.

In d-pebble walks we restrict the free visits to have a certain or-
der in the plane. Specifically, between the moment that a pebble
is assigned tov and the moment in which it is unassigned fromv,
the walk uses edges incident tov only in a counter-clockwise order
aroundv without completing a full cycle (this includes both incom-
ing and outgoing edges). Formally, every pebble is represented by
a tuple〈v, efirst, elast〉, wherev is the vertex to which the pebble is
assigned,efirst is the incoming edge tov that was used by the walk
to assign the pebble tov, andelast is the last edge that was used
by the walk among all edges incident tov (incoming and outgoing
edges). An unassigned pebble is represented by an empty tuple 〈〉.

4.4 A CAST yields a pebble walk
We next show that everyd-CAST yields ad-pebble walk with

a certain correspondence between their weights and costs. Notice
that a directed cycle (in the CAST) may enclose the infinite face in
GT , and then the total weight of a walk along this cycle is negative.

PROPOSITION 4.3. Let (A, B, C) be a cut corresponding to a
d-CAST, for somed ≥ 1. Then, there exists a(d + 1)-pebble
walk with counted costc(C) and with total weightw0 such that
min{|w0|, W − |w0|} ≥ min{w(A), w(B)}. Furthermore, the
length of this walk is at most|ET | ≤ 9n and the total weight up to
any point in the walk is always in the range[−W, W ].

4.5 A dynamic programming algorithm
We now use dynamic programming to find a walk of minimum

counted cost among all(d + 1)-pebble walks of length at most
|ET | ≤ 9n and total weightw ∈ {−W, . . . , W }. Formally, we
define the following dynamic programming tableT . We define
T (l, s, t, {p1, . . . , pd+1}, w) to be the minimum cost of a(d + 1)-
pebble walk of length0 ≤ l ≤ |ET | that starts ats, ends att,
its pebble assignments (at the end of the walk) arep1, . . . , pd+1,
and its total weight is exactlyw ∈ {−W, . . . , W }. Recall that
each pebblepi is represented by a tuple that takes one ofO(n2)
different values.

PROPOSITION 4.4. Every entry forl = 0 can be computed in
timeO(1), and every entry ofT for l + 1 can be computed from
(some of the) entries ofT for l in timeO(n). Thus, we can compute
all entries of the formT (l, v, v, {〈v, efirst, elast〉, 〈〉, . . . , 〈〉}, w)
with1 ≤ l ≤ |ET | andw ∈ {−W, . . . , W } in timeO(W ·n2d+6).

REMARK . The running time can be improved by using specific
properties of the walk guaranteed by Proposition 4.3 in order to
avoid redundancies in the tableT . For instance, the starting vertex
s can be encoded by the first pebble, and the end vertext can en-
code the last (currently used) pebble. This results in an algorithm
that takesO(W · n2d+3) time. The algorithm can be made even
faster by using Dijkstra’s shortest path algorithm, but thedepen-
dency of the running time ond remains the same. The full details
are omitted from this version of the paper and resemble a construc-
tion in [18].

When the tableT is complete, we take the entry that minimizes
T (l, v, v, ∅, w)/ min{|w|, W − |w|} over allv ∈ VT and−W <
w < W . We can compute from this entry ad-pebble walkπ that
has total weightw and counted costT (l, v, v, ∅, w)/min{|w|, W−
|w|}.



4.6 A pebble walk yields a vertex-cut
We now show that any pebble walk (and, in particular, the one

found in the dynamic program) gives rise to a vertex-cut withequal
or smaller quotient. The main hurdle here is that a pebble walk
need not correspond directly to a CAST or any vertex-cut; even if
it does, the total weight of the walk need not correspond to the total
weight that this cut separates. For instance, if the walk is the union
of several directed simple cycles, some faces may be enclosed by
more than one of these (counter-clockwise) cycles.

We shall prove that any pebble walk can be decomposed into
sub-walks such that the counted cost and total weight decompose
in an appropriate way. A careful averaging argument due to [18]
then shows that the quotient in at least one of these sub-walks must
be not larger than that of the complete walk. This decomposition
also ensures that every sub-walk corresponds to a vertex-cut (with
the suitable weight and cost). In fact, this decomposition can be
found efficiently, and thus one can extract from the walk found in
the dynamic program a vertex-cut of small quotient cost. Foredge
quotient cuts, the total (edge) cost is used in [18] and then any
decomposition of the walk into sub-walks clearly decomposes the
total cost appropriately. For quotient vertex-cuts we needto make
sure that the counted cost is decomposed appropriately.

Thenet-countof a facef by a walkπ (in Gs), denotedncπ(f), is
the (net) number of times that the weight of the facef contributes
to w(π), the total weight ofπ. (See Section 4.3 for definition of
w(π).) Thenumber of visitsof a walkπ to a directed edgee (of
Gs), denotednvπ(e), is the number of times thate appears in the
walk π.

For a setA of integers, let∆(A) := max A − min A. For a
closed walkπ, let∆π(Gs) := ∆({ncπ(f) : f a face inGs}). For
a vertexv, let ∆π(v) be the difference between the least-counted
face and the most-counted face among those incident tov, i.e.,
∆π(v) := ∆({ncπ(f) : f ∈ Fv}) whereFv is the set of faces
of Gs incident onv.

Our procedure for decomposing a pebble closed walk into closed
sub-walks can be sketched as follows. First, we label each facef
of Gs with ncπ(f). Then, we create a setS that includes all faces
of Gs that have the highest label. ViewingS as a cut (every vertex
incident with a face inS is either inC or A, and everything else
is in B) we check if its quotient is no higher than that found for
π in T . If so, then we are done (S defines the sought cut). If the
quotient ofS is worse, then we decrease the labels of faces inS
by 1. Now we repeat the process by selecting a new setS in the
resulting graph and so forth.

We next argue in Proposition 4.5 about two properties of this
decomposition procedure. Then, the first property and Proposi-
tion 4.6 together imply that the counted cost of the walk is decom-
posed appropriately to the sub-walks. (The appropriate decomposi-
tion of the total weight is immediate.) Finally, the second property
and Proposition 4.7 together imply that every such sub-walkcorre-
sponds to a vertex-cut.

PROPOSITION 4.5. Every closed pebble walkπ in Gs is the
union of closed (but not necessarily pebble) walksπj , such that (i)
every vertexv appears in at most∆π(v) of these walks, and (ii)
∆πj (Gs) ≤ 1 for every walkπj .

PROPOSITION 4.6. Letπ be a closed pebble walk. Then, every
vertexv contributes its cost to the counted cost ofπ at least∆π(v)
times.

PROPOSITION 4.7. Every walkπ with ∆π(Gs) ≤ 1 defines a
vertex-cut(A, B, C) such thatc(C) is the actual cost ofπ and
min{w(A), w(B)} + w(C) ≥ min{w(π), W − w(π)}.

By combining the three propositions above and the averaging
arguments of Park and Phillips [18, Theorem 2.2] we obtain the
next corollary.

COROLLARY 4.8. Letπ be a closed pebble walk with total weight
w′ and counted costc′. Then, there is inGT a vertex-cut whose1-
quotient cost (i.e.,α = 1) is at most c′

min{|w′|,W−|w′|} .

Finally, we prove Theorem 4.1.

PROOF OFTHEOREM 4.1. Let (A,B, C) be a cut defined by
a d-CAST and consider the algorithm described throughout Sec-
tion 4. By Proposition 4.3 there exists a(d + 1)-pebble walkπ of
total weightw0 and counted costc0, such that c0

min{|w0|,W−|w0|} ≤
c(C)

min{w(A),w(B)} . By the definition of the dynamic programming
table, there isv ∈ VT andl ≤ |ET | such thatT (l, v, v, ∅, w0) ≤
c(C). Let π′ be the(d + 1)-pebble walk found by the dynamic
program, and denote its total weight byw′ and its counted cost by
c′. Then, we have that c′

min{|w′|,W−|w′|} ≤ c0
min{|w0|,W−|w0|} . We

conclude by Corollary 4.8 that the algorithm finds inGT a vertex-
cut whose1-quotient cost is at most c′

min{|w′|,W−|w′|} , and in par-

ticular is at most1 + 1
λ

times that of(A,B, C).

5. IMPLICATIONS AND APPLICATIONS

5.1 Quotient vertex-cuts
Combining Theorem 3.1, and Theorem 4.1 we obtain the follow-

ing result.

THEOREM 5.1. There is an algorithm that runs in timeO(W ·
n3+2d) and finds in plane graphs a vertex-cut whose1-quotient
cost is within a factor of1 + 4

3
d+1

d
from the minimum. If, in ad-

dition, there is a minimum1-quotient cost vertex-cut(A∗, B∗, C∗)
with λw(C∗) ≤ min{w(A∗), w(B∗)} then the factor is at most
4
3

d+1
d

(1 + 1
λ
).

PROOF. Let(A∗, B∗, C∗) be a vertex-cut of minimum1-quotient
cost. We start by proving the second part of the theorem. Assume
thatλw(C∗) ≤ min{w(A∗), w(B∗)}. Then, this cut’s0-quotient
cost is c(C∗)

min{w(A∗),w(B∗)} ≤ (1+1/λ)c(C∗)
min{w(A∗),w(B∗)}+w(C)

, so by Theo-
rem 3.1 there is a vertex-cut(A, B, C) that is defined by ad-CAST
in GT and its0-quotient cost is at most4

3
d+1

d
c(C∗)

min{w(A∗),w(B∗)} .
Theorem 4.1 then guarantees that the algorithm of Section 4 finds
a vertex-cut whose1-quotient cost is not larger, namely, at most
4
3

d+1
d

(1 + 1
λ
) c(C∗)
min{w(A∗),w(B∗)}+w(C)

.
Now, for the first part, ifλw(C∗) ≥ min{w(A∗), w(B∗)} then

there is a trivial cut,(A, B, C), of 1-quotient costc(C)
w(C)

≤ c(C∗)
w(C∗)

≤
(1+λ)c(C∗)

min{w(A∗),w(B∗)}+w(C)
, and an exhaustive search finds such a cut

in timeO(n). If λw(C∗) ≤ min{w(A∗), w(B∗)} then the above
algorithm finds a cut whose1-quotient cost is within a factor of
4
3

d+1
d

(1 + 1
λ
) from the minimum.

Therefore, for anyλ > 0, we can approximate the minimum1-
quotient cost within a factor ofmax{1 + λ, 4

3
d+1

d
(1 + 1

λ
)}. To

minimize this term we chooseλ = 4
3

d+1
d

, and then the approxima-
tion ratio we obtain is1 + 4

3
d+1

d
.

Theorem 5.1 can be extended as follows tob-limited α-quotient
cuts using Proposition 3.9 and extensions to Corollary 4.8 and The-
orem 4.1.

THEOREM 5.2. Let b ≤ 1
3
. There is an algorithm that runs in

timeO(W · n3+2d) and finds in plane graphs a vertex-cut whose



b-limited1-quotient cost is within a factor of1+ d+1
d

from the min-
imum. If, in addition, there is a minimumb-limited1-quotient cost
vertex-cut(A∗, B∗, C∗) with λw(C∗) ≤ min{w(A∗), w(B∗)}
then the factor is at mostd+1

d
(1 + 1

λ
).

5.2 From quotient cuts to separators
The following shows that we can find a pseudo-approximation to

a vertex separator using an approximation algorithm for a minimum-
quotient vertex-cut.

THEOREM 5.3. Let 1 ≥ b ≥ b′ > 0 and0 < α ≤ 1 such that
b′/α ≤ min{ 1

3
, b}. Given aρ-approximation algorithm for min-

imumb-limited α-quotient cost vertex-cuts one can find a(b′, α)-
balanced cut that is within a factor of ρ

b−b′/α
from the minimum

(b, α)-balanced cut.

As a simple result, for uniform weight uniform cost planar graphs,
settingα = 1, b = 1

3
and b′ = 1

6
, we obtain a5

6
-balanced cut

whose cost is within a factor of6d+1
d

(1 + O(1)√
n

) from the opti-
mal2/3-balanced separator. This is done using our algorithm from
Section 4 with total running timeO(n2d+5).

6. CONCLUDING REMARKS
In most of this paper we restricted ourselves to finding a bounded

depth tree of cycles (a CAST), which gave rise to a factor of4
3

in
our approximation (see Theorem 3.1). However, Proposition3.7
suggests that a more general structure allows to discard this fac-
tor. We suspect that this structural result can be exploitedalgo-
rithmically by a suitable extension of our dynamic programming
algorithm, yielding a polynomial-time approximation scheme for
the problem of minimum quotient vertex-cuts in planar graphs of
uniform cost and uniform weight. We hope to present such an al-
gorithm in the full version of this paper.

One application known for approximate vertex separators and
quotient vertex-cuts are closely related to minimum width tree de-
compositions (of a graph) (aka treewidth) [21]. A known method
for finding a tree decomposition of near optimal width is to recur-
sively use a balanced vertex-cut algorithm, see e.g. [3]). Using this
technique and Proposition 3.8 we can can find for planar graphs a
tree decomposition whose width is within a constant factor from
the optimal. The constant factor that we achieve is worse than the
1.5 given by an algorithm of [22], but we suspect that its running
time can be made better than theO(n4) that is reported in [22]. We
hope to present such a result in the full version of this paper.
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