
Min-Max Graph Partitioning and Small Set Expansion

Nikhil Bansal
IBM Research

Uriel Feige
Weizmann Institute of Science

Robert Krauthgamer
Weizmann Institute of Science

Konstantin Makarychev
IBM Research

Viswanath Nagarajan
IBM Research

Joseph (Seffi) Naor
Technion

Roy Schwartz
Technion

Abstract— We study graph partitioning problems from a min-
max perspective, in which an input graph on n vertices should
be partitioned into k parts, and the objective is to minimize the
maximum number of edges leaving a single part. The two main
versions we consider are: (i) the k parts need to be of equal
size, and (ii) the parts must separate a set of k given terminals.
We consider a common generalization of these two problems,
and design for it an O(

√
logn log k)-approximation algorithm.

This improves over an O(log2 n) approximation for the second
version due to Svitkina and Tardos [22], and roughly O(k logn)
approximation for the first version that follows from other previous
work. We also give an improved O(1)-approximation algorithm for
graphs that exclude any fixed minor.

Our algorithm uses a new procedure for solving the Small-Set
Expansion problem. In this problem, we are given a graph G and
the goal is to find a non-empty set S ⊆ V of size |S| ≤ ρn
with minimum edge-expansion. We give an O(

√
logn log (1/ρ))

bicriteria approximation algorithm for the general case of Small-
Set Expansion, and O(1) approximation algorithm for graphs that
exclude any fixed minor.

1. INTRODUCTION

We study graph partitioning problems from a min-max
perspective. Typically, graph partitioning problems ask for
a partitioning of the vertex set of an undirected graph,
under some problem-specific constraints on the different
parts, e.g., balanced partitioning or separating terminals, and
the objective is min-sum, i.e., minimizing the total weight
of the edges connecting different parts. In the min-max
variant of these problems, the goal is different — minimize
the weight of the edges leaving a single part, taking the
maximum over the different parts. A canonical example,
that we consider throughout the paper, is the Min–Max k–
Partitioning problem: given an undirected graph G = (V,E)
with nonnegative edge weights and k ≥ 2, partition the
vertices into k (roughly) equal parts S1, . . . , Sk so as to
minimize maxi δ(Si), where δ(S) denotes the sum of the

Uriel Feige is supported in part by the Israel Science Foundation (grant
#873/08).

Robert Krauthgamer is supported in part by The Israel Science Founda-
tion (grant #452/08), and by a Minerva grant.

Joseph (Seffi) Naor is supported in part by the Israel Science Foundation
(grant #954/11), and the US-Israel Binational Science Foundation (grant
#2010426).

edge weights in the cut (S, V \ S). We design a bicriteria
approximation algorithm for this problem. Throughout, let
w : E → R+ denote the edge-weights and let n = |V |.

Min-max partitions arise naturally in many settings. Con-
sider the following application in the context of cloud
computing, which is a special case of the general graph-
mapping problem considered in [4] (and also implicit in
other previous works [23], [24], [8]). There are n pro-
cesses communicating with each other, and there are k
machines, each having a bandwidth capacity C. The goal
is to allocate the processes to machines in a way that
balances the load (roughly n/k processes per machine),
and meets the outgoing bandwidth requirement. Viewing
the processes as vertices and the traffic between them as
edge weights, we get the Min–Max k–Partitioning problem.
In general, balanced partitioning (either min-sum or min-
max) is at the heart of many heuristics used in a wide range
of applications, including VLSI layout, circuit testing and
simulation, parallel scientific processing, and sparse linear
systems.

Balanced partitioning, particularly the min-sum version,
has been studied extensively during the last two decades,
with impressive results and connections to several fields of
mathematics, see e.g. [16], [9], [17], [3], [2], [13], [14],
[6]. The min-max variants, in contrast, have received much
less attention. Previously, no approximation algorithm for
the Min–Max k–Partitioning problem was given explicitly,
and the approximation that follows from known results is not
smaller than O(k

√
log n).1 We improve this dependence on

k significantly.

An important tool in our result above is an approxima-
tion algorithm for the Small-Set Expansion (SSE) problem.
This problem was suggested recently by Raghavendra and
Steurer [19] (see also [20], [21]) in the context of the unique
games conjecture. Recall that the edge-expansion of a subset

1One could reduce the problem to the min-sum version of k-partitioning.
The latter admits bicriteria approximation O(

√
logn log k) [13], but the

reduction loses another factor of k/2. Another possibility is to repeatedly
remove n/k vertices from the graph, paying again a factor of k/2 on top
of the approximation in a single iteration, which is, say, O(logn) by [18].

S ⊆ V with 0 < |S| ≤ 1
2 |V | is

Φ(S) :=
δ(S)

|S|
.

The input to the SSE problem is an edge-weighted graph
and ρ ∈ (0, 12], and the goal is to compute

Φρ := min
|S|≤ρn

Φ(S).

Raghavendra, Steurer and Tetali [20] designed for SSE
an algorithm that approximates the expansion within
O(
√

(1/Φρ) log(1/ρ)) factor of the optimum, while vi-
olating the bound on |S| by no more than a constant
factor (namely, a bicriteria approximation). Notice that the
approximation factor depends on Φρ; this is not an issue if
every small set expands well, but in general Φρ can be as
small as 1/poly(n), in which case this guarantee is quite
weak.

One can achieve a true approximation of O(log n) for
SSE using [18], for any value of ρ.2 If one desires a better
approximation, then an approximation of O(

√
log n) using

[2] can be achieved at the price of slightly violating the
size constraint, namely a bicriteria approximation algorithm.
However, unlike the former which works for any value of ρ,
the latter works only for ρ = Ω(1). In our context of min-
max problems we need the case ρ = 1/k, where k = k(n)
is part of the input. Therefore, it is desirable to extend the
O(
√

log n) bound of [2] to a large range of values for ρ.

1.1. Main Results

Our two main results are bicriteria approximation algo-
rithms for the Min–Max k–Partitioning and SSE problems,
presented below. The notation Oε(t) hides multiplicative
factors depending on ε, i.e., stands for O(f(ε) · t).

Theorem 1. For every positive constant ε > 0, Min–
Max k–Partitioning admits a bicriteria approximation of(
Oε(
√

log n log k), 2 + ε
)
.

This theorem provides a polynomial-time algorithm that
with high probability outputs a partition S1, . . . , Sk such
that maxi |Si| ≤ (2 + ε)nk and maxi δ(Si) ≤
O(
√

log n log k)OPT, where OPT is the optimal min-max
value of partitioning into k equal-size parts. (The guarantee
on part size can be improved slightly to 2 − 1

k + ε). This
result is most interesting in the regime 1� k � n.

Theorem 2. For every positive constant ε > 0,
Small-Set Expansion admits a bicriteria approximation of(
Oε(
√

log n log (1/ρ)), 1 + ε
)
.

This theorem provides a polynomial-time algorithm that
with high probability outputs a set S of size 0 <
|S| ≤ (1 + ε)ρn whose edge-expansion is δ(S)/|S| =

2For very small values of ρ, roughly ρn ≤ O(log2 n), a better
approximation ratio is known [10].

O(
√

log n log (1/ρ))OPT, where OPT is the minimum
edge-expansion over all sets of size at most ρn. Our al-
gorithm actually handles a more general version, called
Weighted Small-Set Expansion, which is required in The-
orem 1. We defer the precise details to Section 2.

1.2. Additional Results and Extensions

ρ–Unbalanced Cut: Closely related to the SSE problem
is the following ρ–Unbalanced Cut problem: The input is
again a graph G = (V,E) with nonnegative edge-weights
and a parameter ρ ∈ (0, 12], and the goal is to find a
subset S ⊆ V of size |S| = ρn that minimizes δ(S).
The relationship between this problem and SSE is similar to
the one between Balanced Cut and Sparsest Cut, and thus
Theorem 2 yields the following result.

Theorem 3. For every constant 0 < ε < 1, the ρ–
Unbalanced Cut problem admits a bicriteria approximation
of
(
Oε(
√

log n log(1/ρ)),Ω(1), 1 + ε
)
.

This theorem says that there is a polynomial-time al-
gorithm that with high probability finds S ⊆ V of
size Ω(ρn) ≤ |S| ≤ (1 + ε)ρn and value δ(S) ≤
Oε(
√

log n log (1/ρ))OPT, where OPT is the value of an
optimal solution to ρ–Unbalanced Cut. This result gener-
alizes the bound of [2] from ρ = Ω(1) to any value of
ρ ∈ (0, 12]. Our factor is better than the O(log n) true approx-
imation ratio that follows from [18], at the price of slightly
violating the size constraint. Our algorithm actually handles
a more general version, called Weighted ρ-Unbalanced Cut,
which is required in Theorem 1. We defer the precise details
to Section 2.4.

Min-Max-Multiway-Cut: We also consider the follow-
ing Min-Max-Multiway-Cut problem, suggested by Svitkina
and Tardos [22]: the input is an undirected graph with
nonnegative edge-weights and k terminal vertices t1, . . . , tk,
the goal is to partition the vertices into k parts S1, . . . , Sk
(not necessarily balanced), under the constraint that each part
contains exactly one terminal, so as to minimize maxi δ(Si).
They designed an O(α log n)–approximation algorithm for
this problem, where α is the approximation factor known
for Minimum Bisection. Plugging α = O(log n), due to
Räcke [18], the algorithm of Svitkina and Tardos achieves
O(log2 n)-approximation. Using a similar algorithm to the
one in Theorem 1, we obtain a better approximation factor.

Theorem 4. Min-Max-Multiway-Cut admits an
O(
√

log n log k)–approximation algorithm.

Somewhat surprisingly, we show that removing the de-
pendence on n for Min-Max-Multiway-Cut (even though no
balance is required) appears hard, which stands in contrast to
its min-sum version, known as Multiway Cut, which admits
O(1)–approximation [5], [11]. The idea is to show that
it would imply a similar independence of n for the min-
sum version of k-partitioning, thus for large but constant k,

we would get an (O(1), O(1))-bicriteria approximation for
Min–Sum k–Partitioning, which seems unlikely based on the
current state of art [2], [1], [13].

Theorem 5. If there is a k1−ε–approximation algorithm for
Min-Max-Multiway-Cut for some constant ε > 0, then there
is a (k2, γ) bicriteria approximation algorithm for Min–Sum
k–Partitioning with γ ≤ 32/ε.

The proofs of Theorems 4 and 5 appear in the full version
of the paper.

Excluded-minor graphs: Finally, we obtain an im-
proved approximation – constant factor – for SSE in graphs
excluding a fixed minor.

Theorem 6. For every constant ε > 0, Small-Set Expansion
admits:
• bicriteria approximation of

(
Oε(r

2), 1+ε
)

on graphs
excluding a Kr,r-minor.
• bicriteria approximation of

(
Oε(log g), 1 + ε

)
on

graphs of genus g ≥ 1.

These bounds extend to the ρ–Unbalanced Cut problem,
and by plugging them into the proof of Theorems 1 and
4, we achieve an improved approximation ratio of O(r2)
for Min–Max k–Partitioning and Min-Max-Multiway-Cut in
graphs excluding a Kr,r-minor.

1.3. Techniques

For clarity, we restrict the discussion here mostly to our
main application, Min–Max k–Partitioning. Our approach
has two main ingredients. First, we reduce the problem to
a weighted version of SSE, showing that an α (bicriteria)
approximation for the latter can be used to achieve O(α)
(bicriteria) approximation for Min–Max k–Partitioning. Sec-
ond, we design an Oε(

√
log n log(1/ρ)) (bicriteria) approx-

imation for weighted SSE (recall that in our applications
ρ = 1/k).

Let us first examine SSE, and assume for simplicity of
presentation that ρ = 1/k. Note that SSE bears obvious
similarity to both Balanced Cut and min-sum k–partition
(its solution contains a single cut with a size condition, as
in Balanced Cut, but the size of this cut is n/k similarly to
the k pieces in min-sum k–partition). Thus, our algorithm
is inspired by, but different from, the approximation algo-
rithms known for these two problems [2], [13]. As in these
two problems, we use a semidefinite programming (SDP)
relaxation to compute an `22 metric on the graph vertices.
However, new spreading constraints are needed since SSE
is highly asymmetric in its nature — it contains only a single
cut of size n/k. We devise a randomized rounding procedure
based on the orthogonal separator mechanics, first intro-
duced by Chlamtac, Makarychev, and Makarychev [7] in the
context of unique games. These ideas lead to an algorithm
that computes a cut S of expected size |S| ≤ O(n/k) and
of expected cost δ(S) ≤ O(

√
log n log k) times the SDP

value. An obvious concern is that both properties occur in
only expectation and might be badly correlated, e.g., the
expected edge-expansion E[δ(S)/|S|] might be extremely
large. Nevertheless, we prove that with good probability,
|S| = O(n/k) and δ(S)/|S| is sufficiently small.

For SSE on excluded-minor and bounded-genus graphs,
we give a better approximation guarantees, of a constant
factor, by extending the notion of orthogonal separators to
linear programs (LPs) and designing such low-distortion
“LP separators” for these special graph families. The proof
uses the probabilistic decompositions of Klein, Plotkin, and
Rao [12] and Lee and Sidiropoulos [15]. We believe that
this result may be of independent interest. Let us note that
the LP formulation for SSE is not trivial and requires novel
spreading constraints. We remark that even on planar graphs,
the decomposition of Räcke [18] suffers an Ω(log n) loss
in the approximation guarantee, and thus does not yield
o(log n) ratio for SSE on this class of graphs.

Several natural approaches for designing an approxi-
mation algorithm for Min–Max k–Partitioning fail. First,
reducing the problem to trees à la Räcke [18] is not very
effective, because there might not be a single tree in the
distribution that preserves all the k cuts simultaneously.
Standard arguments show that the loss might be a factor of
O(k log n) in the case of k different cuts. Second, one can
try and formulate a relaxation for the problem. However, the
natural linear and semidefinite relaxations both have large
integrality gaps. As a case study, consider for a moment
Min-Max-Multiway-Cut. The standard linear relaxation of
Calinescu, Karloff and Rabani [5] was shown by Svitkina
and Tardos [22] to have an integrality gap of k/2. In the full
version of the paper, we extend this gap to the semidefinite
relaxation that includes all `22 triangle inequality constraints.
A third attempt is to repeatedly remove from the graph,
using SSE, pieces of size Θ(n/k). However, by removing
the “wrong” vertices from the graph, this process might
arrive at a subgraph where every cut of Θ(n/k) vertices
has edge-weight greater by a factor of Θ(k) than the original
optimum (see the full version of the paper for details). Thus,
a different approach is needed.

Our approach is to use multiplicative weight-updates
on top of the algorithm for weighted SSE. This yields a
collection S of sets S, all of size |S| = Θ(n/k) and
cost δ(S) ≤ O(

√
log n log k)OPT, that covers every vertex

v ∈ V at least Ω(n/k) times. (Alternatively, this collection
S can be viewed as a fractional solution to a configuration
LP of exponential size.) Next, we randomly sample sets
S1, . . . , St from S till V is covered, and derive a parti-
tion given by P1 = S1, P2 = S2 \ S1, and in general
Pi = Si \(∪j<iSj). This step is somewhat counter-intuitive,
since the sets Pi may have very large cost δ(Pi) (because a
set Pi might be a strict subset of a set Si′). We show that
the total expected boundary of the partition is not very large,
i.e., E[

∑
i δ(Pi)] ≤ O(k

√
log n log k)OPT. Then, we start

fixing the partition by the following local operation: find a
Pi violating the constraint δ(Pi) ≤ O(

√
log n log k)OPT,

replace it with the unique Si containing it, and adjust other
sets Pj accordingly. Somewhat surprisingly, we prove that
this local fixing procedure terminates (quickly). Finally, the
resulting partition consists of sets Pi, each of which satisfies
the necessary properties, but now the number of these sets
might be very large. So the last step is to merge small sets
together. We show that this can be done while maintaining
simultaneously the constraints on the sizes and on the costs
of the sets.

Organization: We first show in Section 2 how to
approximate Weighted Small-Set Expansion (in both gen-
eral and excluded-minor graphs). We then prove in Sec-
tion 2.4 that Weighted Small-Set Expansion and Weighted
ρ-Unbalanced Cut are equivalent in terms of approximation,
up to constant factors. In Section 3 we present an approxi-
mation algorithm for Min–Max k–Partitioning that uses the
aforementioned algorithm for ρ–Unbalanced Cut (and in turn
the one for Weighted Small-Set Expansion). Due to space
constraints, we defer many details to the full version of the
paper.

2. APPROXIMATION ALGORITHMS FOR
SMALL SET EXPANSION

In this section we design approximation algorithms for
the Small-Set Expansion problem. Our main result is for
general graphs and uses an SDP relaxation. It actually holds
for a slight generalization of the problem, where expansion
is measured with respect to vertex weights (see Definition 7
and Theorem 8). We further obtain improved approximation
for certain graph families such as planar graphs (see Section
2.3).

To simplify notation, we shall assume that vertex weights
are normalized: we consider measures µ and η with µ(V) =
η(V) = 1. We denote µ(u) = µ({u}) and η(u) = η({u}).
We let (V,w) denote a complete (undirected) graph on
vertex set V with edge-weight w(u, v) = w(v, u) ≥ 0
for every u 6= v ∈ V . In our context, such (V,w) can
easily model a specific edge set E, by simply setting
w(u, v) = 0 for every non-edge (u, v) /∈ E. Recall that
we let δ(S) :=

∑
u∈S,v∈V \S w(u, v) be the total weight

of edges crossing the cut (S, V \ S), and further let w(E)
denote the total weight of all edges.

Definition 7 (Weighted Small-Set Expansion). Let G =
(V,w) be a graph with nonnegative edge-weights, and
let µ and η be two measures on the vertex set V with
µ(V) = η(V) = 1. The weighted small set expansion with
respect to ρ ∈ (0, 1/2] is

Φρ,µ,η(G) = min

{
δ(S)

w(E)
× 1

η(S)
: η(S) > 0, µ(S) ≤ ρ

}
.

Theorem 8 (Approximating SSE). (I) For every fixed ε > 0,
there is a polynomial-time algorithm that given as input an

edge-weighted graph G = (V,w), two measures µ and η on
V (µ(V) = η(V) = 1), and some ρ ∈ (0, 1/2], finds a set
S ⊂ V satisfying η(S) > 0, µ(S) ≤ (1 + ε)ρ and

δ(S)

w(E)
× 1

η(S)
≤ D × Φρ,µ,η(G), (1)

where D = Oε(
√

log n log(1/ρ)).
(II) When the input contains in addition a parameter H ∈
(0, 1), the algorithm finds a non-empty set S ⊂ V satisfying
µ(S) ≤ (1 + ε)ρ, η(S) ∈ [Ω(H), 2(1 + ε)H], and

δ(S)

w(E)
· 1

η(S)
≤ D min

η(S)∈[H,2H]
µ(S)≤ρ}

{
δ(S)

w(E)
× 1

η(S)

}
, (2)

where D = Oε(
√

log n log(max{1/ρ, 1/H})).

We prove part I of the theorem in Section 2.1, and part II
in Section 2.2. These algorithms require the following notion
of m-orthogonal separators due to Chlamtac, Makarychev,
and Makarychev [7].

Definition 9 (Orthogonal Separators). Let X be an `22
space (i.e., a collection of vectors satisfying `22 triangle
inequalities). We say that a distribution over subsets of
X is an m-orthogonal separator of X with distortion D,
probability scale α > 0 and separation threshold β < 1 if
the following conditions hold for S ⊂ X chosen according
to this distribution:
• For all u ∈ X we have Pr(u ∈ S) = α ‖u‖2.
• For all u, v ∈ X with ‖u−v‖2 ≥ βmin(‖u‖2, ‖v‖2),

Pr(u ∈ S and v ∈ S) ≤ min{Pr(u ∈ S),Pr(v ∈ S)}
m

.

• For all u, v ∈ X we have

Pr(IS(u) 6= IS(v)) ≤ αD × ‖u− v‖2,

where IS is the indicator function of the set S.

Theorem 10 ([7]). There exists a polynomial-time random-
ized algorithm that given a set of vectors X , positive number
m, and β < 1 generates m-orthogonal separator with dis-
tortion D = Oβ(

√
log |X| logm) and scale α ≥ 1/p(|X|)

for some polynomial p.

In the original paper [7], the second requirement in the
definition of orthogonal separators was slightly different,
however, exactly the same algorithm and proof works in
our case: If ‖u − v‖2 ≥ β‖u‖2 and ‖u‖2 ≤ ‖v‖2, then
〈u, v〉 = (‖u‖2 + ‖v‖2 − ‖u − v‖2)/2 ≤ ((1 − β)‖u‖2 +
‖v‖2)/2 ≤ (1 − β/2)‖v‖2. Then, by Lemma 4.1 in [7],
〈ϕ(u), ϕ(v)〉 ≤ (1− β/2); hence ‖ϕ(u)− ϕ(v)‖2 ≥ β > 0
and, in Corollary 4.6, ‖ψ(u)− ψ(v)‖ ≥ 2γ =

√
β/4 > 0.

2.1. Algorithm I: Small-Set Expansion in General Graphs

We now prove part I of Theorem 8.
SDP Relaxation: In our relaxation we introduce a

vector v̄ for every vertex v ∈ V . In the intended solution
of the SDP corresponding to the optimal solution S ⊂ V ,
v̄ = 1 (or, a fixed unit vector e), if v ∈ S; and v̄ = 0,
otherwise. The objective is to minimize the fraction of cut
edges

min
1

w(E)

∑
(u,v)∈E

w(u, v) ‖ū− v̄‖2.

We could constrain all vectors v̄ to have length at most 1,
i.e. ‖v̄‖2 ≤ 1, but it turns out our algorithm never uses this
constraint. We require that the vectors {v̄ : v ∈ V } ∪ {0}
satisfy `22 triangle inequalities i.e., for every u, v, w ∈ V ,
‖ū − w̄‖2 ≤ ‖ū − v̄‖2 + ‖v̄ − w̄‖2, ‖ū‖2 ≤ ‖ū − v̄‖2 +
‖v̄‖2, ‖ū − w̄‖2 ≤ ‖ū‖2 + ‖w̄‖2. Suppose now that we
have approximately guessed the measure H of the optimal
solution H ≤ η(S) ≤ 2H (this step is not necessary but it
simplifies the exposition; in fact, we could simply let H =
1, since the SDP is otherwise homogeneous). This can be
done since the measure of every set S lies in the range
from η(u) to nη(u), where u is the heaviest element in
S, hence H can be chosen from the set {2tη(u) : u ∈
V, t = 0, · · · , blog2 nc} of size O(n log n). Then we add a
constraint ∑

v∈V
‖v̄‖2η(v) ≥ H. (3)

Finally, we introduce new spreading constraints: for every
u ∈ V ,∑

v∈V
µ(v) ·min{‖ū− v̄‖2, ‖ū‖2} ≥ (1− ρ)‖ū‖2.

(Alternatively, we could use a slightly simpler, almost equiv-
alent constraint

∑
v∈V 〈ū, v̄〉µ(v) ≤ ρ‖ū‖2. We chose to

use the former formulation because an analogous constraint
can be written in a linear program, see Section 2.3.) In the
intended solution this constraint is satisfied, since if u ∈ S,
then ū = 1 and the sum above equals µ(V \ S) ≥ 1− ρ. If
u /∈ S, then ū = 0 and both sides of the constraint equal 0.

The SDP relaxation used in our algorithm is presented
below in its entirety. Note that the second constraint can be
written as 〈ū, v̄〉 ≤ ‖ū‖2, and the third constraint can be
written as 〈ū, v̄〉 ≥ 0.

We now describe the approximation algorithm.
Approximation Algorithm: We first informally describe

the main idea behind the algorithm. The algorithm solves the
SDP relaxation and obtains a set of vectors {ū}u∈V . Now
it samples an orthogonal separator, a random set S ⊂ V ,
and returns it. Assume for the moment that α = 1. Since
Pr(v ∈ S) = ‖v̄‖2, we get E[η(S)] ≥ H . The expected
size of the cut is at most D × SDP by the third property
of orthogonal separators; and thus the sparsity is at most

min
1

w(E)

∑
(u,v)∈E

w(u, v) ‖ū− v̄‖2

subject to: for all u, v, w ∈ V ,

‖ū− w̄‖2 + ‖w̄ − v̄‖2 ≥ ‖ū− v̄‖2;

‖ū− v̄‖2 ≥ ‖ū‖2 − ‖v̄‖2;

‖ū‖2 + ‖v̄‖2 ≥ ‖ū− v̄‖2;

for all u ∈ V ,∑
v∈V

µ(v) ·min{‖ū− v̄‖2, ‖ū‖2} ≥ (1− ρ)‖ū‖2∑
v∈V
‖v̄‖2η(v) ≥ H.

Figure 1. SDP Relaxation

D × SDP/H ≤ 2D × OPT . The second property of
orthogonal separators guarantees that if ū ∈ S, then a very
small fraction of vectors that are far from ū belons to S
(since the conditional probability Pr(v̄ ∈ S | ū ∈ S) ≤ 1/m
is very small). And by the spreading constraints, at most
(1 + ε)ρ fraction of vectors (w.r.t. the measure µ) is close
to ū. Hence, the total expected measure of S is at most
(1 + ε)ρ+ 1/m ≤ (1 + 2ε)ρ. We now proceed to the formal
argument.

We may assume that ε is sufficiently small i.e., ε ∈
(0, 1/4). The approximation algorithm guesses approximate
value of the weight H: H ≤ η(S) ≤ 2H . It sets the length of
all vectors ū with η(u) > 2H to be 0. Then it solves the SDP
and obtains a set of vectors X = {v̄}v∈V . The algorithm
finds an orthogonal separator S with m = max(ε−1ρ−1)
and β = ε. For convenience, we let S be the set of vertices
corresponding to vectors belonging to the orthogonal separa-
tor rather than the vectors themselves. The algorithm repeats
the previous step dα−1n2e times (recall α is the probabilistic
scale of the orthogonal separator) and outputs the best S
satisfying 0 < µ(S) < (1 + 10ε)ρ. With an exponentially
small probability no S satisfies this constraint, in which case,
the algorithm outputs an arbitrary set satisfying constraints.

Analysis: We first estimate the probability of the event
“u ∈ S and µ(S) < (1+10ε)ρ” for a fixed vertex u ∈ V . Let
Au = {v : ‖ū− v̄‖2 ≥ β‖ū‖2} and Bu = {v : ‖ū− v̄‖2 <
β‖ū‖2}. We show that only a small fraction of Au belongs
to S, and that the set Bu is small.

From the spreading constraint∑
v∈V

min(‖ū− v̄‖2, ‖ū‖2)µ(v) ≥ (1− ρ)‖ū‖2,

and by Markov’s inequality, we get that µ(Bu) ≤ ρ/(1 −
β) ≤ (1 + 2ε)ρ. For an arbitrary v ∈ Au (for which v̄ 6=
0) write ‖ū − v̄‖2 ≥ β‖ū‖2 ≥ βmin(‖ū‖2, ‖v̄‖2). By the

second property of orthogonal separators, Pr(v ∈ S | u ∈
S) ≤ 1/m, thus the expected measure µ(Au∩S) is at most
Eµ(Au∩S) ≤ ερ. Now, by the Markov inequality, given that
u ∈ S, the probability of the bad event “µ(S) ≥ (1 + 10ε)ρ
(and, thus µ(Au ∩ S) ≥ 8ερ)” is at most 1/8. Each vertex
u ∈ V belongs to S with probability α‖ū‖2. Hence, u ∈ S,
and µ(S) < (1 + 10ε)ρ with probability at least 3/4 α‖ū‖2.

Finally, we use the third property of orthogonal separators
to bound the size of the cut δ(S)

Eδ(S) =
∑

(u,v)∈E

|IS(u)− IS(v)|w(u, v)

≤ αD ×
∑

(u,v)∈E

‖ū− v̄‖2w(u, v)

= αD × SDP × w(E).

Here, as usual, SDP denotes the value of the SDP solution;
and D = Oε(

√
log n log(1/δ)) is the distortion of m-

orthogonal separators.
Define the function

f(S) = η(S)− δ(S)

w(E)
× H

4D × SDP
,

if |S| 6= ∅, µ(S) < (1 + 10ε)ρ, and f(S) = 0, otherwise.
The expectation

Ef(S) ≥
∑
u∈V

3α‖ū‖2η(u)

4
− αH

4
≥ αH

2
.

The random variable f(S) is always bounded by 2nH ,
thus with probability at least α/n, f(S) > 0. Therefore, with
probability exponentially close to 1, after α−1n2 iterations,
the algorithm will find S with f(S) > 0. Since f(S) > 0,
we get η(S) > 0, µ(S) < (1 + 10ε)ρ, and

δ(S)

w(E)
× 1

η(S)
≤ 4D × SDP

H
.

This finishes the proof of part I since SDP/(2H) ≤
Φρ,µ,η(G).

2.2. Algorithm II: Small-Set Expansion in General Graphs

We now prove part II of Theorem 8. This algorithm uses
an SDP relaxation similar to part I, although we need a few
additional constraints. We write a constraint ensuring that
“η(S) ≤ 2H” (recall H is an approximate value of η(S) in
the optimal solution): we add spreading constraints for all
u ∈ V , ∑

v∈V
min{‖ū− v̄‖2, ‖ū‖2} η(v) ≤ 2H‖ū‖2,

and we let m = max{ε−1ρ−1, H−1ρ−1}. We also require∑
v∈V
‖v‖2µ(v) ≤ ρ. (4)

Algorithm II gets H , the approximate value of the mea-
sure η(S), as input, and thus does not need to guess it.

Approximation Algorithm. The algorithm consists of
many iterations of a slightly modified Algorithm I. At every
step the algorithm obtains a set S of vertices (returned by
Algorithm I) and adds it to the set T , which is initially
empty. Then, the algorithm removes vectors corresponding
to S from the set X , the SDP solution, and repeats the same
procedure till µ(T) ≥ ρ/4 or η(T) ≥ H/4. In the end, the
algorithm returns the set T if µ(T) ≤ ρ and η(T) ≤ H , and
the last set S otherwise.

The algorithm changes the SDP solution (by removing
some vectors), however we can ignore these changes, since
the objective value of the SDP may only decrease and all
constraints but (3) are still satisfied. Since the total weight
η(T) of removed vertices is at most H/4, a slightly weaker
variant of constraint (3) is satisfied. Namely,∑

u∈V
‖ū‖2η(u) ≥ 3H/4. (3′)

We now describe the changes in Algorithm I: instead of
f , we define function f ′:

f ′(S) = η(S)− δ(S)

w(E)
× H

4D × SDP
− µ(S)

4ρ
×H,

if |S| 6= ∅, µ(S) < (1 + 10ε)ρ and η(S) ≤ (1 + 10ε)H
and f ′(S) = 0, otherwise. Notice, that f ′ has an extra term
comparing to f and, in order for f ′(S) to be positive, the
constraint η(S) ≤ 2(1+10ε)H should be satisfied. The new
variant of Algorithm I, returns S, once f ′(S) > 0.

The same argument as before shows that for any given
u ∈ V conditional on u ∈ S, µ(S) ≤ (1 + 10ε)ρ and
η(S) ≤ 2(1 + 10ε)H with probability at least 3/4. Then,
using a new constraint (4), we get Eµ(S) ≤ αρ. Hence, the
expectation

Ef ′(S) ≥ 3α× 3/4 H

4
− αH

4
− αH

4
≥ αH

16
.

Again, after at most O(α−1n2) iterations the algorithm will
find S with f ′(S) > 0 (and only with exponentially small
probability fail)3. Then, f ′(S) > 0 implies

δ(S)

w(E)
≤ 4D × SDP

H
η(S); (5)

and η(S) ≥ H × µ(S)/(4ρ).
The last inequality implies that at every moment η(T) ≥

H×µ(T)/(4ρ). Hence, if µ(T) ≥ ρ/4 (recall, this is one of
the two conditions, when the algorithm stops), then η(T) ≥
H/16. Therefore, if the algorithm returns set T , then η(T) ≥
H/16. If the algorithm returns set S then either µ(S) ≥
3/4 ρ and thus η(S) ≥ 3H/16 ot η(S) ≥ 3/4H .

Both, µ(T) and η(T) are bounded from above by ρ and
H respectively; µ(S) and η(S) are bounded from above by
(1 + 10ε)ρ and 2(1 + 10ε)H respectively.

The inequality (5) holds for every set S added in T , hence
this inequality holds for T .

3In fact, now f ′(S) ≤ 2H , thus we need only O(α−1n) iterations.

2.3. Small-Set Expansion in Minor-Closed Graph Families

In this subsection we present Theorem 6. We start by
writing an LP relaxation. For every vertex u ∈ V we
introduce a variable x(u) taking values in [0, 1]; and for
every pair of vertices u, v ∈ V we introduce a variable
z(u, v) = z(v, u) also taking values in [0, 1]. In the intended
integral solution corresponding to a set S ⊂ V , x(u) = 1 if
u ∈ S, and x(u) = 0 otherwise; z(u, v) = |x(u) − x(v)|.
(One way of thinking of x(u) is as the distance to some
imaginary vertex O that never belongs to S. In the SDP
relaxation vertex O is the origin.) It is instructive to think
of x(u) as an analog of ‖ū‖2 and of z(u, v) as an analog
of ‖ū− v̄‖2.

It is easy to verify that the LP below is a relaxation of
the Small-Set Expansion problem. It has a constraint saying
that z(u, v) is a metric (or, strictly speaking, semi-metric).
A novelty of the LP is in the third constraint, which is a new
spreading constraints for ensuring the size of S is small.

min
∑

(u,v)∈E

w(u,v)z(u, v)

subject to: for all u, v, w ∈ V ,

z(u, v) + z(v, w) ≥ z(u,w)

|x(u)− x(v)| ≤ z(u, v)

x(u), z(u, v) ∈ [0, 1]

for all u ∈ V ,∑
v∈V

µ(v) ·min{x(u), z(u, v)} ≥ (1− ρ)x(u).

Figure 2. LP Relaxation

We introduce an analog of m-orthogonal separators for
linear programming, which we call LP separators.

Definition 11 (LP separator). Let G = (V,E) be a graph,
and let {x(u), z(u, v)}u,v∈V be a set of numbers. We say
that a distribution over subsets of V is an LP separator
of V with distortion D ≥ 1, probability scale α > 0 and
separation threshold β ∈ (0, 1) if the following conditions
hold for S ⊂ V chosen according to this distribution:
• For all u ∈ V , Pr(u ∈ S) = αx(u).
• For all u, v ∈ V with z(u, v) ≥ βmin{x(u), x(v)},

Pr(u ∈ S and v ∈ S) = 0.

• For all (u, v) ∈ E,

Pr(IS(u) 6= IS(v)) ≤ αD × z(u, v),

where IS is an indicator for the set S.

In the full version of the paper, we present an efficient
algorithm for an LP separator: given a graph G = (V,E)
excluding Kr,r as a minor, a parameter β ∈ (0, 1), and a
set of numbers {x(u), z(u, v)}u,v∈V satisfying the triangle
inequalities described above (but not necessarily the spread-
ing constraints), the algorithm computes an LP separator
with distortion O(r2) (for genus g graphs the distortion is
O(log g)). This proves Theorem 6 as follows: by replacing
in the algorithms above the SDP relaxation with the LP
relaxation, and the orthogonal separators with LP separators,
we obtain O(r2) approximation algorithm approximation
algorithm for SSE in Kr,r excluded-minor graphs. Com-
bined with the framework in Section 3, we consequently
obtain an O(r2)-approximation algorithm for Min–Max k–
Partitioning and Min-Max-Multiway-Cut on such graphs.

Theorem 12. There exists an algorithm that given a graph
G = (V,E) with an excluded minor Kr,r, a set of numbers
{x(u), z(u, v)}u,v∈V satisfying the triangle inequality con-
straints, and a parameter β ∈ [0, 1], returns an LP separator
S ⊂ V with distortion D = r2β−1 and separation threshold
β.

2.4. From SSE to ρ–Unbalanced Cut

We show that ρ–Unbalanced Cut and SSE are equivalent,
up to some constants, with respect to bicriteria approxima-
tion guarantees. Indeed, the two problems are related in the
same way that Balanced Cut and Sparsest Cut are. We refer
the reader to [16], [20], and omit details from this version
of the paper. Our intended application of approximating
Min–Max k–Partitioning (in Section 3), requires a weighted
version of the ρ–Unbalanced Cut problem, as follows.

Definition 13 (Weighted ρ-Unbalanced Cut). The input to
this problem is a tuple 〈G, y, w, τ, ρ〉, where G = (V,E)
is a graph with vertex-weights y : V → R+, edge-costs
w : E → R≥0, and parameters τ, ρ ∈ (0, 1]. The goal is to
find S ⊆ V of minimum cost δ(S) satisfying:

1) y(S) ≥ τ · y(V); and
2) |S| ≤ ρ · n.

The unweighted version of the problem (defined in Sec-
tion 1.2) has τ = ρ and unit vertex-weights, i.e. y(v) = 1 for
all v ∈ V . We focus on the direction of reducing Weighted
ρ-Unbalanced Cut to Weighted Small-Set Expansion, which
is needed for our intended application (In the full version of
the paper we give reductions in both direction.) Formally,
we have the following corollary of Theorem 8. We use
OPT〈G,y,w,τ,ρ〉 to denote the optimal value of the corre-
sponding weighted ρ–Unbalanced Cut instance.

Corollary 14 (Approximating ρ-Unbalanced Cut). For every
ε > 0, there exists a polynomial-time algorithm that given
an instance 〈G, y, w, τ, ρ〉 of Weighted ρ-Unbalanced Cut,
finds a set S satisfying |S| ≤ βρn, y(S) ≥ τ/γ and δ(S) ≤

α·OPT〈G,y,w,τ,ρ〉 for α = Oε(
√

log n log(max(1/ρ, 1/τ))),
β = 1 + ε and γ = O(1).

Proof: Let S∗ be an optimal solution to 〈G, y, w, τ, ρ〉,
note that |S∗| ≤ ρn, y(S∗) ≥ τ · y(V) and δ(S∗) =
OPT〈G,y,w,τ,ρ〉 the optimal value of this instance. Define
two measures on V as follows. For any S ⊆ V , set
µ(S) := |S|/n and η(S) := y(S)/y(V).

The algorithm guesses H ≥ τ such that H ≤ η(S∗) ≤
2H (see Algorithm I above for an argument why we
can guess H). Then it invokes the algorithm from part
II on G with measures µ and η as defined above, and
parameters ρ,H . The obtained solution S satisfies |S| =
µ(S) · n ≤ (1 + ε)ρn and y(S) = η(S) · y(V) ≥
Ωε(1)H ·y(V) ≥ Ωε(1) τ ·y(V), since H ≥ τ . Furthermore,
δ(S) ≤ α · δ(S∗) · η(S)/η(S∗) ≤ α · δ(S∗) · Θε(1), where
α = Oε(

√
log n log(max(1/ρ, 1/τ))).

3. MIN-MAX BALANCED PARTITIONING

In this section, we present our algorithm for Min–Max
k–Partitioning, assuming a subroutine that approximates
Weighted ρ-Unbalanced Cut (which is essentially a rephras-
ing of Weighted Small-Set Expansion). Our algorithm for
Min–Max k–Partitioning follows follows by a straightfor-
ward composition of Theorem 15 and Theorem 17 below.
Plugging in for (α, β, γ) the values obtained in Section 2
would complete the proof of Theorem 1.

3.1. Uniform Coverings

We first consider a covering relaxation of Min–Max k–
Partitioning and solve it using multiplicative updates. This
covering relaxation can alternatively be viewed as a frac-
tional solution to a configuration LP of exponential size.

Let C = {S ⊆ V : |S| ≤ n/k} denote all the vertex-sets
that are feasible for a single part. Note that a feasible solution
in Min–Max k–Partitioning corresponds to a partition of V
into k parts, where each part belongs to C. Algorithm 1,
described below, uniformly covers V using sets in C (actually
a slightly larger family than C). It is important to note that
its output S is a multiset.

Theorem 15. Running Algorithm 1 on an instance of Min–
Max k–Partitioning outputs S that satisfies (here OPT
denotes the optimal value of the instance):

1) For all S ∈ S we have δ(S) ≤ α · OPT and |S| ≤
β · n/k.

2) For all v ∈ V we have |{S ∈ S : S 3 v}|/|S| ≥
1/(5γk).

Proof: For an iteration t, let us denote Y t :=∑
v∈V y

t(v). The first assertion of the theorem is immediate
from the following claim.

Claim 16. Every iteration t of Algorithm 1 satisfies δ(St) ≤
α · OPT and |St| ≤ β · n/k.

Algorithm 1: Covering Procedure

Set t = 1, and y1(v) = 1 for all v ∈ V
while

∑
v∈V y

t(v) > 1/n do
// Solve the following using algorithm from

Corollary 14.
Let St ⊆ V be the solution for Weighted
ρ-Unbalanced Cut instance 〈G, yt, w, 1k ,

1
k 〉.

Set S = S ∪ {St}.
// Update the weights of the covered vertices.
for every v ∈ V do

Set yt+1(v) = 1
2 · y

t(v) if v ∈ St, and
yt+1(v) = yt(v) otherwise.

Set t = t+ 1.
return S

Proof: It suffices to show that the optimal value of
the Weighted ρ-Unbalanced Cut instance 〈G, yt, w, 1

k ,
1
k 〉

is at most OPT. To see this, consider the optimal solution
{S∗i }ki=1 of the original Min–Max k–Partitioning instance.
We have |S∗i | ≤ n/k and w(δ(S∗i)) ≤ OPT for all
i ∈ [k]. Since {S∗i }ki=1 partitions V , there is some j ∈ [k]
with yt(S∗j) ≥ Y t/k. It now follows that S∗j is a fea-
sible solution to the Weighted ρ-Unbalanced Cut instance
〈G, yt, w, 1

k ,
1
k 〉, with objective value at most OPT, which

proves the claim.
We proceed to prove the second assertion of Theorem 15.

Let ` denote the number of iterations of the while loop, for
the given Min–Max k–Partitioning instance. For any v ∈ V ,
let Nv denote the number of iterations t with St 3 v. Then,
by the y-updates we have y`+1(v) = 1/2Nv . Moreover, the
termination condition implies that y`+1(v) ≤ 1/n (since
Y `+1 ≤ 1/n). Thus we obtain Nv ≥ log2 n for all v ∈
V . From the approximation guarantee of the Weighted ρ-
Unbalanced Cut algorithm, it follows that yt(St) ≥ 1

γ k ·
Y t in every iteration t. Thus Y t+1 = Y t − 1

2 · y
t(St) ≤(

1− 1
2γ k

)
· Y t. This implies that

Y ` ≤
(

1− 1

2γ k

)`−1
· Y 1 =

(
1− 1

2γ k

)`−1
· n.

However Y ` > 1/n since the algorithm performs ` itera-
tions. Thus, ` ≤ 1 + 4γ k · lnn ≤ 5γ k · log2 n. This proves
|{S ∈ S : S 3 v}|/|S| = Nv/` ≥ (5γ)−1k−1.

3.2. Aggregation

The aggregation process, which might be of independent
interest, transforms a cover of G into a partition. Intuitively,
we first let the sets randomly compete with each other over
the vertices so as to form a partition; then, to make sure no
set has large cost, we repeatedly fix the partition locally, and
use a potential function to track progress.

Theorem 17. Algorithm 2 is a randomized polynomial-time
algorithm that when given a graph G = (V,E), an ε ∈
(0, 1), and a cover S of V that satisfies: (i) every vertex in
V is covered by at least c/k fraction of sets S ∈ S, for c ∈
(0, 1]; and (ii) all S ∈ S satisfy |S| ≤ 2n/k and δ(S) ≤ B;
the algorithm outputs a partition P of V into at most k sets
such that for all P ∈ P we have |P | ≤ 2(1 + ε)n/k and
E[max δ(P) : P ∈ P] ≤ 8B/(cε).

Algorithm 2: Aggregation Procedure

1 Sampling
Sort sets in S in a random order: S1, S2, . . . , S|S|.
Let Pi = Si \ ∪j<iSj .

2 Replacing Expanding Sets with Sets from S
while there is a set Pi such that δ(Pi) > 2B do

Set Pi = Si, and for all j 6= i, set Pj = Pj \ Si.
3 Aggregating

Let B′ = max{ 1k
∑
i δ(P), 2B}.

while there are Pi 6= ∅, Pj 6= ∅ (i 6= j) such that
|Pi|+ |Pj | ≤ 2(1 + ε)n/k and
δ(Pi) + δ(Pj) ≤ 2B′ε−1 do

Set Pi = Pi ∪ Pj and set Pj = ∅.

4 return all non-empty sets Pi.

Analysis: 1. Observe that after step 1 the collection
of sets {Pi} is a partition of V and Pi ⊂ Si for every i.
Particularly, |Pi| ≤ |Si| ≤ 2n/k. Note, however, that the
bound δ(Pi) ≤ B may be violated for some i. We now
prove that E

[∑
i δ(Pi)

]
≤ 2kB/c.

Fix an i ≤ |S| and estimate the expected weight of edges
E(Pi,∪j>iPj) given that Si = S. If an edge (u, v) belongs
to E(Pi,∪j>iPj) then (u, v) ∈ E(Si, V \Si) = E(S, V \S)
and both u, v /∈ ∪j<iSj . For any edge (u, v) ∈ δ(S) (with
u ∈ S, v /∈ S),

Pr((u, v) ∈ E(Pi,∪j>iPj) | Si = S)

≤ Pr(v /∈ ∪j<iSj | Si = S) ≤ (1− c/k)i−1,

since v is covered by at least c/k fraction of sets in S and
is not covered by Si = S. Hence,

E[w(E(Pi,∪j>iPj)) | Si = S]

≤ (1− c/k)i−1δ(S) ≤ (1− c/k)i−1B,

and E[w(E(Pi,∪j>iPj))] ≤ (1− c/k)i−1B. Therefore, the
total expected weight of edges crossing the boundary of Pi’s
is at most

∑∞
i=0(1− c/k)iB = kB/c, and E

[∑
i δ(Pi)

]
≤

2kB/c.
2. After each iteration of step 2, the following invariant

holds: the collection of sets {Pi} is a partition of V and
Pi ⊂ Si for all i. Particularly, |Pi| ≤ |Si| ≤ 2n/k. The key
observation is that at every iteration of the “while” loop, the

sum
∑
j δ(Pj) decreases by at least 2B. This is due to the

following uncrossing argument:∑
j 6=i

δ(Pj \ Si) ≤

≤
∑
j 6=i

(
δ(Pj) + w(E(Pj \ Si, Si))− w(E(Si \ Pj , Pj)

)
≤
(∑
j 6=i

δ(Pj)
)

+ w(E(V \ Si, Si))︸ ︷︷ ︸
δ(Si)

−w(E(Pi, V \ Pi))︸ ︷︷ ︸
δ(Pi)

=
(∑

j

δ(Pj)
)

+ δ(Si)− δ(Pi)

≤
(∑
j 6=i

δ(Pj)
)
−B.

We used that Pi ⊂ Si, all Pj are disjoint, ∪j 6=i(Pj \ Si) ⊂
V \ Si, Pi ⊂ Si \ Pj , ∪j 6=iPj = V \ Pi. Then,

δ(Si) +
∑
j 6=i

δ(Pj \ Si) ≤
(∑

j

δ(Pj)
)
−B

+ (δ(Si)− δ(Pi)) ≤
(∑

j

δ(Pj)
)
− 2B.

Hence, the number of iterations of the loop in step 2 is
always polynomially bounded and after the last iteration
E
[∑

i δ(Pi)
]
≤ 2kB/c (the expectation is over random

choices at step 1; the step 2 does not use random bits).
Hence, E[B′] ≤ 4B/c.

3. The following analysis holds conditional on any value
of B′. After each iteration of step 3, the following invariant
holds: the collection of sets {Pi} is a partition of V .
Moreover, |Pi| ≤ 2(1 + ε)n/k and δ(Pi) ≤ 2B′ε−1 (note:
after step 2, δ(Pi) ≤ 2B ≤ B′ for each i).

When the loop terminates, we obtain a partition of V
into sets Pi satisfying |Pi| ≤ 2(1 + ε)n/k,

∑
i |Pi| = n,

δ(Pi) ≤ 2B′ε−1,
∑
i δ(Pi) ≤ kB′, such that no two sets

can be merged without violating above constraints. Hence
by Lemma 18 below (with ai = |Pi| and bi = δ(Pi)), the
number of non-empty sets is at most

2
n

2(1 + ε)n/k
+

kB′

2B′ε−1
= (1 + ε)−1k + (ε/2)k ≤ k.

Lemma 18 (Greedy Aggregation). Let a1, . . . , at and
b1, . . . bt be two sequences of nonnegative numbers satisfying
the following constraints ai < A, bi < B,

∑t
i=1 ai ≤ S

and
∑t
i=1 bi ≤ T (for some positive real numbers A,

B, S, and T). Moreover, assume that for every i and j
(i 6= j) either ai + aj > A or bi + bj > B. Then,
t < S/A+ T/B + max(S/A, T/B, 1).

Proof: By rescaling we assume that A = 1 and B = 1.
Moreover, we may assume that

∑t
i=1 ai < S and

∑t
i=1 bi <

T by slightly decreasing values of all ai and bi so that all
inequalities still hold.

We write two linear programs. The first LP (LPI) has
variables xi and constraints xi + xj ≥ 1 for all i, j such
that ai + aj ≥ 1. The second LP (LPII) has variables yi
and constraints yi + yj ≥ 1 all i, j such that bi + bj ≥ 1.
The LP objectives are to minimize

∑
i xi and to minimize∑

i yi. Note, that {ai} is a feasible point for LPI and {bi}
is a feasible point for LPII . Thus, the optimum values of
LPI and LPII are strictly less than S and T respectively.

Observe that both LPs are half-integral. Consider optimal
solutions x∗i , y∗j where x∗i , y

∗
j ∈ {0, 1/2, 1}. Note that for

every i, j either x∗i + x∗j ≥ 1 or y∗i + y∗j ≥ 1. Consider
several cases. If for all i, x∗i + y∗i ≥ 1, then t < S + T ,
since

∑t
i=1(x∗i + y∗i) < S + T . If for some j, x∗j + y∗j = 0

(and hence x∗j = y∗j = 0), then x∗i + y∗i ≥ 1 for i 6= j
and, thus, t < S + T + 1. Finally, assume that for some j,
x∗j + y∗j = 1/2, and w.l.o.g. x∗j = 1/2 and y∗j = 0. The
number of i’s with x∗i 6= 0 is (strictly) bounded by 2S.
For the remaining i’s, x∗i = 0 and hence y∗i = 1 (because
y∗i = y∗i + y∗j ≥ 1), and thus the number of such i’s is
(strictly) bounded by T .

REFERENCES

[1] K. Andreev and H. Racke, “Balanced graph partitioning,”
Theor. Comp. Sys., vol. 39, no. 6, pp. 929–939, 2006.

[2] S. Arora, S. Rao, and U. V. Vazirani, “Geometry, flows,
and graph-partitioning algorithms,” Commun. ACM, vol. 51,
no. 10, pp. 96–105, 2008.

[3] Y. Aumann and Y. Rabani, “An O(log k) approximate min-
cut max-flow theorem and approximation algorithm,” SIAM
J. Comput., vol. 27, no. 1, 1998.

[4] N. Bansal, K.-W. Lee, V. Nagarajan, and M. Zafer, “Minimum
congestion mapping in a cloud,” in PODC, 2011.

[5] G. Calinescu, H. J. Karloff, and Y. Rabani, “An improved
approximation algorithm for multiway cut,” J. Comput. Syst.
Sci, vol. 60, no. 3, pp. 564–574, 2000.

[6] J. Cheeger, B. Kleiner, and A. Naor, “A (logn)Ω(1) integrality
gap for the sparsest cut SDP,” in FOCS. IEEE Computer
Society, 2009, pp. 555–564.

[7] E. Chlamtac, K. Makarychev, and Y. Makarychev, “How to
play unique games using embeddings,” in FOCS, 2006, pp.
687–696.

[8] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba,
“Virtual network embedding with coordinated node and link
mapping,” in INFOCOM. IEEE, 2009, pp. 783–791.

[9] G. Even, J. Naor, S. Rao, and B. Schieber, “Fast approximate
graph partitioning algorithms,” SIAM J. Comput., vol. 28,
no. 6, pp. 2187–2214, 1999.

[10] U. Feige, R. Krauthgamer, and K. Nissim, “On cutting a few
vertices from a graph,” Discrete Appl. Math., vol. 127, pp.
643–649, May 2003.

[11] D. R. Karger, P. Klein, C. Stein, M. Thorup, and N. E.
Young, “Rounding algorithms for a geometric embedding of
minimum multiway cut,” Math. Oper. Res., vol. 29, no. 3, pp.
436–461, 2004.

[12] P. Klein, S. A. Plotkin, and S. Rao, “Excluded minors, net-
work decomposition, and multicommodity flow,” in Proceed-
ings of the twenty-fifth annual ACM symposium on Theory of
computing, ser. STOC. New York, NY, USA: ACM, 1993,
pp. 682–690.

[13] R. Krauthgamer, J. Naor, and R. Schwartz, “Partitioning
graphs into balanced components,” in SODA, 2009, pp. 942–
949.

[14] J. R. Lee and A. Naor, “Lp metrics on the Heisenberg
group and the Goemans-Linial conjecture,” in FOCS. IEEE
Computer Society, 2006, pp. 99–108.

[15] J. R. Lee and A. Sidiropoulos, “Genus and the geometry of
the cut graph,” in Proceedings of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2010, pp. 193–
201.

[16] T. Leighton and S. Rao, “Multicommodity max-flow min-
cut theorems and their use in designing approximation algo-
rithms,” J. ACM, vol. 46, no. 6, pp. 787–832, 1999.

[17] N. Linial, E. London, and Y. Rabinovich, “The geometry of
graphs and some of its algorithmic applications,” Combina-
torica, vol. 15, no. 2, 1995.

[18] H. Räcke, “Optimal hierarchical decompositions for conges-
tion minimization in networks,” in STOC, 2008, pp. 255–264.

[19] P. Raghavendra and D. Steurer, “Graph expansion and the
unique games conjecture,” in STOC, 2010, pp. 755–764.

[20] P. Raghavendra, D. Steurer, and P. Tetali, “Approximations
for the isoperimetric and spectral profile of graphs and related
parameters,” in STOC, 2010, pp. 631–640.

[21] P. Raghavendra, D. Steurer, and M. Tulsiani, “Reductions
between expansion problems,” 2010, manuscript.

[22] Z. Svitkina and É. Tardos, “Min-max multiway cut,” in
APPROX-RANDOM, 2004, pp. 207–218.

[23] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual
network embedding: substrate support for path splitting and
migration,” ACM SIGCOMM CCR, vol. 38(2), pp. 17–29,
2008.

[24] Y. Zhu and M. H. Ammar, “Algorithms for assigning sub-
strate network resources to virtual network components,” in
INFOCOM. IEEE, 2006.

