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Abstract

We investigate the time-complexity of the All-Pairs Max-Flow
problem: Given a graph with n nodes and m edges, compute
for all pairs of nodes the maximum-flow value between them.
If Max-Flow (the version with a given source-sink pair s, t)
can be solved in time T (m), then an O(n2) ·T (m) is a trivial
upper bound. But can we do better?

For directed graphs, recent results in fine-grained com-
plexity suggest that this time bound is essentially optimal.
In contrast, for undirected graphs with edge capacities, a
seminal algorithm of Gomory and Hu (1961) runs in much
faster time O(n) · T (m). Under the plausible assumption
that Max-Flow can be solved in near-linear time m1+o(1),
this half-century old algorithm yields an nm1+o(1) bound.
Several other algorithms have been designed through the
years, including Õ(mn) time for unit-capacity edges (un-
conditionally), but none of them break the O(mn) barrier.
Meanwhile, no super-linear lower bound was shown for undi-
rected graphs.

We design the first hardness reductions for All-Pairs

Max-Flow in undirected graphs, giving an essentially optimal

lower bound for the node-capacities setting. For edge

capacities, our efforts to prove similar lower bounds have

failed, but we have discovered a surprising new algorithm

that breaks the O(mn) barrier for graphs with unit-capacity

edges! Assuming T (m) = m1+o(1), our algorithm runs in

time m3/2+o(1) and outputs a cut-equivalent tree (similarly

to the Gomory-Hu algorithm). Even with current Max-

Flow algorithms we improve state-of-the-art as long as

m = O(n5/3−ε). Finally, we explain the lack of lower

bounds by proving a non-reducibility result. This result is

based on a new quasi-linear time Õ(m) non-deterministic

algorithm for constructing a cut-equivalent tree and may be

of independent interest.
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1 Introduction

In the maximum st-flow problem (abbreviated Max-
Flow), the goal is to compute the maximum value of
a feasible flow between a given pair of nodes s, t (some-
times called terminals) in an input graph.1 Deter-
mining the time complexity of this problem is one
of the most prominent open questions in fine-grained
complexity and algorithms. The best running time
known for directed (or undirected) graphs with n
nodes, m edges, and largest integer capacity U is
Õ(min{m10/7U1/7,m

√
n logU}) [Mad16, LS14], where

throughout Õ(f) hides logarithmic factors and stands

for O(f logO(1) f). To date, there is no Ω(m1+ε) lower
bound for this problem, even when utilizing one of
the popular conjectures of fine-grained complexity, such
as the Strong Exponential-Time Hypothesis (SETH)
of [IP01].2 This gap is regularly debated among ex-
perts, and a common belief is that such a lower bound
is not possible, since a near-linear-time algorithm exists
but is not yet known. There is also a formal barrier
for basing a lower bound for Max-Flow on SETH, as
it would refute the so-called Non-deterministic SETH
(NSETH) [CGI+16]. We will henceforth assume that
Max-Flow can be solved in time m1+o(1), and investi-
gate some of the most important questions that remain
open under this favorable assumption. (None of our re-
sults need this assumption; it only serves for highlight-
ing their significance.)

Perhaps the most natural next-step after the s, t
version is the “all-pairs” version (abbreviated All-Pairs
Max-Flow), where the goal is to solve Max-Flow for
all pairs of nodes in the graph. This multi-terminal
problem, dating back to 1960 [May60, Chi60], is the
main focus of our work:

What is the time complexity of computing
Max-Flow between all pairs of nodes?

1Throughout, we focus on computing the value of the flow

(rather than an actual flow), which is equal to the value of the
minimum st-cut by the famous max-flow/min-cut theorem [FF56].

2SETH asserts that for every fixed ε > 0 there is an integer

k ≥ 3, such that kSAT on n variables and m clauses cannot be
solved in time 2(1−ε)nmO(1).
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We will discuss a few natural settings, e.g., directed
vs. undirected, or node-capacities vs. edge-capacities, in
which the answer to this question may vary. A trivial
strategy for solving this problem (in any setting) is to
invoke a T (m)-time algorithm for the s, t version O(n2)
times, giving a total time bound of O(n2) ·T (m), which
is n2 · m1+o(1) under our favorable assumption. But
one would hope to do much better, as this all-pairs
version arises in countless applications, such as a graph-
clustering approach for image segmentation [WL93].

In undirected edge-capacitated graphs, a seminal
paper of Gomory and Hu [GH61] showed in 1961 how
to solve All-Pairs Max-Flow using only n − 1 calls to a
Max-Flow algorithm, rather than O(n2) calls, yielding
an upper bound O(n) · T (m). (See also [Gus90] for a
different algorithm where all the n − 1 calls can be ex-
ecuted on the original graph.) This time bound has
improved over the years, following the improvements in
algorithms for Max-Flow, and under our assumption it
would ultimately be n · m1+o(1). Even more surpris-
ingly, Gomory and Hu showed that all the n2 answers
can be represented using a single tree, which can be
constructed in the same time bound. Formally, A cut-
equivalent tree to a graph G is an edge-capacitated tree
T on the same set of nodes, with the property that
for every pair of nodes s, t, every minimum st-cut in
T yields a bipartition of the nodes which is a mini-
mum st-cut in G, and of the same value as in T .3 See
also [GT01] for an experimental study, and the Ency-
clopedia of Algorithms [Pan16] for more background.
The only algorithm that constructs a cut-equivalent tree
without making Ω(n) calls to a Max-Flow algorithm was
designed by Bhalgat, Hariharan, Kavitha, and Pani-
grahi [BHKP07]. It runs in time Õ(mn) in unit-capacity
graphs (or equivalently, if all edges have the same ca-
pacity), and utilizes a tree-packing approach that was
developed in [CH03, HKP07], inspired by classical re-
sults of [Gab95] and [Edm70]. However, if Max-Flow
can indeed be computed in near-linear time, then none
of the later algorithms beat by a polynomial factor the
time bound n·m1+o(1) of Gomory and Hu’s half-century
old algorithm.

The time complexity of All-Pairs Max-Flow becomes
higher in settings where Gomory and Hu’s “tree struc-
ture” [GH61] does not hold. For instance, in node-
capacitated graphs (where the flow is constrained at

3Notice that a minimum st-cut in T consists of a single edge

that has minimum capacity along the unique st-path in T , and

removing this edge disconnects T to two connected components.
A flow-equivalent tree has the weaker property that for every pair

of nodes s, t, the maximum st-flow value in T equals that in G.

The key difference is that flow-equivalence maintains only the
values of the flows (and thus also of the corresponding cuts).

intermediate nodes, rather than edges) flow-equivalent
trees are impossible, since there could actually exist
Ω(n2) different maximum-flow values in a single graph
[HL07] (see therein also an interesting exposition of
certain false claims made earlier).4 Directed edges
make the all-pairs problem even harder; in fact, in this
case node-capacities and edge-capacities are equivalent,
and thus this setting does not admit flow-equivalent
trees, see [May62, Jel63, HL07]. In the last decade,
different algorithms were proposed to beat the trivial
O(n2) · T (m) time bound in these harder cases. The
known bound for general graphs is O(mω), due to Che-
ung, Lau, and Leung [CLL13], where ω < 2.38 is the ma-
trix multiplication exponent. A related version, which
is obviously no harder than All-Pairs Max-Flow, is to
ask (among all pairs of nodes) only for flow values that
are at most k, assuming unit node capacities; for ex-
ample, the case k = 1 is the transitive closure problem
(reachability). For k = 2, an Õ(nω)-time algorithm
was shown in [GGI+17], and very recently a similar
bound was achieved for all k = O(1) [AGI+19]. The
aforementioned papers [CLL13, GGI+17, AGI+19] also
present improved algorithms for acyclic graphs (DAGs).
In addition, essentially optimal Õ(n2)-time algorithms
were found for All-Pairs Max-Flow in certain graph fam-
ilies, including small treewidth [ACZ98], planar graphs
[LNSW12], and surface-embedded graphs [BENW16].

The framework of fine-grained complexity has been
applied to the all-pairs problem in a few recent papers,
although its success has been limited to the directed
case. Abboud, Vassilevska-Williams, and Yu [AVY15]
proved SETH-based lower bounds for some multi-
terminal variants of Max-Flow, such as the single-source
all-sinks version, but not all-pairs. Krauthgamer and
Trabelsi [KT18] proved that All-Pairs Max-Flow cannot
be solved in time O(n3−ε), for any fixed ε > 0, unless
SETH is false, even in the sparse regime m = n1+o(1).
This holds also for unit-capacity graphs, and it essen-
tially settles the complexity of the problem for directed
sparse graphs, showing that the O(n2) · T (m) upper
bound is optimal if one assumes that T (m) = m1+o(1).
Recently, Abboud et al. [AGI+19] proved a conditional
lower bound that is even higher for dense graphs, show-
ing that an O(nω+1−ε)-time algorithm would refute
the 4-Clique conjecture. However, no non-trivial lower
bound is known for undirected graphs.

1.1 The Challenge of Lower Bounds in Undi-
rected Graphs Let us briefly explain the difficulty in
obtaining lower bounds for undirected graphs. Con-

4Granot and Hassin [GH86] considered a related but different
notion of minimum st-cuts with node capacities, where an equiv-

alent tree exists and can be computed.
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sider the following folklore reduction from Boolean Ma-
trix Multiplication (BMM) to All-Pairs Reachability in
directed graphs (the aforementioned special case of All-
Pairs Max-Flow with k = 1). In BMM the input is two
n × n boolean matrices P and Q, and the goal is to
compute the product matrix R given by

R(a, c) := ∨nb=1

(
P (a, b) ∧Q(b, c)

)
, ∀a, c ∈ [n].

Computing R can be reduced to All-Pairs Reachability
as follows. Construct a graph with three layers A,B,C
with n nodes each, where the edges are directed A →
B → C and represent the two matrices: a ∈ A is
connected to b ∈ B iff P (a, b) = 1; and b ∈ B is
connected to c ∈ C iff Q(b, c) = 1. It is easy to see
that R(a, c) = 1 iff node a ∈ A can reach node c ∈ C
(via a two-hop path).

This simple reduction shows an nω−o(1) lower bound
for All-Pairs Reachability in dense directed graphs as-
suming the BMM conjecture. Higher lower bounds can
be proved by more involved reductions that utilize the
extra power of flow over reachability, e.g., an n3−o(1)

lower bound in sparse directed graphs assuming SETH
[KT18]. Nevertheless, this simple reduction illustrates
the main difficulty in adapting such reductions to undi-
rected graphs.

Consider the same construction but with undirected
edges (i.e., without the edge orientations). The main
issue is that paths from A to C can now have more than
two hops – they can crisscross between two adjacent
layers before moving on to the next one. Indeed, it
is easy to construct examples in which the product
R(a, c) = 0 but there is a path from a to c (with more
than two hops). Even if we try to use the extra power of
flow, giving us information about the number of paths
rather than just the existence of a path, it is still unclear
how to distinguish flow that uses a two-hop path (YES
case) from flow that uses only longer paths (NO case).

A main technical novelty of this work is a trick
to overcome this issue. The high-level idea is to
design large gaps between the capacities of nodes in
different layers in order to incentivize flow to move
to the “next layer”. Let us exhibit how this trick
applies to the simple reduction above. Remove the edge
orientations from our three-layer graph, and introduce
node capacities, letting all nodes in B, the middle layer,
have capacity 2n, and all nodes in A∪C, the other two
layers, have capacity 1. Now, consider the maximum
flow from a ∈ A to c ∈ C. If R(a, c) = 1 then there is a
two-hop path through some b ∈ B, which can carry 2n
units of flow, hence the maximum-flow value is at least
2n. On the other hand, if R(a, c) = 0 then every path
from a to cmust have at least four hops, and a maximum
flow must be composed of such paths. Any such path

must pass through at least one node in A ∪ C \ {a, c},
whose capacity is only 1, hence the maximum flow is
bounded by |A ∪ C \ {a, c}| = 2n − 2. This proves
the same nω−o(1) lower bound as before, but now for
undirected graphs with node capacities.5 In Section 4
we utilize this trick in a more elaborate way to prove
stronger lower bounds.

1.2 Our Results Our main negative result is the
first (conditional) lower bound for All-Pairs Max-Flow
that holds in undirected graphs. For sparse, node-
capacitated graphs we are able to match the lower
bound n3−o(1) that was previously known only for di-
rected graphs [KT18], and it also matches the hypothet-
ical upper bound n3+o(1).

Theorem 1.1. Assuming SETH, no algorithm can
solve All-Pairs Max-Flow in undirected graphs on n nodes
and O(n) edges with node capacities in [O(n2)] in time
O(n3−ε) for some fixed ε > 0.

Our lower bound holds even under assumptions that
are weaker than SETH (see Section 4), as we reduce
from the 3-Orthogonal-Vectors (3OV) problem. At a
high level, it combines the trick described above for
overcoming the challenge in undirected graphs, with the
previous reduction of [KT18] from 3OV to the directed
case. However, both of these ingredients have their own
subtleties and fitting them together requires adapting
and tweaking them very carefully.

Following our Theorem 1.1, the largest remaining
gap in our understanding of All-Pairs Max-Flow con-
cerns the most basic and fundamental setting: undi-
rected graphs with edge capacities. What is the time
complexity of computing a cut-equivalent tree? The
upper bound has essentially been stuck at n · m1+o(1)

for more than half a century, while we cannot even rule
out a near-linear m1+o(1) running time. To our great
surprise, after a series of failed attempts at proving any
lower bound, we have noticed a simple way to design
a new algorithm for computing cut-equivalent trees for
graphs with unit-capacities, breaking the longstanding
mn barrier!

Theorem 1.2. There is an algorithm that, given an
undirected graph G with n nodes and m edges (and unit
edge capacities) and parameter 1 ≤ d ≤ n, constructs
a cut-equivalent tree in time Õ(md+ Φ(m,n, d)), where

5The argument can be simplified a bit if we allow nodes of
capacity 0. We also remark that restricting the flow to obey the
capacities of the source and the sink makes the problem much

easier; this is the version considered by Granot and Hassin [GH86]
and mentioned in the previous footnote.
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Φ(m,n, d) = max
{∑m/d

i=1 T (m,n, Fi) : F1, . . . , Fm/d ≥

0,
∑m/d
i=1 Fi ≤ 2m

}
and T (m,n, F ) is the time bound

for Max-Flow on instances where whose flow value is at
most a F .

Using the current bound on T (m,n, F ) we achieve
running time Õ(m3/2n1/6), and under the plausible
hypothesis that T (m,n) = m1+o(1) our time bound
becomes m3/2+o(1). In the regime of sparse graphs
where m = Õ(n) the previous best algorithm of Bhalgat
et al. [BHKP07] had running time Õ(n2), whereas we
achieve Õ(n5/3), or conditionally n3/2+o(1). In fact,
we improve on their upper bound as long as m =
O(n5/3−ε). Clearly, this also leads to improved bounds
for All-Pairs Max-Flow (with unit edge capacities), for
which the best strategy known is to compute the tree
and then extract the answers in time O(n2).

The main open question remains: Can we prove
any super-linear lower bounds for the edge capacitated
case in undirected graphs? Is there an m1+ε lower
bound under SETH for constructing a cut-equivalent
tree? Perhaps surprisingly, we prove a strong barrier
for the possibility of such a result.

We follow the non-reducibility framework of Car-
mosino et al. [CGI+16]. Intuitively, if problem A is
conjectured to remain hard for nondeterministic algo-
rithms while problem B is known to become signifi-
cantly easier for such algorithms, then we should not
expect a reduction from A to B to exist. Such a re-
duction would allow the nondeterministic speedups for
problem B to carry over to A. To formalize this connec-
tion, Carmosino et al. introduce NSETH: the hypoth-
esis that SETH holds against co-nondeterministic algo-
rithms. NSETH is plausible because it is not clear how
a powerful prover could convince a sub-2n-time verifier
that a given CNF formula is not satisfiable. Moreover,
it is known that refuting NSETH requires new tech-
niques since it implies new circuit lower bounds. Then,
Carmosino et al. exhibited nondeterministic (and co-
nondeterministic) speedups for problems such as 3-SUM
and Max-Flow (using LP duality), showing that a reduc-
tion from SAT to these problems would refute NSETH.

Our final result builds on Theorem 1.2 to design a
quasi-linear time6 nondeterministic algorithm for con-
structing a cut-equivalent tree. This algorithm can per-
form nondeterministic choices and in the end, outputs
either a correct cut-equivalent tree or “don’t know” (i.e.,
aborts), however we are guaranteed that for every in-
put graph there is a at least one sequence of nondeter-
ministic choices leads to a correct output. Our result

6We say that a time bound T (n) is quasi-linear if it is bounded
by O(n logc n) for some positive constant c > 0.

could have applications in computation-delegation set-
tings and may be of interest in other contexts. In par-
ticular, since our nondeterministic witness can be con-
structed deterministically efficiently, namely, in polyno-
mial but super-linear time, it provides a potentially in-
teresting certifying algorithm [MMNS11, ABMR11] (see
[Kün18] for a recent paper with a further discussion of
the connections to fine-grained complexity). Our final
non-reducibility result is as follows.

Theorem 1.3. If for some ε > 0 there is a determin-
istic fine-grained reduction proving an Ω(m1+ε) lower
bound under SETH for constructing a cut-equivalent
tree of an undirected unit edge-capacitated graph on m
edges, then NSETH is false.

Our result (and this framework for non-reducibility)
does not address the possibility of proving a SETH
based lower bound with a randomized fine-grained re-
duction. This is because NSETH does not remain plau-
sible when faced against randomization (see [CGI+16,
Wil16]). That said, we are not aware of any examples
where this barrier has been successfully bypassed with
randomization.

Roadmap. Our main algorithm is described in the
Section 2. The nondeterministic algorithm and non-
reducibility result are presented in Section 3. We then
present our lower bounds in Section 4. The last section
discusses open questions.

2 Algorithm for a Cut-Equivalent Tree

The basic strategy in our algorithm for unit edge ca-
pacities is to handle separately nodes whose connec-
tivity (to other nodes) is high from those whose con-
nectivity is low. The motivation comes from the sim-
ple observation that the degree of a node is an upper
bound on the maximum flow from this node to any
other node in the graph. Specifically, our algorithm has
two stages. The first stage uses one method (of partial
trees [HKP07, BHKP07]), to compute the parts of the
tree that correspond to small connectivities, and the sec-
ond stage uses another method (the classical Gomory-
Hu algorithm [GH61]) to complete it to a cut-equivalent
tree (see Figure 1). Let us briefly review these two meth-
ods.

The Gomory-Hu algorithm. This algorithm
constructs a cut-equivalent tree T in iterations. Ini-
tially, T is a single node associated with V (the node
set of G), and the execution maintains the invariant
that T is a tree; each tree node i is a super-node, which
means that it is associated with a subset Vi ⊆ V ; and
these super-nodes form a partition V = V1 t · · · t Vl.
At each iteration, the algorithm picks arbitrarily two
graph nodes s, t that lie in the same tree super-node i,
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Figure 1: An illustration of the construction of T . Left: T right before the partition of the super-node Vi. Middle:
after the partitioning of Vi Right: T as it unfolds after the Gomory-Hu algorithm finishes.

i.e., s, t ∈ Vi. The algorithm then constructs from G an
auxiliary graph G′ by merging nodes that lie in the same
connected component of T \{i} and invokes a Max-Flow
algorithm to compute in this G′ a minimum st-cut, de-
noted C ′. (For example, if the current tree is a path
on super-nodes 1, . . . , l, then G′ is obtained from G by
merging V1∪ · · ·∪Vi−1 into one node and Vi+1∪ · · ·∪Vl
into another node.) The submodularity of cuts ensures
that this cut is also a minimum st-cut in the original
graph G, and it clearly induces a partition Vi = S t T
with s ∈ S and t ∈ T . The algorithm then modifies
T by splitting super-node i into two super-nodes, one
associated with S and one with T , that are connected
by an edge whose weight is the value of the cut C ′, and
further connecting each neighbor of i in T to either S
or T (viewed as super-nodes), depending on its side in
the minimum st-cut C ′ (more precisely, neighbor j is
connected to the side containing Vj).

The algorithm performs these iterations until all
super-nodes are singletons, and then T is a weighted
tree with effectively the same node set as G. It can be
shown [GH61] that for every s, t ∈ V , the minimum st-
cut in T , viewed as a bipartition of V , is also a minimum
st-cut in G, and of the same cut value. We stress that
this property holds regardless of the choice made at each
step of two nodes s 6= t ∈ Vi.

Partial Tree. A k-partial tree, formally defined
below, can also be thought of as the result of con-
tracting all edges of weight greater than k in a cut-
equivalent tree of G. Such a tree can obviously be con-
structed using the Gomory-Hu algorithm, but as stated
below (in Lemma 2.2), faster algorithms were designed
in [HKP07, BHKP07], see also [Pan16, Theorem 3]. We
show below (in Lemma 2.3) that such a tree can be ob-

tained also by a truncated execution of the Gomory-Hu
algorithm, and finally we use this simple but crucial fact
to prove our main theorem.

Definition 2.1. (k-Partial Tree [HKP07]) A
k-partial tree of a graph G = (V,E) is a tree on l ≤ |V |
super-nodes constituting a partition V = V1 t · · · t Vl,
with the following property: For every two nodes
s, t ∈ V whose minimum-cut value in G is at most
k, let S, T be the super-nodes for which s ∈ S and
t ∈ T , then the minimum ST -cut in the tree defines a
bipartition of V which is a minimum st-cut in G and
has the same value.

Lemma 2.2. ([BHKP07]) There is an algorithm that
given an undirected graph with n nodes and m edges with
unit edge capacities and an integer k ∈ [n], constructs a
k-partial tree in time Õ(mk).

Lemma 2.3. Given a k-partial tree Tlow of a graph G =
(V,E), there is a truncated execution of the Gomory-Hu
algorithm that produces Tlow (i.e., its auxiliary tree T
becomes Tlow).

Proof. Consider an execution of the Gomory-Hu algo-
rithm with the following choices. At each iteration, pick
any two nodes s, t ∈ V that lie in the same super-node i
of the current tree T (hence they are feasible choice in a
Gomory-Hu execution) but furthermore lie in different
super-nodes of Tlow, as long as such s, t exist. Then split
super-node i of T using the minimum st-cut induced by
Tlow (rather than an arbitrary minimum st-cut). As
this cut corresponds to an edge in Tlow, it cannot split
any super-node of Tlow, which implies, by an inductive
argument, that the super-nodes of Tlow are subsets of
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the super-nodes of T , and thus our chosen cut is a feasi-
ble choice for a Gomory-Hu execution. Notice also that
a pair s, t as required above can be chosen as long as
T is not equal to Tlow, hence the Gomory-Hu execution
continues until T becomes exactly Tlow.

We are now ready to prove our main theorem.

Proof. [Proof of Theorem 1.2] Let G = (V,E) be an
input undirected graph with unit edge capacities, and
denote by Vlow all the nodes in G whose degrees are
at most the chosen parameter d ∈ [n], and by Vhigh =
V \ Vlow the nodes whose degrees are greater than d.

First use Lemma 2.2 to construct a d-partial tree
Tlow, and treat it as the auxiliary tree computed by a
truncated execution of the Gomory-Hu algorithm. Then
continue a Gomory-Hu execution (using this tree) to
complete the construction of a cut-equivalent tree. Note
that every node in Vlow is in a singleton super-node of
Tlow, since its minimum cut value to any other node is
at most d; thus a super-node Vi in Tlow has more than
one node if and only if it contains only nodes in Vhigh.
Moreover, by the properties of Tlow, two nodes have
minimum-cut value greater than d if and only if they
are in the same super-node Vi. Since by Lemma 2.3
there exists a truncated Gomory-Hu execution that
produces Tlow, a Gomory-Hu execution starting with
Tlow as the auxiliary tree will result in a cut-equivalent
tree and the correctness follows. The running time
bound follows as the first step of constructing Tlow takes
Õ(md) time, and the second step of the Gomory-Hu
execution takes |Vhigh| invocations of Max-Flow, that is

running time
∑m/d
i=1 T (m,n, Fi). Since every invocation

of maximum st-flow with value Fi in our algorithm
determines a unique edge with capacity Fi in the final
cut-equivalent tree, and the sum of the capacities over
all the edges of the cut-equivalent tree is at most 2m
(see Claim 3.9) it holds for the invocations of Max-

Flow that
∑m/d
i=1 T (m,n, Fi) ≤ 2m. Thus, the proof of

Theorem 1.2 is concluded.

We use the T (m,n, F ) = O(m3/4n1/4F 1/2) time al-
gorithm by [ST18] to optimize our running time. By the

concavity of F 1/2, the maximum of
∑m/d
i=1 T (m,n, Fi) is

attained when all Fi = d. By setting d =
√
mn1/6 we get∑√m/n1/6

i=1 m3/4n1/4m1/4n1/12 =
∑√m/n1/6

i=1 mn1/3 =

m3/2n1/6, which is faster than the known Õ(mn)-time
algorithm of [BHKP07] whenever m ∈ [n, n5/3].

Finally, relying on a hypothetical m1+o(1)-time al-
gorithm for Max-Flow, we could set d =

√
m to get a

total running time of m1+o(1) ·m/
√
m + Õ(m ·

√
m) ≤

m3/2+o(1), as claimed immediately after Theorem 1.2.

3 Quasi-Linear Nondeterministic Algorithm
for Cut-Equivalent Tree

As no conditional lower bounds are known for the prob-
lem of constructing a cut-equivalent tree, one poten-
tially promising approach is to design a reduction from
SAT to prove that running time n1+δ−o(1), for a fixed
δ > 0, is not possible assuming SETH. However, in this
section we show that the existence of such a reduction
(at least in the case of unit edge-capacities) would refute
NSETH. This proves our Theorem 1.3.

Our main technical result in this section (Theo-
rem 3.2) is a fast nondeterministic algorithm for con-
structing a cut-equivalent tree (the meaning of this no-
tion will be formalized shortly). We then reach the con-
clusion about NSETH by following an argument first
made in [CGI+16], however we have to rewrite their
argument (rather than use their definitions and results
directly), in order to adapt it from decision problems
or functions (where each input has exactly one output)
to total functions, since every graph has at least one
cut-equivalent tree (see Section 3.2).

Generally speaking, a search problem P is a binary
relation, and we say that S is a solution to instance x iff
(x, S) ∈ P . Let SOL(x) = {S : (x, S) ∈ P} denote the
set of solutions for instance x. We say that P is a total
function7 if every instance x has at least one solution,
i.e., SOL(x) 6= ∅. Let ⊥ be the “don’t know” symbol
and assume that ⊥ /∈ SOL(x) for all x. For example, in
our problem of constructing a cut-equivalent tree, x is a
graph and SOL(x) is the set of all cut-equivalent trees
for x.

Definition 3.1. (Nondeterministic complexity
of a total function)
We say that a total function P has nondeterministic
time complexity T (n) if there is a deterministic Turing
Machine M such that for every instance x of P with
size |x| = n:

a. ∀g,DTIME(M(x, g)) ≤ T (n), i.e., the time com-
plexity of M is bounded by T (n);

b. ∃g,M(x, g) ∈ SOL(x), i.e., at least one guess leads
M to output a solution;

c. ∀g,M(x, g) ∈ {⊥}∪SOL(X), i.e., every guess leads
M to output either a solution or “don’t know”.

We can now state the main technical result of this
section. We prove it in Section 3.1, and then use it in
Section 3.2 to prove Theorem 1.3.

7We use this name for consistency with previous literature,
although it is really a relation rather than a function.
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Theorem 3.2. The nondeterministic complexity of
constructing a cut-equivalent tree for an input graph
with unit edge-capacities is Õ(m), where m is the num-
ber edges in the graph.

This algorithm employs the Gomory-Hu algorithm
in a very specific manner, where the vertices chosen
at each iteration are “centroids” (see below). The
same choice was previously used by Anari and Vazi-
rani [AV18] in the context of parallel algorithms (for
planar edge-capacitated graphs), to achieve a logarith-
mic recursion depth, which is key for parallel time. How-
ever, since our goal is different (we want near-linear total
time) we have to worry about additional issues, besides
the depth of the recursion. Many auxiliary graphs must
be handled throughout the execution of the algorithm,
and for each one we need to verify multiple minimum
cuts. This is done by guessing cuts and flows, and the
main challenge is to argue that the total size of all these
objects (the auxiliary graphs, and the cuts and flows
within them) is only Õ(m). Towards overcoming this
challenge, we show a basic structural result about cut-
equivalent trees (see Claim 3.9 below) which may have
other applications. Prior to our work, it seemed un-
likely that the Gomory-Hu approach could come close to
near-linear time, even if Max-Flow could be computed in
linear time, since a Max-Flow computation is executed
many times in many auxiliary graphs. However, our
analysis shows that the total size of all these auxiliary
graphs can be near-linear (if the right vertices are cho-
sen at each iteration), giving hope that this approach
may still achieve the desired upper bound.

3.1 The Nondeterministic Algorithm We now
prove Theorem 3.2. Let G = (V,E) be the input graph,
and let n = |V | and m = |E|.

Overview. At a high level, the nondeterminis-
tic algorithm first guesses nondeterministically a cut-
equivalent tree T ∗, and then verifies it by a (nonde-
terministic) process that resembles an execution of the
Gomory-Hu algorithm that produces T ∗. Similarly to
the actual Gomory-Hu algorithm, our verification pro-
cess is iterative and maintains a tree T of super-nodes,
which means, as described in Section 2, that every tree
node i is associated with Vi ⊆ V , and these super-nodes
form a partition V = V1 t · · · t Vl. This tree T is ini-
tialized to have a single super-node corresponding to
V and then modified at each iteration, hence we shall
call it the intermediate tree. If all guesses work well,
then eventually every super-node is a singleton and the
tree T corresponds to T ∗. Otherwise (some step in the
verification fails), the algorithm outputs ⊥.

In a true Gomory-Hu execution, every iteration
partitions some super-node into exactly two super-nodes

connected by an edge (say Vi = S t T ). In contrast,
every iteration of our verification process partitions
some super-node into multiple super-nodes that form
a star topology, whose center is a singleton (say Vi =
{w}tVi,1t· · ·tVi,d, where super-node {w} has edges to
all super-nodes Vi,1, . . . , Vi,d). We call this an expansion
step (see Figure 2), and the node in the center of the star
(i.e., w) the expanded node. These expansion steps will
be determined from the guess T ∗. For example, in the
extreme case that T ∗ itself is a star, our verification
process will take only one expansion step instead of
|V | − 1 Gomory-Hu steps.

To prove that our algorithm is correct, we will show
that every expansion step corresponds to a valid se-
quence of steps in the Gomory-Hu algorithm. As the
latter relies on minimum-cut computations in some aux-
iliary graph G′, also our verification will need minimum-
cut computations, which can be easily performed in non-
deterministic linear time. However, this will not achieve
overall running time Õ(m), because in some scenarios
(e.g., in the above example where T ∗ is a star), most of
the |V | − 1 minimum-cut computations are performed
on an auxiliary graph G′ of size that is comparable to G,
i.e., Ω(m). We overcome this obstacle using two ideas.
First, we compute simultaneously all the minimum-cuts
of the same expansion step in nondeterministic time
that is linear in the size of G′. Second, we design a
specific sequence of expansion steps such that the total
size of all auxiliary graphs G′ is Õ(m).

Detailed Algorithm. The algorithm first guesses
nondeterministically an edge-capacitated tree T ∗, and
then verifies, as explained below, that it is a cut-
equivalent tree. Here, verification means that upon
the failure of any step, e.g., verifying some equality
(say between the cut and flow values), the algorithm
terminates with output ⊥. (By the same reasoning,
we may assume that all guesses are proper, e.g., a
guessed tree is indeed a tree). The verification process
starts by picking a sequence of nodes c0, c1, c2, . . . using
the guess T ∗, as follows. Recall that a centroid of a
tree is a node whose removal disconnects the tree into
connected components (subtrees), each containing at
most half the nodes in the tree. It is well-known that
in every tree, a centroid exists and can be found in
linear time. In a recursive centroid decomposition of
a tree, one finds a centroid of the given tree, removes
it and then repeats the process recursively in every
connected component, until all remaining components
are singletons (have size one). Our verification process
computes this decomposition for the guess T ∗, which
takes time O(n log n). For each recursion depth i ≥ 0
(where clearly i ≤ log n), denote the set of centroids
computed at depth i by Di ⊂ V . For example, D0

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited



𝑐𝑗 

𝑈1 

𝑈2 

𝑈3 

𝑈4 
𝑐𝑗  

𝑈5 

𝑉    𝑐𝑗
∗  T 

Figure 2: An illustration of the verification of a guessed tree T ∗. Left: the intermediate tree T right before an
expansion step of the node cj in the super-node V (T ∗cj ). Middle: after the expansion step (of cj , in the dashed

circle) where U1, ..., U4 are cj ’s neighbors in T (j+1) such that
⋃4
i=1 Ui ∪ {cj} = V (T ∗cj ). Right: the guessed

cut-equivalent tree T ∗.

contains exactly one centroid, of the entire T ∗. Now
let c0, c1, c2, . . . be the centroids in this decomposition
in order of increasing depth, i.e., starting with the one
centroid c0 ∈ D0, followed by the centroids from D1

(ordered arbitrarily), and so forth. Let T ∗cj be the
subtree of T ∗ in which the centroid cj was computed;
for example T ∗c0 = T ∗.

Observation 3.3. For every two centroids from the
same depth, namely, cj 6= cj′ ∈ Di, the corresponding
subtrees T ∗cj and T ∗cj′ are node disjoint.

The verification process now initializes a tree T ,
called the intermediate tree, to consist of a single
super-node associated with V , and then performs on
it expansion steps for nodes c0, c1, c2, . . . (in this order)
as explained below.

We now explain how to perform an expansion step
for node cj . Recall that cj is a centroid of the subtree
T ∗cj , therefore it defines a partition V (T ∗cj ) = {cj}tU1t
· · ·tUd, where U1, . . . , Ud are the connected components
after removing cj . Notice that d = degT ∗cj

(cj) ≤
degT ∗(cj), and that each Uk, k ∈ [d], contains exactly
one node uk ∈ Uk that is a neighbor of cj in T ∗cj . The
expansion step replaces the super-node V (T ∗cj ) in T
with d + 1 super-nodes {cj}, U1, . . . , Ud. (We slightly
abuse notation and use a subset of nodes like V (T ∗cj )
also to refer to the super-node in T associated with this
subset.) These d + 1 new super-nodes are connected
by a star topology, where the singleton {cj} at the
center and each newly-added edge ({cj}, Uk) is set to
the same capacity as the edge (cj , uk) in the guess T ∗.
In addition, every edge that was incident to super-node

V (T ∗cj ), say (V (T ∗cj ),W ), is modified to an edge (U,W ),
where U is one of the new super-nodes {cj}, U1, . . . , Ud,
chosen according to the edge in T ∗ that was used to set
a capacity for (V (T ∗cj ),W ). (We will explain how the
algorithm verifies the correctness of these edge weights
shortly.)

It is easy to verify that the modifications to T (due
to expansion steps) maintain the following property:
Every super-node U in T induces a subtree of T ∗, i.e.,
the induced subgraph T ∗[U ] is connected. Moreover,
eventually every super-node will be a singleton, and
the intermediate tree will exactly match the guess T ∗.
When we need disambiguation, we may use T (j) to
denote the tree’s state before the expansion step for
cj . For example, T (0) is the initial tree with a single
super-node V .

Informally, the verification algorithm still has to
check that the capacities of the newly-added tree edges
correctly represent minimum-cut values. To this end,
the algorithm now constructs an auxiliary graph G′j
just as in the Gomory-Hu algorithm (see Section 2).
Specifically, G′j is constructed by taking G, and then

for each connected component of T (j) \ {V (T ∗cj )} (i.e.,

after removing super-node V (T ∗cj ) from T (j)), merging
the nodes in (all the super-nodes in) this component
into a single node. Our analysis shows (in Claim 3.6)
that for all s, t ∈ V (T ∗cj ), every minimum st-cut in the
auxiliary graph G′j is also a minimum st-cut in G. In
addition, all the auxiliary graphs of a single depth q can
be constructed in quasi-linear time (Lemma 3.10).

Observe that each neighbor uk of cj in T ∗cj defines a
(cj , uk)-cut in the auxiliary graph G′j , given by the two
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connected components of T ∗\{(cj , uk)}. The algorithm
evaluates for each uk the capacity of this cut in G′j , and
verifies that it is equal to the capacity of the newly-
added edge ({cj}, Uk) (set to be the same as of edge
(cj , uk) in T ∗). In fact, all these cuts evaluations are
performed not sequentially but rather simultaneously
for all k ∈ [d], as follows. The key observation is
that if we denote each aforementioned (cj , uk)-cut by
(V (G′j) \ C ′k, C ′k), where uk ∈ C ′k, then {cj}, C ′1, . . . , C ′d
are disjoint subsets of V (G′j). One can clearly evaluate
the capacity of all these d cuts in a single pass over the
edges of G′j , and since each edge contributes to at most
two cuts (by the disjointness), this entire pass takes only
linear time O(|E(G′j)|).

Next, to verify that each (cj , uk)-cut exhibited
above, namely, each (V (G′j) \ C ′k, C ′k), is actually a
minimum (cj , uk)-cut in G′j , the algorithm finds a flow
whose value is equal to the cut capacity. In order to
perform this task simultaneously for all k ∈ [d], our
verification algorithm employs a known result about
disjoint trees, as a witness for maximum-flow values
in a graph with unit edge-capacities (strictly speaking,
this witness provides lower bounds on maximum-flow
values). In the following theorem, a directed tree rooted
at r is a directed graph arising from an undirected tree
all of whose edges are then directed away from r. This is
equivalent to an arborescence (having exactly one path
from r to every node other than r), however we will
not require that it spans all the graph nodes. In the
following, Max-FlowG(s, t) is the maximum st-flow value
in a graph G.

Lemma 3.4. Given an undirected multigraph H =
(VH , EH), a root node r ∈ VH , and a function λ : VH →
[|EH |], it is possible to nondeterministically verify in
time Õ(|EH |) that

(3.1) ∀v ∈ VH \ {r}, Max-FlowH(r, v) ≥ λ(v).

Here, nondeterministic verification means that if (3.1)
holds then there exists a guess that leads to output “yes”;
and if (3.1) does not hold then every guess leads to
output “no”.

Proof. We use the following theorem known
from [BFJ95, Theorem 2.7], in its variation from [CH03]
as the Tree Packing Theorem.

Theorem 3.5. Let He be an Eulerian directed graph,
and re be a node in He. Then there exist
maxv 6=re{Max-FlowHe

(re, v)} edge-disjoint directed trees
rooted at re, such that each node v ∈ He appears in ex-
actly Max-FlowHe

(re, v) trees.

Given the undirected multigraph H, first subdivide
each edge into two edges with a new node in between

them, then orient each edge in both directions8 to
obtain an Eulerian directed graph He. Observe that
the minimum-cut values between pairs of original nodes
in He are the same as in H. Now find all maximum-flow
lower-bound values from r in He by guessing |VH | edge-
disjoint trees and then counting occurrences of each
node in those trees. By Theorem 3.5, these counts
correspond to maximum-flow lower-bound values from
r. And so if the guessed trees support the values given
by λ, then answer “yes”, and otherwise answer “no”.
Note that the conversion to directed Eulerian graph
multiplied the amount of edges by 2, and so the running
time is still near linear.

The verification algorithm then applies Lemma 3.4
toG′j with cj as the root, and verifies in time Õ(|E(G′j)|)
that the maximum-flow from cj to each uk is at least
the capacity of the (cj , uk)-cut exhibited above (in turn
verified to be equal to the capacity of edge (cj , uk) in
T ∗).

Correctness. We begin by claiming that if the
guessed tree T ∗ is a correct cut-equivalent tree of G,
then our algorithm outputs T ∗; we discuss the comple-
ment case afterwards. Since T ∗ is a cut-equivalent tree,
every verification step of an expansion will not fail and
so the algorithm will not terminate and output T ∗ at
the end, as required.

Next, we show that if T ∗ is not a cut equivalent
tree, then our algorithm will not succeed. This is proved
mainly by the claim below, which is proved in the full
version, that an intermediate tree attained by expansion
steps can be attained also by a sequence of Gomory-Hu
steps.

Claim 3.6. If there is a sequence of Gomory-Hu steps
simulating expansions attaining T (j), and another ex-
pansion step is being done to attain T (j+1), then there
is a sequence of Gomory-Hu steps simulating this last
step too.

Now, assume for the contrary that T ∗ is not a cut-
equivalent tree of G and our algorithm still produces
it. As a consequence of Claim 3.6, there is a sequence
of Gomory-Hu steps attaining T ∗, contradicting the
proof of correctness of the Gomory-Hu algorithm (which
cannot produce T ∗). Thus, it is impossible that our
algorithm finishes and produces T ∗, and so in one of the
minimum-cut verifications after an expansion step, the
cut witness inspired from T ∗ would not be correct, or
there would not be a set of directed trees to testify that
the corresponding cuts are minimal. This completes the
proof of correctness.

8The subdivision and orientation are used to transform the
undirected multigraph to a directed graph.
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Running Time. Observe that the running time of
a single expansion step, i.e., verifying its corresponding
minimum cuts by evaluating cuts and flows, is quasi-
linear in the size of the auxiliary graph. Thus, we only
have to show that the total size of all the auxiliary
graphs (over all the expansions) is quasi-linear in m. We
prove in Lemma 3.7 below an O(m) bound for a single
depth q, and since the depth of the decomposition is
O(log n), we immediately conclude in Corollary 3.8 that
the total size of all auxiliary graphs over all depths is
Õ(m).

Lemma 3.7. Let Dq = {cj1 , . . . , cj2} contain the cen-
troids at depth q. Then the total size of G′j1 , . . . , G

′
j2

is
at most O(m).

Corollary 3.8. The total size of all auxiliary graphs
(over all depths) is Õ(m).

Proof. [Proof of Lemma 3.7] Let us count for each edge
uv ∈ E(G) in how many auxiliary graphs of depth
q it appears. This quantity turns out to be at most
2 + (distT (u, v) − 1), where distT (u, v) is the hop-
distance, i.e., the minimum number of edges (ignoring
weights or capacities) in a path between u and v in
the tree T . The summand 2 comes from edges uv such
that either u or v belong to V (Tcj ) for some auxiliary
graph G′j . Clearly, every such edge is in at most two
auxiliary graphs at depth q, because there is at most
one index j′ ∈ Dq where u ∈ V (Tcj′ ) and at most
one index j′′ ∈ Dq where v ∈ V (Tcj′′ ). The summand
distT (u, v)−1 bounds the other appearances of edge uv,
i.e., when neither u nor v belongs to some V (Tcj ), and
is stated in the claim below, whose proof is in the full
version. While our graph has unit capacities, the claim
holds for general capacities.

Claim 3.9. For every cut-equivalent tree T of a graph
G with edge capacities cG : E → R+,∑

uv∈E(G)

cG(u, v) · distT (u, v) ≤ 2
∑

uv∈E(G)

cG(u, v).

To complete the proof of Lemma 3.7, recall that by
Observation 3.3 the super-nodes V (Tcj1 ), . . . , V (Tcj2 ) of
the same depth q are pairwise disjoint. Thus, an edge
uv appears in at most distT ∗(u, v)− 1 auxiliary graphs
of depth q, which totals to O(m) for all the edges in this
depth according to the unit edge-capacity special case of
the above Claim 3.9. This concludes Lemma 3.7.

Next, we bound the time it takes to construct all the
auxiliary graphs. The proof appears in the full version.

Lemma 3.10. The total time it takes to construct the
auxiliary graphs for all the expansions in the centroid
decomposition is Õ(m).

3.2 Reduction from a Decision Problem to a
Total Function Let us start with the formal statement
of NSETH.

Hypothesis 3.11. (Nondeterministic Strong
Exponential-Time Hypothesis (NSETH))
For every ε > 0 there exists k = k(ε) such that
k-TAUT (the language of all k-DNF formulas that are
tautologies) is not in NTIME(2n(1−ε)).

Note that deciding if a k-DNF formula is a tautology is
equivalent to deciding if a k-CNF formula is satisfiable,
thus the above hypothesis could be stated also using
k-CNF appropriately. Next, we define (deterministic)
fine-grained reductions from a decision problem to a
total function. Note that these are Turing reductions.

Definition 3.12. (Fine-Grained Reduction from
a Decision Problem to a Total Function)
Let L be a language and P be a total function, and let
TL(·) and TP (·) be time bounds. We say that (L, TL)
admits a fine-grained reduction to (P, TP ) if for all
ε > 0 there is a γ > 0 and a deterministic Turing
machine MP (with an access to an oracle that generates
a solution to every instance of P ) such that:

a. MP decides L correctly on all inputs when given a
correct oracle for P .

b. Let Q̃(MP , x) denote the set of oracle queries made
by MP on input x of length n. Then the query
lengths obey the bound

∀x, DTIME(MP , |x|) +
∑

q∈Q̃(M,x)

(TP (|q|))1−ε

≤ (TL(n))1−γ .

We are now ready to prove the non-reducibility
result under NSETH for total functions with small
nondeterministic complexity. The proof appears in the
full version, and its arguments are similar to those of
Carmosino et al. [CGI+16].

Theorem 3.13. Suppose P is a total function with
nondeterministic time complexity T (m). If for some
δ > 0 there is a deterministic fine-grained reduction
from k-SAT with time-bound 2n to P with time bound
T (m)1+δ, i.e., from (k-SAT, 2n) to (P, T (m)1+δ), then
NSETH is false.
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Since the construction of a cut-equivalent tree is a
total function, and by theorem 1.2 its nondeterministic
complexity is Õ(m), applying Theorem 3.13 implies
that any deterministic reduction from SETH to the
construction of a cut-equivalent tree that implies a
lower bound of Ω(m1+δ), for some δ > 0, would refute
NSETH, concluding Theorem 1.3.

4 Conditional Lower Bound for All-Pairs
Max-Flow

In this section we prove a conditional lower bound
for All-Pairs Max-Flow in undirected graphs with node
capacities. Our construction is inspired by the one
in [KT18], which was designed for directed graphs with
edge capacities, but it adopts it using our new trick
described in the introduction. In fact, readers familiar
with the reduction in [KT18] may notice that we had
to tweak it a little, making it simpler in certain ways
but more complicated in others. This was necessary in
order to apply our new trick successfully to it.

The starting point for our reduction is the 3OV
problem.

Definition 4.1. (3OV) Given three sets U1, U2, U3 ⊆
{0, 1}d containing n binary vectors each, over dimension
d, decide if there is a triple (α, β, γ) of vectors in
U1 × U2 × U3, whose dot product is 0. That is, a triple
for which for all i ∈ [d] at least one of α[i], β[i], γ[i] is
equal to 0.

An adaptation of the reduction by Williams [Wil05]
shows that 3OV cannot be solved in O(n3−ε) time
for any ε > 0 and d = ω(log n), unless SETH is
false (see [ABW15]). For us, it suffices to assume the
milder conjecture that 3OV cannot be solved in O(n3−ε)
time when d = nδ, for all ε, δ > 0. Refuting this
conjecture has important implications beyond refuting
SETH [GIKW17, ABDN18], e.g. it refutes the Weighted
Clique Conjecture.

The high level structure of the reduction is the
following: create three layers of nodes that correspond
to the three sets of vectors, with additional two layers
in between them that correspond to the coordinates.
These additional layers help keep the number of edges
small by avoiding direct edges between pairs of vectors.
Among other things, we utilize the trick described in
the introduction and set the capacity of the nodes in the
leftmost and rightmost sides to be 1, while making the
other capacities much larger. This way a flow would not
gain too much from crisscrossing through these nodes.
Formally, we prove the following.

Lemma 4.2. 3OV over vector sets of size n and dimen-
sion d can be reduced to All-Pairs Max-Flow in undirected

graphs with Θ(n · d) nodes, Θ(n · d) edges, and node ca-
pacities in [2n2d].

Proof. Given a 3OV instance F we construct a graph
G with maximum flow size between some pair (among
a certain set of pairs) bounded by a certain amount
if and only if F is a yes instance. For simplicity,
we first provide a construction that has some of the
edges directed (only where we will specifically mention
that), and then we show how to avoid these directions.
In addition, some of the edges will be capacitated as
well, however the amount of such edges is small enough
so that subdividing them with appropriate capacitated
nodes will work too without a significant change to the
size of the constructed graph.

An Intermediate Construction with Few Di-
rected Edges. To simplify the exposition, we start
with a construction of a graph G′ in which most of the
edges are undirected, but some are still directed (see
figure 3).

Our final graph G will be very similar to G′. It will
have the same nodes and edges except that all edges will
be undirected and the capacities on the nodes will be a
little different.

We construct the graph G′ on N nodes V1∪V2∪V3∪
A∪B∪{vB}. The layer V1 contains a node α of capacity
1 for every vector α ∈ U1. V2 contains d + 1 nodes for
every vector β ∈ U2, d nodes denoted by βi for every
i ∈ [d] and their capacity is 1, plus a node denoted by β′

of capacity d− 1. V3 contains a node γ of capacity 1 for
every vector γ in U3. The intermediate layer A contains
2d nodes: two nodes C0

i and C1
i of capacity n for every

coordinate i ∈ [d]. The other intermediate layer B
contains a node Ci of capacity n for every coordinate
i ∈ [d]. Finally, the auxiliary node vB has capacity
n(d − 1). With a slight abuse of notation, we will use
the following symbols in the following ways: α will be
either a node in V1 or a vector in U1; β will be a vector
in U2; γ will be either a node in V3 or a vector in U3;
and Ci will be either a node in B or a coordinate in [d].
The usage will be clear from context.

The edges of the network will be defined as follows.
First, we describe the edges that depend on the given
3OV instance.

• For every α and i ∈ [d], we add a directed edge
from α to C0

i if α[i] = 0, and a directed edge from
α to C1

i if α[i] = 1.

• For every β, we add an (undirected) edge from βi
to Ci if β[i] = 1.

• For every γ and i ∈ [d], we add an (undirected)
edge from Ci to γ if γ[i] = 1.
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Figure 3: An illustration of part of the reduction. Here, U1, U2, and U3 have two vectors each; α and α̃ in U1, β
and β̃ in U2, γ and γ̃ in U3. Bolder nodes correspond to nodes of higher capacity, and dashed edges are conditional
on the input instance. For simplicity, we omit the edges not relevant to α and γ̃, and also the edges from nodes
in {C0

i }i∈[3] to nodes in {β′, β̃′}. In this illustration, α = 110, β = 101, β̃ = 001, and γ̃ = 101. Note that the

triple α, β̃, and γ̃ has an inner product 0, and indeed the maximum flow from α to γ̃ is 2 · 3− 1 = 5.

Moreover, there will be some (undirected) edges that
are independent of the vectors. For every β, we have an
edge of capacity 1 from C0

i to β′, and an edge of capacity
1 from C1

i to βi. Also, for every β, we have an edge from
βi to β′, and an edge from β′ to vB . Finally, for every
γ, we have an edge from vB to γ ∈ V3. (Unless specified
otherwise, these edges have no capacity constraints.)

The graph built has N = n+2d+n·d+n+1+d+n =
Θ(nd) nodes, at most O(nd) edges, all of its capacities
are in [N ], and its construction time is O(Nd).

The following two claims whose proofs appear in the
full version, prove the correctness of this intermediate
reduction.

Claim 4.3. If every triple of vectors in (U1, U2, U3)
have inner product at least 1, then for all pairs α ∈
V1, γ ∈ V3 the maximum-flow in G′ is at least n · d.

Claim 4.4. If there is a triple of vectors (αΦ, βΦ, γΦ) ∈
(U1, U2, U3) whose inner product is 0, then the
maximum-flow in G′ from αΦ ∈ V1 to γΦ ∈ V3 is at
most nd− 1.

The Final Construction. The main issue with
avoiding the directions on the edges between nodes in

V1 and A, is that additional α’s might participate in the
flow as well, potentially allowing one additional unit of
flow to pass through. As described in the introduction,
the solution is to multiply the capacities of all nodes
that are not in V1 ∪ V3 by 2n. This is how we get our
final graph G from G′. In the following we show how
this modification concludes the proof of Lemma 4.2.

Claim 4.5. If every triple of vectors in (U1, U2, U3) has
inner product at least 1, then for all pairs α ∈ V1, γ ∈ V3

the maximum-flow in G is at least 2n2d.

Proof. Since the flow that was defined in Claim 4.3 does
not touch nodes in V1 ∪ V3, considering the same flow
in G but multiplied by 2n, we get a new flow that is of
size nd · (2n), concluding the proof.

Claim 4.6. If there is a triple of vectors (αΦ, βΦ, γΦ) ∈
(U1, U2, U3) whose inner product is 0, then the
maximum-flow in G from αΦ ∈ V1 to γΦ ∈ V3 is at
most 2n2d− 1.

Proof. Let f be the maximum flow from αΦ to γΦ in
G. The paths in f can be divided into two kinds: paths
that pass through nodes in (V1 ∪ V3) \ {αΦ, γΦ}, and
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paths that do not. The total contribution of paths
of the first kind can be upper bounded by the size of
(V1 ∪ V3) \ {αΦ, γΦ}, which is 2n− 2, since the capacity
of all nodes in this set is 1. On the other hand, paths
from the second kind must obey the directions of the
directed edges in G′ and can therefore be used in G′,
except that in G their multiplicity (the amount of flow
we push through them) can be larger by a factor of 2n.
Therefore, we can upper bound the total contribution
of paths of the second kind by 2n times the maximum
flow in G′, which is (nd− 1)(2n). Thus, the overall flow
is at most (nd−1)(2n)+2n−2 = 2n2d−2, which proves
Claim 4.6.

Since we showed a gap of at least one unit of flow
between the yes and the no instances, the proof of
Lemma 4.2 is concluded.

5 Open Problems

Many gaps and open questions around the complexity
of maximum flow remain after this work. We highlight a
few for which our intuitions may have changed following
our discoveries.

• Can we break the O(mn) barrier also when the
graphs have arbitrary (polynomial) capacities?
Our result gives hope that this may be possible.

• Can we reduce the directed case to the undi-
rected, node-capacitated case? Because of our
lower bound, it is likely that both of these cases
will end up having the same time complexity, and
so such a reduction may be possible.

• Can we generalize the nondeterministic algorithm
to arbitrary edge-capacities? Notice that one
obstacle for achieving that goal is finding lower
bounds witness for flows from a certain source to
other nodes.

• Can we prove any conditional lower bound for All-
Pairs Max-Flow in undirected graphs with edge ca-
pacities? This is obviously the most important and
intriguing open question in this context. Our new
deterministic and nondeterministic upper bounds
make this task more challenging than previously
thought.
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