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ABSTRACT
An outstanding open question [51, Question #5] asks to
characterize metric spaces in which distances can be esti-
mated using efficient sketches. Specifically, we say that a
sketching algorithm is efficient if it achieves constant ap-
proximation using constant sketch size. A well-known result
of Indyk (J. ACM, 2006) implies that a metric that admits a
constant-distortion embedding into `p for p ∈ (0, 2] also ad-
mits an efficient sketching scheme. But is the converse true,
i.e., is embedding into `p the only way to achieve efficient
sketching?

We address these questions for the important special case
of normed spaces, by providing an almost complete charac-
terization of sketching in terms of embeddings. In partic-
ular, we prove that a finite-dimensional normed space al-
lows efficient sketches if and only if it embeds (linearly) into
`1−ε with constant distortion. We further prove that for
norms that are closed under sum-product, efficient sketching
is equivalent to embedding into `1 with constant distortion.
Examples of such norms include the Earth Mover’s Distance
(specifically its norm variant, called Kantorovich-Rubinstein
norm), and the trace norm (a.k.a. Schatten 1-norm or the
nuclear norm). Using known non-embeddability theorems
for these norms by Naor and Schechtman (SICOMP, 2007)
and by Pisier (Compositio. Math., 1978), we then conclude
that these spaces do not admit efficient sketches either, mak-
ing progress towards answering another open question [51,
Question #7].

Finally, we observe that resolving whether “sketching is
equivalent to embedding into `1 for general norms” (i.e.,
without the above restriction) is equivalent to resolving a
well-known open problem in Functional Analysis posed by
Kwapien in 1969.
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1. INTRODUCTION
One of the most exciting notions in the modern algo-

rithm design is that of sketching, where an input is summa-
rized into a small data structure. Perhaps the most promi-
nent use of sketching is to estimate distances between points,
one of the workhorses of similarity search. For example,
some early uses of sketches have been designed for detect-
ing duplicates and estimating resemblance between docu-
ments [17, 18, 22]. Another example is Nearest Neighbor
Search, where many algorithms rely heavily on sketches,
under the labels of dimension reduction (like the Johnson-
Lindenstrauss Lemma [37, 30]) or Locality-Sensitive Hash-
ing (see e.g. [33, 45, 4]). Sketches see widespread use in
streaming algorithms, for instance when the input implic-
itly defines a high-dimensional vector (via say frequencies
of items in the stream), and a sketch is used to estimate
the vector’s `p norm. The situation is similar in compres-
sive sensing, where acquisition of a signal can be viewed
as sketching. Sketching—especially of distances such as `p
norms—was even used to achieve improvements for classical
computational tasks: see e.g. recent progress on numerical
linear algebra algorithms [68], or dynamic graph algorithms
[2, 40]. Since sketching is a crucial primitive that can lead
to many algorithmic advances, it is important to understand
its power and limitations.

A primary use of sketches is for distance estimation be-
tween points in a metric space (X, dX), such as the Ham-
ming space. The basic setup here asks to design a sketching
function sk : X → {0, 1}s, so that the distance dX(x, y) can
be estimated given only the sketches sk(x), sk(y). In the
decision version of this problem, the goal is to determine
whether the inputs x and y are “close” or “far”, as formalized
by the Distance Threshold Estimation Problem [61], denoted
DTEPr(X,D), where, for a threshold r > 0 and approxima-
tion D ≥ 1 given as parameters in advance, the goal is to
decide whether dX(x, y) ≤ r or dX(x, y) > Dr. Throughout,
it will be convenient to omit r from the subscript.1 Efficient
sketches sk almost always need to be randomized, and hence
we allow randomization, requiring (say) 90% success proba-
bility.

The diversity of applications gives rise to a variety of
natural and important metrics M for which we want to
solve DTEP: Hamming space, Euclidean space, other `p
norms, the Earth Mover’s Distance, edit distance, and so
forth. Sketches for Hamming and Euclidean distances are
now classic and well-understood [33, 45]. In particular,

1When X is a normed space it suffices to consider r = 1 by
simply scaling the inputs x, y.



both are “efficiently sketchable”: one can achieve approx-
imation D = O(1) using sketch size s = O(1) (most im-
portantly, independent of the dimension of X). Indyk [32]
extended these results to efficient sketches for every `p norm
for p ∈ (0, 2]. In contrast, for `p-spaces with p > 2, efficient
sketching (constant D and s) was proved impossible using
information-theoretic arguments [61, 12]. Extensive subse-
quent work investigated sketching of other important metric
spaces,2 or refined bounds (like a trade-off between D and
s) for “known” spaces.3

These efforts provided beautiful results and techniques
for many specific settings. Seeking a broader perspective,
a foundational question has emerged [51, Question #5]:

Question 1. Characterize metric spaces which admit ef-
ficient sketching.

To focus the question, efficient sketching will mean constant
D and s for us. Since its formulation circa 2006, progress
on this question has been limited. The only known charac-
terization is by [31] for distances that are decomposable by
coordinates, i.e., dX(x, y) =

∑
i ϕ(xi, yi) for some ϕ.

1.1 The embedding approach
To address DTEP in various metric spaces more system-

atically, researchers have undertaken the approach of metric
embeddings. A metric embedding of X is a map f : X → Y
into another metric space (Y, dY ). The distortion of f is the
smallest D′ ≥ 1 for which there exists a scaling factor t > 0
such that for every x, y ∈ X

dY (f(x), f(y)) ≤ t · dX(x, y) ≤ D′ · dY (f(x), f(y)).

If the target metric Y admits sketching with parameters D
and s, then X admits sketching with parameters DD′ and
s, by the simple composition sk′ : x 7→ sk(f(x)). This ap-
proach of “reducing” sketching to embedding has been very
successful, including for variants of the Earth Mover’s Dis-
tance [22, 34, 24, 54, 5], and for variants of edit distance [13,
58, 23, 6, 29, 53, 28, 27]. The approach is obviously most
useful when Y itself is efficiently sketchable, which holds for
all Y = `p, p ∈ (0, 2] [32], and in fact the embeddings men-
tioned above are all into `1, except for [6] which employs a
more complicated target space. We remark that in many
cases the distortion D′ achieved in the current literature is
not constant and depends on the “dimension” of X.

Extensive research on embeddability into `1 has resulted
in several important distortion lower bounds. Some address
the aforementioned metrics [41, 54, 44, 8], while others deal
with metric spaces arising in rather different contexts such
as Functional Analysis [59, 25, 26], or Approximation Algo-
rithms [49, 9, 43, 42]. Nevertheless, obtaining (optimal) dis-
tortion bounds for `1-embeddability of several metric spaces
of interest, are still well-known open questions [50].

Yet sketching is a more general notion, and one may hope
to achieve better approximation by bypassing embeddings

2Other metric spaces include edit distance [10, 13, 58, 8]
and its variants [29, 53, 28, 27, 23, 6], the Earth Mover’s
Distance in the plane or in hypercubes [22, 34, 24, 41, 5,
3], cascaded norms of matrices [36], and the trace norm of
matrices [47].
3These refinements include the Gap-Hamming-Distance
problem [67, 35, 19, 20, 21, 63, 65], and LSH in `1 and
`2 spaces [52, 57].

into `1. As mentioned above, some limited success in by-
passing an `1-embedding has been obtained for a variant of
edit distance [6], albeit with a sketch size depending mildly
on the dimension of X. Our results disparage these hopes,
at least for the case of normed spaces.

1.2 Our results
Our main contribution is to show that efficient sketcha-

bility of norms is equivalent to embeddability into `1−ε with
constant distortion. Below we only assert the “sketching
=⇒ embedding” direction, as the reverse direction follows
from [32], as discussed above.

Theorem 1. Let X be a finite-dimensional normed space,
and suppose that 0 < ε < 1/3. If X admits a sketching
algorithm for DTEP(X,D) for approximation D > 1 with
sketch size s, then X linearly embeds into `1−ε with distor-
tion D′ = O(sD/ε).

One can ask whether it is possible to improve Theorem 1
by showing that X, in fact, embeds into `1. Since many non-
embeddability theorems are proved for `1, such a statement
would lift such results to lower bounds for sketches. Indeed,
we show results in this direction too. First of all, the above
theorem also yields the following statement.

Theorem 2. Under the conditions of Theorem 1, X lin-
early embeds into `1 with distortion O(sD · log(dimX)).

We would like however a stronger statement: efficient
sketchability for norms is equivalent to embeddability into `1
with constant distortion (i.e., independent of the dimension
of X as above). Such a stronger statement in fact requires
the resolution of an open problem posed by Kwapien in 1969
(see [39, 14]). To be precise, Kwapien asks whether every
finite-dimensional normed space X that embeds into `1−ε
for 0 < ε < 1 with distortion D0 ≥ 1 must also embed into
`1 with distortion D1 that depends only on D0 and ε but not
on the dimension of X (this is a reformulation of the finite-
dimensional version of the original Kwapien’s question). In
fact, by Theorem 1, the “efficient sketching =⇒ embedding
into `1 with constant distortion” statement is equivalent to a
positive resolution of the Kwapien’s problem. Indeed, for the
other direction, observe that a potential counter-example to
the Kwapien’s problem must admit efficient sketches by [32]
but is not embeddable into `1.

To bypass the resolution of the Kwapien’s problem, we
prove the following variant of the theorem using a result
of Kalton [39]: efficient sketchability is equivalent to `1-
embeddability with constant distortion for norms that are
“closed” under sum-products. A sum-product of two normed
spaces X and Y , denoted X ⊕`1 Y , is a normed space de-
rived from X ×Y by setting ‖(x, y)‖ = ‖x‖+ ‖y‖. It is easy
to verify that `1, the Earth Mover’s Distance, and the trace
norm are all closed under taking sum-products (potentially
with an increase in the dimension). Again, we only need to
show the “sketching =⇒ embedding” direction, as the re-
verse direction follows from [32]. We discuss the application
of this theorem to the Earth Mover’s Distance in Section 1.3.

Theorem 3. Let (Xn)∞n=1 be a sequence of finite-dimensional
normed spaces. Suppose that for every i1, i2 ≥ 1 there exists
m = m(i1, i2) ≥ 1 such that Xi1 ⊕`1 Xi2 embeds isometri-
cally into Xm. Assume that every Xn admits a sketching



algorithm for DTEP(Xn, D) for fixed approximation D > 1
with fixed sketch size s (both independent of n). Then, every
Xn linearly embeds into `1 with bounded distortion (inde-
pendent of n).

Overall, we almost completely characterize the norms that
are efficiently sketchable, thereby making a significant progress
on Question 1. In particular, our results suggest that the em-
bedding approach (embed into `p for some p ∈ (0, 2], and use
the sketch from [32]) is essentially unavoidable for norms. It
is interesting to note that for general metrics (not norms)
the implication “efficient sketching =⇒ embedding into `1
with constant distortion” is false: for example the Heisen-
berg group embeds into `2-squared (with bounded distor-
tion) and hence is efficiently sketchable, but it is not em-
beddable into `1 [46, 25, 26] (another example of this sort is
provided by Khot and Vishnoi [43]). At the same time, we
are not aware of any counter-example to the generalization
of Theorem 1 to general metrics.

1.3 Applications
To demonstrate the applicability of our results to concrete

questions of interest, we consider two well-known families of
normed spaces, for which we obtain the first non-trivial lower
bounds on the sketching complexity.

Trace norm. Let Tn be the vector space Rn×n (all real
square n × n matrices) equipped with the trace norm (also
known as the nuclear norm and Schatten 1-norm), which is
defined to be the sum of singular values. It is well-known
that Tn embeds into `2 (and thus also into `1) with distor-
tion

√
n (observe that the trace norm is within

√
n from

the Frobenius norm, which embeds isometrically into `2).
Pisier [59] proved a matching lower bound of Ω(

√
n) for dis-

tortion of any embedding of Tn into `1.
This non-embeddability result, combined with our Theo-

rem 2, implies a sketching lower bound for the trace norm.
Before, only lower bounds for specific types of sketches (lin-
ear and bilinear) were known [47].

Corollary 1. For any sketching algorithm for DTEP(Tn, D)
with sketch size s the following bound must hold:

sD = Ω

( √
n

logn

)
.

The Earth Mover’s Distance. The (planar) Earth Mover’s
Distance (also known as the transportation distance, Wasserstein-
1 distance, and Monge-Kantorovich distance) is the vector

space EMDn = {p ∈ R[n]2 :
∑
i pi = 0} endowed with

the norm ‖p‖EMD defined as the minimum cost needed to
transport the “positive part” of p to the “negative part” of p,
where the transportation cost per unit between two points
in the grid [n]2 is the `1-distance between them (for a for-
mal definition see [54]). It is known that this norm embeds
into `1 with distortion O(logn) [34, 22, 54], and that any
`1-embedding requires distortion Ω(

√
logn) [54].

We obtain the first sketching lower bound for EMDn,
which in particular addresses a well-known open question
[51, Question #7]. Its proof is a direct application of Theo-
rem 3 (which we can apply, since EMDn is obviously closed
under taking sum-products), to essentially “upgrade” the
known non-embeddability into `1 [54] to non-sketchability.
Strictly speaking, EMDn is a generalization of the version

of EMD metric commonly used in computer science applica-
tions: given two weighted sets A,B ⊂ [n]2 of the same total
weight, their EMD distance is the min-cost matching be-
tween A and B. Nevertheless we show in the full version that
efficient sketching of EMD on weighted sets implies efficient
sketching of the EMD norm. Hence, the non-sketchability
of EMDn norm applies to EMD on weighted sets as well.

Corollary 2. No sketching algorithm for DTEP(EMDn, D)
can achieve approximation D and sketch size s that are con-
stant (independent of n).

The reason we can not apply Theorem 2 and get a clean
quantitative lower bound for sketches of EMDn is the fac-
tor log(dimX) in the statement of Theorem 2. Indeed, the
lower bound on the distortion of an embedding of EMDn

into `1 proved in [54] is Ω(
√

logn), which is smaller than
log(dimX) = Θ(logn).

1.4 Other related work
Another direction for “characterization” is one for stream-

ing algorithms, where we are given a vector x ∈ Rn under
updates of the form (i, δ), with the semantics that the coor-
dinate i has to be increased by δ ∈ R.

There are two known results in this vein. First, [16] char-
acterized the streaming complexity of computing the sum∑
i ϕ(xi), for some fixed ϕ (e.g., ϕ(x) = x2 for `2 norm),

when the updates are positive. They gave a precise prop-
erty of ϕ that determines whether the complexity of the
problem is small. Second, [48] showed that, in certain set-
tings, streaming algorithms may as well be linear, i.e., the
sketch f(x) = Ax for a matrix A. The size of the sketch is
increased by a factor logarithmic in the dimension of x.

1.5 Proof overview
Following common practice, we think of sketching as a

communication protocol. In fact, our results hold for pro-
tocols with an arbitrary number of rounds (and access to
public randomness).

Our proof of Theorem 1 can be divided into two parts:
information-theoretic and analytic. First, we use information-
theoretic tools to convert an efficient protocol for DTEP(X,D)
into a so-called threshold map from X to a Hilbert space.
Our notion of a threshold map can be viewed as a very
weak definition of embeddability (see Definition 4 for de-
tails). Second, we use techniques from nonlinear functional
analysis to convert a threshold map to a linear map into
`1−ε.

Information-theoretic part. To get a threshold map
from a protocol for DTEP(X,D), we proceed in three steps.
First, using the fact that X is a normed space, we are able
to give a good protocol for DTEP(`k∞(X), Dk) (Lemma 1).
The space `k∞(X) is a product of k copies of X with the norm
‖(x1, . . . , xk)‖ = maxi ‖xi‖. Then, invoking the main result
from [7], we conclude non-existence of certain Poincaré-type
inequalities for X (Theorem 6, in the contrapositive).

Finally, we use convex duality together with a compact-
ness argument to conclude the existence of a desired thresh-
old map from X to a Hilbert space (Lemma 2, again in the
contrapositive).

Analytic part. We proceed from a threshold map by up-
grading it to a uniform embedding (see Definition 1) of X



into a Hilbert space (Theorem 7). For this we adapt argu-
ments from [38, 60]. We use two tools from nonlinear func-
tional analysis: an extension theorem for 1/2-Hölder maps
from a (general) metric space to a Hilbert space [66] (Theo-
rem 8), and a symmetrization lemma for maps from metric
abelian groups to Hilbert spaces [1] (Lemma 4).

Then we convert a uniform embedding of X into a Hilbert
space to a linear embedding into `1−ε by applying the result
of Aharoni, Maurey and Mityagin [1] together with the result
of Nikishin [56].

To prove a quantitative version of this step, we “open the
black boxes” of [1] and [56], and thus obtain explicit bounds
on the distortion of the resulting map. We accomplish this
in the full version.

Embeddings into `1. To prove Theorem 2 (which has
dependence on the dimension of X), we note it is a simple
corollary of Theorem 1 and a result of Zvavitch [69], which
gives a dimension reduction for subspaces of `1−ε.

Norms closed under sum-product. Finally, we prove
Theorem 3 — embeddability into `1 for norms closed under
sum-product — by proving and using a finitary version of
the theorem of Kalton [39] (Lemma 5), instead of invoking
Nikishin’s theorem as above. We prove the finitary version
by reducing it to the original statement of Kalton’s theorem
via a compactness argument.

Let us point out that Naor and Schechtman [54] showed
how to use (the original) Kalton’s theorem to upgrade a
uniform embedding of EMDn into a Hilbert space to a lin-
ear embedding into `1 (they used this reduction to show
uniform non-embeddability of EMDn). Their proof used
certain specifics of EMD. In contrast, to get Theorem 3 for
general norms, we seem to need a finitary version of Kalton’s
theorem.

We also note that in Theorem 1, Theorem 2 and The-
orem 3, we can conclude embeddability into `d1−ε and `d1
respectively, where d is near-linear in the dimension of the
original space. This conclusion uses the known dimension
reduction theorems for subspaces from [64, 69].

2. PRELIMINARIES
We remind a few definitions and standard facts from func-

tional analysis that will be useful for our proofs. A central
notion in our proofs is the notion of uniform embeddings,
which is a weaker version of embeddability.

Definition 1. For two metric spaces X and Y we say
that a map f : X → Y is a uniform embedding, if there exist
two non-decreasing functions L,U : R+ → R+ such that for
every x1, x2 ∈ X one has L(dX(x1, x2)) ≤ dY (f(x1), f(x2)) ≤
U(dX(x1, x2)), U(t) → 0 as t → 0 and L(t) > 0 for every
t > 0. The functions L(·) and U(·) are called moduli of the
embedding.

Definition 2. An inner product space is a real vector
space X together with an inner product 〈·, ·〉 : X : X → R,
which is a symmetric positive-definite bilinear form.

Any inner product space is a normed space: we can set
‖x‖ =

√
〈x, x〉. For a normed space X we denote BX its

closed unit ball.

Definition 3. A Hilbert space X is an inner product
space that is complete as a metric space.

The main example of a Hilbert space is `2: the space of all
real sequences {xn} with

∑
i x

2
i <∞, where the dot product

is defined as

〈x, y〉 =
∑
i

xiyi.

Finally, we denote dimX the dimension of a finite-dimension
vector space X.

3. FROM SKETCHES TO UNIFORM EM-
BEDDINGS

Our main technical result shows that, for a finite-dimensional
normed space X, good sketches for DTEP(X,D) imply a
good uniform embedding of X into a Hilbert space (Defini-
tion 1). Below is the formal statement.

Theorem 4. Suppose a finite-dimensional normed space
X admits a public-coin randomized communication protocol
for DTEP(X,D) of size s for approximation D > 1. Then,
there exists a map f : X → H to a Hilbert space such that
for all x1, x2 ∈ X,

min

{
1,
‖x1 − x2‖X

s ·D

}
≤ ‖f(x1)−f(x2)‖H ≤ K·‖x1−x2‖1/2X ,

where K > 1 is an absolute constant.

Theorem 4 implies a qualitative version of Theorem 1 us-
ing the results of Aharoni, Maurey, and Mityagin [1] and
Nikishin [56] (see Theorem 5).

Theorem 5 ([1, 56]). For every fixed 0 < ε < 1, any
finite-dimensional normed space X that is uniformly embed-
dable into a Hilbert space is linearly embeddable into `1−ε
with a distortion that depends only on ε and the moduli of
the assumed uniform embedding.

To prove the full (quantitative) versions of Theorems 1
and 2, we“open the black boxes”of [1, 56] in the full version.

In the rest of this section, we prove Theorem 4 according
to the outline in Section 1.5, putting the pieces together in
Section 3.4.

3.1 Sketching implies the absence of Poincaré
inequalities

Sketching is often viewed from the perspective of a two-
party communication complexity. Alice receives input x,
Bob receives y, and they need to communicate to solve the
DTEP problem. In particular, a sketch of size s implies
a communication protocol that transmits s bits: Alice just
sends her sketch sk(x) to Bob, who computes the output of
DTEP (based on that message and his sketch sk(y)). We
assume here a public-coins model, i.e., Alice and Bob have
access to a common (public) random string that determines
the sketch function sk.

To characterize sketching protocols, we build on results
of Andoni, Jayram and Pǎtraşcu [7, Sections 3 and 4]. This
works in two steps: first, we show that a protocol for DTEP(X,D)
implies a sketching algorithm for DTEP(`k∞(X), kD), with
a loss of factor k in approximation (Lemma 1, see the proof
in the end of the section). As usual, `k∞(X) is a normed
space derived from X, by taking the vector space Xk and
letting the norm of a vector (x1, . . . xk) ∈ Xk be the maxi-
mum of the norms of its k components. The second step is



to apply a result from [7] (Theorem 6), which asserts that
sketching for `k∞(X) precludes certain Poincaré inequalities
for the space X.

Lemma 1. Let X be a finite-dimensional normed space
that for some D ≥ 1 admits a communication protocol for
DTEP(X,D) of size s. Then for every integer k, the space
`k∞(X) admits sketching with approximation kD and sketch
size s′ = O(s).

Proof. Fix a threshold t > 0, and recall that we de-
fined the success probability of sketching to be 0.9. By
our assumption, there is a sketching function sk for X that
achieves approximation D and sketch size s for threshold
kt. Now define a “sketching” function sk′ for `k∞(X) by
choosing random signs ε1, . . . , εk ∈ {±1}, letting sk′ : x 7→
sk(
∑k
i=1 εixi), and using the same decision procedure used

by sk (for X).
Now to examine the performance of sk′, consider x, y ∈

`k∞(X). If their distance is at most t, then we always have

that ‖
∑k
i=1 εixi−

∑k
i=1 εiyi‖ ≤

∑k
i=1‖xi−yi‖ ≤ kt (i.e., for

every realization of the random signs). Thus with probabil-
ity at least 0.9 the sketch will declare that x, y are “close”.

If the distance between x, y is greater than kD · t, then
for some coordinate, say i = 1, we have ‖x1 − y1‖ > kD · t.
Letting z =

∑
i≥2 εi(xi − yi), we can write ‖

∑k
i=1 εixi −∑k

i=1 εiyi‖ = ‖ε1(x1−y1)+z‖ = ‖(x1−y1)+ε1z‖. The last
term must be at least ‖x1−y1‖ under at least one of the two
possible realizations of ε1, because by the triangle inequality
2‖x1−y1‖ ≤ ‖(x1−y1)+z‖+‖(x1−y1)−z‖. We see that with

probability 1/2 we have ‖
∑k
i=1 εixi −

∑k
i=1 εiyi‖ ≥ ‖x1 −

y1‖ > D·kt, and thus with probability at least 1/2·0.9 = 0.45
the sketch will declare that x, y are“far”. This last guarantee
is not sufficient for sk′ to be called a sketch, but it can easily
be amplified.

The final sketch sk′′ for `k∞(X) is obtained by O(1) inde-
pendent repetitions of sk′, and returning “far” if at least 0.3-
fraction of the repetitions come up with this decision. These
repetitions amplify the success probability to 0.9, while in-
creasing the sketch size to O(s).

We now state the theorem of [7] that we use (in the con-
trapositive).

Theorem 6 ([7]). Let X be a metric space, and fix r >
0, D ≥ 1. Suppose there are α > 0, β ≥ 0, and two sym-
metric probability measures µ1, µ2 on X ×X such that

• The support of µ1 is finite and is only on pairs with
distance at most r;

• The support of µ2 is finite and is only on pairs with
distance greater than Dr; and

• For every f : X → B`2 (where B`2 is the unit ball of
`2),

E
(x,y)∼µ1

‖f(x)−f(y)‖2 ≥ α· E
(x,y)∼µ2

‖f(x)−f(y)‖2 −β.

Then for every integer k, the communication complexity
of DTEP(`k∞(X), D) with probability of error δ0 > 0 is at
least Ω(k) ·

(
α(1− 2

√
δ0)− β

)
.

We remark that [7] does not explicitly discuss protocols
with public randomness, but rather private-coin protocols.

While one can often use Newman’s theorem [55] to extend
such lower bounds to public coin protocols, we cannot afford
to apply it here. Nonetheless, communication bounds that
are based on information complexity (as in [7] or [11]) extend
“black box” to public-coin protocols, see e.g. the argument
in [15]. For completeness, we describe the entire reduction
for our setting in the full version of the paper.

3.2 The absence of Poincaré inequalities im-
plies threshold maps

We now prove that non-existence of Poincaré inequalities
implies the existence a “threshold map”, as formalized in
Lemma 2 below. First we define the notion of threshold
maps.

Definition 4. A map f : X → Y between metric spaces
(X, dX) and (Y, dY ) is called an (s1, s2, τ1, τ2, τ3)-threshold
map for 0 < s1 < s2, 0 < τ1 < τ2 < τ3, if for all x1, x2 ∈ X:

• if dX(x1, x2) ≤ s1, then dY (f(x1), f(x2)) ≤ τ1;

• if dX(x1, x2) ≥ s2, then dY (f(x1), f(x2)) ≥ τ2; and

• dY (f(x1), f(x2)) ≤ τ3.

Again, it is more convenient to prove the contrapositive
statement:

Lemma 2. Suppose X is a metric space that does not al-
low an (s1, s2, τ1, τ2,+∞)-threshold map to a Hilbert space.
Then, for every δ > 0 there exist two symmetric probability
measures µ1, µ2 on X ×X such that

• The support of µ1 is finite and is only on pairs with
distance at most s1;

• The support of µ2 is finite and is only on pairs with
distance at least s2; and

• For every f : X → B`2 ,

E
(x,y)∼µ1

‖f(x)− f(y)‖2

≥
(
τ1
τ2

)2

· E
(x,y)∼µ2

‖f(x)− f(y)‖2 − δ.

During the course of the proof, we denote
(
X
2

)
the set of

all unordered pairs {x, y} with x, y ∈ X, x 6= y. We prove
Lemma 2 via the following three claims. The first one uses
standard arguments about embeddability of finite subsets
(see, e.g., Proposition 8.12 in [14]). For the proof see the
full version of the paper.

Claim 1. For every metric space X and every 0 < s1 <
s2, 0 < τ1 < τ2 < τ3 there exists an (s1, s2, τ1, τ2, τ3)-
threshold map of X to a Hilbert space iff the same is true
for every finite subset of X.

Claim 2. Suppose that (X, dX) is a finite metric space
and 0 < s1 < s2, 0 < τ1 < τ2 < τ3. Assume that there is
no (s1, s2, τ1, τ2, τ3)-threshold map of X to `2. Then, there
exist two symmetric probability measures µ1, µ2 on X × X
such that

• µ1 is supported only on pairs with distance at most s1,
while µ2 is supported only on pairs with distance at
least s2; and



• for every f : X → `2,

E
(x,y)∼µ1

‖f(x)− f(y)‖2

≥
(
τ1
τ2

)2

· E
(x,y)∼µ2

‖f(x)−f(y)‖2−
(

2τ1
τ3

)2

·sup
x∈X
‖f(x)‖2.

Proof. This Claim can be proved using convex duality.
For the details see the full version.

We are now ready to prove Lemma 2.

Proof Proof of Lemma 2. Let τ3 > τ2 be sufficiently
large so that (2τ1/τ3)2 < δ. ThenX has no (s1, s2, τ1, τ2, τ3)-
threshold map to a Hilbert space, and by Claim 1 there
exists a finite subset X ′ ⊂ X that has no (s1, s2, τ1, τ2, τ3)-
threshold map to a Hilbert space (which without loss of gen-
erality can be chosen to be `2). Now using Claim 2 we obtain
measures µ1 and µ2 as required.

3.3 Threshold maps imply uniform embeddings
We now prove that threshold embeddings imply uniform

embeddings, formalized as follows.

Theorem 7. Suppose that X is a finite-dimensional normed
space that admits a (1, D, τ1, τ2,+∞)-threshold map to a
Hilbert space for some D > 1 and for some 0 < τ1 < τ2 with
τ2 > 8τ1. Then there exists a map h of X into a Hilbert
space such that for every x1, x2 ∈ X,

(τ
1/2
2 − (8τ1)1/2) ·min

{
1,
‖x1 − x2‖

2D + 4

}
≤ ‖h(x1)− h(x2)‖ ≤ (2τ1‖x1 − x2‖)1/2. (1)

In particular, h is a uniform embedding of X into a Hilbert
space with moduli that depend only on τ1, τ2 and D.

Let us point out that in [38, 60], Johnson and Randria-
narivony prove that for a Banach space coarse embeddability
into a Hilbert space is equivalent to uniform embeddability.
Our definition of a threshold map is weaker than that of a
coarse embedding (for the latter see [38] say), but we show
that we can adapt the proof of [38, 60] to our setting as
well (at least whenever the gap between τ1 and τ2 is large
enough). Since we only need one direction of the equiva-
lence, we present a part of the argument from [38] with one
(seemingly new) addition: Claim 5. The resulting proof is
arguably simpler than the combination of [38] and [60], and
yields a clean quantitative bound (1).

Intuition. Let us provide some very high-level intuition of
the proof of Theorem 7. We start with a threshold map f
from X to a Hilbert space. First, we show that f is Lipschitz
on pairs of points that are sufficiently far. In particular, f ,
restricted on a sufficiently crude net N of X, is Lipschitz.
This allows us to use a certain extension theorem to extend
the restriction of f on N to a Lipschitz function on the whole
X, while preserving the property that f does not contract
too much distances that are sufficiently large. Then, we
get a required uniform embedding by performing a certain
symmetrization step.

The real proof is different in the number of details: in
particular, instead of being Lipschitz the real property we
will be trying to preserve is different.

Useful facts. To prove Theorem 7, we need the following
three results.

Lemma 3 ([62]). For a set S and a map f from S to a
Hilbert space, there exists a map g from S to a Hilbert space
such that ‖g(x1) − g(x2)‖ = ‖f(x1) − f(x2)‖1/2 for every
x1, x2 ∈ S.

Lemma 4 (essentially [1]). Suppose that f is a map
from an abelian group G to a Hilbert space such that for
every g ∈ G we have supg1−g2=g ‖f(g1) − f(g2)‖ < +∞.

Then, there exists a map f ′ from G to a Hilbert space such
that ‖f ′(g1)− f ′(g2)‖ depends only on g1− g2 and for every
g1, g2 ∈ G we have

inf
g′1−g

′
2=g1−g2

‖f(g′1)− f(g′2)‖ ≤ ‖f ′(g1)− f ′(g2)‖

≤ sup
g′1−g

′
2=g1−g2

‖f(g′1)− f(g′2)‖.

Definition 5. We say that a map f : X → Y between
metric spaces is 1/2-Hölder with constant C, if for every

x1, x2 ∈ X one has dY (f(x1), f(x2)) ≤ C · dX(x1, x2)1/2.

Theorem 8 (Theorem 19.1 in [66]). Let (X, dX) be a
metric space and let H be a Hilbert space. Suppose that
f : S → H, where S ⊂ X, is a 1/2-Hölder map with a con-
stant C > 0. Then there exists a map g : X → H that
coincides with f on S and is 1/2-Hölder with the constant
C.

We are now ready to prove Theorem 7.

Proof Proof of Theorem 7. We prove the theorem via
the following sequence of claims. Suppose that X is a finite-
dimensional normed space. Let f be a (1, D, τ1, τ2,+∞)-
threshold map to a Hilbert space.

The first claim is well-known and is a variant of Proposi-
tion 1.11 from [14].

Claim 3. For every x1, x2 ∈ X we have ‖f(x1)−f(x2)‖ ≤
max {1, 2 · ‖x1 − x2‖} · τ1.

Proof. If ‖x1−x2‖ ≤ 1, then ‖f(x1)− f(x2)‖ ≤ τ1, and
we are done. Otherwise, let us take y0, y1, . . . , yl ∈ X such
that y0 = x1, yl = x2, ‖yi − yi+1‖ ≤ 1 for every i, and
l = d‖x1 − x2‖e. We have

‖f(x1)− f(x2)‖ ≤
l−1∑
i=0

‖f(yi)− f(yi+1)‖ ≤ lτ1

= d‖x1 − x2‖e · τ1 ≤ 2‖x1 − x2‖ · τ1,

where the first step is by the triangle inequality, the second
step follows from ‖yi − yi+1‖ ≤ 1, and the last step follows
from ‖x1 − x2‖ ≥ 1.

The proof of the next claim essentially appears in [38].

Claim 4. There exists a map g from X to a Hilbert space
such that for every x1, x2 ∈ X,

• ‖g(x1)− g(x2)‖ ≤ (2τ1 · ‖x1 − x2‖)1/2;

• if ‖x1 − x2‖ ≥ D + 2, then ‖g(x1) − g(x2)‖ ≥ τ
1/2
2 −

(8τ1)1/2;

Proof. From Claim 3 and Lemma 3 we can get a map
g′ from X to a Hilbert space such that for every x1, x2 ∈ X



• ‖g′(x1)− g′(x2)‖ ≤ max
{

1, (2‖x1 − x2‖)1/2
}
· τ1/21 ;

• if ‖x1 − x2‖ ≥ D, then ‖g′(x1)− g′(x2)‖ ≥ τ1/22 .

Let N ⊂ X be a 1-net of X such that all the pairwise
distances between points in N are more than 1. The map
g′ is 1/2-Hölder on N with a constant (2τ1)1/2, so we can
apply Theorem 8 and get a map g that coincides with g′

on N and is 1/2-Hölder on the whole X with a constant

(2τ1)1/2. That is, for every x1, x2 ∈ X we have

• ‖g(x1)− g(x2)‖ ≤ (2τ1 · ‖x1 − x2‖)1/2;

• if x1 ∈ N , x2 ∈ N and ‖x1 − x2‖ ≥ D, then ‖g(x1)−
g(x2)‖ ≥ τ1/22 .

To conclude that g is as required, let us lower bound
‖g(x1) − g(x2)‖ whenever ‖x1 − x2‖ ≥ D + 2. Suppose
that x1, x2 ∈ X are such that ‖x1 − x2‖ ≥ D+ 2. Let u1 be
the closest to x1 point from N and, similarly, let u2 ∈ N be
the closest net point to x2. Observe that

‖u1 − u2‖ ≥ ‖x1 − x2‖ − ‖x1 − u1‖ − ‖x2 − u2‖
≥ (D + 2)− 1− 1 = D.

We have

‖g(x1)− g(x2)‖
≥ ‖g(u1)− g(u2)‖ − ‖g(u1)− g(x1)‖ − ‖g(u2)− g(x2)‖

≥ τ1/22 − 2(2τ1)1/2,

as required, where the second step follows from the inequal-

ity ‖g(u1)− g(u2)‖ ≥ τ
1/2
2 , which is true, since u1, u2 ∈ N ,

and that g is 1/2-Hölder with a constant (2τ1)1/2.

The following claim completes the proof of Theorem 7.

Claim 5. There exists a map h from X to a Hilbert space
such that for every x1, x2 ∈ X:

• ‖h(x1)− h(x2)‖ ≤ (2τ1 · ‖x1 − x2‖)1/2;

• one has

‖h(x1)− h(x2)‖

≥ (τ
1/2
2 − (8τ1)1/2) ·min {1, ‖x1 − x2‖/(2D + 4)} .

Proof. We take the map g from Claim 4 and apply
Lemma 4 to it. Let us call the resulting map h. The first
desired condition for h follows from a similar condition for
g and Lemma 4. Let us prove the second one.

If x1 = x2, then there is nothing to prove. If ‖x1 − x2‖ ≥
D + 2, then by Claim 4 and Lemma 4, ‖h(x1) − h(x2)‖ ≥
τ
1/2
2 − (8τ1)1/2, and we are done. Otherwise, let us consider

points y0, y1, . . . , yl ∈ X such that y0 = 0, yi−yi−1 = x1−x2
for every i, and l =

⌈
D+2
‖x1−x2‖

⌉
. Since ‖yl − y0‖ = ‖l(x1 −

x2)‖ = l‖x1 − x2‖ ≥ D + 2, we have

τ
1/2
2 − (8τ1)1/2 ≤ ‖h(yl)− h(y0)‖ ≤

l∑
i=1

‖h(yi)− h(yi−1)‖

= l · ‖h(x1)− h(x2)‖ ≤ 2D + 4

‖x1 − x2‖
· ‖h(x1)− h(x2)‖,

where the equality follows from the conclusion of Lemma 4.

Finally, observe that Theorem 7 is merely a reformulation
of Claim 5.

3.4 Putting it all together
We now show that Theorem 4 follows by applying Lemma 1,

Theorem 6, Lemma 2, and Theorem 7, in this order, with
an appropriate choice of parameters.

Proof Proof of Theorem 4. Suppose DTEP(X,D) ad-
mits a protocol of size s. By setting k = Cs in Lemma 1
(C is a large absolute constant, to be chosen later), we con-
clude that DTEP(`Cs∞ (X), CsD) admits a protocol of size
s′ = O(s).

Now choosing C large enough and applying Theorem 6
(in contrapositive), we conclude that X has no Poincaré
inequalities for distance scales 1 and CsD, α = 0.01 and
β = 0.001.

Applying Lemma 2 (in contrapositive) we conclude that
X allows a (1, CsD, 1, 10,+∞)-threshold map to a Hilbert
space.

Using Theorem 7 it follows that there is a map h from X
to a Hilbert space, such that for all x1, x2 ∈ X,

min

{
1,
‖x1 − x2‖
s ·D

}
≤ ‖h(x1)− h(x2)‖ ≤ K · ‖x1 − x2‖1/2,

where K > 1 is an absolute constant, and this proves the
theorem.

4. EMBEDDING INTO `1 VIA SUM-PRODUCTS
Finally, we prove Theorem 3: good sketches for norms

closed under the sum-product imply embeddings into `1 with
constant distortion. First we invoke Theorem 4 and get a
sequence of good uniform embeddings into a Hilbert space,
whose moduli depend only on the sketch size and the ap-
proximation. Then, we use the main result of this section:
Lemma 5. Before stating the lemma, let us remind a few
notions. For a metric space X, recall that the metric space
`k1(X) =

⊕k
`1
Xn is the direct sum of k copies of X, with the

associated distance defined as a sum-product (`1-product)
over the k copies. We define `1(X) similarly. We also de-
note X ⊕`1 Y the sum-product of X and Y .

Lemma 5. Let (Xn)∞n=1 be a sequence of finite-dimensional
normed spaces. Suppose that for every i1, i2 ≥ 1 there exists
m = m(i1, i2) ≥ 1 such that Xi1 ⊕`1 Xi2 is isometrically
embeddable into Xm. If every Xn admits a uniform em-
bedding into a Hilbert space with moduli independent of n,
then every Xn is linearly embeddable into `1 with distortion
independent of n.

Note that Theorem 3 just follows from combining Lemma
5 with Theorem 4.

Before proving Lemma 5, we state the following two use-
ful theorems. The first one (Theorem 9) follows from the
fact that uniform embeddability into a Hilbert space is de-
termined by embeddability of finite subsets [14]. The second
one (Theorem 10) follows by composing results of Aharoni,
Maurey, and Mityagin [1] and Kalton [39].

Theorem 9 (Proposition 8.12 from [14]). Let A1 ⊂
A2 ⊂ . . . be metric spaces and let A =

⋃
iAi. If every An is

uniformly embeddable into a Hilbert space with moduli inde-
pendent of n, then the whole A is uniformly embeddable into
a Hilbert space.

Theorem 10 ([1, 39]). A Banach space X is linearly
embeddable into L1 iff `1(X) is uniformly embeddable into a
Hilbert space.



We are now ready to proceed with the proof of Lemma 5.

Proof Proof of Lemma 5. Let X = X1⊕`1X2⊕`1 . . ..
More formally,

X =
{

(x1, x2, . . .) : xi ∈ Xi,
∑
i

‖xi‖ <∞
}
,

where the norm is set as follows:∥∥(x1, x2, . . .)
∥∥ =

∑
i

‖xi‖.

We claim that the space `1(X) embeds uniformly into a
Hilbert space. To see this, consider Up = `p1(X1 ⊕`1 X2 ⊕`1
. . . ⊕`1 Xp), which can be naturally seen as a subspace of
`1(X). Then, U1 ⊂ U2 ⊂ . . . ⊂ Up ⊂ . . . ⊂ `1(X) and

⋃
p Up

is dense in `1(X). By the assumption of the lemma, Up
is isometrically embeddable into Xm for some m, thus, Up
is uniformly embeddable into a Hilbert space with moduli
independent of p. Now, by Theorem 9,

⋃
p Up is uniformly

embeddable into a Hilbert space. Since
⋃
p Up is dense in

`1(X), the same holds also for the whole `1(X), as claimed.
Finally, since `1(X) embeds uniformly into a Hilbert space,

we can apply Theorem 10 and conclude that X is linearly
embeddable into L1. The lemma follows since X contains
every Xi as a subspace.
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